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ABSTRQCT 

Structural perturbation theory has been developed over the past 16 years to 
relate two structural states modeled by the same Finite Element (FE) model 
but described by di$erent values of the design variables. Relating an intact/ 
damaged (initial) structure to a limit state structure produces the reserve/ 
residual redundancy. Invariant and consistent redundancy, redundancy 
functions, and injective mappings are defined and related to the design 
variables. General perturbation equations are derived to relate the two states 
andproducefailuresuflaceequations. Individual andjointfailurepoints are 
identtfied and redundancy is computed without linearization of failure 
surfaces, enumeration of failure paths, trial and error, or repeated FE 
Analyses (FEAs). This is achieved by large admissible perturbations using a 
prediction-correction algorithm and postprocessing FEA results of the initial 
structure only. The latter may dtferfiom the limit state structure in sti&ess, 
mass, geometry, or response by as much as 1 &I-300% depending on the size of 
the FE model. Structural perturbation theory treats discrete and continuous 
structures as the FE method does: modeling of the structure as a simpltjkd 
system of components is not needed. To introduce this new approach to 
redundancy, modal dynamic and stank deflection failure criteria are used in 
the elastic range. Numerical applications on a beam, a small, and a large 
o$shore tower are used to test the method. Future developments and impact to 
design are discussed as the new methodology introduces an alternative to 
systems reliabiliry and stochastic FE. 
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NOTATION 

admixture coefficient for participation of the j th  mode 
to changes in the ith mode 
index for design and model variables, respectively 
degree(s) of freedom 
Young's modulus 
Finite Element 
Finite Element Analysis 
indices for geometry, load, and material variables, 
respectively 
global and generalized stiffness matrices 
stiffness matrix of element or group of elements 
related to property e 
ith component of ["K-.] 
index denoting quantity in increment ,t, ~' = 1.2 . . . . .  N 
Large admissible perturbation 
FE model used in redundancy analysis 
global and generalized mass matrices 
mass matrix of element or group of elements related 
to property e 
ith component of ["M..] 
number of degrees of freedom in FE model 
number of increments in incremental algorithm 
number and admissibility constraints 
number of displacement, frequency, and dynamic 
model node failure criteria 
number of extracted structural modes used in 
RESTRUCT 
number of stress, buckling loads, and buckling modal 
node failure criteria 
number of model variables 
Perturbation Approach to redundancy 
program for Redesign of STRUCTures 
initial and other structural states, respectively, 
modeled by ~¢ 
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limit state and failure point, respectively, on limit state i 
nodal static displacement vector 
fractional change to element or group property e 
upper and lower bounds for a, 
pref'ix denoting incremental change 
prefix denoting total change 
equivalent stress nodal vector 
matrix of mode shape vectors 
kth degree of freedom ith mode shape 
ith dynamic and buckling mode, respectively 
ith natural frequency 
indicates diagonal matrix 
prime denotes structural property of state $2 

1 INTRODUCTION AND BACKGROUND 

To put into perspective the redundancy concept and the computational 
methodology introduced in this paper, the state of the art in definition 
and computation of redundancy is reviewed in Section 1.1. Structural 
perturbation theory is reviewed in Section 1.2 with emphasis on the 
principle underlying large admissible perturbations, their potential to 
solve the problems of failure point identification and redundancy, and 
what problems have been solved up to date using that theory. The large 
admissible perturbation approach to redundancy is introduced in 
Section 2 by defining its goals and describing its present capabilities and 
limitations and its potential for further development. Several definitions 
are provided in Section 2.3 leading to the concepts of invariant and 
consistent redundancy, and redundancy injections, mappings and 
measures. In Section 3, redundancy is defined with respect to global and 
element stiffness and mass, geometry, performance, and strength. One- 
to-one relations between all those redundancy definitions are established 
in the structural perturbation theory by preserving element connectivity 
in the finite element model and ensuring that all large perturbations are 
admissible producing a real structure. In Section 4, modal dynamic and 
static deflection failure criteria are introduced and quantified and the 
corresponding global failure equations are derived by developing 
general perturbation equations. Stress and global buckling failure 
criteria which are under development are presented. The solution 
algorithm developed to identify the failure point for each failure criterion 
is outlined in Section 5. Large admissible perturbations are used to 
identigl failure points without trial and error or path enumeration and by 
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postprocessing results of a single finite element analysis, that of the 
initial structure. Numerical applications presented in Section 6 show 
that the initial and limit state structures may be far apart (100-300%) in 
stiffness, mass, performance or geometry. Three structures are used in the 
numerical applications: a 10-element 48-dof clamped-hinged beam, a 
104-element 192-dof offshore tower and a 605-element 810-dof offshore 
tower. Finally, our current research efforts and the impact of the 
developed methodology to design are discussed. 

1.1 Redundancy 

In the literature on marine structural reliability, most papers study 
redundancy in the sense of residual strength with respect to collapse I-7. 
Historically, however, redundancy has been defined in a variety of other 
ways. (R1) External redundancy is defined as the number of excess 
reaction components needed for structural stability 2. (R2) Internal 
redundancy for discrete structures is closely related to determinancy 2. 
(R3) Reserve redundancy is defined as the margin between the design 
load and the limit state 3. (R4) Global redundancy refers to failure of the 
overall structure 4. (R5) Local redundancy is synonymous with reserve 
strength of individual structural members and joints 4. (R6) Serviceability 
redundancy addresses the issue of reduction ofthe operational threshold 
rather than collapse 7. 

Focusing on redundancy in the sense of reserve or residual strength 
with respect to collapse, we find several measures for quantifying 
redundancy. Deterministic measures are as follows. (M 1) The redundant 
factor defined as the ratio of the intact structure strength over the 
difference of damaged from intact strength i. (M2) The reserve resistance 
factor defined as the environmental load exerted on the undamaged 
structure at collapse over the design environmental load I. (M3) The 
residual resistance factor, RIF = R u l L d / R u l  t where Rult.d, Rult a r e  the 
ultimate strengths of the damaged and intact structures, respectively 2. 
(M4) The deterministic system factor, DSF -- 2max/A. 1, where 3. max and 21 
are the deterministic first failure capacity and system capacity, 
respectively s. Probabilistic measures are as follows. (M5) The complexity, 
the redundancy, and the net system factors 9. (M6) The conditional 
probability of failure given that one structural member has failed1°. (M7) 
The conditional probability of failure given that one or more members 
have failed simultaneously 11.12. (M8) The residual system reliability 
defined as the minimum of the reliabilities ofthe system when any single 
member is damaged 13. (M9) Robustness, defined as the ratio of the 
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conditional probability of failure of the structure with any one member 
damaged over the probability of failure of the intact structure ~°. 

Even if we focus on reserve and residual redundancy with respect to 
collapse only, the existing measures will depend on the following factors: 
(FI) the type of structure2; (F2) whether the structure is discrete or 
continuous2; (F3) the type of loads applied2; (F4) the idealization of the 
structure; (F5) the strength modeling of members (ductile or brittle)14; 
and the strength of individual members (balanced or unbalanced) s. 

Presently, research in structural redundancy analysis faces the 
following challenges. (C1) Introduce a rational definition of redundancy 
from the structural point of view so that a redundancy measure can be 
related directly to geometric and material properties of elements ~. z i.s-J9 
This would allow implementation of global redundancy design criteria 
at the early stages of element design. To explain this concept, consider 
the two traditional approaches to structural reliability design, that is the 
element and the system approaches 3. In the former, selection of 
individual member reliability is empirical. In the systems approach, the 
overall system reliability is specified and an optimization with a trial and 
error technique is required to achieve that goal. A rational definition of 
redundancy should reveal the relation between the overall system 
reliability and element properties. In such a case, redesign of elements to 
achieve the target reliability of a structure will be possible without 
simplification of the structure or trial and error. (C2) Define an invariant 
redundancy measure that will not depend on factors F1-F6 listed in the 
previous paragraph 1"2. (C3) Use sophisticated structural analysis in 
redundancy computations. This implies that finite element analysis 
(which is a standard technique in structural analysis and design) must be 
used. The alternative, that is modeling of a structure as a simplified 
system of structural components is in general not accurate, particularly 
for continuous structures s-II. (C4) Quantify global failure and derive 
global failure equations as functions of the design variables. Global 
refers to a property of the overall structure like natural frequency, normal 
mode, static deflection, static stress, buckling, collapse. Lack of global 
failure equations is a major obstacle to structural redundancy and 
reliability analysis 2°'2~. (C5) Develop computationaUy efficient pro- 
cedures for redundancy analysis of large scale structures. That is, 
enumeration of paths to failure and repeated FEAs must be avoided. 

1.2 Structural perturbation methods 

The methodology introduced in this paper, for redundancy analysis of 
large scale discrete or continuous structures is based on the large 
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admissible perturbation theory. This theory has evolved in the past 7 
years from the linear perturbation techniques introduced in 1975 for the 
purpose of redesigning a structure with undesirable modal dynamics 
characteristics 22. Redesign is the process of defining an objective 
structure of given specifications starting from a baseline structural 
design which must be improved. Optimization or minimum error 
solution techniques may be used to define the objective structure 
depending on whether the problem is underdetermined or over- 
determined, respectively. Redesign by perturbation differs from classical 
structural optimization in problem formulation, in expressing design 
goals in terms of design variables, in solving the problem without 
repeated FE analyses, in achieving large structural changes, and in 
meeting many different types of design objectives (frequency, modes, 
deflections, stresses, buckling, etc.) 23-26. 

