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Abstract: In this note we consider the simultaneous decentralized stabilization problem for linear, periodically time-varying, 
discrete time systems. We show that a finite number of periodically time-varying systems can be simultaneously stabilized by a 
periodically time-varying decentralized compensator if and only if each system admits a decentralized stabilizing compensator, The 
result is applicable in the design of reliable decentralized stabilizing compensators for interconnected systems. 
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I. Introduction 

The following simultaneous decentralized stabilization problem concerning a finite number of periodi- 
cally time-varying (PTV) plants is considered. 

Simultaneous Decentralized Stabilization Problem (SDSP). Given a set of v-channel, linear, PTV 
discrete time systems ~t . . . .  ,~k of the same size, determine a decentralized compensator ~ = 
bdiag{~,~ . . . . .  ~,v} such that for all i = 1 . . . . .  k, the pair of plants (Xi, ~,) is internally stable. 

The main motivation for SDSP is the same as the one given for the centralized simultaneous 
stabilization problem, [18]. The plants may result by the linearization of a more accurate nonlinear model 
of the underlying physical system about k different operating points or they may correspond to k 
possible values attainable by the set of parameters of a parameter dependent system. In the context of 
large scale interconnected systems, the problem has a special significance [12,17]. Consider an intercon- 
nected system which is to be stabilized by a decentralized compensator. A reliable design objective is to 
maintain closed loop stability under breakdowns in subsystem interconnections. Let us assume that there 
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are a finite number of possible breakdowns. Since each breakdown results in a new plant, the 
decentralized compensator should simultaneously stabilize these plants for reliable operation. 

The use of SDSP in reliable decentralized control can be illustrated by the following example. Let the 
systems Sal and S°2 be defined as 

"~'Gal" Lx2( t+ l )  = 1 1][x~(t)  + v,(t) ,  

,_5~2: X3(t  + 1) =X3(t ) + V2(t), 

which are interconnected according to the rule c~(t)=bx3(t), where b is a constant. A 2-channel 
interconnected system ~b out of SP~, SP2 is now defined by 

"~b: [ x l ( t  + 

x 2 ( t  + 

x3( t + 

1, [Z 
1)  = 

1) 

1 b] [  x'(t) 
1 

o l_lLx3(/) l ] [U2(t)  

[x l ( t )  ] 

[ " / ' ] = I 0  0 1 0 

where (up y~) and (u 2, Ye) are the input-output pairs associated with Channels 1 and 2, respectively. 
Assume that the value of b is 1 under normal operation but interconnection between the subsystems S,~ 
and Saz may be subject to a breakdown which results in the value b = 0. We denote the two different 
systems that result for these values of b by -~0 and El. To assure reliability, the decentralized controller 
for ~b should simultaneously stabilize ~0 and ~1- 

The centralized version of the simultaneous stabilization problem has been extensively investigated in 
the literature for linear, time-invariant (TI) systems using TI controllers [13,19,18,5]. It has been shown 
that k given plants can be simultaneously stabilized if and only if k -  1 auxiliary plants can be 
simultaneously stabilized by a stable compensator. For k = 2, the latter problem has a solution just in 
case the auxiliary plant satisfies a parity interlacing property. For the general case, however, there are no 
clear-cut results. On the other hand, any finite collection of TI plants are known to be simultaneously 
stabilizable by a PTV controller [10,11,7]. The advantage of using PTV controllers in decentralized 
stabilization is well known (see [2,8] and the references therein). A related problem of simultaneous pole 
assignment by decentralized feedback has been considered in [7]. Motivated by the advantages of using 
PTV compensators in simultaneous stabilization and in DSP (Decentralized Stabilization Problem), here 
we investigate SDSP. The result, Theorem (3.1) below, is somewhat expected but not straightforward to 
prove. We show that SDSP is solvable if and only if each plant admits a PTV decentralized stabilizing 
compensator. (The precise conditions under which a given PTV plant admits a decentralized PTV 
stabilizing controller is given by Theorem 3 of [8].) In other words, 'simultaneous' decentralized 
stabilization causes no extra problems. Our synthesis procedure is based on the results in [8], [15], and 
[16] and consists of determining a class of local compensators which, when applied in a prespecified 
order, simultaneously stabilize the respective channels of the k plants. 

