
Performance Evaluation 14 (1992) 139-156 139
North-Holland

Performability: a retrospective
and some pointers to the future *

John F. Meyer
Department of Electrical Engineering and Computer Science, The Uniuersity of Michigan, Ann Arbor, MI 48109, USA

Abstract

Meyer, J.F,, Performability: a retrospective and some pointers to the future, Performance Evaluation 14 (1992) 139-156.

As computing and communication systems become physically and logically more complex, their evaluation calls for
continued innovation with regard to measure definition, model construction/solution, and tool development. In particular,
the performance of such systems is often degradable, i.e., internal or external faults can reduce the quality of a delivered
service even though that service, according to its specification, remains proper (failure-free). The need to accommodate this
property, using model-based evaluation methods, was the raison d~tre for the concept of performability. To set the stage for
additional progress in its development, we present a retrospective of associated theory, techniques, and applications
resulting from work in this area over the past decade and a half. Based on what has been learned, some pointers are made
to future directions which might further enhance the effectiveness of these methods and broaden their scope of applicability.

Keywords: performability, degradable performance, dependability, fault tolerance, model-based evaluation.

I. Introduction

Contemporary computers and communication
systems represent a fusion of concepts, tech-
niques, and technologies from the fields of both
computing and communication. It is not surpris-
ing, therefore, that means of evaluating such sys-
tems have likewise evolved from methods origi-
nating in one field or the other, merged in vari-
ous ways to satisfy differing evaluation needs. As
these systems become more physically and logi-
cally complex, challenges regarding their evalua-
tion fail to subside, calling for continued innova-
tion in areas of measure definition, model con-
s truct ion/ solution, and tool development. This is
especially so for networked systems, ranging from
local area networks (LANs) to the type integrated
broadband communication networks (IBCNs) en-
visioned for next-generation telecommunication
systems.

Generally, when evaluating a system, one seeks
to relate and quantify aspects of what the system

* This work was supported in part by the Office of Naval
Research under Contract No. N00014-85-K-0531.

is and does with respect to what the system is
required to be and do. Moreover, since what a
system does (e.g., how well it performs) depends
on what it is (e.g., how its resources are altered
by faults), both need to be addressed in the
evaluation process. Just what is evaluated or,
more precisely, the types of measures employed
can be classified according to certain assumptions
regarding "is" and "does". In the context of
computing systems and with respect to a specified
user-oriented or system-oriented service, perfor-
mance typically refers to "quality of service, pro-
vided the system is correct." Dependability
(according to current use of this term; see [6,59],
for example) is that property of a system which
allows "reliance to be justifiably placed on the
the service it delivers." Such service is proper if it
is delivered as specified; otherwise it is improper.
System failure is identified with a transition from
proper service to improper service. Dependability
thus includes attributes of reliability and avail-
ability as special cases. Specifically, a reliability
measure quantifies the "continuous delivery of
proper service"; an availability measure quanti-

0166-5316/92/$05.00 © 1992 - Elsevier Science Publishers B.V. All rights reserved

140 J.F. Meyer~Performability

ties the "alternation between deliveries of proper
and improper service."

This basic distinction between performance
and dependability ~ has been particularly useful
in development of evaluation techniques suited to
each concept. As a consequence, both perfor-
mance evaluation and dependability evaluation
have evolved as important technical disciplines
within the fields of computing and communica-
tion. However, if separate evaluations of system
performance and system dependability are to suf-
fice in determining overall "quality of service"
(e.g., QOS, as this term is defined and abbrevi-
ated by the telecommunication industry; see [48],
for example), one must place certain constraints
on how properties affecting performance interact
with those affecting dependability. For example,
suppose that a system's capacity to serve is binary
(either "up" or "down") and proper service (see
above) coincides with that delivered when the
system is up. In this case, performance measures
the quality of proper service and dependability
measures the system's ability to remain up (and
thus deliver that service) in the presence of faults.
Accordingly, results of each type of evaluation,
when taken together, can provide a rather com-
plete assessment of overall service quality.

Generally, however, individual assessments of
system performance and dependability are not so
easily combined, particularly if performance in
the presence of faults is degradable, i.e., fault-

1 The term "reliability" often has a second, more generic
meaning that is similar to the definition of "dependability".
However, in the presentation that follows, we prefer to
consistently employ the latter term, even when referring to
past work (prior to the mid-1980s) that preceded its current
use.

caused errors can reduce the quality of a deliv-
ered service even though that service, according
to its specification, remains proper (failure-free).
The need to accommodate this property, using
model-based evaluation methods, was the raison
d'etre for the concept of performability. As a
prelude to the body of the paper, a more pre-
cisely stated example of degradable performance
is described in Section 2. It is followed by a
retrospective (Section 3) of theory, techniques,
and applications that have evolved from work on
model-based performability evaluation over the
past 15 years. Based on what has been learned,
some pointers are made to future directions (Sec-
tion 4) which might further enhance the effective-
ness of these methods and broaden their scope of
applicability.

2. Degradable performance

What separate evaluations of performance and
dependability may fail to provide can be ex-
plained more carefully via a specific, yet repre-
sentative example. To begin, we assume (as is
usual in model-based evaluation) that measures
of performance and dependability are defined in
terms of random variables representing specific
aspects of what is to be evaluated. In particular,
let us suppose that the system in question is a
telephone switching network and Yt is a random
variable that represents some aspect of service
quality, as observed up to time t during some
designated period T. For example, T = [s, u] is a
"busy period" and, for any time t(s < t <~ u), Yt is
the fraction of incoming calls that have been
successfully processed since start-time s. Accord-
ingly, if we let Y denote overall service quality
then Y= Yu, the fraction of calls successfully pro-

John F. Meyer is a Professor in the Department of Electrical Engineering and Computer Science at the
University of Michigan in Ann Arbor, MI, USA. He has been active in computer and systems research for
over 30 years and has published widely in the areas of fault-tolerant computing and system evaluation. He
joined the Michigan faculty in 1967 and, in addition to his university appointment, has held visiting
research positions at laboratories in the USA, England, France, Italy, and Japan. Prior to 1967, he was a
Research Engineer at the California Institute of Technology Jet Propulsion Laboratory where his
contributions included the first patent issued to the National Aeronautics and Space Administration. His
current research interests concern the development and application of probabilistic models for evaluating
the performability (performance-dependability) of distributed computing and communication systems. He
is a Fellow of the IEEE, a member of the ACM, and has served the IEEE Computer Society in various
capacities, including chair of the Technical Committee on Fault-Tolerant Computing and membership on

the Society's Board of Governors. He is currently a vice-chair of IFIP Working Group 10.4 on Dependable Computing and Fault
Tolerance.

J.F. Meyer~Performability 141

cessed throughout the busy period T. Regarding
service loss, let us suppose that failure is defined
relative to some some threshold of service quality
tr(0 < tr ~< 1), i.e., at any time t ~ (s, u], network
service is proper if Yt >t tr; otherwise it is im-
proper, hence, and the network has failed (the
time of failure being the instant t that that value
of Yt last dropped below tr). Given the general
notions of performance and dependability dis-
cussed in the introduction, let us now examine
how each might be measured for the example just
described.

Regarding performance, we must first agree
on what is meant by a "correct" system, since
some call losses may be due strictly to congestion
(e.g., blocking), some strictly to breakdowns in
system resources, and some to a combination of
both (and perhaps other) factors. A typical choice
here is to regard the system as being correct if its
structure is correct, i.e., its hardware and soft-
ware resources are fault-free. However, unless a
network is designed to be non-blocking, blocking
losses can occur in the absence of structural
faults and, hence, are an inherent part of correct
network behavior. Accordingly, the performance
in question is the random variable Ye, where YP
is Y, conditioned by the event that the system
remains fault-free throughout the busy period T.
A complete measure of YP is given by its proba-
bility distribution function. In practice, however,
one might settle for a less refined measure such
as the expected value E[Yp].

As for dependability, let us suppose that con-
tinued proper service throughout T is the user's
concern. Then, according to our assumed mean-
ing of what constitutes proper service, network
dependability can be expressed by the indicator
random variable YD, where YD = 1 if Yt >/or, for
all t ~ (s, u]; I'D = 0 otherwise. The correspond-
ing dependability measure is the usual measure
of reliability, i.e., the probability that YD = 1 or,
equivalently, the probability of no failures occur-
ring during the busy period T. Note, however,
that a reliability evaluation in this instance must
address more than just the effects of structure
faults, since call blocking, for example, can like-
wise contribute to a failure.

Given these measures of performance and de-
pendability, separate evaluations of each may
yield only a partial assessment of service quality.
In particular, suppose there are structure faults

which reduce the quality of Service without caus-
ing failure, i.e., the network's performance is
degradable. Then, obviously, such degradation
cannot be accounted for by the performance vari-
able YP, since its measure is conditioned by the
event that the network is correct (fault-free)
throughout T. Likewise, it is not accounted for by
the dependability variable Yt) since the latter
concerns service quality only to extent that it is
proper (failure-free) throughout T.

Generally, if a system exhibits degradable per-
formance (in which case the system itself is often
referred to as being "degradable" or "gracefully
degrading"), a binary (up-down) classification of
operational integrity is too coarse. Instead, a
degradable system's operational integrity should
be viewed as a multivalued variable representing
the extent to which the system is faulty, e.g.,
which resources are faulty and, among them,
which ones have failed, which ones are in the
process of fault recovery, which ones contain
latent faults, etc. With such variations, the usual
concept of computer performance is too restric-
tive and, although dependability measures are
compatible with this view (indeed, the special
nature of degradable computing systems was first
investigated in a reliability context [14]), they
account for service quality degradation only at
the boundary between proper and improper ser-
vice.

