
Reconstruction of curved
solids from two polygonal
orthographic views
D Dutta and Y L Srinivas

It has long been known that the 2-view orthographic
representation of a mechanical part is ambiguous. Existing
literature addresses the recognition~reconstruction of
solids (mostly polyhedral solids)from either 1-view
(perspective) drawings, or from three orthographic views.
The paper presents algorithms for reconstructing curved
solids from only two polygonal orthographic views. First,
all the polyhedral solids that correspond to the pair of
prespecified orthogonai views are reconstructed, and then
the associated third views are developed. Then, for each
solid, the three views are analyzed simultaneously, and the
authors reason about the possibilities of including circular
arcs in the newly generated third view. This corresponds
to the inclusion of solids that are bounded by quadrics.
Possible application areas include computer-aided design,
machine vision and automated inspection systems.

orthographic views, solid reconstruction, line-drawings automatic conver-
sion

INTRODUCTION

2-view orthographic representation

The use of parallel projections for unambiguous repre-
sentations of solid objects was developed by the French
mathematician Gaspard Monge in the middle of the 18th
century. It has since formed the basis of what is now
referred to as engineering drawing, multiview drawing and
orthographic drawing. In this paradigm, every 3D object
can be completely described by a set of three orthographic
views (projections) on mutually perpendicular planes. Of
the six possible orthographic views (obtained when the
object is thought of as being enclosed in a transparent
box), the views most commonly used in engineering are

Design Laboratory, Department of Mechanical Engineering, University
of Michigan, Ann Arbor, MI 48109, USA
Paper received: 31 July 1991. Revised: 14 October 1991

the front, top and right-side views. While simple objects
such as cylinders, bushings and bolts can typically be
described by only a pair of orthographic views, the precise
description of complex machine elements often requires
sectional and/or auxiliary views in addition to the three
views.

This paper is interested in the inverse problem, that
of developing solids whose orthographic views are given.
In particular, the problem in which only two of the three
views are given is considered. There are two aspects of
this problem that contribute to its complexity. First, it
is well known that a pair of orthogonal views (e.g. the
front and top views) correspond, in general, to more than
one solid, each giving rise to a unique third view (i.e. the
right-side view). Thus, the 2-view representation of most
objects is ambiguous. Second, straight lines in one of the
two views can correspond to curves in the missing third
view, giving rise to solids bounded by nonplanar surfaces.

Fundamental in engineering graphics and descriptive
geometry, and usually encountered by students in their
first engineering drawing/graphics course, is the missing-
view problem: given two views, generate the third
view(s). This problem can be surprisingly complicated.
It is so because every correct solution to this problem
first requires the visualization of a solid that corresponds
to the two given views. The third view can then be
determined. Therefore, visualization in 3D is required,
and this, in itself, is a cause of frustration. Further, as a
2-view representation is nonunique, the completeness of
the solution can be difficult to verify.

If an object has several features that project to a single
line in one or more views, the reconstruction of the same
object starting from the three views can be very
complicated. Lines and points on the given views must
be systematically analyzed in the process of developing
a correct solid. When only two views are given, the
problem is clearly more difficult. For a simple object, it
is best to visualize it partially from the two given views,
and then complete the process by the addition of

volume 24 number 3 march 1992 0010-4485/92/030149-11 © 1992 Butterworth-Heinemann Ltd 149

D Dutta and Y L Srinivas

consistent right-side views, one by one. However, if the
given views are complex, the powers of spatial visualization
become inadequate in the guidance of the analysis, which
is inherently combinatorial. That there has been no
reliable way to determine exactly how many solids
correspond to a given pair of orthogonal views is
therefore not surprising.

This paper presents an algorithm for the reconstruction
of all the solids that are bounded by planes and
quadrics when only two orthographic views are given.
First, the algorithm generates all the polygonal third
views (i.e. the views that are composed of straight lines
only) that correspond to a given pair of orthogonal views.
It does so by reconstructing all the polyhedral solids that
correspond to the orthogonal views. The three views are
then analyzed to identify the line segments in the right
view that can be replaced by circular arcs (other conics
can be included easily). Finally, the nonpolyhedral solids
are generated from the modified three views.

The reconstruction procedure, which is akin to the
gift-wrapping method of generating convex hulls, begins
from a vertex, and faces are added one by one, until a
solid is generated. Considering every valid triple of
vertices, the algorithm evaluates all candidate faces for
inclusion. It considers all the valid configurations of faces,
and determines the complete set of valid solids that
correspond to the given views. An empty solution set
proves that the given views are inconsistent.

This section of the paper is concluded by a review of
prior work on the generation of solids from line
drawings, and potential applications are mentioned. The
second section of the paper analyzes the problem and
discusses the algorithm. The third and fourth sections
contain the algorithms for polyhedral- and curved-solids
generation. Examples are given in the fifth section.

Previous work

As a result of the use of digital computers for image
processing, various aspects of the automatic recognition
and reconstruction of line drawings have been researched
since the 1960s. In particular, two variants of the problem
discussed in this paper, i.e. reconstruction from single-
view and 3-view drawings, have received attention thus
far.