The organization of the note is as follows. In Section 2, we review some basic concepts pertinent to 
the design of decentralized compensators for time-invariant and periodically time-varying systems. 
Section 3 includes the main result, Theorem 3.1. In Section 4, we give an example to illustrate the 
synthesis procedure of Theorem 3.1. 
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2. Decentralized controllers for time-invariant and periodically time-varying plants 

Consider a linear, u-channel, PTV discrete time system 

X: x ( t  + 1) = A ( t ) x ( t )  + ~ B j ( t ) u j ( t ) ,  
j = l  

yi(/) = C i ( t ) x ( t  ) + Y'~ Di j ( t )uy ( t ) ,  i = 1 . . . .  ,u, (1) 
j = l  

where for each nonnegative integer t, A(t),  B/(t), Ci(t), and Dij(t), i, j = 1 . . . .  , u, are real matrices of 
sizes n × n, n x m/, pi × n, Pi X m j ,  respectively. Let N be the fundamental period of ~, i.e., N is the 
smallest integer for which A( t  + N )  =A(t),  B/(t + N )  = Bj(t), Ci ( t  q- N )  = C i ( t )  , and Di/(t + N )  = Dij(t), 
i, j = 1 . . . . .  u, for all t > 0. The system is to be stabilized by a linear, PTV discrete time decentralized 
compensator of the form 

X = diag{~l . . . . .  ~v}, 

where 

(2) 

Xi: x i ( t  + 1) = A i ( t ) 2 i ( t  ) + B i ( t ) Y i ( t ) ,  

u i ( t  ) = f f i ( t ) £ i ( t )  + D i ( t ) y i ( t ) ,  i =  l . . . . .  u. 

For each nonnegative integer t, and for i =  1 . . . .  , u, the matrices G-(t), Bi(t), ff.i(t), and ~ ( t )  are real 
matrices of sizes Ei x ~ ,  fii xp i ,  rni x 7~i, and rn~ x p  i. Let ~ have the fundamental period N. Under the 
assumption that I - DD is nonsingular Vt >_ O, the resulting homogeneous closed-loop system is well-de- 
fined and is given by the difference equation 

2( t  + 1) B ( I - D D ) - I c  A + B D ( I - D D ) - ' C .  2 ( t ) '  (3) 

where dependence on t of the matrices A , /1 ,  etc. are not displayed for simplicity and where 

[ "~l(t) ] 
. . =  • , 

Lg (t) 

X:=  bd iag{A, , . . . , /~} ,  B ,= bdiag{B 1 . . . . .  B~}, 

C:= bdiag{C,, . . . ,  C~}, ..D := bdiag{D l . . . . .  D~}, 

and [;1 [ol 
B . . = [ B ,  - . .  C : =  , D : =  " . 

D~, ".. D ~ J  

The decentralized compensator ~ of (2) internally stabilizes the system ~ in (1); equivalently (~, ~) is 
internally stable, if the homogeneous system in (3) is uniformly asymptotically stable. The reader is 
referred to [6] and [21] for further details of definition of stability for time-varying systems. 
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If the system in (1) is time-invariant, that is N = 1, then ~, admits a time-invariant decentralized 
stabilizing compensator if and only if it has no unstable decentralized fixed modes, equivalently, if and 
only if 

zI - A  

Ci 1 

rank Ci2 

Ciu 

l j, . .  . 

D i l j  j D i l j  2 • . . Dilj,,_~, 

Di2J 1 Di2J 2 ' ' '  Di2j .  . 