As noted in the concluding paragraph of Sec-
tion 1, the need to fill this gap, in a manner
suited to model-based methods (either analysis or
simulation), was the principal reason for intro-
ducing the concept of performability. The section
that follows reviews associated theory, tech-
niques, and applications that have resulted from
work in this area since the mid-1970s.

3. A retrospective

A general framework for model-based per-
formability evaluation was first published in 1978
[70], with a somewhat more refined description
appearing in 1980 [71]. This framework grew from
some ideas concerning "partial success" which
had been formulated, but not openly published, a
number of years before [65], and from a notion of
"computation-based reliability" which was exam-
ined in the mid-1970s [66,68]. It was also moti-

142 J.F. Meyer/Performability

vated by the recognition, inherent in work done
at that time by Borgerson and Freitas [14], that
degradable systems required special attention
with regard to the kind of measures and models
that might be used in their evaluation.

The application aim, at the outset, was the
evaluation of ultra-reliable aircraft control com-
puters being developed for the U.S. Space Agency
(NASA) by both the C.S. Draper Laboratory [44]
and SRI International [103]. One intended fea-
ture of these systems was an ability to shed work-
load, beginning with the least critical tasks, if a
loss of computing resources, due to faults, de-
manded it. Accordingly, these systems could pro-
vide varying degrees of service over a specified
period of use (e.g., the duration of a flight of the
aircraft) and, hence, exhibited the type of degrad-
able performance referred to in the previous sec-
tion.

Prior to settling on the concepts and terminol-
ogy introduced in [70], we initially viewed the
unification of performance and dependability (or
reliability, as it was referred to then; see footnote
1) as a measure of system "effectiveness" [67,69],
where its formulation depended on an intermedi-
ate association of "worth" (reward, benefit, util-
ity) with each possible level of accomplishment.
(This view was consistent with the definition pro-
posed in [65] but differed with respect to lower-
level details.) However, as the desired amount of
generality became clearer, it was decided, in late
1976, that performance-dependability aspects of
effectiveness should be separated from the worths
that one might associate with their outcomes. The
resulting concept was more refined and, conse-
quently, could still be employed in higher-level,
worth-oriented evaluations of system effective-
ness. In words, it measured an object system's
"ability to perform" in a designated environment,
whence the term "performability" which we
adopted at that time.

In a more formal probability-theoretic setting,
performability and its associated concepts are
defined as follows [70,71]. Let S denote the total
system in question where, generally, S consists of
an object system C (the computing or communica-
tion system being evaluated) and its environment
E (workload, external faults, etc.). Then the per-
formance of S over a specified utilization period T
is a random variable Y taking values in a set A;
elements of A are the accomplishment levels

(performance outcomes) that might possibly be
attained by S. T is the time period of use over
which system performance is summarized (by the
value of Y). Formally, T is an interval of num-
bers (time instants) that is either continuous or
discrete and either bounded (e.g, the busy period
[s, u] considered for the switching network exam-
ple in the previous section) or, for systems which
exhibit meaningful steady-state behavior, un-
bounded from above (e.g, T=[0, ~) or T=
{0, 1, 2 }).

Note that the interpretation of "performance"
here, as compared with its traditional use in a
computing context (see Section 1) is more gen-
eral. It connotes any designated aspect of total
system behavior relative to which the object sys-
tem's ability to perform is being measured. Ac-
cordingly, choices of Y are virtually limitless,
ranging from a high-level representation of ser-
vice quality with a continuum of accomplishment
levels, down to a binary-valued variable that dis-
tinguishes whether or not a specified service is
performed properly throughout T (e.g., the de-
pendability variable YD illustrated in the previous
section). Accordingly, performance, in this frame-
work, has the generic meaning of "what a system
accomplishes during its use"; its ability to so
perform, expressed by probabilities, is its per-
formability. As a measure, the latter can be gen-
erally defined as follows.

For a system S with performance Y taking
values in accomplishment set A, the performabil-
ity of S is the probability measure Perf (denoted
Ps in [70,71]) induced by Y where, for any mea-
surable set B of accomplishment levels (B cA),

Perf(B) = P[Y~ B] = the probability that S

performs at a level in B.

Although, conceptually, this measure applies
to any set B for which the event " Y ~ B " has a
probability, in practice these sets are typically
intervals of accomplishment expressing perfor-
mance requirements. Thus, for example, if A =
(-0% oo) and B = [a, oo) then Perf(B) is the prob-
ability that S performs at or above level a.

Determination of these probabilities is based
on an underlying stochastic process X = {X t It
I}, where the index (time) set I must include the
utilization period T (i.e., T ~ I) associated with
the performance variable Y. Thus X may be
continuous-time or discrete-time, depending on

J.F. Meyer~Performability 143

the nature of just what is being evaluated. X is
referred to as a base model 2 of S where, for any
t E I, the value of the random variable Xt is the
state of the total system S at time t. Hence, when
restricted to the period T associated with Y, this
process conveys the dynamics of an object system's
structure, internal state, and environment during
that period. By its definition, the base model
must also "support" a solution of performability
in the sense that, for any accomplishment set B
of interest, Perf(B) is indeed determinable, at
least theoretically, from the probabilistic nature
of X restricted to T. This is insured via the
concept of a capability function which maps tra-
jectories of X into corresponding values of Y. A
base model X together with a performance vari-
able Y is a performability model of S. When a
performability model is solved analytically, the
base model must be characterized explicitly in
some suitable form, e.g., a state-transition-rate
matrix in the case of a continuous-time, time-ho-
mogeneous, finite-state Markov process. If per-
formability is estimated via simulation techniques
then X refers to the behavior of a some simula-
tion model of S.

In general terms, model-based performability
evaluation thus involves (1) construction of a per-
formability model for the system and measure in
question, and (2) evaluation of the measure via
solution of the model. More precisely, performa-
bility model construction consists of specifying
the performance variable Y (relative to which
Perf is defined) and determining a base model X
that supports its solution (in the sense described
in the previous paragraph). In many cases, as
evidenced by the evolution of techniques for this
purpose over the past 15 years (see below), con-
struction of X will often invoke some form of
intervening model, e.g., a graphical model whose
state behavior is then identified with X. Per-
formability model solution is a procedure which
yields performability values Perf(B) for accom-
plishment sets B that are of interest to the user.
Generally, knowledge of the probability distribu-

2 In the original formulation of this framework, X was re-
stricted to the utilization period T. However, as several
colleagues were kind enough to suggest, T is a user-ori-
ented, rather than system-oriented, consideration and should
thus not constrain one's perception of total system behavior,
as expressed by the base model X.

tion function (PDF) of Y suffices to determine
such values and, hence, one can regard a per-
formability model as "fully solved" once the PDF
of Y is determined. Although closed-form solu-
tions of this PDF are sometimes attainable, it
must typically be determined via numerical or
simulation techniques. Also, in many applica-
tions, only certain types of accomplishment sets
have useful interpretations; hence, a complete
solution is often not called for.

In the subsections that follow, we attempt to
trace, mainly through references to published lit-
erature, the evolution of work on unified perfor-
mance-dependability measures, model construc-
tion/solution techniques (both methods and
tools), and applications thereof. Although, tech-
nically, notions of strict (correct) performance or
dependability are special cases of performability,
our coverage here, as one might expect, is limited
to developments that define, support, or apply
truly unified measures of the type just described.
For convenience, we choose to divide a 15-year
history of this work into three consecutive 5-year
periods, beginning with the period that marked
the conception and refinement of the framework
just described.

3.1. 1976-1980

Work during this epoch dealt with a variety of
topics, including alternative formulations of com-
bined performance-dependability measures moti-
vated by various system and/or application con-
siderations. An early contribution in this regard
was Beaudry's treatment of "performance-related
reliability" [8,9] where, by associating a fixed
computation rate with each structure state, con-
stant fault arrival rates (in a Markov reliability
model) are translated into "faults per unit of
computation". Accordingly, for example, a relia-
bility measure such as "mean time to failure",
when applied to the translated model, becomes
the performance-related measure "mean compu-
tation to failure". Moreover, techniques for eval-
uating the former apply equally as well to the
latter, since the translated model is likewise
Markovian. In the more general context of queue-
ing systems, problems of degradable performance
(although not referred to there as such) were also
beginning to receive attention, for example, the
investigation by Neuts and Lucantoni [89] of a

144 J.F. Meyer / Performability

multiserver queue subject to breakdowns and re-
pairs. Here, using transform methods developed
by Mitrani and Avi-Itzhak [81], it was shown that
fault-caused congestion (queue length buildups)
can have adverse effects that may linger well
beyond the completion of repair.

Most of the effort, however, stemmed from
interests in fault-tolerant computing. These con-
tributions, ranging from evaluation methods to
specific applications, included the work of Losq
([63]; degradable systems composed of degrad-
able resources), Troy ([101]; efficiency evaluation
of dynamic reconfiguration algorithms), Gay and
Ketelsen ([36]; performance evaluation of degrad-
able systems), Mine and Hatayama ([79]; job-re-
lated reliability), De Souza ([27]; benefit analysis
of fault tolerance), Castillo and Siewiorek ([16];
performance-reliability models for computing sys-
tems), Chou and Abraham ([20]; performance-
availability models of shared resource multipro-
cessors), and Osaki and Nishio ([91]; reliability of
information).