Linear perturbation methods allow for small differences between 
baseline and objective design in modal dynamic and structural 
properties. Redesign is achieved by perturbation without trial and error 
and by postprocessing only FEA results of the baseline design 22-24' 27. 28 
Related to perturbation are design sensitivity methods 29. They allow for 
small structural changes and in that respect they are equivalent to linear 
perturbation methods. Nonlinear perturbation methods were then 
developed to allow for large changes in modal dynamic response and 
structural element sizing 25"26"3°-33 By the definition of the redesign 
process, it is clear that perturbation methods relate two structural states, 
the baseline and objective structures 26. Other very important two-state 
problems in structural analysis and design are FE model correlation 33' 34, 
structural system identification 2s, non-destructive testing 28, failure mode 
identification, redundancy, and reliability. In the last three problems, the 
two states involved are the intact or damaged structure and a limit state. 
In perturbation theory, relations between two structural states are 
derived, failure criteria are quantified, and algorithms are developed to 
define one of the two structural states in terms of the other. 

Research in perturbation theory presently has three major goals. The 
first is to improve the solution algorithm so that it can be applied to larger 
scale structures and for larger differences between the two structural 
states in structural properties and response particulars. For that purpose 
incremental prediction-correction algorithms have been developed 25" 3o. sl, 
which have been improved by the introduction of admissibility 
constraints 26 and the definition of cognate admissible space 33. Those 
advancements have made it possible for large admissible perturbation 
algorithms to relate two states which may differ by 100-300% in 
properties and response. Identification of the objective state is achieved 
without trial and error and with only one FE analysis, that of the baseline 



Redundancy by large admissible perturbations 29 

structure. A major advantage of the large admissible perturbation theory 
is that it relates response changes to structural element sizes. Thus, the 
stiffness and mass matrices produced correspond to a real structure. 
Presently, substructuring and supercomputing are being implemented to 
make the large admissible perturbation algorithm faster and applicable 
to larger scale structures. 

The second research goal is to derive equations for new relational 
criteria. Natural frequency criteria were first introduced followed by 
dynamic mode shape criteria 22-24"27"28"3°. Equations for static deflection 
criteria were then derived and algorithms implementing all of the above 
were developed 25" 26, 33. 34. Global buckling and stress relations have been 
developed recently (see Section 4.3). 

The third research goal is to solve new two-state problems. The non- 
destructive testing problem was addressed by linear perturbation 
methods 28. Centrifugal and Coriolis effects were introduced by per- 
turbation in optimization of turbine blades 35. Significant progress was 
made towards the solution of the problems of redesign and the FE model 
correlation which have been studied extensively in aerospace engineer- 
ing26. 33. The FE model correlation problem was also solved for offshore 
structures where the external hydrodynamic force is a function of the 
design variables34. This paper represents a first step towards development 
of a large admissible perturbation methodology for solution of the 
failure point identification and redundancy problems. 

2 LARGE ADMISSIBLE PERTURBATION APPROACH TO 
REDUNDANCY 

The previous review of structural redundancy and structural perturbation 
theory was intended to provide the reader with insight into the potential 
oflarge admissible perturbation theory to address the current challenges 
in redundancy analysis of large scale continuous structures. In this 
chapter, the principle of LargE Admissible Perturbation (LEAP) theory 
is presented in Section 2.1; the major points of the Perturbation 
Approach to Redundancy (PAR) are stated in Section 2.2 and presented 
in Sections 3-5; several definitions are provided in Section 2.3 to set the 
ground for the PAR methodology introduced in this paper. 

2.1 The LEAP principle 

As explained in Section 1.2, the purpose of LEAP is to relate two 
structural states, an initial state (S1) and an objective state ($2). $1 is 
analyzed by a FE method as shown in Fig. 1. $2 is characterized by 
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I tate I Intact Structure 1 

Analysis by MSC/NASTRAN 

I Modal Dynamics: [-to2], [<~] 
2 Static Deflections : ( u ) 
3 Static Stresses : (o) 
4 Global Buckling: ['Pcr-],I~b] 

I State 2: Limit State Structure 1 

Failure Criteria 

1. [-='?]. [~.] 
2 (u ' )  
3. (o') 
4. ['P=r'.]. [%'I 

R E S T R U C T  D a t a b a s e  + - - - - - ~ - ~  

] 
U Redundancy for Individual and Joint Limit State Points 

Stiffness and Mass Mapping : [ t~k ], [ 6m ] 
C ~ Stiffness and Mass Injection: [6ke],[6m,] e=1,2, .,p 
T Geometry lnjection and Norm : =,.e-l.Z.....p; ll=_llz 

Performance Mapping: ['6~2],[ A~ ], (AU } 
Strength Mapping : ['APcr.], { Ao } 

Fig. 1. Failure point identification and redundancy by perturbation. 

performance specifications. LEAP methods identify $2 by postprocessing 
FE model data on S1 using $2 specifications. It should be emphasized 
again that $2 is defined by its desired performance not by values of  
design variables; that is, LEAP theory deals with two-state redesign not 
reanalysis problems. The latter were studied intensely in the early 1960s 
to avoid running FE codes every time a small change in the stiffness and/  
or mass matrix of  a model was made. Faster computers and development 
of preprocessors, have made reanalysis unattractive. In fact, reanalysis 
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problems can be solved by LEAP theory since it develops general 
perturbation equations relating $2 to S1 (see Section 4). In that case, the 
reanalysis LEAP algorithm would be much simpler than the redesign 
LEAP algorithm presented in Section 5, because design variables rather 
than desired structural performance would be specified. 

To understand if a specific two-state problem in analysis or design 
(like redesign, FE model correlation, redundancy, etc.) can be addressed 
by LEAP theory, the following principle should be inferred: 'General 
perturbation equations can be developed to relate two structures --  S1 
and $2 --  which are modeled by the same FE model but represented by 
different values of the design variables. Then, an incremental prediction- 
correction algorithm can be developed to define structure $2 by 
postprocessing data of the FE analysis of structure SI.' 

It is obvious that LEAP theory can solve a wide variety of problems in 
analysis and design that are presently solved by trial and error and 
repeated FE analyses. The redundancy problem is a two-state problem 
where S1 is the initial (intact/damaged) structure and $2 is a failure point 
on a limit surface. LEAP theory can address this problem as explained in 
the next section. 

2.2 The PAR concept 

The purpose of the methodology introduced in this paper is to  meet 
challenges C1-C5 defined in Section 1.1. Its major points and their 
relation to those challenges are stated below and explained in Sections 
3-5. 

First, a structure is modeled and analyzed by a FE method (see Fig. 1). 
Large scale discrete or continuous structures are handled by general 
purpose FE codes, like MSC/NASTRAN.V64 used in this work. Then, 
redundancy is defined in a way consistent with structural design needs 
and invariant with respect to factors F1-F6 listed in Section 1.1. This 
procedure addresses challenges C1-C3 as explained in Section 3. 
Second, specify a failure criterion, quantify it, and derive global failure 
equations which represent the corresponding limit state surface. The 
latter is achieved by the general perturbation equations which relate state 
$2 to S1. Thus, challenge C4 is treated as shown in Section 4. Third, 
develop a large admissible perturbation algorithm to identify state $2", 
the nearest failure point to S1, by postprocessing data of only one FEA, 
that of state S1. This algorithm is outlined in Section 5 and addresses 
challenge C5. 

By meeting challenge C3, the Perturbation Approach to Redundancy 
(PAR) brings the level of sophistication of structural analysis in 
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redundancy computations up to par with standard analysis and design 
practice. 

2.3 Definitions 

After reviewing the literature pertinent to structural redundancy, it is 
considered necessary to establish the terminology used in this work by 
repeating some definitions and introducing a few new ones. This task is 
undertaken below. Classification of terms also helps to evaluate the 
introduced methodology, its potential and limitations, and its contri- 
butions to design beyond those of the two major methods of structural 
reliability, namely the systems approach 9-'1 and the stochastic FE 
method36. 37. 

Structural model and redesign 
The structure under consideration, whether small or large, discrete or 
continuous, and regardless of its stress-strain model, and external load is 
modeled and analyzed by the FE method. 

(DI) Structural model . / / i s  defined as the finite element model of the 
initial structure for which finite element analyses have been performed. 
That is, •/! refers to the numerical model not the physical structure or the 
mathematical model. 

(D2) State S1 is that of the initial (intact or damaged) structure for 
which model . / / has  been developed and run by a general purpose FE 
code. In LEAP-PAR theory,.S 1 represents the only state which has been 
analyzed by a FE code. 

(D3) Structural analyses o f . / / a r e  those performed by the FE code for 
State S1. Such analyses may be modal dynamic, static, global buckling 
etc. What type of analyses are needed, depends on the failure criteria 
used in redundancy analysis. 

(D4) State $2 is any state which can be modeled by . / /except  S1. That 
is, $2 represents any structure which can be modeled by ,// but 
represented by different values of the model variables. The question that 
arises here, is how flexible .// is, whether elements can be damaged, 
deleted or added, and if element strength can be modified without having 
to redefine state S1. To discuss these issues the following definitions are 
provided. 

(D5) Redesign is the process of finding a structure $2 to satisfy certain 
design objectives, starting from state S1. LEAP theory does so without 
trial and error without any additional FEAs 26. 

(D6) Resizing is redesign where only structural element properties are 
allowed to change. That is, the grid o f . / / d o e s  not change. Nodes and 
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degrees of freedom remain the same; structural elements are not 
eliminated or added. 

(D7) Reshaping is redesign where, in addition to resizing, structural 
elements may be deleted or added, and element stress-strain models may 
be changed within the constraints of the grid o f . / / .  The process of 
reshaping is needed when structural elements must be added to improve 
a structural design, or reach plasticity (ductile elements), or eliminated 
due to fracture (brittle elements). 

(D8) Topological redesign is the process where, in addition to 
reconfiguration, the grid o f . / / i s  allowed to change. 

Resizing is presently implemented in code RESTRUCT (Redesign of 
STRUCTures) and in the numerical applications in this paper. Reshaping 
and topological redesign are within the capability of LEAP theory but 
have not been implemented in RESTRUCT as yet 38. Reshaping is 
needed after failure detection (element fracture or plasticity) for model 
accommodation/reconfiguration which are necessary in progressive 
element failure until global structural failure. Reshaping can be 
implemented readily in the general perturbation equations (see Section 
4) and in code RESTRUCT, is presently under development. It should be 
noted that in our methodology, element failure does not dictate when 
and if state S 1 must be redefined, that is ~ // reshaped and run again. Such 
an event depends on loss of accuracy of the modal expansion base (see 
Section 4.1) which may occur if perturbations become too big; like 
100-300% changes. 