An excellent survey of the research on the machine
interpretation of line drawings can be found in the first
few pages of a text by Sugihara 1. In this book, Sugihara
addressed, in particular, the recognition of polyhedral
objects and scenes described by single-view line drawings
(which are also referred to as perspective drawings).
An important subclass of this problem is the interpretation
of multiview line drawings.

Idesawa presented a method for the reconstruction of
solid models from three orthographic projections z. This
method, however, was capable of producing invalid
objects. Lafue developed heuristics to detect such invalid
objects by the imposition of a prespecified input format 3.
In 1980, Wesley and Markowsky 4 developed an algorithm
for the production of orthographic views from wireframe
models of mechanical parts. They further extended the

method to construct polyhedral solids from the three
orthographic projections ~. Methods for the extraction of
3D information from orthographic views can also be
found in References 6 and 7. In Reference 8, the Wesley
and Markowsky approach was extended to include
circular arcs in the orthographic views. The resulting
solids, therefore, could include quadrics and toroidal
surfaces.

The problem of generating all solids from only two
views was, to the best of the authors' knowledge, first
examined by Wilde 9. Wilde examined the difficulties
involved in spatial visualization, and, in particular, in
the reconstruction of solids from two orthogonal views.
This paper presents algorithms for the reconstruction of
polyhedral and curved solids from two views.

Applications

An automatic procedure to generate solids from line
drawings has many applications in engineering. For
example, one can then verify the consistency of compli-
cated engineering drawings automatically. Such an
algorithm can also be part of an interactive system to
assist a designer during the development of new product
designs. Moreover, drawings continue to be the most
natural way of conveying geometric information for
designers. Therefore, a system to convert automatically
engineering drawings into solid models can be very useful.
The conversion of engineering drawings into solid models
is a task that many industries have to address in the
process of adopting solid-modelling systems. The recog-
nition of orthographic projects also has applications in
machine vision and automated inspection.

ANALYSIS OF RECONSTRUCTION
PROBLEM

Canonical orientation

It is a common practice in engineering drawing to orient
the object such that it yields the simplest orthographic
views. It is easy to see that a simple object can produce
complicated orthographic views if it is not oriented in
the best possible way. For example, a cube standing on
its vertex would produce a rather complicated set of
orthographic views, with all its edges foreshortened.
However, when three sides of the cube are parallel to the
three principal planes of projection, the orthographic
views are three squares. In the latter orientation, there
is no foreshortening of the edges, and they appear in their
true lengths. That orientation of an object that maximizes
the number of edges that appear in true lengths in all
three views is referred to as the object's canonical
orientation. However, not all objects can be oriented such
that the edges comprising the three views appear in their
true lengths (e.g. an equilateral tetrahedron).

Edge and vertex multiplicities

When three orthographic views are provided, there is
enough information in the drawings for it to be deduced
which lines appear in true lengths. The reconstruction of

150 computer-aided design

Reconstruction of curved solids from two polygonal orthographic views

the solid is not difficult thereafter. However, when only
two views are provided, the reconstruction procedure
requires a systematic analysis of the views. Central to
this analysis is the detection of line multiplicity, which
is achieved by reasoning about vertex multiplicities. It is
easy to see that more than one edge of a solid can project
to the same line in one orthographic view. Such lines are
considered as multiple lines. The multiplicity m of a line
l in any view refers to the maximum number of edges that
can project onto l while being consistent with the other
view.

Multiple edges are able to be detected by reasoning
about multiple vertices, as each edge must correspond
to a pair of vertices. Therefore, the multiplicity m of vertex
v refers to the maximum number of distinct vertices that
it can conceal, in consistency with the views. The
multiplicity of vertex v in the top/front can be obtained
by the vertices in the front/top view that lie on the vertical
line through v being counted. The following is intuitive.

Proposition 1 ." If vertices with multiplicities larger than 1
exist in two orthographic views, the pair corresponds
to more than one valid solid.

Combinatorial analysis

An important difference between the problem discussed
in this paper and its two well known variations (i.e. the
generation of solids from a perspective view and from
three orthographic views) is that the problem has multiple
solutions, whereas the other two have exactly one
solution each. In other words, it is necessary for both
the correctness and the completeness of the solution to
be determined for this problem, whereas the other two
problems are solved by a correct solution. It is this
difference that leads to the combinatorial nature of this
problem.

A bound on the number of right views (and, hence,
the distinct polyhedral solids) that correspond to a pair
of orthographic views can be derived by analysis of the
standard technique used in engineering drawing to
develop third views from two given views. The procedure
is illustrated in Figure 1, but discussions are not included.
An explanation can be found in any standard text on
engineering drawing, e.g. Reference 10.

In Figure 1, assume that the top and front views, shown
in the top quadrant TQ and the front quadrant FQ,
respectively, were generated by the analysis of a solid S
with m vertices and n edges. By construction, all the
candidate vertices in the right quadrant RQ are the
intersections of the horizontal and the vertical lines drawn
from the vertices in FQ and TQ, respectively. There are
O(m) vertices in TQ and in FQ. Therefore, RQ has
O (m 2) candidate vertices. However, the right view cannot
have more vertices than its progenitor S. Thus, each
correct right view R i developed from the candidate
vertices in RQ is a graph Gi(V, E), and V = O(m). (Note
that firm lines in the right view cannot intersect, except
at the candidate vertices. However, intersections between
firm and hidden lines can create new vertices.) If M = m 2,
there are C~ possibilities for the vertex set V.