Our own work during this period, some of
which was reported in connection with the basic
definitions described earlier in this section, fo-
cused initially on evaluation with respect to dis-
crete-valued performance. In this case, for any
level of accomplishment a ~A, the ability to per-
form exactly at that level is measurable (i.e.,
Perf({a}) is defined). Moreover, if A is finite, it
is possible to consider each level individually and
move top-down through a model hierarchy which
is founded on a base model X. To account for
variations in user demands during a bounded
period T, construction of X can employ the no-
tion of a phased model [105] where T is decom-
posed into finite number of consecutive time pe-
riods (phases); for each phase, the system's in-
t raphase behavior is represented by a
continuous-time, finite-state Markov process. Dif-
ferent phases, however, can be modeled by differ-
ent processes, subject to constraints which permit
the determination of (conditional) interphase
transition probabilities. This may be viewed as a
generalization of what, in reliability evaluation, is
referred to as "phased mission" analysis (see [32],
for example). However, more complicated con-
struction and solution techniques are required to
accommodate an interesting kind of "functional
dependence" [7] that exists between phases, given
knowledge of how well the system was able to

perform during T (i.e., the value of Y). This
approach was first described and illustrated in
1978 [70]; its initial application focus was the
performability evaluation of fault-tolerant multi-
processors for aircraft control [35,75,76].

3.2. 1981-1985

During this period, model-based performabil-
ity evaluation began to mature along lines that
characterize the current scope of work in this
area. Perhaps the most influential in this regard
was the introduction of solution methods based
on "reward models" (see [45], for example). In
constructing such a model to support a performa-
bility solution, the base model X = (X~ I t ~ I}, is
augmented by a reward structure which associ-
ates reward rates with state occupancies and
reward impulses with state transitions. (Gener-
ally, such rates and impulses are expressed by
real numbers; when negative, they have the inter-
pretation of a "penalty" or a "cost".) The
stochastic process X, together with the reward
structure, is a reward model for the performance
(reward) variable Y. Such a model is rate-based if
there is no impulse assignment or, equivalently,
every transition is assigned an impulse value of 0;
impulse-based reward models are defined in an
analogous manner. In the case of rate-based
models, the reward structure is typically de-
scribed by a real-valued function r defined on the
states of X, where r(q) is interpreted as the rate
at which reward is accumulated in state q. In this
setting and relative to a designated utilization
period T = [0, t], an interesting performance (re-
ward) variable is the total reward accumulated
during T, i.e., the random variable

= for(Xs) ds

For rate-based models of this type, a full solu-
tion of performability (i.e., the PDF of Yt) was
initially discussed in [72] for a special class of
degradable system models. The base model in
this case is a time-homogeneous Markov process
and the results include a closed-form solution of
performability for a specific dual-processor exam-
ple. To avoid "stiffness" resulting from the large
discrepancy between task arrival rates (high) and
fault arrival rates (low), the base model is decom-
posed into a structure submodel and a set of

J.F. Meyer/Performability 145

performance submodels (one for each structure
state). Such a decomposition has its roots in
theory developed by Courtois [24] and yields an
approximate performability model wherein the
reward rate assigned to a structure state q is the
steady-state performance given by its correspond-
ing performance submodel. (Note that the same
kind of approximation was implicit in the earlier
work of Beaudry [8,9].) This approach was later
extended [33] to provide a method, albeit compu-
tationally expensive, for determining the PDF of
Yt relative to semi-Markov reward models that
are acyclic and nonrecoverable. (Acyclic models
typically represent "nonrepairable systems"; a
rate-based reward model is "nonrecoverable"
[104] if reward rates experienced are nonincreas-
ing with time, i.e., if u and u are times such that
u ~< c then the event r(X~) > r (X u) has probabil-
ity 0.) These methods were implemented in a
software tool called METAPHOR [34], the first
such tool developed specifically for the purpose
of performability evaluation.

This period also marked the beginning of the
development and application of stochastic Petri
nets. Specifically, their use in performance [82]
and dependability [11] evaluation motivated the
consideration of other features which might make
them better suited to performability evaluation.
One such class of graphical models, referred to as
stochastic actiuity networks (SANs), was devel-
oped with this purpose in mind, i.e., to provide a
more effective and efficient means of determin-
ing the base model component of a performabil-
ity model [73,77,83]. SANs, along other stochastic
net models of this type, have since proved to be
the substrate for practical, automated means of
performability evaluation (see the subsection that
follows).

A variety of other contributions were made
during the 1981-1985 period which further ex-
panded the scope of performability-related activ-
ity. Some of these were extensions of work cited
in the previous subsection; others were initial
examinations of new techniques and/or applica-
tions. Included here are the results of Castillo
and Siewiorek ([17]; connections between work-
load, performance, and reliability), Huslende
([47]; combined performance-reliability evalua-
tion for degradable systems), Munarin ([86]; per-
formance/reliability analysis of gracefully de-
grading systems), Arlat and Laprie ([3]; perfor-

mance-related dependability evaluation), and
Krishna and Shin ([56]; performance measures
for multiprocessor controllers).

Applications concerned with aspects of com-
munication also began to emerge, e.g., the work
of Beeler ([10]; degradable performance in packet
switching networks), Li and Sylvester ([61]; per-
formance of networks with unreliable compo-
nents), and Das and Bhuyan ([25,26]; bandwidth
availability of multiple-bus multiprocessors). Fi-
nally, in a queueing-theoretic setting, there was
some continued interest of the type referred to in
the previous section, e.g, the contributions of
King and Mitrani [54,80] regarding the effects of
breakdowns on the performance of multiserver
systems.

3.3. 1986-1990

This period, taking us up to the present, was
one of truly accelerated progress with respect to
the development of performability model con-
struction/solution techniques, their implementa-
tion in model-based performability evaluation
tools, and their application to various types of
computing and communication systems.

Regarding solution methods, much of this ef-
fort dealt with performability models comprised
of some form of rate-based Markov reward model
along with accumulated reward Y, (see Section
3.2) as the performance variable in question.
Given some value of t, the solution sought is the
PDF Fy(y), i.e., for any accomplishment level y,
the probability

Fy , (y) = P [r ,

Specifically, for acyclic, nonrecoverable Markov
reward models, Goyal and Tantawi [39] devel-
oped a closed-form solution of Fr(y). Solution
methods, using transform techniques, were also
developed. For example, Donatiello and Iyer [29]
employed Laplace transforms to derive a closed-
form time-domain solution of performability for
acyclic Markov reward models; here, unlike the
nonrecoverable models considered in [33,39,72],
there is no restriction on the nature of the reward
rate assignment. In the context of fault-tolerant
satellite systems and, again, for acyclic rate-based
reward models, Ciciani and Grassi [23] likewise
obtained a closed-form solution of the PDF of Yt
If only the expected value E[Y t] is desired, solu-

146 J.F. Meyer / Performability

tion procedures are typically less complex, due
mainly to the linear nature of expectation. Con-
tributions here include those of Marie et al. [64]
who developed closed-form solutions of E[Y~] for
the acyclic rate-based case. Sanders and Meyer
[95] considered a somewhat more general class of
reward models wherein all states of the underly-
ing process X are either transient or absorbing
(acyclic models are thus a special case) and the
reward structure has impulse as well as rate as-
signments. A closed-form solution of E[Y t] was
then obtained by determining solutions over two
unbounded periods, [0, oo) and [t, ~), and then
subtracting the second from the first.

In performability models of systems with some
form of repair capability, the underlying process
model, representing variations in system struc-
ture, is no longer acyclic. Moreover, a state that
lies in a cycle can be either recurrent (in the case
of indefinite repair) or transient (e.g., if repair is
limited or fault coverage is not perfect). For
models of this type, solutions of the PDF Fy(y)
are much more difficult to obtain. One approach,
applicable to general rate-based Markov reward
models, is to use double Laplace transforms that
involve transformation of both the time variable t
and the accomplishment (accumulated reward)
level y. Methods of this type, employing various
means of inverting the transformed solution, were
investigated by Iyer et al. [51], Kulkarni et al. [57],
and Smith et al. [100]. In a similar vein, Ammar
et al. [2] derived the PDF of Ye using Laguerre
transformations. An alternative numerical method
for calculating values of Fv(y) was developed by
de Souza e Silva and Gail [28]. It uses "randomi-
zation" (see [41], for example) and, although ap-
proximate in nature, its accuracy can be specified
at the outset. It is applicable to general (cyclic or
acyclic) time-homogeneous Markov processes and,
via different formulations, can accommodate ei-
ther impulse-based or rate-based reward models.
These formulas are initially derived for the spe-
cial case of availability evaluation. Their subse-
quent generalization, which employs colors as a
metaphor, provides an excellent example of how
performability (where generally many colors are
needed) differs from dependability (where
black & white suffice). Other recent investiga-
tions of such solution methods have examined
their extension to semi-Markov reward models
(Ciardo et al. [21]) and described their computa-

tional aspects in greater detail (Pattipati and Shah
[921).

There was also evidence of progress in the
development of solution techniques for steady-
state performability measures, although these
have received considerably less attention than the
type of cumulative measures just discussed. This
work, as noted earlier, is typically based on
queueing network models of systems for which
repair actions can be repeated indefinitely, thus
yielding meaningful steady-state behaviors. Re-
sults obtained in this regard include the contribu-
tions of Miiller-Clostermann ([84,85]; degradable
queueing networks), Geist et al. ([37]; perceived
effect of breakdowns/repairs), and van Dijk
([102]; queueing networks with breakdowns).
Queueing systems with "vacations" are likewise
relevant here, since a vacation may be interpreted
as the repair period that follows a breakdown.
Doshi provided a survey of such models [30] and,
recently, generalized certain decomposition re-
sults for the case of a single server [31].