The next phase in development of ~//will require topological redesign. 
The current version of RESTRUCT. V338, cannot perform topological 
redesign because it postprocesses FE results of MSC/NASTRAN.V64 
which is the resident NASTRAN version in the University of Michigan 
secondary (system UB) mainframe computer (IBM 3090). We have 
developed, however, RESTRUCT.V4 running on the San Diego 
supercomputer center and postprocessing data of MSC/NASTRAN.V66 
which has superlement capability. This provides the required flexibility 
for topological redesign in LEAP theory. 

(D9) Substructure is a connected part of the structure. A substructure is 
delimited by its boundary; at least part of that boundary is an interface 
with other substructures. For example the deck ofan offshore structure is 
a substructure and its lower boundary interfaces with the supporting 
tower. 

(D10) A structuralgroup is a set of structural elements. A group may 
not be connected and therefore may not be a substructure. A substructure 
may be treated as a group. The elements of a group have some common 
characteristic which defines the group. For example, in a redesign 
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process of an offshore tower (see Figs. 6, 7 and Tables 3, 5) the tower legs 
may be grouped together so that they remain identical after redesign. For  
manufacturabil i ty purposes, identical braces may be grouped together in 
order to remain identical after redesign. 

(D 1 1) A structural element is a finite element in . / / .  That  is, a structural 
member,  beam, plate, etc., may be modeled i n . / / b y  one or more finite 
elements. 

Variables and vector spaces 
Several quantities may be variable i n . / / ;  they are defined and classified 
below. 

(D12) Geometric variables ag, g = 1, 2 . . . . .  G; are those required to 
define uniquely the geometry of . / / .  Two issues are important  here. First, 
in resizing and reshaping, geometric variables describe cross-sections of  
elements since the grid .//  is fixed. Second, those variables are 
continuous and allow for cont inuous variation of  element  geometry; 
there is no need to limit e lement  performance to a binary state, that is 
operational or failed. 

(DI3) Load variables al, / = 1, 2 . . . .  L; are the variables in .//  that 
uniquely define the load exerted on the structure. Presently, time 
independent  load is implemented  in RESTRUCT 38 in static loading and 
buckling. 

(D14) Material variables a,,, m = 1, 2 , . . . ,  M; are those required to 
define the stress-strain model of  individual elements or substructures 
and their mass. Density/9, Young's modulus E, and ay are examples of 
material variables. 

(DI5) Design variables ad, d = 1, 2 . . . . .  D; are all variables needed to 
define uniquely any structure (SI or $2) modeled by./L That is, the set of  
design variables is the union of the  geometry and material variable sets. 

(D16) Model variables ae, e = 1, 2 . . . . .  p; are all variables required to 
define./t'. The set of  model  variables is the union of the sets ofdes ign and 
load variables. All variables must be independent.  For example the 
weight of a structure which contributes to static loading and buckl ing 
can be expressed in terms of  geometry and material variables and 
consequently is not an ae variable. 

(DI7) Model space is the p-dimensional  vector space defined by the 
model variables, a E ~P. Similarly, we may define the geometry, load, 
material, and design spaces. 

Failure 
Terms pertinent to structural failure are defined in this subsection. 

(D18) The failure criterion characterizes the way in which the 
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structure fails to perform a particular task. Buckling, yielding, collapse, 
large deflections, low natural frequencies are failure criteria. They also 
define the structural analyses to be performed (see D3). 

(D19) Failure or limit hypersurface corresponding to a failure 
criterion is the set ofpoints, in the space of model variables, where failure 
may occur according to that criterion. In three dimensions, the limit 
hypersurface becomes a limit surface. 

(D20) Quantificiation of a failure criterion is the assignment of a 
specific value to a failure criterion. In failure analysis, quantification 
may not always be necessary; e.g. 'global Euler buckling' is a sufficient 
description of a failure criterion. FE analysis will specify the first 
eigenvalue for buckling. In redundancy design, on the other hand, 
quantification may be necessary. For example, in the problem 'Design a 
structure to have a specified redundancy in global Euler buckling for a 
given compressive load Per,' Pc~ quantifies the failure criterion, and it is 
required. 

(D21) Failure or limit hypersurface equation g i ( a )  = 0, a E .~P is the 
equation of the failure or limit hypersurface defined in the model vector 
space by failure criterion (i) and its quantification, whenever the latter is 
necessary. In LEAP-PAR theory such equations are the general 
perturbation equations (see Section 4). 

(D22) Failure point $2" is a point on the limit hypersurface (i) where 
failure actually occurs; more than one such point may exist for given S1 
and gi(a) = 0. The term failure mode used in the systems approach to 
indicate the sequence of element failures to structural collapse has no 
meaning in PAR. In PAIL the structure continuously depends on ae and 
any sequence of element failure does not define $2" unless it is 
accompanied by information regarding the deteriorated or random state 
(geometry and material) of all structural elements. That is, the set of 
failure modes is not a denumerable set; it is indeed, as in a real structure, 
a multi-dimensional continuum. This continuum need not to be defined 
in PAR because failure hypersurfac equationg,-(a) = 0 can be derived by 
perturbation and S2i* can be computed by a LEAP algorithm. 

(D23) Survivability failure: this type of failure results in loss of the 
structure. Partial or total collapse of the structures falls in this category 7. 

(D24) Serviceability failure: this type of failure results in service 
interruption 7. Natural frequencies in the range of wave excitation, 
undesirable dynamic modes, large deflections, or elastic buckling refer to 
ways in which a structure may lose its ability to perform its intended 
service. 

(D25) Global failure refers to loss of the ability of a structure as a whole 
to perform a function 4. Such failure is always associated with a global 
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structural performance. Global Euler buckling, reduction of a natural 
frequency, collapse, excessive static deflection or stress, are examples of  
global failure. 

(D26) Local failure refers to individual structural elements. Local 
failure is considered in LEAP theory in the process of  failure detection 
and model reconfiguration. In that sense it does not constitute a major 
step in the computation of failure point $2/*. 

Regarding global and local failure, it should be stressed that any local 
event, like randomness in a member  (corrosion, deterioration, etc.) 
affects the entire model  and stress redistribution, and is taken into 
account inherently in the perturbation equations relating $2 to S1. 
Further, any deterioration is a continuous process until element fracture; 
it is not a binary state. 

Redundancy 
Our purpose is to provide consistent and invariant definitions of  
redundancy that can be used in design. This task is performed in Section 
3. Here, we define the mathematical  tools 39 needed for defining 
redundancy. More specifically, the terms redundancy mapping, 
redundancy injection, redundancy norm, redundancy, consistent, and 
invariant are defined with the help of Fig. 2. 

LetX C ~P be the model space (or space of the , / /var iables)  andA C X 
be the space of all real structures modeled by.// .A is a subset of  Xbecause 
not all values of model variables represent a real structure; e.g. a 
geometric variable ag cannot be negative; when ag = 0 the corresponding 
element is removed from the structure. Structural states S1 and $2 are 
defined in A. The limit surface Li, is a subject of A, that is L~ CA. 

(D27) A mapping T 8, called difference mapping, is defined fromA into 
Y C ,~P so that 

Ts: A = 5r(TS) --~ Y C ~P 

a I---~ T ~ a  = a (1)  

and 

a = a2 - a~ (2) 

where U(T 6) is the domain  of the transformation, and a, and a2 define 
structural state S1 and $2, respectively. 

The range of T 8, ;~(T 8) is the set of  all images of  A; that is 

B = ,~(T 6) = {y@Y[y = Trx f o r s o m e x @ ~ ( T ~ ) l  

This transformation is an injection (injective mapping or one-to-one) 
and therefore no information is lost in the process. A structural state may 
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Fig. 2. Injections for redundancy mapping definitions. 

be defined uniquely inA orB, that is the domain or the range ofT  6. Yis 
called space of differences i n . / !  variables. In the redundancy definitions 
in Section 3, and in the numerical applications in Section 6, a fractional 
change mapping is used instead. It is injective and absolutely equivalent 
to the difference mapping, so the same symbol is used, T 6. 

(D28) A mapping T 6, called fractional change mapping, is defined 
from A into Y C .~P so that: 
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and 

Ts: A = U(T ~) --~ Y C ~P 

al--~ T~a = a (3) 

ae2 -- aet 
ae = , e = 1, 2 . . . .  ,p  (4) 

ae 

Here, Y is called space of fractional changes in ~ # variables. 
One more injective mapping is defined between the model variable 

space a and some structural property (stiffness, mass, load etc.). 
(D29) A mapping TP, called structural property mapping, is defined 

from B into Z C ~P such that 

TP: B = c-/(TP) = ~ ( T  ~) ~ Z C ~P 

a I--~ TPa (5) 

The range o f T  p is C = J ( T  p) = {z E Z ] z  = YPy for some y E c_/(TP)}. 
Each image of a defines a structural state $2 in terms of some 

structural property difference from S1 uniquely. The inverse transform 
T p-' may not be unique; then T p would not be injective. 

(D30) The composite (or product) mapping T ~s, is called property 
difference mapping and is defined from A into Z, so that 

T p~ = TPT'~:A = ~(Tp~) .-~ Z C ~P 

a I--~ TP~a = TPTSa (6) 

The range of  T :  is C = ~ ( T ~ )  = .~(TPTSO 
A structural state may be defined uniquely in B or C. Now, we can 

proceed with the definition of redundancy mappings. 
(D31) Variable redundancy mapping Trlz,, is the restriction of 

mapping T~: c_/(TS) .l~ Yto a subsetL; C ~(TS): Li --~ Y. In simple terms, a 
point in ~(T~ [ t.,) represents the difference between S2i and SI; and since 
$2/. is on the limit surface Li, that difference represents redundancy with 
respect to model variables. Further, since the mapping is an injection, S1 
and the inverse of  a redundancy injection can be used to identify S2i, 
uniquely. In the literature, several definitions of  redundancy are 
associated with structural properties rather than design variables. 
Therefore, the following mapping definition is required also. 

