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A set HE w is said to be diverse with respect to a partition II of w if at least two 
pieces of I7 have an infinite intersection with H. A family of partitions of w has the 
Ramsey property if, whenever Co] is two-colored, some monochromatic set is 
diverse with respect to at least one partition in the family. We show that no 
countable collection of even infinite partitions of CIJ has the Ramsey property, 
but there always exists a collection of Et, finite partitions of o with the Ramsey 
property. 0 1992 Academic Press, Inc. 

1. INTRODUCTION 

Let the set [o]’ of two-element subsets of the set w  of natural numbers 
be colored with two colors. According to Ramsey’s theorem [6], there is 
an infinite HG O.I that is monochromatic in the sense that all of [HI’ has 
a single color. We are interested in strengthening Ramsey’s theorem to 
obtain monochromatic sets that are not only infinite but rather widely 
spread out in the following sense. 

DEFINITION 1. A set HE UI is diverse with respect to a partition II of CO 
if at least two pieces of ll have infinite intersection with H. His diverse with 
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respect to a family of partitions if it is diverse with respect to at least one 
partition in the family. 

DEFINITION 2. A family of partitions of w has the Ramsey property if, 
whenever [o]’ is two-colored, some monochromatic set is diverse with 
respect to the family. 

Note that, if a family of partitions is enlarged, then more sets become 
diverse and the Ramsey property becomes more likely. At one extreme, if 
a family consists of one partition ZZ, then the Ramsey property trivially 
fails; just color the pairs {x, y> according to whether x and y are in the 
same piece of n. At the other extreme, the family of all partitions of w  has 
the Ramsey property, because every infinite subset of w  is diverse with 
respect to some partition. The following two theorems (proved in Sections 2 
and 3, respectively) specify the minimum possible cardinality of a family of 
partitions with the Ramsey property. 

THEOREM 1. No countable family of partitions of o has the Ramsey 
property. 

THEOREM 2. There is a family of N, partitions of cu having the Ramsey 
property. 

It should also be noted that Theorems 1 and 2 are as strong as possible 
in terms of the number of pieces in the partitions considered. That is, the 
negative result (Theorem 1) applies to partitions of o into even infinitely 
many pieces, while the positive result (Theorem 2) requires only partitions 
of o into two pieces. (Here “as strong as possible,” “even,” and “only” refer 
to the easily proved fact that, if n is a partition of o into finitely many 
pieces, then there are two partitions 17’ and fl of o into infinitely many 
pieces such that every set diverse for ZZ is also diverse for at least one of 
17’ and l7”.) 

2. PROOF OF THE NEGATIVE RESULT (THEOREM 1) 

Suppose that P = { LrO, 17,) . ..} is a family of partitions of w. We want to 
produce a two-coloring of [CO]’ so that monochromatic sets fail to be 
diverse with respect to P. We consider first the case where each of the par- 
titions n,, Z7,, Z7,, . . . in the family P has just two pieces, say l7,= {Ai, Bi}. 

Associate to each XEO the infinite sequence s(x) of zeros and ones 
whose ith term is zero if x E Ai and one if x E Bi. Now, if x, ye o with 
x < y, color the pair (x, y} red (resp. green) if s(x) lexicographically 
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precedes or equals (resp. follows) s(y). We shall show that no set diverse 
with respect to P is monochromatic. 

Let D E w  be diverse with respect to P and choose the least n E o so that 
D n A, and D n B, are both infinite. By deleting only finitely many x ED, 
we obtain a set D’ ED so that for each i < n we have D’c Ai or D’ c Bi. 
Now fix x ED’ n A,, and choose y > x so that y ED’ n B,. (This is possible 
since D’ n B, is infinite. ) Then clearly (x, y } is colored red since s(x) 
lexicographically precedes s(y). Similarly, if we fix x E D’ n B, and choose 
y>x so that yED’nA,, then {x, +v> is colored green since s(x) 
lexicographically follows s(u). Thus D is not monochromatic. 

In general, if ni has k(i) pieces (where k(i) < Et,), then we replace 17, by 
the k(i) partitions {A, B} obtainable by taking A to be one piece of ZZi and 
B to be the union of all the other pieces of ni. Clearly, if H is diverse with 
respect to Z7,, then it is also diverse with respect to one of these two-piece 
partitions. Thus, if the family P = { 17,: i E o} had the Ramsey property, so 
would the (countable) family of all the associated two-piece partitions. This 
would contradict the special case of the theorem proved above. So P does 
not have the Ramsey property. 1 

3. PROOF OF THE POSITIVE RESULT (THEOREM 2) 

We shall produce a family P’ = (Z7, : c1< N, } of partitions of o (into two 
pieces) and then show that P has the Ramsey property. So let {A,: a < K,} 
be a family of N, independent subsets of w. This means that if ~1,) tlZ, . . . . ak 
are distinct from pi, /I*, . . . . /I,, then 

A,,n ... nA.,n(o-A8,)n ... n(o-Ab,) (1) 

is non-empty, and it follows easily that all sets of the form (1) are infinite. 
The existence of K, (and in fact 2’O) independent subsets of o is a well- 
known result of [3] (given a combinatorial proof and generalized in [4]; 
a more accessible reference is [S, Lemma 24.81). Now, for each a < K,, let 
ZZU = {A,, o - A,}; we shall show that the Ramsey property holds for the 
family P = (n, : a < H, >. To do this, we first construct a suitable ultrafilter 
on o and then follow a standard technique for deducing Ramsey’s theorem 
using ultralilters. 

