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It has long been known that the 2-view orthographic 
representation of a mechanical part is ambiguous. Existing 
literature addresses the recognition~reconstruction of  
solids (mostly polyhedral solids)from either 1-view 
(perspective) drawings, or from three orthographic views. 
The paper presents algorithms for reconstructing curved 
solids from only two polygonal orthographic views. First, 
all the polyhedral solids that correspond to the pair of 
prespecified orthogonai views are reconstructed, and then 
the associated third views are developed. Then, for each 
solid, the three views are analyzed simultaneously, and the 
authors reason about the possibilities of  including circular 
arcs in the newly generated third view. This corresponds 
to the inclusion of solids that are bounded by quadrics. 
Possible application areas include computer-aided design, 
machine vision and automated inspection systems. 

orthographic views, solid reconstruction, line-drawings automatic conver- 
sion 

INTRODUCTION 

2-view orthographic representation 

The use of parallel projections for unambiguous repre- 
sentations of solid objects was developed by the French 
mathematician Gaspard Monge in the middle of the 18th 
century. It has since formed the basis of what is now 
referred to as engineering drawing, multiview drawing and 
orthographic drawing. In this paradigm, every 3D object 
can be completely described by a set of three orthographic 
views (projections) on mutually perpendicular planes. Of 
the six possible orthographic views (obtained when the 
object is thought of as being enclosed in a transparent 
box), the views most commonly used in engineering are 
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the front, top and right-side views. While simple objects 
such as cylinders, bushings and bolts can typically be 
described by only a pair of orthographic views, the precise 
description of complex machine elements often requires 
sectional and/or auxiliary views in addition to the three 
views. 

This paper is interested in the inverse problem, that 
of developing solids whose orthographic views are given. 
In particular, the problem in which only two of the three 
views are given is considered. There are two aspects of 
this problem that contribute to its complexity. First, it 
is well known that a pair of orthogonal views (e.g. the 
front and top views) correspond, in general, to more than 
one solid, each giving rise to a unique third view (i.e. the 
right-side view). Thus, the 2-view representation of most 
objects is ambiguous. Second, straight lines in one of the 
two views can correspond to curves in the missing third 
view, giving rise to solids bounded by nonplanar surfaces. 

Fundamental in engineering graphics and descriptive 
geometry, and usually encountered by students in their 
first engineering drawing/graphics course, is the missing- 
view problem: given two views, generate the third 
view(s). This problem can be surprisingly complicated. 
It is so because every correct solution to this problem 
first requires the visualization of a solid that corresponds 
to the two given views. The third view can then be 
determined. Therefore, visualization in 3D is required, 
and this, in itself, is a cause of frustration. Further, as a 
2-view representation is nonunique, the completeness of 
the solution can be difficult to verify. 

If an object has several features that project to a single 
line in one or more views, the reconstruction of the same 
object starting from the three views can be very 
complicated. Lines and points on the given views must 
be systematically analyzed in the process of developing 
a correct solid. When only two views are given, the 
problem is clearly more difficult. For a simple object, it 
is best to visualize it partially from the two given views, 
and then complete the process by the addition of 
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consistent right-side views, one by one. However, if the 
given views are complex, the powers of spatial visualization 
become inadequate in the guidance of the analysis, which 
is inherently combinatorial. That there has been no 
reliable way to determine exactly how many solids 
correspond to a given pair of orthogonal views is 
therefore not surprising. 

This paper presents an algorithm for the reconstruction 
of all the solids that are bounded by planes and 
quadrics when only two orthographic views are given. 
First, the algorithm generates all the polygonal third 
views (i.e. the views that are composed of straight lines 
only ) that correspond to a given pair of orthogonal views. 
It does so by reconstructing all the polyhedral solids that 
correspond to the orthogonal views. The three views are 
then analyzed to identify the line segments in the right 
view that can be replaced by circular arcs (other conics 
can be included easily). Finally, the nonpolyhedral solids 
are generated from the modified three views. 

The reconstruction procedure, which is akin to the 
gift-wrapping method of generating convex hulls, begins 
from a vertex, and faces are added one by one, until a 
solid is generated. Considering every valid triple of 
vertices, the algorithm evaluates all candidate faces for 
inclusion. It considers all the valid configurations of faces, 
and determines the complete set of valid solids that 
correspond to the given views. An empty solution set 
proves that the given views are inconsistent. 

This section of the paper is concluded by a review of 
prior work on the generation of solids from line 
drawings, and potential applications are mentioned. The 
second section of the paper analyzes the problem and 
discusses the algorithm. The third and fourth sections 
contain the algorithms for polyhedral- and curved-solids 
generation. Examples are given in the fifth section. 

Previous work 

As a result of the use of digital computers for image 
processing, various aspects of the automatic recognition 
and reconstruction of line drawings have been researched 
since the 1960s. In particular, two variants of the problem 
discussed in this paper, i.e. reconstruction from single- 
view and 3-view drawings, have received attention thus 
far. 