(D32) Structural property redundancy mapping T p8 ] L,, is the restriction 
of mapping TP~: Cj(TP~) --~ Z to a subset L,. C ~(TP~): Li --~ Z. 

Again, in simple terms, a point in ~(TP6 It~) represents the difference 
between S2i and S 1; and since $2; is on the limit surface L;, that difference 
represents redundancy with respect to some structural property (e.g. 
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stiffness, mass, load). If T p6 is injective, design will be possible because 
TP~ ]L, will be injective. 

(D33) ~(T61~) C B is called the model variable redundancy space. 
(D34) ~(T p~ It,) C C is called the model property redundancy space. 
In practice, if the appropriate numerical tools (computer codes) are 

not available redundancy mappings will represent too much information 
for comparison of structures with respect to redundancy. Thus, various 
redundancy measures are defined and redundancies are computed. A 
redundancy measure is a function and redundancy is its numerical 
value. A variety of those can be found in the literature (see Section 1.1). 
All can be defined either in the model variable redundancy space 
~(T 8 ]z,) or the model property redundancy space ~(T p's It.,) by inducing 
a metric by a norm in those spaces 39. In simple terms, by making the 
above two spaces normed spaces, redundancy measures can be defined. 

(D35) Redundancy function or redundancy measure is a norm defined in 
a redundancy vector space. Thus, a redundancy measure can be defined 
in terms of model variables (e.g. geometry, load) in the Yspace, or model 
properties (e.g. stiffness, mass) in the Z space. Obviously, the relation 
between S1 and $2i as measured by a norm may not be unique and will 
result in loss of design information. To produce a design from S1 and a 
redundancy function, additional information, e.g. an optimality criterion, 
will be needed. 

(D36) Redundancy is the numerical value of a redundancy function. 
Finally, the concepts of invariancy and consistency are introduced. 
Proposition 1: A definition of redundancy is invariant with respect to 

model variables. Two issues are important in this proposition. First, it is 
the definition of a mapping or a function that is invariant, not a 
numerical value; and second, that a definition is invariant with respect to 
ae but may depend on t #. That is, all definitions based on PAR will not 
depend on factors F1-F6. Their corresponding norms, however, may 
have values depending on the grid of ~#. 

Proposition 2: Consistent definitions of redundancy are only those that 
preserve uniqueness in definition of $2;. 

Therefore, only injective difference mappings ofthe T 8 or T# kind are 
consistent. 

3 INVARIANT CONSISTENT REDUNDANCY INJECTIONS 

Assuming that a satisfactory model ~# for any structure can be produced 
by the FE method, and that the code used can predict accurately the 
response of that structure, all definitions of redundancy provided 
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hereafter are invariant. A redundancy definition would not be invariant 
with respect to a variable (e.g. load, geometry, or material variable), if that 
variable could not be included in .#  and special treatment of that 
variable would be required depending on the structure. In such a case, 
FE analysis would not be satisfactory either. In conclusion, PAR brings 
the level of sophistication of structural computations in redundancy 
analysis up to par with that of practical structural analysis for large scale 
continuous or discrete structures. 

Several consistent (injective) redundancy mappings are provided 
below. The geometric redundancy mapping in Section 3.2 is of the T~IL, 
kind; the rest are of the TrPIL, kind. 

3.1 Redundancy in structural properties 

Let [k] and [m] be the global mass and stiffness matrices of / / .  The 
following perturbation relations between S1 and $2 are introduced. 

lk'l = [kl + [Akl (7) 

[m'l = [ml + IAml (8) 

where unprimed and primed quantities pertain to S1 and $2, respectively, 
and prefix A indicates difference between the two states. $2 is uniquely 
defined by SI and [Ak] and IAm]. Note that [Ak] and IAml maybe due 
to differences in cross-sectional properties like inertia I and area A; or 
due to differences in material properties, like E and/9. In PAR, those 
differences are treated identically, so hereafter only the former are 
presented. 

Global stiffness and mass redundancy mappings 
If $2 is an 52i state on limit surface Li, the mapping of structural state $2; 
is restricted on L~, and is a T 6p [L, mapping because, according to eqns (7) 
and (8), it defines structural properties Ik'] and [m'] uniquely. It is not an 
injective mapping, however, because the inverse mapping is not unique. 
This is the case, because [k'] and [m'] are global matrices and cannot be 
used to define $2~ uniquely. That is, the global ([Ak], [Am]) domain can 
be used along with ([kl, [ml) to define ([k'l, [m'l) using eqns (7) and (8) 
but does not provide adequate information for element design. To 
achieve that goal we have to go to the FE element level and preserve 
element connectivity in./l. 

Element stiffness and mass redundancy injections 
Let p properties of elements or groups of elements differ between 
structural states SI and $2;. Several elements may be linked together in 
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one group and modeled by the same variables. If there is confidence that 
all elements in a substructure have been manufactured to the same 
specifications, are subjected to similar environmental  loads, and have 
identical deterioration in time, such linking would be desirable and 
necessary. Each element or group of elements in S1 or $2, may differ in 
more than one property. Then, the redundancy mapping ([Ak], [Am]) in 
global stiffness and mass matrices can be expressed as summation of 
redundancies in each element or group of elements as 

P P 

[Akl = ~ Ake = ~ [kdae 
e ~  I e =  I 

(9) 

P P 

[Am] = Z A m e  = Z [ m e ] a e  
e = l  e = l  

(10) 

where [ke] and [me] a r e  the stiffness and mass matrices of the eth element 
or group ofelements,  ae, e = 1, 2 . . . . .  p. Several aeS may refer to the same 
element but different properties like bending, torsion, stretching, etc. For 
example, in linear elastic beam bending 

E/ '  E /  
ik~! = -p-Ikn, l = [kd + IAkd = 73-[kn, l + [Akd (11) 

[Akel E1 
= -p-aelkB, l (12) 

[m:l = pA'l[ms,] = [ m s , ]  + [Amel = pAllms, l + lame] (13) 

[Ame] = pAlaelmn,] (14) 

in linear elastic beam torsion 

[k:] = - ~  [kr, l = [kel + [Akd = GJ [kr, l + [Akd (15) 

GJ 
IAkel = T a e l k r ,  l (16) 

in linear elastic beam stretching 

T T 
Ik',l = ~ lks, l = [ke] + [Ake] - EA [ks, l + [Ake] 

and 

l A k . l  = --~aAks.] 

(17) 

(18) 
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The above equations define a mapping of the type TtP IL, as the global 
stiffness and mass redundancy mapping does. In addition, there is 
adequate information for structural design of elements. That is, state S2i 
can be defined uniquely from S1 and element mappings. Therefore, 
element mappings, as defined by eqns (12), (14), (16), (18) are injective 
and will be called hereafter element redundancy injections (D37). For 
example, if $2 is an S2i state and Li is the global buckling limit state, then 
lake], e = 1, 2 . . . . .  p, is an injection representing element e redundancy 
towards global buckling. In dynamic failure, element redundancy 
injections are defined by both stiffness and mass injections lake] and 
lAmA. 

It should be reminded at this point, that LEAP theory, as presently 
implemented in code RESTRUCT) 8 produces [k'] and lm'] matrices 
that correspond to a real structure. In methods with objective similar to 
those of LEAP theory, this may not be the case or only small 
perturbations may be allowed as explained in the review in reference 33. 

3 . 2  G e o m e t r i c  r e d u n d a n c y  

lake] and [Ame] redundancy injections define uniquely the structural 
design of elements of S2i but not necessarily their geometry. For example, 
a plate element of S2i is uniquely defined by [ke] of $1 and a redundancy 
injection [Ake] because there is a one-to-one relation between moment of 
inertia I and plate thickness t. This is not the case for a beam of 
rectangular cross-section where I = bh 3/12 (b = breadth and h = height). 
As another example, consider lake] and [Ame] redundancy injections 
for a beam element. If the beam cross-section is rectangular it is defined 
uniquely by those injections. For an I-beam, however, those structural 
property injections (stiffness and mass) are not geometric injections. 
Below, examples of  geometric injections (D38), that is of the type TsIL, 
implemented in RESTRUCT are defined. 

For a rectangular beam cross-section of height h and width b, the 
following relations can be derived for its moment of inertia l a n d  area A: 
If S1 and S2i differ only in b, we will have 

I '  b'h3 b(1 + ab)h 3 
- 12 - 12 - (1 + a b ) I  (19 )  

A'  = b'h = b(1 +ab)h = (1 +ab)A (20) 

If $1 and S2i differ only in h, we will have 

I '  - bh'3 - bh3(1 + ah)3 - (1 + ah)31 (21) 
12 12 
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A '  = bh '  = bh(1  + ah) = (1 + a , ) A  (22) 

If S1 and $2~ differ both in b and h, we will have 

I '  - b ' h ' 3  - b(1 + ab)h3(1 + ah)3 = (1 + ab)(1 + Cth)31 (23) 
12 12 

A '  = b ' h '  = b(1 + ab)h(1 + ah) = (1 + ab)(1 + a h )A  (24) 

Depending on the relation between the number  of  element structural 
property variables np (A, I, torsional stiffness J, etc.) and the number  of  
element  geometric variables ng (b, h, etc.) it may or may not be possible to 
define mappings and injections. Three different problems may arise. 

(P1) If ng = np an element geometric redundancy injection can be 
defined. Any one of eqns (19)-(22) provide examples of such injection 
because in all four cases np = % = 1. 

(P2) If ng > np a noninjective element geometric mapping can be 
defined. Equations (23) or (24) define noninjective mappings because in 
both cases ng = 2, np = 1. In RESTRUCT 3a a solution of this under- 
determined problem is achieved by introducing an optimality criterion. 