Other techniques were motivated by problems
encountered in performability model construc-
tion. Specifying the reward structure of a reward
model, for example, is really part of the construc-
tion process, even though the reason for its em-
ployment is to facilitate model solution. More-
over, if the state space of a base model is large,
actual determination of appropriate rates (for
states) and impulses (for state transitions) may be
a tedious, if not impossible, procedure to carry
out. This observation, in connection with the use
of SANs (see Section 3.2), led to the notion of a
"SAN-based" reward model [98] wherein reward
rates are associated directly with the markings of
designated places and reward impulses are asso-
ciated with the completion of activities. A similar
approach, using GSPNs, has been investigated by
Bobbio [13].

Another important solution-related aspect of
model construction concerns just how the notion
of state is defined for a base model, even when
the latter is being determined by some form of
stochastic Petri net. Although the marking of the
net is the usual choice, this often results in an
excessively large state spaee that precludes its use
for solution purposes. What is called for instead
are less refined notions of state that directly yield
the type of reductions obtained via lumping (ex-
act) or aggregation (approximate) techniques,

J.F. Meyer~Performability 147

without having to first generate a state space
that's intractably large (prior to being lumped or
aggregated). One such approach, referred to as
"variable driven" or "reduced base model" con-
struction [96,97,99], employs a concept of state
that relies on knowledge of the performance vari-
able as well as symmetries in the net model.
Although developed in the context of SAN-based
reward models (see above), it constitutes an ef-
fective and exact state space reduction technique
that could likewise be applied to other types of
stochastic Petri nets. Alternative means of ex-
ploiting net symmetries for this purpose have also
emerged, notably through the use of constructs
such as high level SPNs [62] and colored GSPNs
[19].

These past 5 years have also witnessed progress
in the development of performability modeling/
evaluation tools. In particular, the initial version
of METASAN 3 [94] emerged at the outset of
this period. It is written in C, employs SANs to
construct base models (process models on which
solutions are based), and has separate facilities
for describing (1) the total system model, and (2)
the performance variables in question along with
the types of performability solutions required; (1)
is specified via an input language called San-
script; options regarding (2) include both tran-
sient and steady-state variables solved by either
analysis (if the base model is Markov) or simula-
tion. A number of other performability tools were
also produced during this period 4, thereby con-
siderably expanding the access to practical means
of model-based performability evaluation. The
citations and brief descriptions that follow in no
way reflect the enormous amount of creativity
and hard work that was devoted to these develop-
ments.

SAVE [38]: Written in Fortran 77; base models
are specified directly as Markov processes or via
special constructs; analytic solutions; originally
introduced as an availability evaluation tool but
has since been extended.

3 METASAN is a registered trademark of the Industrial
Technology Institute.

4 In some cases, initial work on their development preceded
this period; what we are referring to here, more precisely, is
when they were first reported in the open literature.

METFAC [15]: Written in Fortran 77; Markov
base models are generated by a production rule
system; analytic solutions.

SHARPE [93]: Written in C; base models are
specified directly as Markov or semi-Markov pro-
cesses; analytic solutions.

SPNP [22]: Written in C; employs GSPNs [l]
to construct Markov base models; analytic solu-
tions.

Proper [42]: Written in C but uses commer-
cially available compilers for certain purposes;
Markov base models are specified via a language
called PDL; analytic solutions.

l)yQNtool [43]: Written in several languages
corresponding to different components of the
tool; base models are constructed from extended
GSPNs; reward rates are derived from product
form queueing networks; analytic solutions.

A common property shared by all these tools is
the ability to augment base models with a reward
structure, so as to implement at least one solution
method of the type discussed earlier in this sub-
section. In most cases, the resulting reward model
is rate-based and, moreover, the reward rate as-
signment is often hand-specified as part of the
input to a designated solution algorithm. Among
the tools summarized above, DyQNtool is the
most advanced with regard to automating reward
model construction; it has a separate window for
this purpose, permitting designation of the source
and type of performance values (obtained via
queueing model analysis) that are to serve as
reward rates.

Finally, the past 5 years have seen performabil-
ity evaluation techniques applied to a variety of
systems ranging from relatively small computers
to large communication networks. Certain of
these studies accompany some form of method or
tool development (and, hence, may have been
cited earlier that context); others emphasize the
evaluation results, per se, and how they con-
tribute to a better understanding of the object
systems in question. Simply referencing these
contributions does not reflect their quality or
their impact on future work. However, in keeping
with the spirit of this review, the following should
help convey the considerable breadth of this ac-
tivity.

As applied to computing systems, typically in-
corporating some form of fault tolerance, it in-
cludes evaluation studies conducted by Kulkarni

148 J.F. Meyer/Performability

et al. ([58]; multimode computer systems), Iyer et
al. ([50]; configurable duplex systems), Nicola et
al. ([90]; fault-tolerant systems, using queueing
analysis), Cherkassky and Malek ([18]; parallel
computer systems), Sanders and Meyer ([95]; dis-
tributed fault-tolerant systems), Smith et al. ([100];
an algorithm and a case study), Grassi et al. ([40];
multicomponent fault-tolerant systems), Hsueh et
al. ([46]; a case study based on measurement
data), Aupperle et al. ([5]; fault-tolerant systems
with nonhomogeneous workloads), and Ammar et
al. ([2]; parallel and distributed algorithms).

Other performability evaluation studies have
dealt more specifically with aspects of interpro-
cessor communication in multiprocessors or in-
ternode communication in local area networks.
Contributions here include those of Muralidhar
and Pimentel ([87]; token bus LANs), Najjar and
Gaudiot ([88]; hypercube multiprocessors), Bisbee
and Nelson ([12]; shuffle exchange networks),
Aupperle and Meyer ([4]; balanced multibus net-
works), Islam and Ammar ([49]; hypercube multi-
processors), Koren and Koren ([55]; multistage
interconnection networks), Meyer et al. ([78]; to-
ken bus LANs), and Karmarkar and Kuhl ([53];
multibus LANs).

In conclusion, there's evidence that performa-
bility evaluation is useful when applied to
telecommunication systems, particularly the type
of wide area communication networks that sup-
port multiple, integrated services (voice, data,
video, etc.). Possible approaches in this regard
include those reported by Levy and Wirth ([60]; a
unifying approach to performance and reliability
objectives), Meyer ([74]; performability evaluation
of telecommunication networks), and Jones ([52];
communication system performability).

4. Some pointers to the future

In an era where new technological develop-
ments grow old quickly, 15 years is a reasonable
duration of time for a technical discipline to
mature. Per the review just presented, this ap-
pears to have taken place in the growth of
model-based performability evaluation. Although
not yet an adult, it has certainly reached an age
where it may ask "Where do I go from here?" In
response to this question, the following are some
pointers to directions it might follow. It is highly

unlikely, however, that these point to all that's
worthwhile pursuing. Moreover, some of the paths
indicated may be shorter than one might desire;
others may contain pitfalls that delay progress
but are nevertheless surmountable. The focus is
on needs peculiar to performability although, nat-
urally, certain aspects of these are shared by
other types of model-based evaluation. On the
other hand, issues that are obviously common to
any type of modeling, e.g., important problems
such as model validation, are not discussed.

4.1. Measures

Perhaps the most general type of performabil-
ity measures are those for which performance
(the variable Y) is identified with the quality of
service (QOS) provided by the object system in a
specified operational environment. More pre-
cisely, with respect to a designated service, the
values of Y represent different degrees of satis-
faction that might be experienced by a user of the
system. The term "service" here may have a
collective meaning that refers to a multiplicity of
system services; similarly, "user" may mean a
population of users with possibly differing per-
ceptions of service quality.

The definition of QOS has received consider-
able attention in the context of telecommunica-
tion systems, both in general recommendations of
of the CCITF (see [48], for example) and in
specific recommendations for special types of sys-
tems such as integrated services digital networks
(ISDNs) and public data networks. In particular,
they recognize the important fact that QOS must
reflect the combined influence of factors associ-
ated with both performance (in the strict sense)
and dependability. In their general definition
(Recommendation G.106) and at the highest level,
this combination is expressed as the "collective
effect" of various service performances which re-
late to administrative support of a telecommuni-
cation network as well to operational perfor-
mance at the network-user interface. In the latter
category, and closest to variables typically consid-
ered in performability evaluation, is the notion of
servability performance which has components of
service accessibility performance and service re-
tainability performance. These depend, in turn, on
lower level "item performances" which describe

J.F. Meyer/Performability 149

either the fault-free performance or the depend-
ability of underlying resources.

Although the distinctions made here are pecu-
liar to telecommunication systems, there are at
least two aspects of such a QOS " t r ee" that point
to future work on performability measures. One
is its hierarchical nature, which appears to be
useful both in distinguishing various contributions
to QOS and determining how they relate to one
another. Thus other application domains, includ-
ing safety-critical applications for which depend-
ability is the dominant concern, might well bene-
fit from similar tree-structured notions of service
quality. Given such a definition of QOS, a second
important consideration is just how various lower
level performances contribute to the resulting
value of service quality at the top of the tree. In
other words, how is their "collective effect" (per
the CCITT definition) actually measured?