An excellent survey of the research on the machine 
interpretation of line drawings can be found in the first 
few pages of a text by Sugihara 1. In this book, Sugihara 
addressed, in particular, the recognition of polyhedral 
objects and scenes described by single-view line drawings 
(which are also referred to as perspective drawings). 
An important subclass of this problem is the interpretation 
of multiview line drawings. 

Idesawa presented a method for the reconstruction of 
solid models from three orthographic projections z. This 
method, however, was capable of producing invalid 
objects. Lafue developed heuristics to detect such invalid 
objects by the imposition of a prespecified input format 3. 
In 1980, Wesley and Markowsky 4 developed an algorithm 
for the production of orthographic views from wireframe 
models of mechanical parts. They further extended the 

method to construct polyhedral solids from the three 
orthographic projections ~. Methods for the extraction of 
3D information from orthographic views can also be 
found in References 6 and 7. In Reference 8, the Wesley 
and Markowsky approach was extended to include 
circular arcs in the orthographic views. The resulting 
solids, therefore, could include quadrics and toroidal 
surfaces. 

The problem of generating all solids from only two 
views was, to the best of the authors' knowledge, first 
examined by Wilde 9. Wilde examined the difficulties 
involved in spatial visualization, and, in particular, in 
the reconstruction of solids from two orthogonal views. 
This paper presents algorithms for the reconstruction of 
polyhedral and curved solids from two views. 

Applications 

An automatic procedure to generate solids from line 
drawings has many applications in engineering. For 
example, one can then verify the consistency of compli- 
cated engineering drawings automatically. Such an 
algorithm can also be part of an interactive system to 
assist a designer during the development of new product 
designs. Moreover, drawings continue to be the most 
natural way of conveying geometric information for 
designers. Therefore, a system to convert automatically 
engineering drawings into solid models can be very useful. 
The conversion of engineering drawings into solid models 
is a task that many industries have to address in the 
process of adopting solid-modelling systems. The recog- 
nition of orthographic projects also has applications in 
machine vision and automated inspection. 

ANALYSIS OF RECONSTRUCTION 
PROBLEM 

Canonical orientation 

It is a common practice in engineering drawing to orient 
the object such that it yields the simplest orthographic 
views. It is easy to see that a simple object can produce 
complicated orthographic views if it is not oriented in 
the best possible way. For example, a cube standing on 
its vertex would produce a rather complicated set of 
orthographic views, with all its edges foreshortened. 
However, when three sides of the cube are parallel to the 
three principal planes of projection, the orthographic 
views are three squares. In the latter orientation, there 
is no foreshortening of the edges, and they appear in their 
true lengths. That orientation of an object that maximizes 
the number of edges that appear in true lengths in all 
three views is referred to as the object's canonical 
orientation. However, not all objects can be oriented such 
that the edges comprising the three views appear in their 
true lengths (e.g. an equilateral tetrahedron). 

Edge and vertex multiplicities 

When three orthographic views are provided, there is 
enough information in the drawings for it to be deduced 
which lines appear in true lengths. The reconstruction of 
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the solid is not difficult thereafter. However, when only 
two views are provided, the reconstruction procedure 
requires a systematic analysis of the views. Central to 
this analysis is the detection of line multiplicity, which 
is achieved by reasoning about vertex multiplicities. It is 
easy to see that more than one edge of a solid can project 
to the same line in one orthographic view. Such lines are 
considered as multiple lines. The multiplicity m of a line 
l in any view refers to the maximum number of edges that 
can project onto l while being consistent with the other 
view. 

Multiple edges are able to be detected by reasoning 
about multiple vertices, as each edge must correspond 
to a pair of vertices. Therefore, the multiplicity m of vertex 
v refers to the maximum number of distinct vertices that 
it can conceal, in consistency with the views. The 
multiplicity of vertex v in the top/front can be obtained 
by the vertices in the front/top view that lie on the vertical 
line through v being counted. The following is intuitive. 

Proposition 1 ." If vertices with multiplicities larger than 1 
exist in two orthographic views, the pair corresponds 
to more than one valid solid. 

Combinatorial analysis 

An important difference between the problem discussed 
in this paper and its two well known variations (i.e. the 
generation of solids from a perspective view and from 
three orthographic views) is that the problem has multiple 
solutions, whereas the other two have exactly one 
solution each. In other words, it is necessary for both 
the correctness and the completeness of the solution to 
be determined for this problem, whereas the other two 
problems are solved by a correct solution. It is this 
difference that leads to the combinatorial nature of this 
problem. 

A bound on the number of right views (and, hence, 
the distinct polyhedral solids) that correspond to a pair 
of orthographic views can be derived by analysis of the 
standard technique used in engineering drawing to 
develop third views from two given views. The procedure 
is illustrated in Figure 1, but discussions are not included. 
An explanation can be found in any standard text on 
engineering drawing, e.g. Reference 10. 