(P3) If % < np the problem is overdetermined and even a mapping 
cannot  be established. This is the case for a plate element of unit length 
and thickness t, where 

A' = t' = (1 + a , ) t  = (1 + at)A (25) 

I '  - t'3 - -  (1 + tZt)3/3 ~-- (1 + at)31 (26) 
12 12 

In RESTRUCT a solution is provided by minimizing the error in the 
constraints of  the overdetermined problem. Note that the inverse of 
problems (P2) and (P3), are problems (P3) and (P2), respectively. 

3.3 Performance redundancy 

Material property and geometric redundancies (design redundancies), 
as defined in Sections 3.1 and 3.2, are necessary from the design point of  
view. In a complete design process, however, they are not sufficient; they 
must be related to performance or strength redundancies (feature or 
specification redundancies) in order to achieve direct design without 
trial and error or repeated FE analyses. Our goal in this and the next 
section is to define mappings relating design to specification redun- 
dancies. The latter will be related to failure criteria in Section 4. 
Obviously, those may or may not be injective depending on the number  
of  design variables and specification particulars. For example, many 
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structures modeled by .#  may have the same first natural frequency 
when more than one design variable is used in~/¢ (problem P2). Then an 
optimality criterion will be required to select an $2 state and make the 
mapping injective. If the relation between specifications and design 
variables is unique, the mapping will be injective (Problem P1). If the 
problem is overdetermined (more specifications than design variables) 
there can be no conventional mapping (P3). Minimization of error in 
satisfaction of specifications is implemented in RESTRUCT but the 
produced $2 even if unique is not considered to be the product of 
conventional mapping. 

Two forms of performance redundancy have been implemented in 
RESTRUCT, modal dynamics and static deflections. Strength may also 
be considered as performance; two forms of strength redundancy 
presently under development are presented separately in Section 3.4. 

Modal dynamics 
Frequencies and mode shapes are important because they can be related 
to service or survival failure. The following perturbation relations 
between S1 and $2 are introduced. 

1-o '2..1 = 1-to24 + [-A(~o2)..] (27) 

1¢~'1 = [~l + l a ~ l  (28) 

where [0] = [{~'}1, {qtlz,. • •, [~t},], is the matrix ofeigenvectors of $1 and 
['wz..] is the diagonal matrix ofthe corresponding eigenvalues. [A0] and 
[-A(w2)_] are redundancy expressions. To develop redundancy 
mappings or injections we must relate those to design redundancies. 
Above all we want to make sure that all definitions of redundancy, 
whether introduced here or appearing in previous literature, are 
consistent. The appropriate relations are provided by the free vibration 
equilibrium of S1 

(29) ( [k l  - o ~ [ m l ) l ~ ' b  = 101 f o r j  = 1 , 2 , . . . , n  

where n eigenvalues toj,j = 1, 2 , . . . ,  n satisfy eqn (30) 

det(lkl - o~[mi) = 0 (30) 

In eqn (29), added mass is included in [rn] and damping may be included 
only in Rayleigh's form. The uncoupled modal equations are 

l"g..l = I'M-I I'o~L] (31) 
where I"K..] and I"M..] are the generalized stiffness and mass matrices. 
Similar equations (with primed quantities) hold for $2. Equations (29)- 
(31) provide the relation between design (structural properties, geometry) 
and performance (wj, {VIj) through eqns (9) and (10). The counterpart 
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relations to (29)-(31) for $2 provide relations between design and 
performance for $2. This process is part of PAR. LEAP theory then can 
provide the relation between S1 and $2 which may be a mapping, an 
injection, or overdetermined (see problem P1-P3 in Section 3.2). These 
relations are the general perturbation equations providing failure 
equations as shown in Section 4. 

Static deflection 
Static deflection can also be related to service or survival failure. Between 
S1 and $2 the following perturbation relations may be introduced 

and 

lu'l = lul + IAul (32) 

If'} = Ifl + {rf] (33) 

where the governing equation for static FE analysis is 

[kllul = Ifl (34) 

A similar (primed) equation holds for $2. Again, eqn (34) and its 
counterpart for $2 relate design variables to performance particulars 
through eqn (9). The relations between S1 and $2 are developed in 
Section 4. They are the corresponding general perturbation equations 
and may provide a mapping, an injection, or an overdetermined relation. 

3.4 Strength redundancy 

Two forms of strength redundancy are considered in our research; stress 
and buckling redundancy. Neither is reported in this paper. The former 
has already been implemented in RESTRUCT. Buckling is under 
development. Both require extensive presentation and will be published 
separately. Suffice to present here the basic relations of PAR which 
LEAP theory uses to define $2 by post processing S1 FE analysis results. 

Stress redundancy 
The following perturbation relations between S 1 and $2 are introduced 

Icr'l = Icrl + I~cr l  (35) 

ls ' ]  = ISl + IASI (36) 

where 

lal  = I s ] l k l - ' l f l  (37) 

Is! = IGI IDI IN] (38) 
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and [G], [D], [N] are the stress-strain, strain-displacement, and shape 
function matrices, respectively. Expressing change in the global matrix 
as sum of all element changes we have 

P P 

IASI  = IASe l  = {Sela, 
e = l  e = l  

(39) 

As in the case of stiffness and mass, global mapping is not injective, in 
general. At the element level the redundancy mapping is injective. 
Redundancy in stress {Atr}, however, could be a mapping, an injection or 
overdetermined. 

Buckling redundancy 
The governing equation of buckling is 

(Ikol + [ko])lw } = IOI (40) 

where [ko] and [ko] are the small displacement and initial geometric 
stiffness matrices, respectively. Again, perturbation relations can be 
introduced to relate S1 to $2 at the performance level, critical loads and 
buckling modes, or at the element level. 

To summarize, the authors have so far taken the first step in PAR (see 
Section 2.2). That is, they have developed perturbation relations between 
SI and $2 and have provided invariant definitions for redundancy 
mappings and injections. The latter are consistent and can be used in 
design. The second step in PAR is to produce failure equations in Section 
4; the third step is to use LEAP theory to calculate to failure points and 
the corresponding redundancy injections without trial and error and 
without repeated FE analyses. 

4 FAILURE EQUATIONS 

The second step in PAR consists of defining a global failure criterion, 
quantifying it if necessary, and derive a global failure equation for the 
structure. In the literature, lack of global failure equations appears to be a 
major obstacle in computation of redundancy and reliability of large 
scale structures 2°'4°. General perturbation equations, like those derived 
in this section, provide global failure equations. The procedure involves 
the following sequential actions 

(A1) Select a failure criterion (see D18). 
(A2) Quantify the failure criterion if necessary (see D20). 
(A3) Perform the corresponding FE analysis for S1 (see D3). 
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(A4) Derive the general perturbation equations expressing $2,. in terms 
of the failure criterion, and FE analysis data and results for SI. 

It should be remembered that all failure criteria can be related to some 
quantification of structural performance. For example, a singularity in 
the buckling stiffness matrix results in global buckling; a zero first 
natural frequency results in mechanism, etc. It should be noted that even 
ifa local property is quantified to set a service failure criterion, the effect 
is global and the corresponding failure equation is global; e.g. if 
us = u;,.ax is the failure criterion for a propeller shaft w h e r e j  is a slope 
degree of  freedom, even though it appears to be a local failure criterion it 
is indeed a global one since the entire structure deformation contributes 
to uj. 

4.1 Modal dynamic failure 

Following actions, (AI)--(A4) defined above we have the following. 
(A1) Select as a failure criterion any one modal response characteristic 

of  $2; say a natural frequency coj or some degree of freedom of  a mode ~,q 
or any combinat ion of the above. 

(A2) Quantify that criterion; e.g. tot should have a lower limit ofco'l. 
From the practical point of  view this means that a structure, say an 
offshore tower, is assumed to have deteriorated to the point of  failure 
when col has reached its lower limit. 

(A3) It is assumed then, that the modal dynamic FE analysis of  Sl is 
performed to determine the modal dynamics (natural frequencies and 
mode shapes) of  S1. 

(A4) Relating eqn (31), its counterpart for $2,., and perturbation 
relations (7)-(10), (27), (28), we derive the general perturbation equations 
in terms of the a,,s as 

P 

({~"lTik<] I~ " i , -  o~;2l~i'iTlm<lloi'i,)a< 
e = l  

= oJ;2l~' l ,r lml l~v' l ;-  I~v'iTlkll~v'i, 
P 

I~"lflk<ll~v'i;a< = -{~v' l f lk l l~v' i ;  
e ~ l  

(41) 

(42) 

{ ~ , ' } f l m d  { ~ ' } , a ,  = 
e - I  

- {w ' } r Im l  {v,"}, 

f o r / =  1,2 . . . . .  n, j = i +  1, i + 2  . . . .  , n  

(43) 
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Recall that the a :  represent an element geometric redundancy injection. 
Equation (41) represents the n diagonal terms in the counterpart of eqn 
(31) for $2,., that is the Rayleigh quotients for to[ 2. Equations (42) and (43) 
are equivalent to the orthogonality conditions of the S~ modes {~' }; with 
respect to [k'] and [m'l. Theoretically, orthogonality of modes with 
respect to one of [k'] or Ira'] implies orthogonality with respect to the 
other. Numerically, however, both conditions must be forced if {~/'}j, 
j = 1, 2 , . . . ,  n, are to represent modes of a real structure. In the LEAP 
process, eqns (41)-(43) are imposed in S2i. It should be noted that these 
are the global failure equations and are implicit expressions ofaes. Their 
solution represents challenge C5 addressed by LEAP theory in Section 5. 

Three issues are worth noting. 
(i) A global structural collapse can be quantified by setting to'~ = 0. 

Then eqn (41) represents the global failure equation. Equations (42) and 
(43) are the admissibility conditions forced to ensure that the $2" (actual 
failure point on limit surface i) calculated by LEAP represents a real 
structure. 

(ii) $27 is to be defined directly from the failure equations and the 
term 'failure mode identification' is not applicable in PAR because the 
structure depends continuously on the a : .  