TQ

I I

45°mitre l i n e ~

/
/

/
/

" I

I l l
FQ RQ

Figure 1. Construction of right view from top and front
views

Consider a vertex set Vk of cardinality m. With m
vertices, there can be O(mt) trees*. However, the
orthographic views cannot contain any trees, as trees
correspond to dangling faces and edges (i.e. unbounded
solids). Therefore, the set of valid right views P, which
corresponds to vertex set Vk, consists of all the graphs,
but no trees or dangling edges. For example, every
triangulation of V k is a topologically valid right view, as it
contains cycles. It is easy to see that the cardinality of
the set P is, in general, exponential in m. As there are
C~ such vertex sets, the possibilities for right views are
exponential in number. Clearly, this is a loose bound on
the number of right views, as consistency with the top
and front views is the final check for a valid right view.
Moreover, the inclusion of nonpolyhedral solids in the
above analysis results in an infinite number of valid right
views.

Correctness of procedure

It is asserted that a 2-view representation can be unique
under special conditions.

Lemma 1." If at least one of the two given orthographic
views has no multiple vertices, the 2-view representation
is unambiguous.

Proof." Let the top and front views be given, the former
without any multiple vertices. The top view then
determines the total number of vertices in the object and
their unique connectivities (i.e. the edges). Clearly, the
top view determines the unique topology of the solid. By
definition, the front view contains the elevation of each
vertex that appears in the top view. Therefore, the given
representation is unambiguous. []

* For example, with three vertices A, B and C, there can be trees such
as A-B-C, A-C-B, B-A-C and so on.

volume 24 number 3 march 1992 151

D Dutta and Y L Srinivas

Note that a pair of o r thographic views, as per L e m m a l,
does not, in general, facilitate visualization. However , for
the purposes of the reconstruct ion algori thms, they are
valid inputs. If the multiplicity of a vertex is n, it can
conceal up to n - 1 vertices in the view. Therefore, such
a vertex is accounted for in the construct ion procedure
by considerat ion of the view in which the vertex appears
n times, once with each value of the vertex multiplicity
(i.e. 0, 1 n - l) .

Theorem 1: In the reconstruct ion of all the valid solids
from a pair of o r thographic views, it is necessary and
sufficient to analyze only one view, and to account for
all the vertices in that view that have a multiplicity larger
than 1.

Proof: The necessity follows from Propos i t ion 1; this
p roof covers sufficiency. Account ing for a multiple vertex
v in a view requires considerat ion of n instances of the
view, once with each value of the multiplicity of v. The
compan ion view is used for validity checks. Clearly such
an account ing procedure is exhaustive. Sufficiency is then
an immedia te consequence of L e m m a 1. []

Any procedure that does not account for all the vertices
with multiplicities larger than 1 is, by Theorem 1,
incomplete. The mult iple vertices are accounted for in
one view by the direct const ruct ion of the solid while the
other view is used to verify consistency. The a lgor i thm
is based on an enumera t ion scheme. It considers all the
possible configurat ions that can arise from the two given
views. F r o m these candidate configurat ions, only those

1 2

a
3 4 5 6

10

8
7

1 2 3 4

11

9

5

8 9

b

- - - - - - 7
6

10 11

Figure 2. Orthogonal views; (a) top view, (b)front view

that correspond to valid representat ions of solids are
identified and stored. As all the candidate configurat ions
are enumera ted , the a lgor i thm ensures that the solution
set is complete, i.e. that there are no solids other than
those in the solution set that generate the given pair of
o r thographic views.

OVERVIEW OF ALGORITHM

Algorithm input

The inputs to the a lgor i thm are two vertex connectivity
matrices that cor respond to the given views. The
coordinates of each vertex are also supplied to the
a lgori thm. Each connectivity matr ix is an n x n square
matr ix , where n is the number of distinct vertices in the
corresponding view. Figure 2 shows a pair of or thographic
views. The associated connectivi ty matr ices are as follows
(the first matr ix corresponds to the top view, and the
second matr ix cor responds to the front view):

-1 1 1 0 0 0 0 0 0 0 0 -

1 1 0 0 0 0 0 0 0 0 1

1 0 1 1 l 1 0 0 0 0 0

0 0 1 1 1 1 l 0 0 1 0

0 0 1 1 1 1 0 1 0 0 0

0 0 1 1 1 1 0 0 1 0 !