DiMi D i j 2  " ' "  DiM~_ ~ 

> n ,  (4) 

for all /x = 1 . . . . .  v and i k, j t ~{1  . . . . .  v} such that {i 1 . . . . .  i , ,  j l , . . . , j ~ _ , }  ={1 . . . . .  v} (see [3,1,4], and 
also [20]). The subsystems of (1) corresponding to the system matrix in (4) are called the complementary 
subsystems of (1) [3]. In [15], a new design procedure of decentralized stabilizing compensators is 
proposed for systems which are free of unstable decentralized fixed modes. It is shown that almost any 
compensator which internally stabilizes the v-th channel of the system (i.e., the v-th diagonal transfer 
matrix) the resulting v - 1-channel closed loop system is also free of unstable decentralized fixed modes. 
And hence, at each step, the local compensator to be applied to the respective channel can be chosen 
almost freely in the set of internally stabilizing compensators of that channel. To be more precise, let 
Z = [Zi~] be the transfer matrix of the TI system (1), where Z u = Ci(zI -A) -~B~  + Du, i, j = 1 . . . .  , v. Let 
.Uc(Z~) be the set of all proper TI internally stabilizing compensators of Z~,. Using the graph topology 
[18] induced by the fractional representation of transfer matrices over the ring of stable proper transfer 
functions S, one can associate a suitable topology for the set _U(Z~) [15,16]. The quantifier 'almost' 
below is with respect to this topology. 

Theorem 2.1. Let the time-invariant plant in (1) be free of  unstable decentralized floced modes. Then, for 
almost all 2~ ~.Uc( Z~) ,  applied around channel v, the resulting v - 1 channel closed loop system 2~ is also 
free of  unstable decentralized fixed modes. 

Remark 2.1. The actual statement in Theorem 1 of [15] is given under the assumption that the diagonal 
subplants of the system is strictly proper. However, this assumption can be removed easily as in [16]. 

Remark 2.2. Let zZ. be a local compensator applied around channel u and let a stabilizable and 
detectable realization of 2 v be (F  v, Gv, H~, Jr). If the resulting u - 1 channel system 2~ is not free of 
unstable decentralized fixed modes, the theorem states the existence of another compensator Z~a, which 
is arbitrarily close to Z,~ in the graph topology, and for which the resulting closed loop system is free of 
unstable decentralized fixed modes. A crucial point is the following: one can choose Z~A in such a way 
that any realization of (Gz, G a, Ha, Ja) satisfies Ja = J~- In other words, the transfer matrices of the 
perturbed and nominal compensators take the same value at z = ~. This property will be used in the 
construction part of Theorem 3.1. 

Let us now consider decentralized stabilization of PTV systems by PTV controllers. A convenient tool 
here is the procedure of lifting [8]. Consider a p × m PTV system ~ given by 

,~: x ( t + l )  = A ( t ) x ( t )  + B ( t ) u ( t ) ,  

y ( t ) = C ( t ) x ( t ) + D ( t ) u ( t ) ,  t>_O, (5) 

with fundamental period N. Any multiple M of N with a positive integer is also a period and we define 
the M-lifting of  ~ to be the time invariant (TI) p M  × m M  system ~ 4  given by the equations 

~ t :  ~ ( t + l ) = F ~ ( t ) + G f i ( t ) ,  

)3(t) = H 2 ( t )  + J a ( t ) ,  t>__0, (6) 
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where the constant matrices F, G, H, J are given in terms of the state transition matrix 

@(t, l) := ( ;  ( t - 1 ) ' ' ' A ( l )  

undefined 

as follows: 

F := ~ ( M ,  0), 

G : =  [ ~ ( M ,  1)B(0)  @(M, 2 )B(1)  

c(o) 
C ( 1 ) ~ ( 1 ,  0) 

H : =  

if t > l ,  
if t = l ,  
if t < l ,  

C ( M -  2 ) ~ ( M -  2, O) 

C ( M -  1 ) ~ ( M -  1, O) 

• . .  ~ ( M , M - 1 ) B ( M - 2 )  B ( M - 1 ) ] ,  

and the matrix J = [Jij] is such that 

0 if i < j ,  

Jij= D ( i - 1 )  i f i = j ,  

~C( i  1 ) ~ ( i - I , j ) B ( j - 1 )  i f i > j ,  

for i, j =  1 . . . . .  M. 
The following lemma transforms the problem of internal stabilization of a PTV system using a PTV 

controller to that of a TI system using a TI controller. 