In Figure 1, assume that the top and front views, shown 
in the top quadrant TQ and the front quadrant FQ, 
respectively, were generated by the analysis of a solid S 
with m vertices and n edges. By construction, all the 
candidate vertices in the right quadrant RQ are the 
intersections of the horizontal and the vertical lines drawn 
from the vertices in FQ and TQ, respectively. There are 
O(m) vertices in TQ and in FQ. Therefore, RQ has 
O (m 2 ) candidate vertices. However, the right view cannot 
have more vertices than its progenitor S. Thus, each 
correct right view R i developed from the candidate 
vertices in RQ is a graph Gi( V, E), and V = O(m). (Note 
that firm lines in the right view cannot intersect, except 
at the candidate vertices. However, intersections between 
firm and hidden lines can create new vertices. ) If M = m 2, 
there are C~ possibilities for the vertex set V. 

TQ 

I I 

45°mitre l i n e ~  

/ 
/ 

/ 
/ 

" I 

I l l  
FQ RQ 

Figure 1. Construction of  right view from top and front 
views 

Consider a vertex set Vk of cardinality m. With m 
vertices, there can be O(mt) trees*. However, the 
orthographic views cannot contain any trees, as trees 
correspond to dangling faces and edges (i.e. unbounded 
solids). Therefore, the set of valid right views P, which 
corresponds to vertex set Vk, consists of all the graphs, 
but no trees or dangling edges. For example, every 
triangulation of V k is a topologically valid right view, as it 
contains cycles. It is easy to see that the cardinality of 
the set P is, in general, exponential in m. As there are 
C~ such vertex sets, the possibilities for right views are 
exponential in number. Clearly, this is a loose bound on 
the number of right views, as consistency with the top 
and front views is the final check for a valid right view. 
Moreover, the inclusion of nonpolyhedral solids in the 
above analysis results in an infinite number of valid right 
views. 

Correctness of procedure 

It is asserted that a 2-view representation can be unique 
under special conditions. 

Lemma 1." If at least one of the two given orthographic 
views has no multiple vertices, the 2-view representation 
is unambiguous. 

Proof." Let the top and front views be given, the former 
without any multiple vertices. The top view then 
determines the total number of vertices in the object and 
their unique connectivities (i.e. the edges). Clearly, the 
top view determines the unique topology of the solid. By 
definition, the front view contains the elevation of each 
vertex that appears in the top view. Therefore, the given 
representation is unambiguous. [] 

* For example, with three vertices A, B and C, there can be trees such 
as A-B-C, A-C-B, B-A-C and so on. 
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Note  that  a pair  of o r thographic  views, as per L e m m a  l, 
does not,  in general, facilitate visualization. However ,  for 
the purposes  of the reconstruct ion algori thms,  they are 
valid inputs. If the multiplicity of a vertex is n, it can 
conceal up to n - 1 vertices in the view. Therefore,  such 
a vertex is accounted for in the construct ion procedure  
by considerat ion of the view in which the vertex appears  
n times, once with each value of the vertex multiplicity 
(i.e. 0, 1 . . . . .  n - l ) .  

Theorem 1: In the reconstruct ion of all the valid solids 
from a pair  of o r thographic  views, it is necessary and 
sufficient to analyze only one view, and to account  for 
all the vertices in that  view that  have a multiplicity larger 
than 1. 

Proof: The necessity follows from Propos i t ion  1; this 
p roof  covers sufficiency. Account ing for a multiple vertex 
v in a view requires considerat ion of n instances of  the 
view, once with each value of the multiplicity of v. The 
compan ion  view is used for validity checks. Clearly such 
an account ing procedure  is exhaustive. Sufficiency is then 
an immedia te  consequence of L e m m a  1. [] 

Any procedure  that  does not account  for all the vertices 
with multiplicities larger than 1 is, by Theorem 1, 
incomplete.  The  mult iple vertices are accounted for in 
one view by the direct const ruct ion of the solid while the 
other  view is used to verify consistency. The a lgor i thm 
is based on an enumera t ion  scheme. It considers all the 
possible configurat ions that  can arise from the two given 
views. F r o m  these candidate  configurat ions,  only those 

1 2 
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1 2 3 4 
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5 
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10 11 

Figure 2. Orthogonal views; ( a ) top view, ( b )front view 

that  correspond to valid representat ions of solids are 
identified and stored. As all the candidate  configurat ions 
are enumera ted ,  the a lgor i thm ensures that  the solution 
set is complete,  i.e. that  there are no solids other  than 
those in the solution set that  generate the given pair  of 
o r thographic  views. 