0 0 0 1 0 0 1 1 1 1 0

0 0 0 0 1 0 1 1 1 0 0

0 0 0 0 0 1 1 1 1 0 1

0 0 0 1 0 0 1 0 0 1 1

0 1 0 0 0 1 0 0 1 1 1

-1 1 1 1 0 0 0 1 0 0 0

1 1 l 1 1 0 0 0 1 0 0

1 1 l 1 0 1 0 0 0 l 0

1 1 1 1 0 0 1 0 0 0 1

0 1 0 0 1 1 2 0 1 0 0

0 0 1 0 1 1 2 0 0 1 0

0 0 0 1 2 2 1 0 0 0 1

1 0 0 0 0 0 0 1 1 1 l

0 1 0 0 1 0 0 1 1 1 1

0 0 1 0 0 1 0 l 1 1 l

0 0 0 1 0 0 1 1 1 1 1_

An element C(i, j) of the matr ix has a value of 0 if node
i is not connected to node j , a value of 1 if node i is
connected to node j by a complete solid line, and a value
of 2 if node i is connected to node j by a complete or
part ial ly hidden line. For example, in Figure 2b, vertex 5
is connected to vertex 7 by a part ial ly hidden line, and
so C (5, 7) = 2. The connectivity matr ices are symmetric .

152 computer-aided design

Reconstruction of curved solids from two polygonal orthographic views

Description of algorithm

The algorithm works as follows. As a vertex in any view
can actually correspond to the orthogonal projections of
one or more lines, a vertex analysis is first performed to
detect such multiple vertices, and their multiplicities are
recorded. For example, vertex 11 in Figure 2b has a
multiplicity of 4, as there are, at most, four vertices in
the top view, i.e. 6, 9, 11 and 2, whose projections can
coincide with it.

Next, the vertex with the lowest multiplicity, vl say,
is selected. From the connectivity matrices, all the
neighbors of vl are identified and stored in V. Every
noncollinear triple in V containing Vl defines a plane that
passes through v~. These planes are generated and stored
in P. Finally, a set of faces F is created by the systematic
detection of all the vertices, except v~ and its neighbors,
that lie on each element of P. Therefore, each element
of F is a face that contains the vertex v~.

Next, the faces in F are analyzed. In particular, it is
necessary to determine how many faces of F can lead to
a valid solid. A solid is considered to be valid only if it
corresponds to the given views. The analysis involves the
expansion of faces of F, and it proceeds as follows. A
face f~ is selected from F. I f f l is to be the face of a valid
solid, each edge o f f l must be shared by exactly one more
face*. The neighbors of f l are identified and stored in
G1. This process is repeated for every face in F. The set
G~ includes only those faces encountered in the analysis
that do not intersect any face in G~_ 1, G~-2 G1 (i.e.
it excludes nonmanifolds). Further, consistency with the
given orthographic views is verified prior to the addition
of a face in G~.

A depth-first strategy is used, and the faces of G~ are
expanded next. Concurrently with the face-expansion
procedure for G~, the constructed solids are checked for
completeness (i.e. that they are bounded solids) and
validity (i.e. consistency with the given orthographic
projections). Any solid that passes this check is a valid
solid, and it is stored in the solution set. The connectivity
matrix that corresponds to the right view is then
generated. The face-expansion process is carried out for
all sets G~ until all the faces are expanded. The algorithm
then terminates, as all the solids that correspond to the
given pair of orthographic views have been identified,
and their right-view connectivity matrices have been
stored.

Now the three views for each solid have been obtained.
The last step is to identify from these views which lines in
the right view can be replaced by circular arcs. (Note
that the concern is only to introduce curves in the right
view, and not in the top and front views, which were
prespecified.) It is assumed that the solid being analyzed
is in a canonical orientation. Once again, one view is
analyzed, and the other is used to check consistency.
Clearly, all the vertical lines in the top view are candidates
for curved edges when they are viewed from the right.
Further, a vertical line in the top view can only
correspond to an inclined line, or a horizontal line, in

* Nonmanifold objects are not considered.

the right view. If it corresponds to an inclined line
I1 = (u, v), it can be replaced directly by a circular arc C.
C passes through u and v, and it has 12 and l 3 as tangents,
where 12 and 13 intersect I~ at u and v, respectively. If the
vertical line in the top view corresponds to a horizontal
line in the right view, the corresponding solid has a sharp
corner (and an edge) that is a candidate for 'rounding'
or 'filleting'. Further checks are carried out to ensure
consistency with the front view, and the corner/edge in
the solid is rounded, or filleted, by the replacement of
the appropriate vertex in the right view with a circular
arc. The blend radius can be chosen by the user, and it
determines the point of tangencies.

ALGORITHM

The main algorithm invokes three substeps: the form-
face, expand-face and curves steps. The first two steps are
recursive.

MAIN algorithm
MAIN algorithm

Input: connectivity matrices for orthographic view R
and T
Output: solids corresponding to R and T

begin

for each vertex in R, compute multiplicity

for minimum-multiplicity vertex vl, while multiplicity
> 0

F ~ form-face (v~)
while F not empty, expand-face (F)
P ~ polyhedral solids ; Q ~ right views
while Q not empty, curves(Q)

c ~ curved solids

output P and C

end

The MAIN algorithm requires that, in the orthographic
views, there be a path from each vertex to every other
vertex (i.e. no edge loop is properly contained in another).
This condition disqualifies solids that have holes or
pockets that open on planes. The algorithm can be
modified to overcome this limitation by the addition of
dummy edges between the appropriate vertices of the
disconnected loops.

A brief description of the procedures used by the MAIN
program is given below:

• Input-connectivity-matrices (top-view, front-view): This
reads the data for both views from the input file, and
returns the data in matrices top-view and front-view.