Lemma 2.1. Let 2f be a PTV system with period M and let 2M be its M-lifting. There exists a PTV 
controller internally stabilizing 2~ if and only if there exists a TI controller internally stabilizing 2~M. 

Proof. For the details the reader is referred to [10] (see also [8]). We just summarize the main steps in the 
proof. If there exists a PTV controller internally stabilizing X, then its M-lifting also internally stabilizes 
xM, the M-lifting of 2:. This is a straightforward consequence of definitions. Conversely, if there exists a 
TI internally stabilizing compensator for ~ g ,  then there also exists a strictly proper TI internally 
stabilizing compensator for X M, which can then be transformed to a PTV internally stabilizing compen- 
sator for X, by a reverse procedure of lifting, which we call sinking. The reason for the insistence on the 
strict properness of the compensator is that, only those compensators which have a suitable lower 
triangular form at z --- oo can be sunk to yield PTV compensators. [] 

Let us now consider the v-channel PTV system E of (1). We are now interested in the existence of a 
decentralized PTV compensator of the form (2) which stabilizes E. The following is Theorem 3 of [8]. 

Theorem 2.2. There exists a PTV decentralized controller internally stabilizing the PTV system 2f of  (1) if 
and only if 2f is stabilizable and detectable and for each complementary subsystem of  2,  

f ( ~ { i  I . . . . .  i~,, Jl . . . . .  j~_~,}) = 0  ~ XN{i I . . . . .  iu, Jl , . . . ,J~-u}  has no unstable 

input-output decoupling zeros, (7) 

where f(2~{i 1 . . . . .  i , ,  Jl . . . .  , J~- ,})  is the input-output map of  the complementary subsystem 
2:{il . . . . .  i , ,  j~ . . . . .  j,_~} of  2f and ~N{i 1 . . . . .  i~,, Jl . . . .  , Jv-~} is its N-lifting. 
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Remark 2.3. If (7) is satisfied for all complementary subsystems of ~, then there exists a multiple M of N 
(which can be determined from (1) in a straightforward manner) such that the M-lifted time-invariant 
systems in (8) are free of unstable decentralized fixed modes, provided M > M. (See Theorem 1 of [8].) 

3. Main results 

For the main result Theorem 3.1 of this note we first prove the following preliminary result concerned 
with centralized (full-feedback) simultaneous stabilization. 

Lemma 3.1. Any finite collection of  PTV systems of  the same size can be simultaneously stabifized by a 
centralized PTV controller. 

Proof. This is a discrete-time counterpart  of the result of [11] and of Theorem 4.7 of [9]. We give a proof 
which closely follows the proof of Theorem 4.2 in [10]. Let -~l . . . . .  "~k be a given set of PTV plants. Let 
M be the least common multiple of their fundamental periods. Using the procedure of Theorem 4.2 in 
[10], one can construct a PTV controller ~, which simultaneously stabilizes the M-liftings Z ~  . . . . .  Z~,  of 
the given plants. In particular one can choose Z = (A, B, C, D) with D = 0. Let M~ be the fundamental 
period of ~, and define .~ to be the least common multiple of M~ and M. Observe that the M---lifting ~ 
of the compensator has a transfer matrix which takes a lower triangular form at z = ~. The TI 
compensator Z ~  also internally stabilizes the TI plants ,~1 ~ . . . . .  Zk ~. From Lemma 2.1, ~,~ can be sunk 
to a PTV system with period M, which internally stabilizes the desired set of plants. This completes the 
proof. [] 

We now give our main result. 

Theorem 3.1. SDSP is solvable if and only if each of  "~i, i = 1 . . . .  , k, can be internally stabilized by a PTV 
decentralized compensator. 