OVERVIEW OF ALGORITHM 

Algorithm input 

The inputs to the a lgor i thm are two vertex connectivity 
matrices that  cor respond to the given views. The  
coordinates  of each vertex are also supplied to the 
a lgori thm. Each connectivity matr ix  is an n x n square 
matr ix ,  where n is the number  of  distinct vertices in the 
corresponding view. Figure 2 shows a pair  of or thographic  
views. The associated connectivi ty matr ices are as follows 
(the first matr ix  corresponds  to the top view, and the 
second matr ix  cor responds  to the front view):  

-1 1 1 0 0 0 0 0 0 0 0 -  

1 1 0 0 0 0 0 0 0 0 1 

1 0 1 1 l 1 0 0 0 0 0 

0 0 1 1 1 1 l 0 0 1 0 

0 0 1 1 1 1 0 1 0 0 0 

0 0 1 1 1 1 0 0 1 0 ! 

0 0 0 1 0 0 1 1 1 1 0 

0 0 0 0 1 0 1 1 1 0 0 

0 0 0 0 0 1 1 1 1 0 1 

0 0 0 1 0 0 1 0 0 1 1 

0 1 0 0 0 1 0 0 1 1 1 

-1 1 1 1 0 0 0 1 0 0 0 

1 1 l 1 1 0 0 0 1 0 0 

1 1 l 1 0 1 0 0 0 l 0 

1 1 1 1 0 0 1 0 0 0 1 

0 1 0 0 1 1 2 0 1 0 0 

0 0 1 0 1 1 2 0 0 1 0 

0 0 0 1 2 2 1 0 0 0 1 

1 0 0 0 0 0 0 1 1 1 l 

0 1 0 0 1 0 0 1 1 1 1 

0 0 1 0 0 1 0 l 1 1 l 

0 0 0 1 0 0 1 1 1 1 1_ 

An element C(i, j)  of the matr ix  has a value of 0 if node 
i is not  connected to node j ,  a value of 1 if node i is 
connected to node j by a complete  solid line, and a value 
of 2 if node i is connected to node j by a complete  or 
part ial ly hidden line. For  example,  in Figure 2b, vertex 5 
is connected to vertex 7 by a part ial ly hidden line, and 
so C (5, 7 ) = 2. The connectivity matr ices are symmetric .  
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Description of algorithm 

The algorithm works as follows. As a vertex in any view 
can actually correspond to the orthogonal projections of 
one or more lines, a vertex analysis is first performed to 
detect such multiple vertices, and their multiplicities are 
recorded. For example, vertex 11 in Figure 2b has a 
multiplicity of 4, as there are, at most, four vertices in 
the top view, i.e. 6, 9, 11 and 2, whose projections can 
coincide with it. 

Next, the vertex with the lowest multiplicity, vl say, 
is selected. From the connectivity matrices, all the 
neighbors of vl are identified and stored in V. Every 
noncollinear triple in V containing Vl defines a plane that 
passes through v~. These planes are generated and stored 
in P. Finally, a set of faces F is created by the systematic 
detection of all the vertices, except v~ and its neighbors, 
that lie on each element of P. Therefore, each element 
of F is a face that contains the vertex v~. 

Next, the faces in F are analyzed. In particular, it is 
necessary to determine how many faces of F can lead to 
a valid solid. A solid is considered to be valid only if it 
corresponds to the given views. The analysis involves the 
expansion of faces of F, and it proceeds as follows. A 
face f~ is selected from F. I f f l  is to be the face of a valid 
solid, each edge o f f l  must be shared by exactly one more 
face*. The neighbors of f l  are identified and stored in 
G1. This process is repeated for every face in F. The set 
G~ includes only those faces encountered in the analysis 
that do not intersect any face in G~_ 1, G~-2 . . . . .  G1 (i.e. 
it excludes nonmanifolds). Further, consistency with the 
given orthographic views is verified prior to the addition 
of a face in G~. 

A depth-first strategy is used, and the faces of G~ are 
expanded next. Concurrently with the face-expansion 
procedure for G~, the constructed solids are checked for 
completeness (i.e. that they are bounded solids) and 
validity (i.e. consistency with the given orthographic 
projections). Any solid that passes this check is a valid 
solid, and it is stored in the solution set. The connectivity 
matrix that corresponds to the right view is then 
generated. The face-expansion process is carried out for 
all sets G~ until all the faces are expanded. The algorithm 
then terminates, as all the solids that correspond to the 
given pair of orthographic views have been identified, 
and their right-view connectivity matrices have been 
stored. 