A natural temptation here is to first define
measures for the lower level performances and
then literally combine them, i.e., the value of the
higher level measure is simply a vector of the
values supplied by the lower level measures.
However, just as measures of strict performance
and dependability cannot be so accommodated
when performance is degradable, such an ap-
proach will generally not suffice. The pitfall is the
fact that these individual measures may fail to
capture important dependencies among their cor-
responding variables. On the other hand, by re-
garding QOS as the variable Y of a performabil-
ity model, the measure Perf expresses the "col-
lective effect" in question, where its formulation
is inherent in the way trajectories of the base
model X determine values of Y. This is not to
say that such a model is easily constructed and
solved. Nevertheless, it does suggest that per-
formability modeling can provide a systematic
means of dealing with complex notions of service
quality, pointing to the prospect of QOS concepts
that can indeed be measured and evaluated.

Another type of performability measure that
deserves greater attention is system-oriented, as
opposed to user-oriented. It can be viewed as a
performability generalization of availability, in the
sense that the latter expresses the "readiness" of
an object system to deliver proper service. Since
usual measures of availability are based on a
binary notion of system status (ready or not), they
are unable to convey intermediate levels of readi-

ness due to degraded operational states and the
probabilistic nature of an anticipated environ-
ment. Innovative performability measures, ac-
counting for such factors, could result in more
refined evaluations of how ready a system is,
either at some given time t (pointwise readiness)
or during some specified period of time (interval
readiness). Moreover, a variable Yt that expresses
readiness at some known time t can be general-
ized to accommodate random service demands.
For example, if T d is a random variable repre-
senting the time of a demand (and, hence, the
time when the object system should be ready)
then Perf, as defined with respect to the variable
Yr~, measures the system's readiness to serve
when called on to serve.

4.2. Model construction

In formal terms, as noted in Section 3, con-
struction of a performability model consists of-
specifying a performance variable Y (relative to
which Perf is defined) and determining a base
model stochastic process X that supports its solu-
tion in the sense that desired values of Perf can
indeed be obtained. Thus, along with X and Y,
some additional information is typically required,
e.g., a reward structure in the case of reward
model solutions, to either explicitly or implicitly
describe the capability function that links X to Y.
All three of these objects are "end products" of
the construction process in the sense that they
are the constructs which, via analysis or simula-
tion techniques, are dealt with directly in the
subsequent solution phase. Accordingly, the na-
ture of the construction problem depends, for the
most part, on where the construction procedure
begins. As with other types of model-based evalu-
ation and as evidenced by recent work surveyed
in the previous section, the desire here is to start
construction at an interface which is as close as
possible to a given application domain. This in-
cludes consideration of just who is conducting the
evaluation as well as the particular nature the
object system and its environment.

Since model-based evaluation is of obvious im-
portance during various phases of system design,
one undeniable avenue of pursuit is to bring the
model construction interface closer to knowledge
and abstractions that are familiar to system de-
signers. This is especially needed in early phases,

150 J.F. Meyer/Performability

where outcomes of critical design decisions often
have an indelible effect on the system that's ulti-
mately realized. Accordingly, as a design evolves
down a hierarchy from initial specification to
final implementation, at each level of the hierar-
chy, input to the construction procedure should
be in a form compatible with that level. More-
over, depending on the level, determination of an
appropriate performability model (X, Y) may in-
volve construction of one or more intermediate
models that bridge the gap between design-ori-
ented input at the top and the base model X at
the bottom.

This calls for innovative, algorithmic means of
translating design-oriented (D-O) models to eval-
uation-oriented (E-O) models and successively
refining the latter. For example, at a given level
of a design hierarchy, the input to a performabil-
ity model construction procedure could be an
object system model produced by a design tool,
together with supplementary information con-
cerning both Y and relevant aspects of the total
system (e.g., fault and workload assumptions) not
accounted for by the D-O model. One would
then seek algorithms for translating such input
into an E-O model at a similar level of abstrac-
tion. In addition, there is need to develop algo-
rithms which convert an E-O model at one level
of abstraction to a more refined E-O model at a
lower level. Such refinement terminates with a
characterization of the base model X in a form
that is amenable to solution. Implementation of
this final step can be found in most existing
performability evaluation tools, e.g., for an E-O
model that is some variant of a Markovian
stochastic Petri net and for a solution that is
analytic, an algorithm which determines the gen-
erator matrix of the Markov process X identified
with the net's marking behavior.

Progress in this regard thus requires appropri-
ate advances and integration of knowledge con-
cerning design-evaluation interfaces, environment
modeling, D-O to E-O model translation, and
E-O model hierarchies. Included in the last cate-
gory is the important issue of how the base model,
at the bottom of a hierarchy, is linked back up to
the performance variable(s) in question. In the
case of reward variables based on reward models,
this specializes to the problem of determining
reward structures for such hierarchies. Even here,
options abound with no obvious choices, e.g., to

what extent are reward values assigned (as part of
the input to the construction procedure), to what
extent are they derived (through combinations of
lower level values a n d / o r solutions of lower level
models), at what levels in the hierarchy do such
assignments and derivations take place, etc.

4.3. Model simplification

Once the end products of a construction pro-
cedure are in forms suited to solution by analysis
or simulation, there remain practical questions as
to whether such objects can indeed be con-
structed and, if so, whether they suffice to sup-
port a solution that is feasible. Accordingly, as
has been experienced in model-based evaluations
of performance or dependability, there is a con-
tinuing need for novel techniques that simplify a
model without compromising, beyond stated re-
strictions, the accuracy and timeliness of the re-
suits it provides. Moreover, such techniques
should be considered at each level of an E-O
model hierarchy, for if all simplification is de-
ferred to the end of the construction procedure,
the objects sought, particularly the base model,
may be too complex or too costly to actually
construct.

Perhaps the most familiar means of reducing
model complexity is decomposition, based on ei-
ther spatial distinctions, wherein submodels typi-
cally represent different parts of an object system
or its environment, or time-scale distinctions of
the type that underlie the use of rate-based re-
ward models. Although such techniques have al-
ready received considerable attention, there ap-
pears to be room for further progress in this
direction, particularly in the context of E-O model
hierarchies.

If a solution method is analytic and, more
specifically, employs numerical techniques appli-
cable to finite-state Markovian base models, the
principal concern is the size of a model's state
space. To reduce this size, several approaches are
known and each deserves continued investigation.
One is the elimination of states with predictably
very small probabilities of occurrence. The cen-
tral issues here are how such predictions are
made and how the resulting approximate model
affects, either optimistically or pessimistically,
performability values obtained from its solution.
Others involve the use of methods that lump or

J.F. Meyer / Performability 151

aggregate states according to some approiariate
notion of state equivalence. However, if these are
applied at the base-model level then, as an in-
stance of what was noted above, the model's state
space (prior to reduction) may be too large to
deal with effectively. As a consequence, more
practical means of state space reduction have
begun to emerge in recent years (see Section 3.3).
Such techniques exploit knowledge of the perfor-
mance variable and symmetries in the object sys-
tem in the process of constructing higher level
models. This, in turn, permits formulation of an
appropriate concept of state for the base model
which, in effect, aggregates information that's
redundant with respect to the evaluation in ques-
tion. Hence, when constructed, the resulting base
model is already in a reduced form. This strategy
appears to be very promising and should be ex-
plored more extensively.

Another possible means of state space reduc-
tion, specific to models that support reward vari-
able solutions, requires a reward structure that's
more general than those typically considered.
More precisely, instead of requiring a determinis-
tic assignment of reward rates and reward im-
pulses, the entities assigned to states and transi-
tions are random variables. Under prescribed
conditions, this permits a lumping of states which,
relative to the usual type of reward model, would
have to remain distinguished because of differing
fixed reward values. The implications of this ap-
proach, particularly its feasibility with regard to
solution algorithms, are just beginning to receive
some attention.

Other types of simplification are peculiar to
discrete-event simulation models. For example,
via knowledge of the performance variable and
symmetries in the object system, it may be possi-
ble to identify events that have an equivalent
effect on future behavior. If these are accounted
for when the model is constructed, it could re-
duce the average length of a future-event list
when the model is executed. This, in turn, would
reduce the amount of time required to obtain
desired estimates of the performability values in
question. In cases where the values relate to rare
events that occur with very low probabilities, usual
methods of discrete-event simulation are pre-
cluded, due to the excessively long execution times
needed to satisfy even modest accuracy and confi-
dence requirements. However, advances in spe-

cial construction methods such as "importance
sampling" might eventually remove this barrier,
thus expanding the role that simulation models
can play in the context of performability evalua-
tion.

4.4. Model solution

Turning now to solution methods, their nature
obviously depends on the type of performability
model to be solved, i.e., specific properties of the
base model X, the performance variable Y, and
the constructs which relate X to Y. Moreover,
just how the model is constructed, i.e., its hierar-
chical elaboration, its decomposition within lev-
els, and how it is otherwise simplified, can have
considerable influence on the means by which the
values of Perf are determined. In particular, such
solution need not be confined to a single tech-
nique. Depending on its composition, parts may
be solved by analytic means, some parts by simu-
lation, and there may be mix of transient and
steady-state techniques. Accordingly, many of the
directions indicated above have corresponding
pointers to future work on solution methods.