Proof. The necessity is obvious. 
the M-lifting of the subsystem 
j = 1 . . . .  , u. The u-channel time 

To show sufficiency, we first introduce a notation. Let (F,  Gj, H i, Ji~) be 
(A( t ) ,  Bj(t), Ci(t), Dii(t)) of (1) for some multiple M of N and for i, 
invariant system obeying 

,~M,~: 2 ( t +  1) = F 2 ( t )  + E G~aj(t) ,  
j= l  

~i( t )  =Hi .~( t  ) + ~ J i j a j ( t ) ,  i =  1 , . . . , u ,  (8) 
j= l  

is the M-lifting of the original system (1) modulo some permutations of  the input and output channels. The 
superscript ~r is thus included to emphasize the fact that Z M'~ is an M-lifting of the system (1) followed 
by a permutation at the input and output channels. The significance of 2M.~ is the following: The plant 
(1) is stabilizable by a decentralized PTV controller if and only if ,~M,~ is stabilizable by a TI 
decentralized controller. The permutation at the input and output channels of ,~M is thus necessary to 
preserve the decentralized structure of the controller (see [8]). 

Let a PTV compensator "~c of period N c simultaneously stabilize channel u of all "~i, i = 1 . . . . .  k. 
Such a compensator can be constructed using Lemma 3.1. By the hypothesis and Theorem 2.2, for 
i = 1 . . . . .  k, one can determine M i such that the TI system Z y  ,'= is free of unstable decentralized fixed 
modes, where Z y  i'= is obtained from the Mi-lifting Zi 1~' of the system Zi as above (see also Remark 2.3). 
Let M be the least common multiple of the integers {N c, M 1 . . . . .  Mk}. Then, from the definition of 
lifting, the M-lifting Z¢ u of Z~, also simultaneously stabilizes channel u of all M,= Zi , i =  1 , . . . , k .  Let Z y  
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be the transfer matrix of Z~.  From Theorem 2.1 and the following discussion, by suitably perturbing Z ~  
to Z ~  if necessary, the resulting v - 1 channel TI closed loop systems ~.M.= for i = 1 . . . . .  k are free of 
unstable decentralized fixed modes. The perturbation on Z ~  can be chosen such that the transfer 
matrices Z ~  and Z ~  take the same value at z = ~ (see Remark 2.2). So, from Lemma 2.1, Z ~  has a 
PTV realization. Also for i = 1 , . . . ,  k, let £i be the M-sinking of ~ff,  where ~/M is obtained from £ff~=, 
by re-permuting the inputs and outputs appropriately, so as to obtain the same input-output  structure as 
the M-lifting , ~  of Z~. The discussion at the beginning of proof and the fact that 2 ~  "= for i = 1 . . . . .  k 
are free of unstable decentralized fixed modes imply that each ~ for i = 1 . . . . .  k admits a PTV 
decentralized stabilizing compensator. Also observe that each ~ has v - 1 channels. Now repeating this 
procedure v - 1 times, one finally obtains a PTV decentralized simultaneously stabilizing compensator of 
the form (2), for Z,, i = 1 . . . . .  k. [] 

If each ~ . . . . .  Zk is stabilizable and detectable and strongly connected [3], then by Theorem 2.2, they 
all admit stabilizing PTV decentralized controllers. Thus we obtain the following corollary of Theorem 
3.1. 

Corollary 3.1. SDSP has a solution for any finite collection of stabilizable and detectable, and strongly 
connected PTV systems. 

Remark 3.1. An alternative procedure for constructing a simultaneously stabilizing decentralized con- 
troller can be given if the systems "~i, i = 1 . . . . .  k, satisfy an extra condition. We first note the following: 

For the system in (1) a PTV dead-beat decentralized controller exists, in other words for some 
decentralized controller of  the type (2), the closed loop state matrix A( t  ) of  the homogeneous system in (3) 
satisfies [ A ( M - 1 ) A ( M - 2 ) . . - A ( 0 ) ]  q = 0, for some integer q, if  and only if  2f is stabilizable and 
detectable and for each complementary subsystem of ~, 

f ( Z { i ,  . . . . .  i~,, j, . . . . .  j , _ , } )  = 0  ~ ZN{i, . . . .  , iv,  j , , . . . , j~_~,}  has no unstable 

input-output decoupling zeros except O, 

where we use the same notation as in Theorem 2.2. 

