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1. INTRODUCTION 

An extensive body of literature now exists on the instability to out-of-plane perturbations 
of beams forced harmonically in a plane, i.e., whirling motion. An early study on non- 
linear beam dynamics for whirling motions can be found in Ho, Scott and Eisley [ 1], who 
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Figure 1. Beam geometry. 

investigated motions of compact beams with pinned ends. They used a model in which 
extensional effects were included, but non-linear curvature and longitudinal inertia were 
neglected. Since then, more accurate mechanical modeling has been developed. Venkatesen 
and Nagaraj [2] derived a model in which all three effects were included, but in their results 
an inextensionality condition was assumed (in view of the fact that the beam was a 
cantilever). Such a condition was also assumed by Nayfeh and Pai [3], who analyzed three- 
dimensional, integro-differential equations of motion for a cantilever beam, longitudinal 
inertia and non-linear curvature being included. Extensive work in the field has also been 
done by Crespo da Silva. In recent contributions [4, 5], longitudinal inertia, non-linear 
curvature, extension and torsion were included in his three-dimensional equations of 
motion. 
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Figure 2. The spectrum of the pulse for E~=2.5 x 10- 6, r.o,/~,,, = 1 and q=0.01. 
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In the above works the forcing functions were harmonic and of primary concern were 
frequency-amplitude relations and associated stability questions. To the authors' know- 
ledge, no studies have addressed the issue of possible out-of-plane instabilities of beams 
subject to plane, pulse loading. It is the central question addressed here for a pinned 
pinned beam. 

2. EQUATIONS OF MOTION 

Ho,  Scott and Eisley [ 1 ] developed a set o f  equat ions for  the non-linear,  whirling mot ions  
of  compac t  beams,  in which the source o f  the non-l ineari ty was centerline extension. In 
their model ,  non-l inear  curvature  and longitudinal inertia were neglected. 

Fo r  p inned-p inned  beams it has recently been shown [6], using Gale rk in ' s  me thod  
and numerical  integrat ion in time, that  under  a b road  range o f  c i rcumstances  non-l inear  
curvature  played an insignificant role in the response to planar ,  ha rmonic  forcing. 
Consequent ly  it is neglected here. Retent ion of  longitudinal  inertia and  centerline extension 
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Figure 3. Time histories of (a) the forcing function 2Q., (b) the x-component of displacement, and (c) the 
),-component of displacement for F, =2-5 × 10 6, oh =(o., q=0.01 and zero damping: square beam. 
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was found to be important. Retaining longitidinal inertia, Ho, Scott and Eisley's equations 
become: 

( I yJALZ)u  ~' - ½ [3u'2u " q- u"v '2 + 2u'v'v" + 2w"w' + 2u'w"] + ii = ( L / E A ) f , ( s ,  r), (1) 

( Ixx /AL2)v  ~" - ½[3o'Er" + v"u '2 + 2v'u'u" + 2w"w' + 2v'w"] +/J = 0, (2) 

w" +u'u" + v ' v " - i O = O .  (3) 

The basic configuration of the beam is shown in Figure 1 : u, v and w are the displacement 
components in the x, y and z directions, respectively. A prime denotes differentiation with 
respect to the dimensionless variable s - z / L ,  and a dot differentiation with respect to the 
dimensionless time r = ( t / L ) , j ~ ,  E being Young's modulus and p being the mass density. 
A is the cross-sectional area and Ix,, Iyy are area moments of inertia. The beam is being 
forced in the x - z  plane in the x-direction only, with a forcing function given by f , ( s ,  r). 

Galerkin's method is now employed to obtain ordinary differential equations in time. 
A one-mode approximation is used; namely, 

u = ( ( r )  sin 7rs, v = ~ (r) sin 7rs, w = r/(r) sin 27rs. (4-6) 

Note the factor of 2 in equation (6), reflecting the fact that, as the longitudinal motion 
goes through one cycle, the transverse motion goes through two. Introducing equations 
(4)-(6) into equations (1)-(3), multiplying equations (1)-(3) by (, ~ and r/, respectively, 
and integrating from s = 0 to s = 1, gives 

~'= - - ( Iyy /a t2 )R4~  - ( 3 / 8 ) ~ 4 ~  3 - ( 3 / 8 ) ~ 4 ~ q )  2 --/lr3~ r~ + 2Q=, (7) 

~ =  - ( I x x / a L 2 ) x ' d p -  (3/8) 7r'~b 3 - (3/8)~r'~b( 2 - zr3$r/, (8) 