• Generate-multiple-nodes (top-view, front-view, multiple-
node-list): This generates all the possible multiple
nodes in the front view from the information given in

volume 24 number 3 march 1992 153

D Dutta and Y L Srinivas

the top-view and front-view matrices, and returns the
list of multiple nodes, properly labelled, in multiple-
node-list.

• Get-min-mnode (multiple-node-list, min-loc): This de-
termines the node in the front view that has the least
number of multiple nodes in the front view, and returns
the identification of the node in min-loc.

• Get-mnodes (min-loc, multiple-node-list, mnode-list):
This extracts all the mnodes at node min-loc in the
front view from the multiple-node-list, and returns the
resulting list in mnode-list.

• Get-connected nodes (mnode, connected-list): This
determines all the mnodes in the multiple-node-list that
are connected to mnode, and returns the resulting set
in connected-list.

• Get-next-plane (mnode, connected-list, Jace): This
determines the next candidate plane in the connected-
list that passes through mnode. The previous plane, if
any, is passed via face. The resulting plane is returned
in face.

• Get-nodes-in-plane (.face, vertices). This determines
all mnodes that lie in the plane defined by.face, and
returns this mnodes list in vertices.

• Initial-solid (solid, face): This sets up the initial solid
with a single face that is defined by face.

• Output-solution(): This outputs the solution set of
solids.

Maintenance of candidate list
In a process that is inherently combinatorial, the prompt
rejection of invalid elements can substantially reduce a
candidate list. Throughout the reconstruction process,
topological and geometric inconsistencies in each con-
figuration of candidate faces, edges and vertices are
detected, and the invalid elements are rejected outright.

In the ,gIN algorithm, vertex triples define an initial
set of candidate planes through the chosen vertex v 2.
These planes are carriers of faces that pass through v 1.
However, not all vertex triples are candidates. All
collinear triples and dependent triples of vertices are
rejected (see, for example, Figure 3). In Figure 3, vertex
triples (l, 2, 3) and (5, 2, 4) define the same plane, and
so (5, 2, 4) is considered as a dependent triple, and it is
rejected.

When ~giY invokes the form-face algorithm, each valid
vertex triple (vi, vj, Vk) (i.e. a carrier plane for some face)
is passed along with lists of additional vertices, if any,
that also lie on the same carrier plane. Every such carrier

2 %
",,% , ,

3 i I I I

5 4

Figure 3. Invalid vertex triples in MAIN procedure

plane is a candidate that is evaluated by the form-face
algorithm.

Form-face algorithm

The form-face procedure recursively generates all the
possible faces that can be produced from the vertex set.

Form-face algorithm

(1)

(2)
(2.1)
(2.2)

(2.3)

(2.4)

(2.5)
(2.6)

(3)

Identify all the neighbors of the last vertex of the
face

For each of the vertices in this list, repeat
Add the vertex to face at the current last vertex
If the face is complete and valid add to the list of
possible faces
Mark this vertex as USED in the list of vertices
that lie in the plane
Invoke form-face() to generate the possible
faces for the updated face
Remove this vertex (the last vertex) from the face
Mark the vertex as FREE in the list of vertices that
lie in the plane

End of procedure ; Return

The procedures used by the form-face algorithm are
briefly described below:

• Get-next-vertex-list (./ace, vertices, next-list)." This
procedure returns all the FREE members of vertex list
vertices that can be connected to the last vertex of
.lace. The list of these vertices is returned in next-list.

• Add-vertex-to-lace (face, vertex)." This procedure
expands the partially constructed]ace by adding vertex
to the last vertex of the face and updating vertex as
the last vertex of Jace.

• Valid-face (.['ace)." This procedure verifies whether a
given.face is a complete and consistent face, i.e. the
edges form a closed loop, and do not cross each other.

• Add-face (.face): This procedure stores face in the list
of candidate valid faces.

• Mark-vertex-list (vertices, vertex, value). This pro-
cedure marks vertex in the list vertices with the value
value. IF value is USED, then vertex will not be used as
a candidate in subsequent searches. If value is VREE,
vertex will be used.

• Remove-vertex:/rom-face (Jace, vertex). This pro-
cedure removes vertex from the end of the partially
constructed ./'ace. The previous vertex in J'ace now
becomes the last vertex.

Maintenance of candidate list

The form-face algorithm seeks to construct valid faces
for the solid from the set of carrier planes supplied by
MAIY and a set of vertices obtained from the connectivity
matrices. The size of the candidate list of faces is kept at
a minimum by the performance of checks to preserve the

154 computer-aided design

Reconstruction of curved solids from two polygonal orthographic views

topological and geometric validity of the partially
constructed solid.