(iii) Element failure must be detected as it occurs and accommodated 
by reconfiguration. Yet, state S1 need not be redefined (see D2) until the 
LEAP algorithm (see Section 5) loses its accuracy. 

4.2 Static deflection failure 

Repeating the procedure followed in Section 4.1 we have: 
(AI) Select as failure criterion one or more dofs of {u}, the static 

deflection vector in eqn (34). 
(A2) Quantify that criterion; e.g. ui should have an upper bound Uimax, 

that is ui < Uimax. 
(A3) Perform static FE analysis of S1 to determine the static response 

of S1. 
(A4) Relating eqn (34), its counterpart for S2i, and perturbation 

relations (32), (33) we derive the following general perturbation equation 

where 

, { 
U i ~ ~e 

m - I  e - I  - i  - - - ~ m C m e  

A .  = Z ( , j ' . I ; ) ,  B .  = 
j-1 

(44) 

r T o Iv, 1,,, Ikl Iw I,,,, c_ = 

(45) 
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Equation (44) was derived by linearizing only the explicit dependence on 
a~s, for consistency with the prediction phase of the LEAP algorithm 
presented in Section 5. Derivation of eqn (44) is achieved by a series 
expansion of {u'} in terms of the unknown modes {~' Ij,J = l, 2 , . . . ,  n 25. 
Thus, inversion of matrix [k'] is avoided. Equation (44) is an implicit 
expression of the aes and for a given Uima~ it provides a global failure 
equation. Again, recall that the aes represent an element geometric 
redundancy injection. Whether the problem reduces to P1, P2, or P3 (see 
Section 3.2) depends on the number of Uima~S (failure criteria) specified 
and the a~s. 

4.3 Other failure equations 

For any two-state problem that satisfies the LEAP principle, general 
perturbation equations can be derived. Those are the global failure 
equations. For stresses we have 

( ± ) I ~ o }  = - I o }  + ISl + IS, la, 
e f f i l  

[± ±(± ,-, 
m = l  e = l  m f f i l  

and for global Euler buckling we have 

P 
~ .  r T r t T ~ e 

IV/hi, (lk¢,l - P; [kooA)I~'bl,.a, = {Wb}; (P,[k°ol lkA)l~bli ,  
e l i  

fori = 1 , 2 , . . . , n  (47) 

P 
r T ~ t T p 

I~blj Ikc, l Io/blia, = -{~blj Ikd I~b}i (48) 
e - I  

P 
I T t ~ T I 

{~'~}j [ko°A Iwbl~a, = -I~'blj [koo] {~'b};, 
e - I  

fori = 1 ,2 , . . . , n ,  j = i +  1, i + 2  . . . . .  n (49) 

where [kc] = [ko] - [kor], and kor includes the body force. Stresses and 
buckling are not used in this paper so no further explanations are 
provided. It should be pointed out, however, that those global failure 
equations are implicit with respect to the a,.s and are similar in nature 
with the modal dynamic and the static deflection global failure 
equations. 
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Finally, it should be noted that any number of failure criteria can be 
used simultaneously. General perturbation equations will produce the 
corresponding global failure equations. Such equations include all 
model ~ # variables and define the safe domain of the structure. Further, 
the aes can be computed by the LEAP algorithm (see Section 5) providing 
the element geometric redundancy injection required in design. 

In conclusion, up to now we have defined invariant and consistent 
redundancy mappings, injections, and measures and we have completed 
the first two steps in PAR. Next, LEAP theory is used to develop 
numerical algorithms to solve the problem efficiently. 

5 FAILURE POINT 

In this Section, the LEAP theory solution to the problem of failure point 
identification is presented. The problem definition is first presented in 
Section 5.1 and the present status of LEAP theory in solution of the 
redundancy problem is restated. The problem is formulated and solved 
in Sections 5.2 and 5.3. 

5.1 Problem definition 

Figure 3 shows a simplified space of model variables after an element 
difference (not redundancy) injection has been performed as per eqns 
(3), (4). There are two fractional difference variables a = (al, a2); two 
failure equations gi(a) = 0 and gj(a) = 0; two individual failure points 
S2*(a*) and $27(a7); one joint failure point * * S2~(a/j). The failure 
equations are provided by combining failure criteria quantifications 
with general perturbation equations like (41)-(43) for modal dynamics; 
(44), (45) for static failure; (46) for static stresses (47)-(49) for global 
buckling. State S1 is located at a = 0 and one FE analysis has been 
performed on S 1 for each type of failure criterion considered. In general, 
failure points differ significantly from S1 and they are to be identified by 
LEAP without additional FE analyses or trial and error. In this example, 
to identify the joint failure point $2" a problem of type P2 (see Section 
3.2) must be solved because the point is unique. To identify $2,.* or $27 an 
optimality criterion is needed; in our computations the Eucledian norm 
is defined as the redundancy function (measure) and minimized subject 
togi(a) = 0 orgj(a) = 0, respectively. The meaning of this process is that 
the difference between S1 and the failure point is assumed to be minimal. 
Other optimality criteria (like minimum weight difference) may be used. 

The global failure equations derived in PAR are implicit and difficult 



Redundancy by large admissible perturbations 51 

( I  

g0(~) =o 

............................................................ 

F l .. ....... ]' 

• O[.o . "  

/ 

F / V 
I 

S1 
G. 2 

Fig. 3. Failure surfaces; individual (ai*, a 7) and joint (a~) limit state points. 

to solve. LEAP theory does not enumerate paths to failure to define a 
failure point; it computes the optimal point subject to a limit state 
equation. The term 'Failure Mode Identification' is replaced in PAR by 
Failure Point Identification' due to the continuity of the failure equation 
with respect to a. The discontinuity occurring when an element breaks is 
part of the accommodation/reconfiguration process occurring as a 
LEAP algorithm optimizes its way from Sl to the failure point. In PAR, 
the 'Failure Mode' depends on so many continuous variables and their 
randomness that it is of no practical use to trace it. In LEAP theory, it is 
produced as a by-product of the definition of a failure point. 

The present status of LEAP theory as implemented in RESTRUCT is 
as follows. Natural frequency, mode shape, and static deflection global 
failure criteria are turned into global failure equations by developing the 
corresponding general perturbation equations. Individual and joint 
failure points are defined without trial and error by postprocessing data 
of S1 analyses performed by MSC/NASTRAN.V64. Structures of up to 
1254 dofs have been analyzed successfully 3°. Stress and buckling failure 
equations are not implemented in the numerical applications in Section 
6. Stress general perturbation equations have been implemented in 
RESTRUCT. Only geometric and material variables are used in our 
applications even though the general perturbation equations involve all 
model variables. Element failure detection based on stress limits is 
simple due to eqn (46). The model reconfiguration process is under 
development. Updating of the limit state equation is easy because LEAP 
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keeps track of all finite element matrices [ke] and [me], not just the global 
matrices lk] and [m]. The challenge is in detecting the limits of accuracy 
oflarge admissible perturbations. We are in the process of implementing 
an energy approach which automates the process of defining the limits of 
accuracy of the LEAP algorithm. Specifically, as elements deteriorate 
(say corrosion, randomness etc.), as RESTRUCT optimizes its way to the 
failure point, the extracted modes in the modal expansion (which are 
updated at each increment) may lose their accuracy. Then S1 must be 
redefined and analyzed by the FE code once more. Even though element 
failure contributes to the change of the modal basis it is not the main 
factor. In the rest of this Section the present status of LEAP and 
RESTRUCT is shown. 

5.2 Problem formulation 

In general, the problem of identifying $2" requires optimization to 
define $2" uniquely. Once $2" is identified, a becomes a* and this 
defines an element redundancy injection. The overall optimization 
problem which defines the feasibility domain in a multiple failure 
criterion problem is defined below. Obviously, when individual failure 
points are to be determined only one failure criterion is to be used at a 
time. 

Minimize II t l  II 2 E ~¢P (50 )  

subject to n,o natural frequency failure criteria 

to~ 2 = to/2+Ato~, i = 1,2 . . . . .  n,o (51) 

n, normal mode failure criteria 

nu static deflection failure criteria 
f 

Ui = Ui + AUi,  

no static stress failure criteria 

o~ = cr~ + Aai, 

nb global buckling eigenvalues 

P~ = Pi + AP,, 

n,b buckling mode failure criteria 

number of (k,i) = n, (52) 

i = 1, 2 . . . . .  nu (53) 

i = 1 ,2 , . . . ,no  (54) 

i = 1 ,2 , . . . ,nb (55) 

= ~b~ + A~b~, number o f (k , i )  = n,b (56) 
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where the left hand sides o feqns  (51)-(56) are the quantifications of  the 
failure criteria; 2p lower and upper bounds on geometric variables 

and 

-1  < t a [ < l . ~ < , , a ~  +, e = 1,2 . . . . .  p (57) 

na = 2 ~ (n, - i) = n,0l(2nr - 1) - n~l (58) 
i = 1  

admissibility constraints (42), (43). In eqns (51)-(56), the right-hand sides 
are replaced by the corresponding perturbation equations. Our next task 
is to find individual or joint design points without repeated FE analyses. 

5.3 Large admissible perturbations in cognate space 

The basic developments of LEAP algorithms were done for redesign and 
model correlation 25" 26. 33. Here, only the basic principles are repeated as 
an algorithm is developed for identification of the failure point, and 
computat ion of the element redundancy injection (see D37 in Section 
3.1) and the overall structural redundancy. 