/~ = _4zr=r/_ (7r3/2)(2_ (Ir3/2)@ 2, (9) 

where 

fO 
Q~(r) = ( L / E A )  f~(s, z)  sin ~s ds. 
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Figure 4. The spectrum of the pulse for F~ = 2.5 x 10 -6, o~l = co. and q = 0.001. 
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3. NUMERICAL SIMULATIONS 

The fundamental question addressed is whether a plane pulse, depending on its frequency 
spectrum, could induce out-of-plane motions. The spatial distribution of  the pulse was 
taken to be a constant, F0. The time dependence was taken to be a decaying cosinusoid, 
so that 

Qx('c) = F ,  e -qr cos o)t ~, (11) 

where Fx = ( 2 L F o ) / ( t t E A ) .  As shown in Harris and Crede [7], the spectrum of  this pulse 
is concentrated a round  the frequency 09, and its width in the frequency domain  increases 
as q decreases. Of  pr imary  interest is whether a pulse the spectrum of  which is centered 
a round  a frequency known to cause whirling mot ions  for harmonic  forcing would also 
generate three-dimensional mot ion.  Conversely, if the spectrum is centered a round  a fre- 
quency which is stable (in the harmonic  case) to out-of-plane-perturbations,  the question 
is if only in-plane mot ions  would occur. 
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Figure 5. Time histories of (a) the forcing function 2Qx, (b) the x-component, and (c) the y-component of 
displacement for Fx=2.5 x 10 6, co, =co,, q=0.001 and zero damping: square beam. 
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Figure 6. Time history of (a) the x-component of displacement, and (b) the y-component of displacement for 
Fx=2.5 x 10 -6, O~l =to,,  q=0.01 and 1.35% damping: square beam. 

The ordinary differential equations (7)-(9) were integrated using a Fehlberg fourth-fifth 
order Rtmge-Kutta method available from the NAAS Library (routine DRKF45). In all 
cases, the simulation is started with a very small out-of-plane component. By whirling 
motion is meant motions which grow from the initial small level. Consider first the case 
of a square beam ( I==  I , ) ,  with the slenderness ratio d / L  = 0.005 inches (as in Ho, Scott 
and Eisley [1]), and zero damping. Also Fx=2.5 x 10 -6, q=0.01 and t0~ =oJ,, where to, 
is the first natural non-dimensional bending frequency (in the linear case). The Fourier 
amplitude spectrum of the pulse is shown in Figure 2. It is quite broadand spans frequen- 
cies that in the harmonic case would lead Ho et al. [1] to predict out-of-plane motions. 
Shown in Figures 3(a-c) are the time histories of the force and the x and y components 
of displacement. The motion is indeed whirling. After the initial transient, a beating motion 
between the two planes occurs. 

A pulse with Fx=2.5 x 10 -6, (01 =On , q=0"001 is now applied: the spectrum is shown 
in Figure 4, and is strongly localized around co~. At this frequency and force level Ho et 
aL [ 1 ] would predict in-plane motions and one could anticipate, perhaps naively, that the 
pulse would produce in-plane motions. The time histories of the force and displacements 
are shown in Figures 5(a--c). Somewhat surprisingly, the motion is still three-dimensional 
(different from the previous case in that the beating motions are faster). 

The role of damping (which is always present to some degree and is artificially injected 
here into the equations of motion using a viscous damping model) was also addressed. 
Consider the case of 1.35% damping, Fx=2.5x 10 -6, c01=t0n and q=0-01. The time 
histories of the displacements are given in Figures 6(a) and (b). As can be seen from 
Figure 6(b), there is considerable growth of the initial y-motion before damping quenches 
it. Whirling motions still occur. 
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Figure 7. Peak values Ap as a function of 
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aspect ratio 7 =b/d for (a) q=0-01 and (b) q=0.001. 

Non-square beams were then examined. Beating motions were found in all cases studied, 
but fulltime histories will not be given here. Shown in Figures 7(a) and 7(b) are plots of 
ap/Ai v e r s u s  ~r, where Ap and Ai are the peak and initial values, respectively, of  the out- 
of-plane response and y = b/d  (see Figure 1). In Figure 7(a), q = 0.01, and in Figure 7(b), 
q=0.001.  In both cases F~=2 '5  x 10 -6,  COl = O n ,  and zero damping was assumed. From 
the figures it is seen that, for all )' values, the more localized pulse (q = 0.001) generates 
larger amplitude out-of-plane motions than the diffuse one (q = 0.01). No clear-cut pattern 
emerges, but the broad conclusion may be reached that for a wide range of  parameters, 
and to some degree or another, in-plane pulses always induce whirling motions. 
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