The topological check consists of the retrieval, for each
carrier plane Pi, of the set Si of all the associated vertices
that can possibly be connected to the last vertex Vk of P~.
The set S~ can be constructed from the connectivity
matrices. A face is considered to be topologically valid
if it consists of a single, closed edge loop. Therefore, only
those vertices from the set S~ that satisfy the above
condition are added to the initial triple of vertices; all
others are rejected. This avoids the consideration of
dangling edges (see Figure 4a) and 'faces within faces'
as candidates (see Figure 4b). Next, the geometric
validity is considered. For a face to be geometrically
valid, it is required that edges intersect only at the
common vertices. Thus, if the addition of a vertex from
the set S~ produces intersecting edges (see Figure 4c), the
vertex is rejected. Every face that passes the above-
mentioned checks is a candidate for evaluation by the
expand-face algorithm.

Expand-face algorithm

Expand-face() recursively expands all the edges of the
face. It also checks for the consistency and validity of the
partially constructed solid, and stores any valid solids
that may be encountered during the process. This
algorithm is similar to MAIN in that it generates triples
that correspond to the carrier planes that contain possible
faces.

Expand-face algorithm

(])
(i . i)

(1.2)

(].3)
(1.4)
(1.4.1)
(1.4.2)
(1.4.3)
(1.4.4)
(].5)

(2)

For each edge of the face repeat
Extract vertices in face that correspond to the
edge
If edge is already shared by two faces go to
Step 1.5
Generate list of faces that can be incident to edge
For each face in this list repeat
Add face to the partially constructed solid
If solid is complete and valid, add to solution
Invoke expand-face() to expand this face
Remove face from solid
Continue until the list is completely processed

End of procedure ; Return

The procedures used by the expand-face algorithm are
briefly described below:

• Number-of-edges (face): This determines the number
of edges in face.

• Extract-edge (face, i, edge)." This extracts the edge i
from face. This edge is returned in the variable edge.

• Already-shared (edge, solid): This checks whether
edge is already shared by two of the faces of the partially
constructed solid. If so, if returns TRUE; else returns
FALSE.

2 3

a b

2

lg" 4

C

Figure 4. Rejected candidate faces inform-face procedure;
(a) dangling edges, (b) faces within faces, (c) inter-
secting edges

• Get-next-face-list (edge, face, solid, face-list): This
gets the list of all the other possible faces for the edge
that lies on face. This procedure checks and returns
only those faces that, when added, preserve the
consistency of the partially constructed solid. The result
is returned in face-list.

• A dd-face-to-solid (solid, face): This grows the partially
constructed solid by adding face as one more face of
solid. It assumes that face qualifies to be a valid face
of solid.

• Valid-solid(solid):Thischeckswhethersolidrepresents
a valid solid that can be a member of the solution set.
It checks whether (a) all the edges are shared by exactly
two nodes, and (b) the solid produces all the vertices
and lines in the given view information. If solid passes
these checks, it returns TRUE, else returns FALSE.

• Store-solid (solid): This adds solid as a member of the
solution set.

• Remove-face-from-solid (solid, face): This removes
the face face from a partially constructed solid solid. It
assumes that the resulting partial solid is still valid
(i.e. that it does not contain discontinuities).

Maintenance of candidate list

The generation of vertex triples in the first part of the
expand-face procedure is similar to what happens with
MAIN, but the triples satisfy additional constraints. First,
the triple must share the two vertices of an existing edge
of the face. Second, the addition of the new third vertex
must not result in edges that pierce through existing faces
of the solid (see Figure 5a). Finally, the face normal
defined by the new triple must be distinct, thereby
disallowing more than one face on a single carrier plane
(see Figure 5b).

The vertex generation in the second part of the
expand-face procedure is similar to that in the form-face

volume 24 number 3 march 1992 155

D Dutta and Y L Srinivas

3

a

a a ,

1
b

\

Figure 5. Invalid cases in the expand-/'ace procedure," (a)
edges that pierce through existing faces, (h) more than
one face on single carrier plane

algorithm. The additional restrictions that need to be
adhered to in the choosing of new vertices include the
restrictions stated above (i.e. for Figures 5a and b), and
the restriction that the resultant edge can be shared by
exactly one more face. When loop closure is achieved,
the resultant face is added to the solid.

As invalid elements are detected and eliminated
throughout the generation process, a pruned candidate
list is maintained, and all the elements introduced into
the solution are valid. Thus, for example, the possibility
of an edge carrying one or more invalid faces does not
arise. The solid is considered to be complete (i.e. to be
a solution to the missing-view problem) when each edge
has two incident faces and is consistent with the given
orthographic views.

Curves algorithm

Curves() detects the edges in the newly generated right
views that can be replaced by circular arcs, while
remaining consistent with the specified top and front
views.

Curves algorithm

(1)

(2)
(2.1)
(2.2)
(2.3)
(2.3.1)

(2.3.2)
(2.3.3)

(3)

E ~ all vertical lines in top view.

For each element e~ of E repeat
Find corresponding edge r~ in right-side view
Ifr~ is not horizontal, replace r~ by a circular arc
If r~ is horizontal, repeat
If edges intersecting r~ are vertical, replace r~ by
circular arc
Else, for each vertex u~ of r~ repeat
If u~ has vertical and horizontal neighbors,
blend u i

Output valid solids; STOP

This algorithm identifies the surfaces of the solid that
can be curved. At present, it replaces with circular arcs
only. However, extension to include all conics is
straightforward; for example by the use of Liming's
method ~. The inputs to the algorithm are the three
connectivity matrices that correspond to the three
orthogonal views of the solid. It is required that these
views consist entirely of straight-line segments only (i.e.

it is assumed that projections of the curved surfaces are
straight lines in the top and front views). The algorithm
then determines the edges in the right view that can be
curved. The limits on the parameter values of the circular
arcs can be adjusted such that no two curves overlap or
intersect, and the solid remains valid.