Temporarily call a subset X of o small if, for every finite FG K,, there 
exist distinct a,, az, . . . . ak, pi, /12, . . . . /?,E K, -F such that 

A,, n . . . n A,, n (o - ADI) n . . . n (o - AD,) n X is finite. (2) 

In other words, X is not small if and only if all but finitely many of the A,‘s 
remain independent when we restrict attention to X. 
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Suppose X and Y are small; we claim that Xu Y is also small. Indeed, 
let a finite F G K, be given, and find a’s and p’s in N, - F to satisfy (2). 
Then use the fact that Y is small to find distinct y1 , . . . . yP, dl, . . . . 6, E N1 - 
(Fu {a,, . . . . tlk, /II, . . . . PI}) such that 

4, n . . . n Ayp n (w - A,,) n . . . n (o -Ad,) n Y is finite. (3) 

It follows from (2) and (3) that 

A,,n . . . nA.,n AYIn ... nAypn(m-AB,)n ... 

n(co-AAB,)n(w-AA,,)n ... n(o-As4)n(XuY) 

is finite, which establishes that Xu Y is small. 
Since o is obviously not small, we see that the small sets constitute a 

proper ideal of subsets of w. So there is an ultratilter % on w  that contains 
no small sets. Since finite sets are clearly small, @ is non-principal. 

Now let [w]’ be two-colored. We shall find a monochromatic set HE o 
that is diverse with respect to some 17,. 

First, for each XEO, find a set C(X)E%! such that all the pairs {x, y} 
with x < y and y E C(x) have the same color c(x). Then find a set D E 4P on 
which the function c is constant. Such C(X) and D exist because & is an 
ultratilter and the number of colors is hnite. Being in 4, the sets C(X) and 
D and all intersections of finitely many of them are not small. For each of 
the countably many sets X just mentioned, find a tinite Fc Hi serving as 
‘a counterexample to “X is small.” As countably many finite sets cannot 
cover K,, fix an a belonging to none of these sets. Then, for each of the 
countably many sets X in question, both Xn A, and X-A, are infinite. 

Inductively choose an increasing sequence x0 <x1 <x2 < . . . of natural 
numbers as follows. First, x,, is any element of D n A,. If n is even and 
non-zero, then x, is any element greater than x, _ 1 in 

Dn C(x,)n ... nC(x,-,)nA,. 

If n is odd, then x, is any element greater than x,- 1 in 

DnC(x,)n ... n C(x,-,)- A,. 

Thus, if k < n, then x, E C(x,&), so {x,, x,} has Color c(x,); furthermore, as 
X~E D, this color is independent of k (as well as n). So {x,: n ECO} is 
monochromatic. Furthermore, A, contains x, for all even n but for no odd 
12, so this monochromatic set is diverse for I7,. 1 
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4. ADDITIONAL REMARKS 

1. Minor modifications of the proof of Theorem 2 establish that the 
partitions l7, have the following stronger property. Whenever [w]: for 
some finite r, is colored with finitely many colors, there is a monochromatic 
set that is diverse with respect to each of infinitely many Uol’s. In fact, given 
a coloring, we can specify countably many of the ZZ,‘s such that, for any 
countably many other Z7P’s, some monochromatic set is diverse with 
respect to each of the np’s. 

Results like these also hold for stronger partition theorems than 
Ramsey’s, for example Silver’s theorem [7]. The family of partitions used 
in the proof of Theorem 2 has the property that, whenever the set [w]” of 
infinite subsets of o is partitioned into an analytic piece and a co-analytic 
piece, then there is a homogeneous set that is diverse with respect to this 
family. This can be proved by choosing an ultratilter 08 containing no small 
sets (as in the proof of Theorem 2) and applying Theorem 4(a) of [l] 
to it. 

2. It is easy to modify the proof of Theorem 2 to produce N, parti- 
tions 27, of o into infinitely many pieces such that, for any two-coloring of 
Co]‘, there is a homogeneous set having infinite intersections with all the 
pieces of some II,. (This modification and those in Remark 1 can be 
combined.) 

3. The considerations of the present paper were inspired by the 
following question of Zwicker. Call a subset X of the full binary tree ‘“2 
dense if every SE ‘“2 has an extension in X. Suppose 9 is a family of 
bijections f: w  -+ <“2. Call B Ramsey if, whenever [w]’ is two-colored, 
there is a monochromatic set XG w  such that f(X) is dense for at least one 
f~ 9. What is the minimal size of a Ramsey family 9 as described above? 
Theorem 1 and (a slight generalization of) Theorem 2 show the answer to 
be K,. 

4. One could also consider analogs of our results for larger or 
smaller cardinalities. Here are two questions, which are typical of many 
others that might be asked: 

Let X be a set of cardinality (2 NO + How many partitions n, of X do ) . 
we need, to ensure that, whenever [Xl2 is two-colored, some homogeneous 
set meets both pieces of some 17, in uncountable sets? (Recall that, by a 
well-known theorem from [2], every two-coloring of [Xl2 has an uncoun- 
table homogeneous set.) 

Fix a small positive real number p. For each integer n > 2, letf(n) be the 
smallest number of partitions I7= of an n-element set X, into two pieces 
such that every two-coloring of [X,,12 has a homogeneous set that meets 



both pieces of some II, in sets of size 2 p log n. What is the asymptotic 
behavior off? We can show that, when p < $, there are constants c, and 
c2 (depending on p but not on n) such that log log n - c1 <f(n) < c2 log n, 
where the logarithms are to the base 2. 
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