Now the three views for each solid have been obtained. 
The last step is to identify from these views which lines in 
the right view can be replaced by circular arcs. (Note 
that the concern is only to introduce curves in the right 
view, and not in the top and front views, which were 
prespecified. ) It is assumed that the solid being analyzed 
is in a canonical orientation. Once again, one view is 
analyzed, and the other is used to check consistency. 
Clearly, all the vertical lines in the top view are candidates 
for curved edges when they are viewed from the right. 
Further, a vertical line in the top view can only 
correspond to an inclined line, or a horizontal line, in 

* Nonmanifold objects are not considered. 

the right view. If it corresponds to an inclined line 
I1 = (u, v), it can be replaced directly by a circular arc C. 
C passes through u and v, and it has 12 and l 3 as tangents, 
where 12 and 13 intersect I~ at u and v, respectively. If the 
vertical line in the top view corresponds to a horizontal 
line in the right view, the corresponding solid has a sharp 
corner (and an edge) that is a candidate for 'rounding'  
or 'filleting'. Further checks are carried out to ensure 
consistency with the front view, and the corner/edge in 
the solid is rounded, or filleted, by the replacement of 
the appropriate vertex in the right view with a circular 
arc. The blend radius can be chosen by the user, and it 
determines the point of tangencies. 

ALGORITHM 

The main algorithm invokes three substeps: the form- 
face, expand-face and curves steps. The first two steps are 
recursive. 

MAIN algorithm 
MAIN algorithm 

Input: connectivity matrices for orthographic view R 
and T 
Output:  solids corresponding to R and T 

begin 

for each vertex in R, compute multiplicity 

for minimum-multiplicity vertex vl, while multiplicity 
> 0  

F ~ form-face (v~) 
while F not empty, expand-face (F) 
P ~ polyhedral solids ; Q ~ right views 
while Q not empty, curves(Q) 

c ~ curved solids 

output P and C 

end 

The MAIN algorithm requires that, in the orthographic 
views, there be a path from each vertex to every other 
vertex (i.e. no edge loop is properly contained in another). 
This condition disqualifies solids that have holes or 
pockets that open on planes. The algorithm can be 
modified to overcome this limitation by the addition of 
dummy edges between the appropriate vertices of the 
disconnected loops. 

A brief description of the procedures used by the MAIN 
program is given below: 

• Input-connectivity-matrices (top-view, front-view): This 
reads the data for both views from the input file, and 
returns the data in matrices top-view and front-view. 

• Generate-multiple-nodes ( top-view, front-view, multiple- 
node-list): This generates all the possible multiple 
nodes in the front view from the information given in 
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the top-view and front-view matrices, and returns the 
list of multiple nodes, properly labelled, in multiple- 
node-list. 

• Get-min-mnode (multiple-node-list, min-loc): This de- 
termines the node in the front view that has the least 
number of multiple nodes in the front view, and returns 
the identification of the node in min-loc. 

• Get-mnodes (min-loc, multiple-node-list, mnode-list ): 
This extracts all the mnodes at node min-loc in the 
front view from the multiple-node-list, and returns the 
resulting list in mnode-list. 

• Get-connected nodes (mnode, connected-list): This 
determines all the mnodes in the multiple-node-list that 
are connected to mnode, and returns the resulting set 
in connected-list. 

• Get-next-plane (mnode, connected-list, Jace): This 
determines the next candidate plane in the connected- 
list that passes through mnode. The previous plane, if 
any, is passed via face. The resulting plane is returned 
in face. 

• Get-nodes-in-plane (.face, vertices). This determines 
all mnodes that lie in the plane defined by.face, and 
returns this mnodes list in vertices. 

• Initial-solid (solid, face):  This sets up the initial solid 
with a single face that is defined by face. 

• Output-solution( ): This outputs the solution set of 
solids. 

Maintenance of candidate list 
In a process that is inherently combinatorial, the prompt 
rejection of invalid elements can substantially reduce a 
candidate list. Throughout  the reconstruction process, 
topological and geometric inconsistencies in each con- 
figuration of candidate faces, edges and vertices are 
detected, and the invalid elements are rejected outright. 

In the ,gIN algorithm, vertex triples define an initial 
set of candidate planes through the chosen vertex v 2. 
These planes are carriers of faces that pass through v 1. 
However, not all vertex triples are candidates. All 
collinear triples and dependent triples of vertices are 
rejected (see, for example, Figure 3). In Figure 3, vertex 
triples (l, 2, 3) and (5, 2, 4) define the same plane, and 
so (5, 2, 4) is considered as a dependent triple, and it is 
rejected. 

When ~giY invokes the form-face algorithm, each valid 
vertex triple (vi, vj, Vk) (i.e. a carrier plane for some face) 
is passed along with lists of additional vertices, if any, 
that also lie on the same carrier plane. Every such carrier 

2 % 
",,% , , 

3 i I I I 

5 4 

Figure 3. Invalid vertex triples in MAIN procedure 

plane is a candidate that is evaluated by the form-face 
algorithm. 

Form-face algorithm 

The form-face procedure recursively generates all the 
possible faces that can be produced from the vertex set. 