(a) Starting from $1, the failure point is reached in N increments in a 
prediction-correction scheme which is summarized in Fig. 4. That is, any 
quantification of a failure criterion say At0~ 2 in eqn (51), is achieved irtN 
increments, each no larger than 7%. Thus, the incremental values ofta~, 
e = l, 2 . . . . .  p, remain small in each increment ,, and 

- 1  < [ a [ < , , a e < c a ,  +, e = 1,2 . . . . .  P, / = 1,2 . . . . .  N (59) 

where 
N 

t a [  = -0.15, ,,a~ + = +0.15, and (1 + ae) = I-I (1 + tae) (60) 
/ = l  

(b) In the prediction phase of  the algorithm in each increment, 
inadmissible l inear perturbations are performed. This part of  the 
algorithm is based on the small perturbation method developed by 
Stetson et al. 23" 24 and improved by SandstrOm et al. 28. Incremental  modal  
changes are expressed in terms of  the incremental  matrix of  admixture 
coefficients zlc], as 161¢1 = tiC] tic] r, where/'Cii = O, ~ij, i , j  = 1,2 . . . . .  n, ,  
i e j,  are small, and n, is the number  of extracted modes used in the 
algorithm. Then, 

/lr 

6,,¢,i = ~ t¢,j, 'cji (61) 
j= I.j•i 
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i N C R E M E N T  L 

I nadmiss ib le  Adm iss i b l e  
L inear  P red i c t i on  Non l inear  Cor rec t i on  

Fa i l u re  w't :z, $'=t, U'i, e~ ,  Pe'ri ; w '2, u't, e~ ,  p¢~i; 
C r i t e r i a  (Z7), (za), (3Z). (35), (47) (ZT), (32). (35), (47) 

Failure 
Equations 

RESTRUCT 

Database 

Design 
Va r i ab les  

Adm iss i b l e  
Domain 

So lu t i on  
Method 

Output 

Redundancy 

(62) , (61) , (44) , (46) ,  (47) 

5~=~, 5t,l'kl, tu'i , S~oi. t~n 
-m 2  ~-,[k],.e-,Iml,~-l[ - ] , t - ~  ~ ], 

t - I {  U },~-l[" Per.I, t - l [  ~b]. t - l {  a ) 

(62). (44), (46). (47) 

5~=?, .tU'i , 6me i , tP~, 

4-,1 k 1, t -z[  m ] .  t - , [  -], t [  4~']. 

t - I (  U ). t-t[" Pet.I, t [  ~b] .~-1( o ) 

c~e, e - 1 , 2 ,  . . . ,  p 

nw+ n¢+ nu+ no +r~p+n~b ; nw+ nu+ no +r~p+n a 
(st). (s2). (s3), (s4). (Is), (s6) (s~), (53), (s~, (IS). (is) 

2p bounds, (59) 
I 

Infinite Solutions: Nearest individual and joint failure 
po in ts ;  t e a ' s  w i t h l n  bounds 

No So lu t ion  : No f a i l u r e  w i t h i n  £~e bounds;  
Min imum e r r o r  s o l u t i o n  

For £.= I ,  Cognate Space 
I d e n t i f i c a t i o n  ~[k ] ,  ~ [ml  ; 

L inear  p red i c t i ons  ,,['t~2.], t {  u } ; 

t [~'](6t) ,  ,et~b] ; t t ' P ~ . l t t a } ;  
e% e -  1 , 2 , . . . , p  

I 

Non l inear  co r rec t i ons  

(7, 9), (8,10) 

(27,62), ( 44 ) 

( 4? ) .  (35,46) 

S t i f f n e s s  and Mass Mapping : 

S t i f f n e s s  and Mass I n j e c t i o n  : 

Geometr  U I n j e c t i o n  and Norm : 

Per fo rmance Happing : 
S t reng th  Mapping : 

[ a k l , [ a m ]  

I a k . I ,  [ A m . l . e -  1 ,2  ..... p 

Ote,e=l,2 ..... P ;  I ~12 

['aP~..], { 6 0  ) 

F ig .  4 .  A l g o r i t h m  f o r  s t r u c t u r a l  r e d u n d a n c y .  

Applying that method to the incremental counterpart of the energy 
balance eqn (31), diagonal and offdiagonal terms yield, respectively 

l P 

zMi I S  (/{IF}T[k']z{Ig}'- /Og~/{I//}r[m']/{Ig}i)~'] ' 

i = 1, 2 . . . . .  no, (62)  
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~.~ 1 ) ( l l ¢ } f l kA  A~'}: - ~ / l ~ ' }  r lm~l A ~'};)la~ ICij 
- -  iMj(,,¢o~- l~o~ (63) e , : l  

A major advantage of linear perturbation theory is that frequency and 
modal eqns (62) and (63) are decoupled. A drawback is that linear 
predictions are inadmissible in the sense that orthogonality conditions 
with respect to [k] and Iml are satisfied only approximately in the form of 
eqn (63). In the prediction phase, the incremental counterpart ofeqn (44) 
is used to force static deflection failure criteria. The obvious advantage of 
eqn (44) is that it provides an explicit expression for static deflections 
without solving the corresponding static FE problem. That expression, 
however, depends on the unknown modal basis [¢/] and on the existing 
force If'} which may depend on some model variables. For example, the 
drag force depends on the element geometry which may change as the 
element deteriorates to failure 34. 

(c) At the end ofthe first prediction step the cognate space is identified 
based on the values of the admixture coefficients 33. This reduces the 
modal basis which must be updated at each increment and saves a lot of 
computational time. Physically, the term cognate space means the space 
of modes that are related. For example, in the offshore tower shown in 
Fig. 6, bending modes constitute a cognate space, those are modes (1, 2), 
(8, 9), (12, 13), (15, 16). Torsional mode space is defined by (3, 18, 19). 

(d) In the correction phase of the algorithm in each increment, 
correction into the admissible cognate space is performed. At the end of 
the prediction phase, after computing approximate values of the la,.s, the 
force vector 4{f'} and all cognate extracted modes l{~'l, are updated. 
Then, the incremental counterparts ofeqns (41)-(44) are used to solve for 
the corrected values of the incremental variables ~e,  e = 1, 2 . . . . .  p, 
subject to upper and lower bounds (59). In future developments, eqns 
(46)-(49) will be implemented to include buckling and stress global 
failure equations. 

(e) In the incremental approach, attention must be paid to the form of 
the optimality criterion. If the redundancy norm is reduced incrementally, 
the optimum of the original problem (eqns (50)-(58)) will be missed. To 
prevent that, the incremental optimality criterion in increment t should 
be 

m i n Z  ( l + ~ e )  I - [ ( l  + q a ~ ) - I  (64) 
e s l  q s l  

(f) Computer code RESTRUCT is used to implement the algorithm 
described above and summarized in Fig. 4. RESTRUCT was developed 
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initially to solve the problem of structural redesign. It is currently about 
27000 Fortran 77 commands. RESTRUCT may serve as postprocessor to 
any special or general purpose FE code including MSC/q'qASTRAN.V64 
and performs computations with concentrated mass, spring, rod (truss), 
bar, beam, triangular and quadrilateral plate, and marine riser tubular 
elements 38. 

5.4 Failure point identification and redundancy 

Solution to the optimization problems appearing in both phases of the 
algorithm are achieved by LPSOL, QPSOL, NPSOL or LCSOL 4°'41 for 
linear, quadratic, nonlinear, or linear constraint optimization problems 42. 
The result ofcourse is $2" the failure point fully defined for design. This 
is the advantage ofthe element geometric redundancy injection achieved 
by PAR and computed by LEAP. The overall structural redundancy is 
the value of the optimality criterion. From the geometric injection, any 
other redundancy injection as defined in Section 3 can be computed. 

6 NUMERICAL APPLICATIONS 

Computations of individual and joint design points for various natural 
frequency and static deflection criteria are performed by the LEAP 
algorithm implemented in RESTRUCT for numerous applications on 
three different structures. The redundancy of the structure is computed 
in the form of element geometric injections. It is presented, however, only 
as minimal Euclidean norm for comparison purposes. 

6.1 lO-element, 48-dof, clamped-hinged beam 

The 10-element, 48-dof, clamped-hinged beam shown in Fig. 5 is 
subjected to a concentrated load applied on node 7 in the z-direction, 
and a uniform load applied in the y-direction. MSC/NASTRAN modal 
dynamic and static deflection analysis yield tol = 183.092rad/s, 
horizontal and vertical deflections at node 7 07 = 12.151 mm and 
w7 = 17.733 mm, respectively. The beam properties are shown in Fig. 5. 
Model variables are shown in Table 1. Fourteen applications of 
redundancy analysis are performed and the redundancy results are 
shown in Table 2. Only the optimal value ofthe redundancy norm II ~ II 2 
is shown for comparison. It should be obvious by now though the 
RESTRUCT computes the entire geometric redundancy injection and 
not just the redundancy. The applications in Table 2 are divided into two 
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Z , W  ~! Y v PI = 25kN /.: 

i . . . .  ~ 

. , 

/ /  / / /  / / / / / /J~Nimrn 
.'-~ 2,500 mm c::~..'" 

P r o p e r t i e s  : E = 2 . 0 7 " 1 0 5 M P a  

p = 7 . 8 3 3 . 1 6 9 N S e c 2 / m m  4 

ly = 1 . 0 4 2 - 1 0 6 m m  4 

I z =  4 . 1 7 0 . 1 0 6 m m  4 
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A r e a  = 5O00 mm 2 

Fig. 5. Clamped-hinged beam: l0 dements, 28 d.o.(.s. 

Response : f l  = t ) l  = 2 9 . 1 4  Hz 
2 f  

v 7 =  12 .151  mm 

w 7=  1 7 . 7 3 3  mm 

groups. In the first group, quantification of failure criteria is specified as 
reduction of the first eigenvalue or increase ofstatic deflection by a factor 
of more than two. Both indicate deterioration of structural stiffness. In 
the second group ofapplications, that factor ofdeterioration is 3-333. The 
appropriate general perturbation equations provide the global failure 

TABLE 1 
Clamped-hinged Beam Model; Structural Groups and 

Model Variables 

Structural Design variables, a, Elements 
group p ffi 21 no. 

riO. 