If each of the systems "~i, i--- 1 . . . . .  k, admit a PTV dead-beat decentralized controller, then these 
controllers can be run in a cycle to achieve a simultaneously stabilizing decentralized controller. This 
procedure has been used in [10,11] in the simultaneous stabilization problem with centralized compen- 
sators. 

4. Example 

Consider the example in the first section. "~0 and 2r have an unstable decentralized fixed mode at 
z = 1 (see [14]). However the systems are both stabilizable and detectable and moreover the input-out-  
put maps ,~0{1, 2}, Z0{2, 1}, ~1{1, 2}, ,~1{2, 1} are all nonzero so that both systems are strongly connected. 
By Corollary 3.1, ~0 and ~1 can be simultaneously stabilized by a PTV decentralized compensator. 
Define a 2-periodic compensator ,~c=(A1,  Bi, CL, D1) as follows: / ~ ( t ) = 0 ,  V t > 0 ;  B l ( 2 t ) = 2 ,  
J~l(2t + 1) = 0, Vt > 0; C](t) = 1, Vt > 0; Dt(2t)  = 3, Dl(2t + 1) = 0, Vt > 0. "~c simultaneously stabilizes 
channel 2 of "~l and "~2. Also the resulting single channel PTV closed loop systems ~'0__and ~± are 
stabilizable and detectable from channel 1. We now design a PTV controller that stabilizes -'~0 and Zj by 
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using the procedure in Lemma 3.1. The 2-1iftings X~ '~ and S~= of .S 0 and X~ followed by the 
permutations at the inputs and outputs are given by 

I °il [i°] A = 2 , Bl = 1 , B2 = 0 
0 0 0 1 

C = [ 0  0 1] C 2 = [ 1  0 ~] D, = D ~ = 0 ~ × ~  D , ~ = D 2 , = [  0 ()] 
0 0 1 ' 0 1 ' I . . . . . .  1 0 ' 

for b = 0 and b = 1, respectively. The 2-lifting .S~ of Xc is computed as 

0]) .  (0t0 ol, I0 o1',[ 2 o 
The single channel closed loop transfer matrices corresponding to 2-lifted T1 systems $2,~ and ~,2.~ 

are given by 

- 5  - 5 ( z -  2) 1 z 3 + z 2 ( 3 b - 4 ) + z ( 4 - 1 4 b ) + 2 1 b - 1  z 3 + z 2 ( 3 b - 4 ) + z ( 4 -  1 4 b ) + 2 1 b - 1  

- ( 3 z  + 2) - ( 3 z  2 -  4z - 4) ' 

z3 + z 2 ( 3 b - 4 )  + z ( 4 - 1 4 b )  + 2 1 b - 1  z3 + z 2 ( 3 b - 4 )  + z ( 4 - 1 4 b )  + 2 1 b - 1  

for b = 0 and b = 1 respectively. The 10-periodic compensator 2~ = (.d, /3, C, 0) simultaneously stabilizes 
Y.,]"~ and Y.~'~', where 

A( 10i + t) = 
3.3352 0 ] t ~ 7, Yi 
0 - 0.6648 ' 

/~(t)=12× 2, Vt, 

-5.3333 0 t ~ {0, 1, 2, 3, 4}, 
C ( l O / + t ) =  [ 0.2667 -0 .3333] '  

[ 3.4687 0 1 t ~ { 5 , 6 , 7 , 8 , 9 } ,  Vi 
5.1429 - 3.2609 ' 

The 10-lifting of S is the 20-lifting of a 20-periodic compensator Xc, which can be obtained via the 
procedure of sinking described in Lemma 5 in [8]. Thus the decentralized compensator of period 20 
consisting of Xc and S c around channels 1 and 2 solves SDSP for So and X,. As this example shows, the 
synthesis procedure proposed by Theorem 2.2 may lead to rather large periods as no attempt has been 
made to optimize the procedure with respect to the period or to the dimension of the resulting 
controller. 
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