The procedures used by the curves algorithm are briefly
described below:

• Get-t'ertical edges (edge-list)." This generates a list of
edges that correspond to the vertical edges in the top
and front views. These edges project as either straight
lines or points in both these views. The list is returned
in edge-list.

• Horizontal (edge-list, i) : This determines whether the
ith edge in the edge-list is horizontal. It returns TRUE
if the edge is horizontal. Otherwise, it returns FALSE.

• Mark-parametric-curve (edge-list, i)." This records that
the ith edge in the edge-list can be replaced by a family
of circular arcs that can be represented in the
parametric form.

• Get-discrete-points (right-view, point-list) : This identi-
fies all the points in the right-view that have their
projections as horizontal lines in both the front and
top views. The list of resulting points is returned in
point-list.

• Valid-discrete-curve (edge-list, i, point-list, j)." This
determines whether edge i can be replaced by a circular
arc that spans up to the point j. It returns TRUE if the
edge can be replaced.

• Mark-~h'~'crete-curve (edge-list, i, point-list, j) . This
records that edge i in the edge-list can be replaced by
a circular arc that spans up to point j in the point-list.

• Get-tangent-nodes (right-view, edge-list)." This identifies
all the nodes in the right-view that can be removed
and replaced by a set of parametric arcs that are
tangent to the edges that join at that node. The result
is returned in node-list.

• Mark-tangent-node (node-list, i) : This records that
node i in the node-list can be removed and replaced
by a set of parametric tangent curves.

EXAMPLES

The workings of the algorithm are illustrated by three
examples. The algorithm has been implemented in c (and
run on an Apollo DN 4000 workstation). The first
example solves for polyhedral solids only, while the
second and third generate solids that are bounded by
quadrics.

Polyhedral solids

The polyhedral-solids example has been borrowed from
Reference 9, in which ten solids were generated that
corresponded to the pair of orthographic views shown
in Figure 2. With the algorithm, the complete set of solids
(16) and the corresponding right-side views were
generated. They are shown in Figure 6. On the Apollo
DN 4000, it took 2.6 s to generate all the right-view
connectivity matrices (from which the right views were
drawn).

156 computer-aided design

O

C
 B

IX
)

c
- B

O
-

C
O

B

C
O

N

)

",
4

1

5 9 F 13

2 F 6

10
 Y

14

3 -E
V

s

s

7

11
 ,,,7

15
 7

F
ig

ur
e

6.

P
ol

yh
ed

ra
l

so
li

ds

4]7

o

t

8

I

12
 ..77

16
 7

I To
p

V
ie

w

F
ro

n
t

V
le

w

3
[

7 II

1
r

I 4 12

 ¢9
1 13

I0

14

F
ig

ur
e

8.

S
ec

on
d

se
t

of
 c

ur
ve

d
so

li
ds

t'D

C
)

0 ?-

C
~ 5 "3

£ (3

¢
- G
') o O
_

G
') o B

o 'o

o ,.
<

0 o 0 "O

S
T

C
)

D Dutta and Y L Srinivas

Top View

1

Front View

a b

I

C d

J

e

Figure 7. First set of curved solids

For the solution of the above problem, the assumption
was made that every solid has a planar (rectangular)
base, the boundary of which corresponds to the boundary
(i.e. the outer edge loop) in Figure 2a. This assumption
disallows any prismatic protrusions below the base.
When this restriction is removed (i.e. prismatic protrusions
below the base that do not affect other views are allowed),
the number of solutions increases rapidly. The reader can
visualize the new solids when, for example, triangular
prisms are attached to the bottom face of solutions 9,
10, 11, 12, 15 and 16 such that the top and front views
are unaffected.

Solids bounded by curved surfaces

The reconstruction of curved solids from a pair of
orthographic views (straight lines only) is illustrated. The
top and front views have intentionally been chosen to be
simple. They permit the demonstration of the working
of the algorithm, and, most importantly, they show the
large number of possible solutions. In Figures 7 and 8,
instead Of the complex curved solids being drawn, the
two right views for each case, i.e. a polygonal right view
and a right view with circular arcs, are illustrated. Note
that many straight lines in the right views can further be
replaced by curves. For example, the inclined lines / 1 in
Figure 7b can be replaced by any one curve from the
family of conics that are tangent to 12 and 13 at the vertices
a and b, as long as their projection does not create an
additional hidden line in the front view. Such valid
modifications can lead to a large number of geometrically
distinct solids. Such geometric variations are not shown
in Figures 7 and 8.

In Figure 7, the top and front views are given. The
corresponding five right views are also shown. This simple
example took less than 1 s for each polygonal right view
and curved right view on the Apollo DN 4000. Note that
not all views permit curves. For example, the replacement
of the sharp corner in Figure 7b by any circular curve is
not permissible if consistency with the dimensions in the
top and front views is to be maintained. Figures 7e and f
are similar.