! al (alQ, a2 (al,), a~ ( a A )  1, 2 
2 a4 (aIQ, as (al~), a6 (aA) 3, 4 
3 a7 (al,), as (air), ct9 (~IA) 5 
4 alo (a1~), all (ai~), al2 (aa) 6 
5 al3 (al,), al4 (aQ, a,5 (aD 7 
6 at6 (aly), an  (al,), als (aA) 8 
7 al9 (aly), a2o (ai,), a21 (aa) 9, 10 
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equations and the LEAP algorithm computes the individual or joint 
failure points in the CPU time shown per case in the table. The 
University of Michigan UB System (secondary mainframe) IBM 3090 
computer was used. The number of extracted modes n, and admissibility 
conditions no are also shown. 

In all cases, no FE analysis was performed other than that of S1. For 
each application the failure state (FS), as specified by RESTRUCT in 
terms of model variables a, is compared to reanalysis results obtained by 
running MSC/NASTRAN.V64. The error column shows the accuracy of 
the code. In applications 7 and 17, where a triple design point is 
calculated subject to 12 admissibility conditions and redundancy results 
are inconsistent between cases 7 and 4, and 17 and 14. The error is high 
actually because there is no solution and a minimum error solution in 
satisfaction of all constraints is calculated. 

6.2 104-element, 192-dof, offshore tower 

The finite element model of an offshore tower is shown in Fig. 6. The 
tower is 69-95 m high above the seabed (z -- 0.0) and operates in 45.72 m 
water depth. The tower at the base is 38.10 m square and tapers linearly to 
22-86 m at the deck. The FE model of the tower is composed of 104 
circular tubular beam elements and has 192 dols. Loading on the tower is 
due to: (i) 240 tonnes deck load which is applied to the structure as 
uniformly distributed load at the deck nodal points; (ii) wave hydro- 
dynamic forces calculated for a design wave of 182.88 m length and 
6.10 m height using Morison's equation. The wave propagates in the x- 
direction; (iii) water current generated by wind in the x-direction with 
linear velocity profile of 1.03 m/s at the mean free surface waterline and 
zero at the sea bed. 

Modal dynamic analysis by MSC/NASTRAN has produced ah = 
to2--4.695 rad/s for bending modes in the XZ and YZ planes and 
to3 = 5.353 rad/s for torsional mode with respect to Z. Table 3 summarizes 
information on the tower used in redundancy computations. Six 
applications were run using RESTRUCT and results are shown in Table 
4. Deterioration factors in the first and third eigenvalues of 1.54 and 2 are 
used to quantify failure. Failure points are again computed by 
postprocessing FE analysis results for S1 only. Individual and joint 
design points are computed and redundancy results are shown. The 
LEAP algorithm in RESTRUCT can be pushed further in this 
application if errors of more than 3% are considered acceptable. The 
alternative for higher accuracy is obvious; S1 can be redefined closer to 
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X 

Fig. 6. Offshore tower: 104 elements,  192 d.o.f.s. 

the failure point after a few increments. That implies use of  one  more FE 
analysis  which may not be desirable. 

6.3 605-element, 810 dof, Ambrose tower 

Five structural groups are designated for change in the Ambrose tower 43 
shown in Fig. 7. Those  five e lement  sets do not constitute the entire 
structure and are described in Table 5. Ten model  variables (p = 10) are 
used, that is the fractional changes  o f  the moment  o f  inertia and area o f  
each element cross section for each set. 

The Ambrose tower is subject to a wind generated water current o f  
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TABLE 3 
Offshore Tower Model; Structural Groups, Model Variables and Dimensions 

61 

Structural Design Description D o D i Number 
group variables (m) (m) of  

no. a, elements 

1 al (at) Legs below first 0.762 0.737 8 
t~ 2 (aA) bracing 

2 a3 (at) Legs between first 0-610 0-584 8 
a4 (aA) and second bracing 

3 as (at) Legs above second 0.610 0.584 16 
tl 6 (tlA) bracing 

4 a7 (at) Horizontal 0-483 0-464 32 
a8 (aA) bracing 

5 a9 (at) Horizontal cross 0-508 0.489 16 
al0 (an) bracing 

6 ajl (al) Vertical cross 0-610 0-591 24 
a j2 (an) bracing 

l inear profile with surface velocity V~ = 2.5 m/s and co-directional 
monochromat ic  wave of period T =  10s and height H =  3.05 m 
propagating in the positive x-direction. The modal dynamic and static 
analyses of  S1 were performed by MSC/NASTRAN.V64 and produced 
to~ = 5.848rad/s and maximum static deflection w72 = 21.889mm. 
Quantification of the first eigenvalue o9~ and of  the maximum static 
deflection w72 provides the two failure criteria. Node 72 is located at the 
base of  the module support frame. The water free surface is located at the 
lower end of element 8. Redundancy analysis results for two individual 
and one joint failure points are shown in Table 6. The deterioration 
factors are of the order of 1.28-1-32. Accuracy is very good but it 
deteriorates slowly for failure points that are further away from S1. In 
that case, S1 must be redefined and FE analysis performed once more. 

The accuracy of the algorithm can be improved in many simple ways 
and many more complex ways. Among the simple ones are: (1) to 
increase the number  ofaes and allow more flexibility to the structure and 
the optimization algorithm; (2) to reduce the increment size from 7% to 
as little as 4%; (3) to take one more incremental step to match predictions 
with goals; (4) to redefine state S1 when accuracy is lost because 
perturbation leaps become too big. A more complex way presented 
pursued for large scale structures is substructuring. The superelement 
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Fig. 7. Ambrose tower: 605 elements, 810 d.o.f.s. 

TABLE 5 
Ambrose Tower Model: Structural Groups and Model Variables 

Structural Design Description Number 
group variables of 

no. a e elements 

1 a j (al) Legs between joint below 8 
a2 (aA) fifth bracing and deck 

2 a3 (a~) Legs between fourth bracing 4 
a4 (aA) and joint below fifth bracing 

3 a5 (at) Legs between fourth and third 7 
a 6 ( a / i )  bracing 

4 a7 (al) Legs between third and first 8 
as (aa) bracing 

5 a9 (al) Legs below first bracing 4 
a,o (aA) 
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capability of MSC/NASTRAN.V66 allows for substructuring. A super- 
computer version of RESTRUCT runs presently on the San Diego 
supercomputer facility and postprocesses MSC/NASTRAN.V66 data. 

CONCLUSIONS AND IMPACT ON DESIGN 

A methodology has been presented for computation of structural 
redundancy of deterministic structures. The methodology is called PAR 
(Perturbation Approach to Redundancy) because perturbation is used to 
relate two structural states, the initial (intact/damaged) and the failure 
point. PAR produces global failure equations and brings the level of 
sophistication of structural analysis in redundancy computations up to 
par with the FE method used in design practice. Thus, the introduced 
methodology is valid for any structure, small or large, discrete or 
continuous, that can be analyzed by the FE method. LEAP (LargE 
Admissible Perturbations) theory is used in this methodology to relate 
the two structural states involved, solve the global failure equations, and 
compute the failure point by postprocessing data of the only FE analysis 
performed, that of the initial structure. 

The concept of invariant and consistent redundancy has been 
introduced by defining redundancy injections, mappings, and measures 
for the FE model variables, structural properties, or performance. In the 
LEAP algorithm developed, the connectivity of elements is preserved in 
the FE model and admissibility conditions are forced on the modal 
basis, thus ensuring that the final state specified (failure point) is a real 
structure, lnvariance and consistency of redundancy, element connect- 
ivity, and perturbation admissibility set the basis for relating redundancy 
in performance to structural and geometric redundancy injectively, and 
therefore appropriately for design. 

The numerical applications in this paper have shown the present 
status of LEAP theory and its ability to support the PAR methodology 
introduced in this work. Even though the LEAP theory has been 
developed for more than 7 years and has evolved from the linear FE 
structural perturbation theory introduced in 1975, it is an open ended 
research area like the FE method. There is a plethora of two-state 
problems that can be solved by LEAP. On the other hand, this is the first 
paper on PAR and there are several issues important in structural 
redundancy and reliability that have not been implemented in the 
computer code RESTRUCT. Element failure detection and model 
reconfiguration, stress, and global buckling failure are three of those 
issues. It was explained, however, that the PAR methodology can resolve 
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those issues and meet the present research challenges in redundancy 
analysis and design of large scale structures. Thus, the large admissible 
perturbation approach to redundancy presented in the paper introduces 
a powerful alternative to the two major methods for structural reliability 
analysis, that is the systems approach and the stochastic FE method. 

For improving LEAP theory to solve two-state problems, we pursue 
presently the following research goals. (1) Improve the computational 
efficiency of RESTRUCT to reduce the CPU time. Tables 2, 4, 6 show that 
the CPU time is high even though it is small compared with trial and 
error with repeated FE analyses. We have spotted six aspects of 
computational inefficiency in RESTRUCT and we expect to be able to 
reduce CPU by a factor of 2-5-3.5. The most important development 
from the computational point of view is to identify elements of small 
static strain and modal dynamic energy content and exclude those from 
the LEAP-PAR process: We have not established as yet a solid 
theoretical basis for this idea. Our computations, however, based on the 
offshore tower in Fig. 6, show a CPU time reduction by a factor of 1.5 
with trivial loss in accuracy when we exclude from the process many 
small elements with total energy content of 10%. (2) Implement 
substructuring in order to analyze larger scale structures with RESTRUCT. 
(3) Use energy concepts in RESTRUCT to predict loss of accuracy of the 
modal basis as the final structural state moves away from the initial state. 
This will automate the process of redefining S1 and performing one 
intermediate FE analysis if necessary. Note that in the numerical 
applications in this paper only one FE analysis was performed; there was 
no need to redefine State S1. 

For improving the PAR methodology we pursue presently the 
following goals. (4) Develop an analogous methodology for reliability 
analysis of large scale continuous structures. (5) Implement stress failure 
criteria (eqn 46), and element failure detection and model reconfiguration 
in RESTRUCT. (6) Implement structural collapse as a failure criterion 
(co~ = 0 in eqn 41). (7) Develop a global buckling failure LEAP algorithm 
using a buckling modal expansion, (eqns 47--49) rather than a modal 
dynamics basis. 
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