With respect to a particular technique, the
principal concerns are the accuracy of the results
obtained and the time required to obtain them.
On the analytic side, accuracy is an issue only if
the model or the solution method is approximate.
In either case, one should seek means of deter-
mining bounds on the errors of approximation, as
they are reflected in the performability values
that are ultimately determined. Moreover, if both
the model and the solution method are approxi-
mate, there is a need to understand the interac-
tion between two types of approximation, the
concern being an incompatibility which causes
excessive errors when the two are used together.
Approximate analytic solution methods are usu-
ally simpler than their exact counterparts and,
hence, the results they produce can typically by
obtained more quickly. For simulation models,
accuracy is proportional to solution time and, as
noted earlier, high accuracy, high confidence esti-
mates of small probabilities will have to be based
on models specially constructed for this purpose.
Accordingly, what is called for here are solution
techniques that account for the peculiarities of
such constructions.

152 J.F. Meyer/Performability

As evidenced by work during the past decade
(see Sections 3.2 and 3.3), most of the theory
relating to performability solutions has focused
on analytic means of solving the PDFs or ex-
pected values of reward variables based on
Markovian reward models. In spite of this, there
is need for a much better understanding of the
practical advantages and limitations of such algo-
rithms, particularly those that apply to a large
class of models (e.g., the numerical methods pro-
posed by de Souza e Silva and Gail [28]). In
parallel, effort should also be devoted to more
restricted types of analytic solution methods such
as product form solutions. Although constrained
in their applicability, such techniques can some-
times provide evaluation results that would other-
wise not be obtainable.

4.5. Tools

None of the performability modeling direc-
tions pointed to above can be meaningfully pur-
sued in the absence of model-based evaluation
tools that implement the types of construction,
simplification, and solution methods suggested.
Past experience in the development and use of
such tools bears this out and, moreover, provides
a solid footing for future work in this regard.
Although user interfaces will certainly differ for
differing application domains, what is inside a
tool may be general enough to serve a wide
variety of applications. For use in system design,
perhaps the most crucial requirement is the abil-
ity to implement hierarchical modeling along lines
discussed in Section 4.2. Accordingly, this points
to the realization of appropriate design-evalua-
tion interfaces, environment modeling aids, auto-
mated D-O to E-O model translators, and inter-
nal construction algorithms which, with user as-
sistance, permit level-by-level elaboration of an
E-O model hierarchy.

As an inherent part of this construction proce-
dure and at each level of the hierarchy, such tools
should implement simplification techniques which
apply to that level (see Section 4.3) and record
information required for simplification at lower
levels. Similarly, during model solution, which
proceeds back up the hierarchy, a tool should
implement the analysis or simulation required at
each level and make the linkages which permit
higher level models to be solved in terms of

results obtained from lower level models. At the
top of the hierarchy, desired results of the evalua-
tion is fed back to the designer via the design-
evaluation interface. In addition to capability that
is specific to a particular evaluation study, tools
of the future should be capable retaining descrip-
tions of earlier versions of a design as well as
storing results of earlier evaluations. They should
also be able to interact with other design and
validation tools via a common interface. These
call for a database and database management
system that would be the backbone of an inte-
grated "tool kit" for a particular application do-
main. The specifics of its design would depend on
the division of responsibility between the tool kit
and its intended users.

4. 6. Applications

Although the retrospective presented in Sec-
tion 3 was limited to computer and communica-
tion applications, the scope of both past and
potential uses of model-based performability
evaluation is considerably broader. Generally, it
comprises most any type of object system that
exhibits degradable performance in the presence
of faults. Examples include flexible manufactur-
ing systems, office systems, enterprise systems,
intelligent vehicle-highway systems, planning sys-
tems, economic systems, and many others. More-
over, it is important to note that the object of a
performability evaluation study can take the form
of a "process" as well as a "product", e.g., a
software development process, an automobile as-
sembly process, etc. Indeed, interesting prospects
for future consideration are object systems which
are combinations of both. In other words, the
object is a "product-in-process" where, via a per-
formability evaluation, one might assess such
things as the influence of process quality, as de-
graded by processing faults, on the quality of the
product it produces.

Within the more specific domain of computer
and communication systems, it is anticipated that
applications of model-based performability will
continue to become more widespread, particu-
larly if tools of the type discussed above become a
reality. Examples here range from large dis-
tributed systems, such as integrated broadband
communication networks, down to hardware and
software systems. The latter are particularly chal-

J.F. Meyer ~Performability 153

lenging since performance degradation, in this
case, is due strictly to design faults and, more-
over, is extremely sensitive to the nature of the
operational environment. Software systems also
appear to be viable candidates for the type of
product-in-process evaluations mentioned above.

In conclusion, the future appears to be filled
with opportunities for further progress. Much of
what needs to be done will require a great deal of
energy and creativity but, with it, should emerge
an evaluation capability that is well above the
current state-of-the-art.

References

[1] M. Ajmone Marsan, G. Conte, and G. Balbo, A class of
generalized stochastic Petri nets for performance evalu-
ation of multiprocessor systems, ACM Trans. Comput.
Systems 2 (2) (May 1984) 93-122.

[2] H. Ammer, S.M.R. Islam and S. Deng, Performability
analysis of parallel and distributed algorithms, in: Proc.
3rd International Workshop on Petri Nets and Perfor-
mance Models, Kyoto, Japan (IEEE Computer Soc.
Press, Silver Spring, MD, 1989) 221-227.

[3] J. Arlat and J.-C. Laprie, Performance-related depend-
ability evaluation of supercomputer systems, in: Proc.
13th International Symposium on Fault-Tolerant Comput-
ing, Milano, Italy (IEEE Computer Soc. Press, Silver
Spring, MD, 1983) 276-283.

[4] B.E. Aupperle and J.F. Meyer, Fault-tolerant BIBD
networks, in: Proc. 18th International Symposium on
Fault-To&rant Computing, Tokyo, Japan (IEEE Com-
puter Soc. Press, Silver Spring, MD, 1988) 306-311.

[5] B.E. Aupperle, J.F. Meyer and L. Wei, Evaluation of
fault-tolerant systems with nonhomogeneous workloads,
in: Proc. 19th International Symposium on Fault-Tolerant
Computing Chicago, IL (IEEE Computer Soc. Press,
Silver Spring, MD, 1989) 159-166.

[6] A. Avi~ienis and J.-C. Laprie, Dependable computing:
From concepts to design diversity, Proc. IEEE 74 (5)
(1986) 629-638.

[7] R.A. Ballance and J.F. Meyer, Functional dependence
and its application to system evaluation, in: Proc. 1978
Johns Hopkins Conference on Information Sciences and
Systems (EE Dept., Johns Hopkins Univ., Baltimore,
MD, 1978) 280-285.

[8] M.D. Beaudry, Performance related reliability measures
for computing systems, in: Proc. 7th International Sym-
posium Fault-Tolerant Computing, Los Angeles, CA
(IEEE Computer Soc. Press Press, Silver Spring, MD,
1977) 16-21.

[9] M.D. Beaudry, Performance-related reliability measures
for computing systems, IEEE Trans. Comput. 27 (6)
(1978) 540-547.

[10] M. Beeler, Degradable performance in packet switching
networks, in: COMPCON Fall, Washington, DC (IEEE
Computer Soc. Press, Silver Spring, MD, 1982) 437-443.

[11] B. Beyaert, G. Florin, P. Lonc and S. Natkin, Evaluation
of computer system dependability using stochastic Petri
nets, in: Proc. l l t h International Symposium on Fault-
Tolerant Computing, Portland, ME (IEEE Computer
Society Press, Silver Spring, MD, 1981) 66-71.

[12] C.R. Bisbee and V.P. Nelson, Failure dependent band-
width in shuffle-exchange networks, IEEE Trans. Corn-
put. 37 (7) (1988) 853-858.

[13] A. Bobbio, Petri nets for generating Markov reward
models for performance/reliability analysis of degrad-
able systems, in: D. Potier and B. Puigjaner, eds., Mod-
elling Techniques and Tools for Computer Performance
Evaluation (Plenum, New York, NY, 1989) 353-365.

[14] B.R. Borgerson and R.F. Freitas, A reliability model for
gracefully degrading and standby-sparing systems, IEEE
Trans. Comput. 24 (5) (1975) 517-525.

[15] J.A. Carrasco and J. Figueras, METFAC: Design and
implementation of a software tool for modeling and
evaluation of complex fault-tolerant computing systems,
in: Proc. 16th International Symposium on Fault-Tolerant
Computing, Vienna, Austria (IEEE Computer Soc.
Press, Silver Spring, MD, 1986) 424-429.

[16] X. Castillo and D.P. Siewiorek, A performance-reliabil-
ity model for computing systems, in: Proc. lOth Interna-
tional Symposium on Fault-Tolerant Computing, Kyoto,
Japan (IEEE Computer Soc. Press, Silver Spring, MD,
1980) 187-192.

[17] X. Castillo and D.P. Siewioret, Workload, performance,
and reliability of digital computing systems, in: Proc
11th International Symposium on Fault-Tolerant Comput-
ing, Portland, ME (IEEE Computer Soc. Press, Silver
Spring, MD, 1981) 84-89.

[18] V. Cherkassky and M. Malek, Graceful degradation of
multiprocessor systems, in: International Conference on
Parallel Processing, St. Charles, IL (EE Dept., Penn.
State Univ., 1987) 885-888.

[19] G. Chiola and G. Franceschinis, Colored GSPN models
and automatic symmetry detection, in: Proc. 3rd Inter-
national Workshop on Petri Nets and Performance Mod-
els, Kyoto, Japan (IEEE Computer Soc. Press, Silver
Spring, MD, 1989) 50-60.

[20] T.C.K. Chou and J.A. Abraham, Performance/
availability model of shared resource multiprocessors,
IEEE Trans. Reliabil. 29 (1) (1980) 70-76.