In Figure 8, the top and front views are given. For
this set, the algorithm identified 14 polygonal right views

in 3.2 s, and the corresponding curved right views in
2.1 s, on the Apollo DN 4000. As before, not all the right
views permit curves. It is interesting to note that, for the
given top and front views, one typically visualizes an L
section or some variation thereof; views 10-14 do not
come to mind easily. However, large crosssectional areas
are contained in views 10, 11, 12 and 13, and the smallest
in view 14. The algorithm can readily be adapted for the
automatic detection (or generation) of solids with such
geometric properties.

User interaction, as in the case of polyhedral solids
(Figure 6), is helpful in the reconstruction process. The
search process can then be guided to include, or exclude,
certain features on the solid. Also, in the curved solids
(see Figures 7 and 8), the radius for rounding and filleting
can be chosen by the user. Further, with the use of
Liming's method, the circular arcs can easily be replaced
by other conics such as elliptical, parabolic or hyperbolic
arcs (see, for example, Reference 11).

SUMMARY

An algorithm has been presented that reconstructs all
solids bounded by planes and quadrics that correspond
to a pair of prespecified orthogonal views. As a
byproduct, the missing third views are also obtained. The
algorithm ensures completeness by considering all the
candidate faces for inclusion in the solid. Consistency
with the given views guarantees the validity of the
generated solids and the correctness of the algorithm.

Visualization in three dimensions is a difficult task.
For complex solids, even when all three views are
provided, a manual reconstruction process can be very
complicated. It requires the ascertaining of corre-
spondence between the given views, and then the
construction of the solid based on the views. The
reconstruction problem considered in this paper is more
difficult, because of the combinatorial nature of the
solution brought about by the incomplete specification.
The solution procedure can benefit extensively from user
interaction (as in Figure 4). As a 2-view representation
typically corresponds to multiple solids, the search
process can be guided to exclude classes of solids that
the user deems unnecessary.

158 computer-aided design

Reconstruction of curved solids from two polygonal orthographic views

ACKNOWLEDGEMENTS

The authors thank Professor Doug Wilde of Stanford
University, USA, for suggesting this problem for further
study. Professor Dutta was supported in part by US
National Science Foundation Grant DDM 90-10411. Y
L Srinivas was supported by the University of Michigan,
USA, Rackham Award, and by NSF Grant DDM
90-10411.

REFERENCES

1 Sugihara, K Machine Interpretation o f Line Drawings
MIT Press (1985)

2 ldesawa, M, Soma, T, Goto, E and Shihata, S
'Automatic input of line drawings and generation of
solid figure from three-view data' Proc. Int. Computer
Symp. - Vol H (1975) pp 304-311

3 Lafue, G 'Recognition of three-dimensional objects
from orthographic views' Comput. Graph. Vol 10 No
2 (1976)

4 Markowsky, G and Wesley, M A 'Fleshing out wire
frames' I B M J . Res. & Develop. Vol 24 No 5 (1980)
pp 582-597

5 Markowsky, G and Wesley, M A 'Fleshing out
projections' I B M J. Res. & Develop. Vol 24 No 6
(1981) pp 934-954

6 Preiss, K 'Algorithms for automatic conversion of a
3-view drawing of a plane-faced part of the 3-D
representation' Comput. Industry Vol 2 (1981) pp
133-139

7 AIdefeld, B 'Automatic 3-D reconstruction from 2-D
geometric part descriptions' Proc. I E E E Conf.
Computer Vision & Pattern Recognition (1983) pp
66-72

8 Sakurai, H and Gossard, D C 'Solid model input
through orthographic views' Comput. Graph. Vol 17
No 3 (1983) 243-247

9 Wilde, D J 'The geometry of spatial visualization:
two problems' Proc. 8th I F T O M World Congr.
Prague, Czechoslovakia (Aug 1991)

10 Luzadder, W J Fundamentals o f Engineering Drawing
(9th Ed.) Prentice-Hall (1986)

i l Faux, I D and Pratt, M J Computational Geometry
for Design and Manufacture Ellis Horwood, UK
(1979) p 31

BIBLIOGRAPHY

Harlick, R M and Shapiro, L G 'Understanding
engineering drawings' Comput. Graph. & Image Proc.
Vol 20 (1982) pp 244-258

Debasish Dutta is an assistant professor in the
Design Laboratory, Department of Mech-
anical Engineering and Applied Mechanics,
University of Michigan, USA. He obtained a
PhD from Purdue University, USA, in 1989.
His areas of interest include geometric modeling,
computational geometry in design and manu-
facturing automation, and descriptive geometry.

Lakshmi Srinivas obtained his bachelor's degree
in mechanical engineering from the Indian
Institute of Technology, Madras, India, in 1989,
and his master's degree in mechanical engineer-
ing from the University of Toledo in 1990. He is
currently a doctoral student in the Design
Laboratory, Dept. of Mechanical Engineering
and Applied Mechanics, University of Michigan,
USA. His research interests include geometric/
solid modeling, motion planning and the blending
of surfaces.

volume 24 number 3 march 1992 159