Form-face algorithm 

(1) 

(2) 
(2.1) 
(2.2) 

(2.3) 

(2.4) 

(2.5) 
(2.6) 

(3) 

Identify all the neighbors of the last vertex of the 
face 

For each of the vertices in this list, repeat 
Add the vertex to face at the current last vertex 
If the face is complete and valid add to the list of 
possible faces 
Mark this vertex as USED in the list of vertices 
that lie in the plane 
Invoke form-face( ) to generate the possible 
faces for the updated face 
Remove this vertex (the last vertex ) from the face 
Mark the vertex as FREE in the list of vertices that 
lie in the plane 

End of procedure ; Return 

The procedures used by the form-face algorithm are 
briefly described below: 

• Get-next-vertex-list (./ace, vertices, next-list)." This 
procedure returns all the FREE members of vertex list 
vertices that can be connected to the last vertex of 
.lace. The list of these vertices is returned in next-list. 

• Add-vertex-to-lace (face, vertex)." This procedure 
expands the partially constructed]ace by adding vertex 
to the last vertex of the face and updating vertex as 
the last vertex of Jace. 

• Valid-face (.['ace)." This procedure verifies whether a 
given.face is a complete and consistent face, i.e. the 
edges form a closed loop, and do not cross each other. 

• Add-face (.face): This procedure stores face in the list 
of candidate valid faces. 

• Mark-vertex-list (vertices, vertex, value). This pro- 
cedure marks vertex in the list vertices with the value 
value. IF value is USED, then vertex will not be used as 
a candidate in subsequent searches. If value is VREE, 
vertex will be used. 

• Remove-vertex:/rom-face (Jace, vertex). This pro- 
cedure removes vertex from the end of the partially 
constructed ./'ace. The previous vertex in J'ace now 
becomes the last vertex. 

Maintenance of candidate list 

The form-face algorithm seeks to construct valid faces 
for the solid from the set of carrier planes supplied by 
MAIY and a set of vertices obtained from the connectivity 
matrices. The size of the candidate list of faces is kept at 
a minimum by the performance of checks to preserve the 
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topological and geometric validity of the partially 
constructed solid. 

The topological check consists of the retrieval, for each 
carrier plane Pi, of the set Si of all the associated vertices 
that can possibly be connected to the last vertex Vk of P~. 
The set S~ can be constructed from the connectivity 
matrices. A face is considered to be topologically valid 
if it consists of a single, closed edge loop. Therefore, only 
those vertices from the set S~ that satisfy the above 
condition are added to the initial triple of vertices; all 
others are rejected. This avoids the consideration of 
dangling edges (see Figure 4a) and 'faces within faces' 
as candidates (see Figure 4b). Next, the geometric 
validity is considered. For a face to be geometrically 
valid, it is required that edges intersect only at the 
common vertices. Thus, if the addition of a vertex from 
the set S~ produces intersecting edges (see Figure 4c), the 
vertex is rejected. Every face that passes the above- 
mentioned checks is a candidate for evaluation by the 
expand-face algorithm. 

Expand-face algorithm 

Expand-face( ) recursively expands all the edges of the 
face. It also checks for the consistency and validity of the 
partially constructed solid, and stores any valid solids 
that may be encountered during the process. This 
algorithm is similar to MAIN in that it generates triples 
that correspond to the carrier planes that contain possible 
faces. 

Expand-face algorithm 

(]) 
(i . i)  

(1.2) 

(].3) 
(1.4) 
(1.4.1) 
(1.4.2) 
(1.4.3) 
(1.4.4) 
(].5) 

(2) 

For each edge of the face repeat 
Extract vertices in face that correspond to the 
edge 
If edge is already shared by two faces go to 
Step 1.5 
Generate list of faces that can be incident to edge 
For each face in this list repeat 
Add face to the partially constructed solid 
If solid is complete and valid, add to solution 
Invoke expand-face( ) to expand this face 
Remove face from solid 
Continue until the list is completely processed 

End of procedure ; Return 

The procedures used by the expand-face algorithm are 
briefly described below: 

• Number-of-edges ( face):  This determines the number 
of edges in face. 

• Extract-edge (face, i, edge)." This extracts the edge i 
from face. This edge is returned in the variable edge. 

• Already-shared (edge, solid): This checks whether 
edge is already shared by two of the faces of the partially 
constructed solid. If so, if returns TRUE; else returns 
FALSE. 

2 3 

a b 

2 

lg" 4 

C 

Figure 4. Rejected candidate faces inform-face procedure; 
( a ) dangling edges, ( b ) faces within faces, ( c ) inter- 
secting edges 

• Get-next-face-list (edge, face, solid, face-list): This 
gets the list of all the other possible faces for the edge 
that lies on face. This procedure checks and returns 
only those faces that, when added, preserve the 
consistency of the partially constructed solid. The result 
is returned in face-list. 

• A dd-face-to-solid (solid, face): This grows the partially 
constructed solid by adding face as one more face of 
solid. It assumes that face qualifies to be a valid face 
of solid. 