[21] G. Ciardo, R.A. Marie, B. Sericola and K.S. Trivedi,
Performability analysis using semi-Markov reward pro-
cesses, IEEE Trans. Comput. 39 (10) (1990) 1251-1264.

[22] G. Ciardo, J. Muppala and K.S. Trivedi, SPNP: a graph-
ical tool for performance analysis, in: Proc. 3rd Interna-
tional Workshop on Petri Nets and Performance Models,
Kyoto, Japan (IEEE Computer Soc. Press, Silver Spring,
MD, 1989) 142-151.

[23] B. Ciciani and V. Grassi, Performability evaluation of
fault-tolerant satellite systems, IEEE Trans. Commun.
35 (4) (1987) 403-409.

[24] P.-J. Courtois, Decomposability, Queueing, and Com-
puter Science Applications (Academic Press, New York,
NY, 1977).

[25] C.R. Das and L.N. Bhuyan, Bandwidth availability of
multiple-bus multiprocessors, IEEE Trans. Comput. 34
(10) (1985) 918-926.

[26] C.R. Das and L.N. Bhuyan, Computation availability of

154 J.F. Meyer~Performability

multiple-bus multiprocessors, in: International Confer-
ence on Parallel Processing, St. Charles, IL (IEEE Com-
puter Soc. Press, Silver Spring, MD, 1985) 807-813.

[27] J.M. De Souza, A unified method for the benefit analy-
sis of fault-tolerance, in: Proc. lOth International Sympo-
sium on Fault-Tolerant Computing, Kyoto, Japan (IEEE
Computer Soc. Press, Silver Spring, MD, 1980) 201-201.

[28] E. de Souza e Silva and H.R. Gail, Calculating availabil-
ity and performability measures of repairable computer
systems using randomization, J. ACM 36 (1) (1989)
171-193.

[29] L. Donatiello and B.R. lyer, Analysis of a composite
performance reliability measure for fault-tolerant sys-
tems, J. ACM 34 (1) (1987) 179-199.

[30] B.T. Doshi, Queueing systems with vacations: a survey,
Queueing Systems 1 (1986) 29-66.

[31] B.T. Doshi, Generalizations of stochastic decomposition
results for single server queues with vacations, Stochas-
tic Models 6 (2) (1990) 307-333.

[32] J. Esary and H. Ziehms, Reliability analysis of phased
missions, in: R.E. Barlow, J.B. Fussell and N.D.
Singpurwalla, eds., Reliability and Fault Tree Analysis
(Society for Industrial and Applied Mathematics, Berke-
ley, CA, 1974) 213-236.

[33] D. Furchtgott and J.F. Meyer, A performability solution
method for degradable nonrepairable systems, IEEE
Trans. Comput. 33 (6) (1984) 550-554.

[34] D.G. Furcbtgott, Performability models and solutions,
Technical Report CRL-TR-8-84, Computing Research
Laboratory, The University of Michigan, January 1984.

[35] D.G. Furchtgott and J.F. Meyer, Performability evalua-
tion of fault-tolerant multiprocessors, in: Digest 1978
Government Micro-Circuit Applications Conference Mon-
terey, CA (NTIS, Springfield, VA, 1978) 362-365.

[36] F.A. Gay and M.L. Ketelsen, Performance evaluation
for gracefully degrading systems, in: Proc. 9th Interna-
tional Symposium on Fault-Tolerant Computing, Madi-
son, WI (IEEE Computer Soc. Press, Silver Spring, MD,
1979) 51-58.

[37] R.M. Geist et al., The perceived effect of breakdown
and repair on the performance of multiprocessor sys-
tems, Performance Evaluation 6 (1986) 249-260.

[38] A. Goyal, W.C. Carter, E. de Souza e Silva, S.S. Laven-
berg and K.S. Trivedi, The system availability estimator,
in: Proc. 16th International Symposium on Fault-Tolerant
Computing Vienna, Austria (IEEE Computer Soe. Press,
Silver Spring, MD, 1986) 84-89.

[39] A. Goyal and A.N. Tantawi, Evaluation of performabil-
ity for degradable computer systems, IEEE Trans. Com-
put. 36 (6) (1987) 738-744.

[40] V. Grassi, L. Donatiello and G. Iazeolla, Performability
evaluation of multicomponent fault-tolerant systems,
IEEE Trans. ReliabiL 37 (2) (1988) 216-222.

[41] D. Gross and D.R. Miller, The randomization technique
as a modeling tool and solution procedure for transient
Markov processes, Oper. Res. 32 (2) (1984) 343-361.

[42] B.R. Haverkort and I.G. Niemegeers, Proper, a per-
formability modelling and analysis tool, in: D. Potier
and B. Puigjaner, eds., Modelling Techniques and Tools
for Computer Performance Evaluation (Plenum, New
York, NY, 1989) 335-352.

[43] B.R. Haverkort, I.G. Niemegeers and P. Veldhuyzen

van Zanten, DyQNtool: a performability tool based on
the dynamic queueing network concept, in: G. Balbo,
ed., Modelling Techniques and Tools for Computer Per-
formance Evaluation (North-Holland, Amsterdam,
1991).

[44] A.L. Hopkins, T.B. Smith and J. Lala, FTMP--a highly
reliable fault-tolerant multiprocessor for aircraft, Proc.
IEEE 66 (10) (1978) 1221-1239.

[45] R.A. Howard, Dynamic Probabilistic Systems, Vol. II."
Semi- Markov and Decision Processes (Wiley, New York,
NY, 1971).

[46] M.C. Hsueh, R.K. Iyer and K.S. Trivedi, Performability
modeling based on real data: a case study, IEEE Trans.
Comput. 37 (4) (1988) 478-484.

[47] R. Huslende, A combined evaluation of performance
and reliability for degradable systems, in: ACM Perfor-
mance Evaluation Rev. 10 (1981) 157-164.

[48] International Telecommunication Union CCITT Red
Book, Fasc. III.1: General Characteristics of International
Telephone Connections and Circuits, Geneva, Switzer-
land (1985).

[49] B.M.R. Islam and H.H. Ammar, Performability of the
hypercube, IEEE Trans. Reliabil. 38 (5) (1989) 518-526.

[50] B.R. lyer, D.M. Dias and P.S. Yu, Performability analy-
sis of operation modes of configurable duplex systems,
in: A C M - I E E E Fall Joint Computer Conference, Dal-
las, TX (IEEE Computer Soc. Press, Silver Spring, MD,
1986) 785-796.

[51] B.R. Iyer, L. Donatiello, and P. Heidelberger, Analysis
of performability for stochastic models of fault-tolerant
systems, IEEE Trans. Comput. 35 (10) (1986) 902-907.

[52] D.R. Jones and H.A. Males, Communication systems
performability: new horizon, in: IEEE International
Conference on Communications, Boston, MA, USA
(IEEE, 1989) 15-23.

[53] V.V. Karmarkar and J.G. Kuhl, Fail-softness evaluation
in multiple-bus local computer networks, in: Proc. 19th
International Symposium on Fault-Tolerant Computing,
Chicago, IL (IEEE Computer Soc. Press, Silver Spring,
MD, 1989) 538-544.

[54] P.J.B. King and I. Mitrani, The effect of breakdown on
the performance of multiprocessor systems, in: F.J. Kyl-
stra, ed., Performance '81 (North-Holland, Amsterdam,
1981) 201-211.

[55] I. Koren and Z. Koren, On gracefully degrading multi-
processors with multistage interconnection networks,
IEEE Trans. Reliabil. 38 (1) (1989) 82-89.

[56] C.M. Krishna and K.G. Shin, Performance measures for
multiprocessor controllers, in: A.K. Agrawala and S.K.
Tripathi, eds., Performance '83 (North-Holland, Ams-
terdam, 1983) 229-250.

[57] V.G. Kulkarni, V.F. Nicloa, R.M. Smith and K.S.
Trivedi, Numerical evaluation of performability and job
completion time in repairable fault-tolerant systems, in:
Proc. 16th International Symposium on Fault-Tolerant
Computing, Vienna, Austria (IEEE Computer Soc.
Press, Silver Spring, MD, 1986) 252-257.

[58] V.G. Kulkarni, V.F. Nicola and K.S. Trivedi, On model-
ing the performance and reliability of multimode com-
puter systems, J. Syst. Softw. 6 (1 & 2) (1986) 175-182.

[59] J.-C. Laprie, Dependability: A unifying concept for reli-
able computing and fault tolerance, in: T. Anderson,

J.F. Meyer~Performability 155

ed., Dependability of Resilient Computers (BSP Profes-
sional Books, 1989) 1-28.

[60] Y. Levy and P. Wirth, A unifying approach to perfor-
mance and reliability objectives, in: M. Bonatti, ed.,
Teletraffic Science (North-Holland, Amsterdam, 1989)
1173-1179.

[61] V.O.K. Li and J.A. Silvester, Performance analysis of
networks with unreliable components, IEEE Trans.
Commun. 32 (10) (1984) 1105-1110.

[62] C. Lin and D.C. Marinescu, Stochastic high-level Petri
nets and applications, IEEE Trans. Comput. 37 (7)
(1988) 815-825.

[63] J. Losq, Effects of failures on gracefully degradable
systems, in: Proc. 7th International Symposium on
Fault-Tolerant Computing, Los Angeles, CA (IEEE
Computer Soc. Press, Silver Spring, MD, 1977) 29-34.