• Valid-solid(solid):Thischeckswhethersolidrepresents 
a valid solid that can be a member of the solution set. 
It checks whether (a) all the edges are shared by exactly 
two nodes, and (b) the solid produces all the vertices 
and lines in the given view information. If solid passes 
these checks, it returns TRUE, else returns FALSE. 

• Store-solid (solid): This adds solid as a member of the 
solution set. 

• Remove-face-from-solid (solid, face): This removes 
the face face from a partially constructed solid solid. It 
assumes that the resulting partial solid is still valid 
(i.e. that it does not contain discontinuities). 

Maintenance of candidate list 

The generation of vertex triples in the first part of the 
expand-face procedure is similar to what happens with 
MAIN, but the triples satisfy additional constraints. First, 
the triple must share the two vertices of an existing edge 
of the face. Second, the addition of the new third vertex 
must not result in edges that pierce through existing faces 
of the solid (see Figure 5a). Finally, the face normal 
defined by the new triple must be distinct, thereby 
disallowing more than one face on a single carrier plane 
(see Figure 5b). 

The vertex generation in the second part of the 
expand-face procedure is similar to that in the form-face 
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3 

a 

a a ,  

1 
b 

\ 

Figure 5. Invalid cases in the expand-/'ace procedure," ( a ) 
edges that pierce through existing faces, ( h ) more than 
one face on single carrier plane 

algorithm. The additional restrictions that need to be 
adhered to in the choosing of new vertices include the 
restrictions stated above (i.e. for Figures 5a and b), and 
the restriction that the resultant edge can be shared by 
exactly one more face. When loop closure is achieved, 
the resultant face is added to the solid. 

As invalid elements are detected and eliminated 
throughout the generation process, a pruned candidate 
list is maintained, and all the elements introduced into 
the solution are valid. Thus, for example, the possibility 
of an edge carrying one or more invalid faces does not 
arise. The solid is considered to be complete (i.e. to be 
a solution to the missing-view problem) when each edge 
has two incident faces and is consistent with the given 
orthographic views. 

Curves algorithm 

Curves( ) detects the edges in the newly generated right 
views that can be replaced by circular arcs, while 
remaining consistent with the specified top and front 
views. 

Curves algorithm 

(1) 

(2) 
(2.1) 
(2.2) 
(2.3) 
(2.3.1) 

(2.3.2) 
(2.3.3) 

(3) 

E ~ all vertical lines in top view. 

For each element e~ of E repeat 
Find corresponding edge r~ in right-side view 
Ifr~ is not horizontal, replace r~ by a circular arc 
If r~ is horizontal, repeat 
If edges intersecting r~ are vertical, replace r~ by 
circular arc 
Else, for each vertex u~ of r~ repeat 
If u~ has vertical and horizontal neighbors, 
blend u i 

Output valid solids; STOP 

This algorithm identifies the surfaces of the solid that 
can be curved. At present, it replaces with circular arcs 
only. However, extension to include all conics is 
straightforward; for example by the use of Liming's 
method ~.  The inputs to the algorithm are the three 
connectivity matrices that correspond to the three 
orthogonal views of the solid. It is required that these 
views consist entirely of straight-line segments only (i.e. 

it is assumed that projections of the curved surfaces are 
straight lines in the top and front views). The algorithm 
then determines the edges in the right view that can be 
curved. The limits on the parameter values of the circular 
arcs can be adjusted such that no two curves overlap or 
intersect, and the solid remains valid. 

The procedures used by the curves algorithm are briefly 
described below: 

• Get-t'ertical edges ( edge-list )." This generates a list of 
edges that correspond to the vertical edges in the top 
and front views. These edges project as either straight 
lines or points in both these views. The list is returned 
in edge-list. 

• Horizontal (edge-list, i ) :  This determines whether the 
ith edge in the edge-list is horizontal. It returns TRUE 
if the edge is horizontal. Otherwise, it returns FALSE. 

• Mark-parametric-curve ( edge-list, i)." This records that 
the ith edge in the edge-list can be replaced by a family 
of circular arcs that can be represented in the 
parametric form. 

• Get-discrete-points ( right-view, point-list ) : This identi- 
fies all the points in the right-view that have their 
projections as horizontal lines in both the front and 
top views. The list of resulting points is returned in 
point-list. 

• Valid-discrete-curve (edge-list, i, point-list, j)." This 
determines whether edge i can be replaced by a circular 
arc that spans up to the point j. It returns TRUE if the 
edge can be replaced. 

• Mark-~h'~'crete-curve (edge-list, i, point-list, j ) .  This 
records that edge i in the edge-list can be replaced by 
a circular arc that spans up to point j in the point-list. 

• Get-tangent-nodes ( right-view, edge-list )." This identifies 
all the nodes in the right-view that can be removed 
and replaced by a set of parametric arcs that are 
tangent to the edges that join at that node. The result 
is returned in node-list. 

• Mark-tangent-node (node-list, i ) :  This records that 
node i in the node-list can be removed and replaced 
by a set of parametric tangent curves. 

EXAMPLES 

The workings of the algorithm are illustrated by three 
examples. The algorithm has been implemented in c (and 
run on an Apollo DN 4000 workstation). The first 
example solves for polyhedral solids only, while the 
second and third generate solids that are bounded by 
quadrics. 

Polyhedral solids 

The polyhedral-solids example has been borrowed from 
Reference 9, in which ten solids were generated that 
corresponded to the pair of orthographic views shown 
in Figure 2. With the algorithm, the complete set of solids 
(16) and the corresponding right-side views were 
generated. They are shown in Figure 6. On the Apollo 
DN 4000, it took 2.6 s to generate all the right-view 
connectivity matrices (from which the right views were 
drawn ). 
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Top View 

1 . . . . .  

Front View 

a b 

I 

C d 

J 

e 

Figure 7. First set of curved solids 

For the solution of the above problem, the assumption 
was made that every solid has a planar (rectangular) 
base, the boundary of which corresponds to the boundary 
(i.e. the outer edge loop) in Figure 2a. This assumption 
disallows any prismatic protrusions below the base. 
When this restriction is removed (i.e. prismatic protrusions 
below the base that do not affect other views are allowed ), 
the number of solutions increases rapidly. The reader can 
visualize the new solids when, for example, triangular 
prisms are attached to the bottom face of solutions 9, 
10, 11, 12, 15 and 16 such that the top and front views 
are unaffected. 

Solids bounded by curved surfaces 

The reconstruction of curved solids from a pair of 
orthographic views (straight lines only ) is illustrated. The 
top and front views have intentionally been chosen to be 
simple. They permit the demonstration of the working 
of the algorithm, and, most importantly, they show the 
large number of possible solutions. In Figures 7 and 8, 
instead Of the complex curved solids being drawn, the 
two right views for each case, i.e. a polygonal right view 
and a right view with circular arcs, are illustrated. Note 
that many straight lines in the right views can further be 
replaced by curves. For example, the inclined lines / 1 in 
Figure 7b can be replaced by any one curve from the 
family of conics that are tangent to 12 and 13 at the vertices 
a and b, as long as their projection does not create an 
additional hidden line in the front view. Such valid 
modifications can lead to a large number of geometrically 
distinct solids. Such geometric variations are not shown 
in Figures 7 and 8. 

In Figure 7, the top and front views are given. The 
corresponding five right views are also shown. This simple 
example took less than 1 s for each polygonal right view 
and curved right view on the Apollo DN 4000. Note that 
not all views permit curves. For example, the replacement 
of the sharp corner in Figure 7b by any circular curve is 
not permissible if consistency with the dimensions in the 
top and front views is to be maintained. Figures 7e and f 
are similar. 

In Figure 8, the top and front views are given. For 
this set, the algorithm identified 14 polygonal right views 

in 3.2 s, and the corresponding curved right views in 
2.1 s, on the Apollo DN 4000. As before, not all the right 
views permit curves. It is interesting to note that, for the 
given top and front views, one typically visualizes an L 
section or some variation thereof; views 10-14 do not 
come to mind easily. However, large crosssectional areas 
are contained in views 10, 11, 12 and 13, and the smallest 
in view 14. The algorithm can readily be adapted for the 
automatic detection (or generation) of solids with such 
geometric properties. 

User interaction, as in the case of polyhedral solids 
(Figure 6), is helpful in the reconstruction process. The 
search process can then be guided to include, or exclude, 
certain features on the solid. Also, in the curved solids 
(see Figures 7 and 8 ), the radius for rounding and filleting 
can be chosen by the user. Further, with the use of 
Liming's method, the circular arcs can easily be replaced 
by other conics such as elliptical, parabolic or hyperbolic 
arcs (see, for example, Reference 11 ). 

SUMMARY 

An algorithm has been presented that reconstructs all 
solids bounded by planes and quadrics that correspond 
to a pair of prespecified orthogonal views. As a 
byproduct, the missing third views are also obtained. The 
algorithm ensures completeness by considering all the 
candidate faces for inclusion in the solid. Consistency 
with the given views guarantees the validity of the 
generated solids and the correctness of the algorithm. 

Visualization in three dimensions is a difficult task. 
For complex solids, even when all three views are 
provided, a manual reconstruction process can be very 
complicated. It requires the ascertaining of corre- 
spondence between the given views, and then the 
construction of the solid based on the views. The 
reconstruction problem considered in this paper is more 
difficult, because of the combinatorial nature of the 
solution brought about by the incomplete specification. 
The solution procedure can benefit extensively from user 
interaction (as in Figure 4). As a 2-view representation 
typically corresponds to multiple solids, the search 
process can be guided to exclude classes of solids that 
the user deems unnecessary. 
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