[64] R.A. Marie, A.L. Reibman and K.S. Trivedi, Transient
analysis of acyclic Markov chains, Performance Evalua-
tion 7 (1987) 175-194.

[65] J. F. Meyer, A definition of system reliability, JPL
Technical Summary 3341-66-1, Jet Propulsion Labora-
tory, February 1966.

[66] J.F. Meyer, Computation-based reliability analysis, in:
Proc. 5th International Symposium on Fault-Tolerant
Computing, Paris, France (IEEE Computer Soc. Press,
Silver Spring, MD, 1975) 123.

[67] J.F. Meyer, An approach to evaluating the effectiveness
of computing systems, in: Proc. 1976 Johns Hopkins
Conference on Information Sciences and Systems, Balti-
more, MD (EE Dept., Johns Hopkins Univ., Baltimore,
MD, 1976) 376-383.

[68] J.F. Meyer, Computation-based reliability analysis,
IEEE Trans. Comput. 25 (6) (1976) 578-584.

[69] J.F. Meyer, A model hierarchy for evaluating the effec-
tiveness of computing systems, in: Proc. 3rd National
Reliability Symposium, Perros-Guirec, France (CNET,
France, 1976) 539-555.

[70] J.F. Meyer, On evaluating the performability of degrad-
able computing systems, in: Proc. 8th International Sym-
posium on Fault-Tolerant Computing, Toulouse, France
(IEEE Computer Soc. Press, Silver Spring, MD, 1978)
44-49.

[71] J.F. Meyer, On evaluating the performability of degrad-
able computing systems, IEEE Trans. Comput. 29 (8)
(1980) 720-731.

[72] J.F. Meyer, Closed-form solutions of performability,
IEEE Trans. Comput. 31 (7) (1982) 648-657.

[73] J.F. Meyer, Performability modeling of distributed real-
time systems, in: G. Iazeolla, P.-J. Courtois and A.
Hordijk, eds., Mathematical Computer Performance and
Reliability (North-Holland, Amsterdam, 1988) 361-372.

[74] J.F. Meyer, Performability evaluation of telecommuni-
cation networks, in: M. Bonatti, ed., Teletraffic Science
(North-Holland, Amsterdam, 1989) 1163-1172.

[75] J.F. Meyer, D.G. Furchtgott and L.T. Wu, Performabil-
ity evaluation of the SIFT computer, in: Proc. 9th Inter-
national Symposium on Fault-Tolerant Computing Madi-
son, WI (IEEE Computer Soc. Press, Silver Spring, MD,
1979) 43-5O.

[76] J.F. Meyer, D.G. Furehtgott and L.T. Wu, Performabil-
ity evaluation of the SIFT computer, IEEE Trans. Corn-
put. 29 (6) (1980) 501-509.

[77] J.F. Meyer, A. Movaghar and W.H. Sanders, Stochastic
activity networks: structure, behavior, and application,
in: Proc. International Workshop on Timed Petri Nets,
Torino, Italy (IEEE Computer Soc. Press, Silver Spring,
MD, 1985) 106-115.

[78] J.F. Meyer, K.H. Muralidhar and W.H. Sanders, Per-
formability of a token bus network under transient fault
conditions, in: Proc. lqth International Symposium on
Fault-Tolerant Computing, Chicago, IL (IEEE Com-
puter Soc. Press, Silver Spring, MD, 1989) 175-182.

[79] H. Mine and K. Hatayama, Performance related relia-
bility measures for computing systems, in: Proc. 9th
International Symposium on Fault-Tolerant Computing,
Madison, W1 (IEEE Computer Soc. Press, Silver Spring,
MD, 1979) 52-59.

[80] I. Mitrani and P.B.J. King, Multiserver systems subject
to breakdowns: an empirical study, IEEE Trans. Corn-
put. 32 (1) (1983) 96-98.

[81] I.L. Mitrani and B. Avi-ltzhak, A many-server queue
with service interruptions, Oper. Res. 16 (1968) 628-638.

[82] M.K. Molloy, Performance analysis using stochastic Petri
nets, IEEE Trans. Comput. 31 (9) (1982) 913-917.

[83] A. Movaghar and J.F. Meyer, Performability modeling
with stochastic activity networks, in: Proc. Real-Time
Systems Symposium, Austin, TX (IEEE Computer Soc.
Press, Silver Spring, MD, 1984) 215-224.

[84] B. Miiller-Clostermann, A decomposition approach for
the stationary analysis of fault tolerant queueing net-
works, J. Syst. Softw. 6 (1 & 2) (1986) 199-204.

[85] B. Miiller-Clostermann, An approximate product form
for a class of degradable queueing networks, Perfor-
mance Evaluation 8 (1988) 165-172.

[86] J. Munarin, Dynamic workload model for performance/
reliability analysis of gracefully degrading systems, in:
Proc. 13th International Symposium on Fault-Tolerant
Computing, Milano, Italy (IEEE Computer Soc. Press,
Silver Spring, MD, 1983) 290-295.

[87] K.H. Muralidhar and J.R. Pimentel, Performability
analysis of the token bus protocol, in: Proc. IEEE
INFOCOM'87, San Fransisco, CA, March 1987 (IEEE
Computer Soc. Press, Silver Spring, MD, 1987) 55-63.

[88] W. Najjar and J.-L. Gaudiot, Reliability and perfor-
mance modeling of hypercubebased multiprocessors, in:
G. Iazeolla, P.-J. Courtois and O.J. Boxma, eds., Com-
puter Performance and Reliability (North-Holland, Ams-
terdam, 1988) 305-319.

[89] M.F. Neuts and D.M. Lucantoni, A Markovian queue
with N servers subject to breakdowns and repairs, Man-
age. Sci. 25 (9) (1989) 849-861.

[90] V.F. Nicola, V.G. Kulkarni and K.S. Trivedi, Queueing
analysis of fault-tolerant computer systems, IEEE Trans.
Softw. Eng. 13 (3) (1987) 363-375.

[91] S. Osaki and T. Nishio, Reliability Evaluation of Some
Fault-Tolerant Computer Architectures Lecture Notes in
Computer Science, Vol. 97 (Springer, Berlin, 1980).

[92] K.R. Pattipati and S.A. Shah, On the computational
aspects of performability models of fault-tolerant com-
puter systems, IEEE Trans. Comput. 39 (6) (1990) 832-
835.

[93] R.A. Sahner and K.S. Trivedi, Reliability modeling us-
ing SHARPE, IEEE Trans. Reliabil. 13 (2) (1987) 186-
193.

156 J.F. Meyer~Performability

[94] W.H. Sanders and J.F. Meyer, METASAN: a performa-
bility evaluation tool based on stochastic activity net-
works, in: A C M - IEEE Fall Joint Computer Conference
Dallas, TX (IEEE Computer Soc. Press, Silver Spring,
MD, 1986) 807-816.

[95] W.H. Sanders and J.F. Meyer, Performability evaluation
of distributed systems using stochastic activity networks,
in: Proc. 2nd International Workshop on Petri Nets and
Performance Models, Madison, WI (IEEE Computer
Soc. Press, Silver spring, MD, 1987) 111-120.

[96] W.H. Sanders and J.F. Meyer, Performance variable
driven construction methods for stochastic activity net-
works, in: G. Iazeolla, P.-J. Courtois, and O.J. Boxma,
eds., Computer Performance and Reliability (North-Hol-
land, Amsterdam, 1988) 383-398.

[97] W.H. Sanders and J.F. Meyer, Reduced base model
construction methods for stochastic activity networks,
in: Proc. 3rd International Workshop on Petri Nets and
Performance Models Kyoto, Japan (IEEE Computer Soc.
Press, Silver Spring, MD, 1989) 74-84.

[98] W.H. Sanders and J.F. Meyer, A unified approach for
specifying measures of performance, dependability, and
performability, in: A. Avi~ienis and J.-C. Laprie, eds.,
Dependable Computing for Critical Applications
(Springer, Berlin, 1990) 215-237.

[99] W.H. Sanders and J.F. Meyer, Reduced base model
construction methods for stochastic activity networks,
IEEE J. Selected Areas in Comm. 9 (1) (1991) 25-36.

[100] R.M. Smith, K.S. Trivedi and A.V. Ramesh, Performa-
bility analysis: measures, an algorithm, and a case study,
IEEE Trans. Comput. 37 (4) (1988) 406-417.

[101] R. Troy, Dynamic reconfiguration: an algorithm and its
efficiency evaluation, in: Proc. 7th International Sympo-
sium on Fault-Tolerant Computing, Los Angeles, CA
(IEEE Computer Soc. Press, Silver Spring, MD, 1977).

[102] N.M. van Dijk, simple bounds for queueing systems with
breakdowns, Performance Evaluation 8 (1988) 117-128.

[103] J.H. Wensley, L. Lamport, J. Goldberg, M.W. Green,
K.N. Levitt, P.M. Melliar-Smith, R.E. Shostak and C.B.
Weinstock, SIFT: design and analysis of a fault-tolerant
computer for aircraft control, Proc. IEEE 66 (10) (1978)
1240-1255.

[104] L.T. Wu, Operational models for the evaluation of
degradable computing systems, in: ACM Performance
Evaluation Rev. 11 (1982) 179-185.

[105] L.T. Wu and J.F. Meyer, Phased models for evaluating
the performability of computing systems, in: Proc. 1979
Johns Hopkins Conference on Information Sciences and
Systems Baltimore, MD (EE Dept., Johns Hopkins
Univ., Baltimore, MD, 1979) 426-431.

