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Abstract--Procedures to estimate missing data, determine extrema, and derive uncertainties for data 
collected in ambient air monitoring networks are presented. The optimal linear estimators used obtain 
unbiased, minimum variance results based on the temporal and spatial correlation of the data and estimates 
of sample uncertainty. The first estimator interpolates missing data. The second estimator derives extrema, 
e.g. minimum and maximum concentrations, from the completed data set. Together the estimators can be 
used to check the validity of monitored observations, identify outliers, and estimate regional and local 
components of pollutant levels. The estimators are evaluated using data collected in urban air quality 
monitoring networks in Houston, Philadelphia and St Louis. 
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I. INTRODUCTION 

Ambient air quality monitoring networks operating 
throughout the world over the last few decades have 
collected a vast amount of data. These data potentially 
are useful for many types of studies. However, several 
issues should be addressed before using historical 
data. These include the following. (1) How represent- 
ative are the measurements? (2)How can sampling 
errors be estimated? (3) Can missing or invalid data be 
identified and estimated? (4) What are the extrema in 
pollutant levels? (5)Can 'local' and 'distant' (or 
'background') components be separated? These issues 
may be critical in interpreting air quality data. Despite 
their importance, few methods which address them 
exist, and none are in common use. 

This paper develops procedures to derive more 
meaningful information from ambient network data. 
The procedures use optimal estimation techniques 
which employ the spatial and temporal correlation of 
ambient measurements and related covariates, and 
estimates of sampling uncertainty. The procedures, 
which are quite general, can provide a practical way to 
enhance the usefulness of historical data. 

The paper is organized as follows. Section 2 reviews 
aspects of ambient air quality sampling and statistical 
procedures used to analyse the collected data. Sec- 
tion 3 presents a conceptual framework for compon- 
ents of ambient pollutant levels and then gives the 
mathematical development of the estimation proced- 
ures. Section 4 applies and evaluates the procedures 
using three urban scale case studies. Section 5 dis- 
cusses results and concludes the paper by suggesting 
further applications of the procedures. 

2. BACKGROUND 

Ambient air quality monitoring networks are estab- 
lished for purposes which include (1) the assessment of 
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concentration levels and the compliance status with 
air quality standards; (2) the determination of health 
and environmental impacts; and (3) the selection and 
monitoring of emission abatement strategies. Many 
air quality monitoring networks consist of 5-20 sites 
obtaining hourly measurements of criteria pollutants 
CO, 03,  NOx and SO2, and 24-h measures of total 
suspended particulates (TSP). Networks which have 
been operating for two decades may have collected 107 
observations. Recent concerns and new air quality 
standards have increased the number of pollutants 
monitored. Particulate matter less than 10/~mdia. 
(PM-10), lead, hydrocarbons and other contaminants 
may also be routinely measured. 

Analysis of  air quality data 

Reports generated from collected data include 
monthly and annual summaries listing concentrations 
at various percentiles and averaging times. Many 
more sophisticated statistical analyses have been per- 
formed, although few procedures are used routinely. 
Applications of advanced analyses generally have 
been limited to special studies, e.g. trend analysis, 
exposure studies, receptor modeling, and dispersion 
model validation. 

Table 1 classifies statistically-oriented analyses in 
the literature by two factors: the number of moni- 
toring sites, and the number of variables. A wide range 
of analyses have been employed, including both stand- 
ard and innovative methods. The following summary 
gives a cross-section of the literature. Single variable 
(i.e. single pollutant)--single site studies have in- 
cluded classical time series "Box and Jenkins-type" 
models for short term forecasts (e.g. McCollister and 
Wilson, 1975), spectral analyses indicating period- 
icities of pollutant data (e.g. Hayas et al., 1982), 
regression models estimating pollutant distributions 
(e.g. Larsen, 1976), Poisson random process models 
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Table 1. Statistical methods applicable to network data 

Single monitoring site Multiple monitoring sites 

Single pollutant Trend analysis Upwind/downwind analysis 
Analysis of distributions Kriging 
Probability of exceedance Spatial interpolation (1) 
Extreme value statistics Optimal estimation 
Time series (ARIMA) 
Spectral analysis 
Markov-type models 

Correlation analysis 
Factor analysis 
Generalized linear models (2) 
Receptor models 
Cluster analysis 
Time series (ARIMAX) 

Multiple variables Kalman filter models 
Co-kriglng (3) 
Optimal estimation (4) 

Notes: (1) Includes contouring, e.g. linear (planer) and non-linear interpolation. 
(2) Includes linear and non-linear regression. 
(3) No studies identified using co-kriging. 
(4) Could use procedure discussed with exogenous variables. 

(e.g. Baker et al., 1984), probability ofexceedances and 
return period models (e.g. Drufuca and Giugliano, 
1977), Markov-type models based on up- and down- 
crossings of a threshold concentration (e.g. North et 
al., 1984), and extreme value statistics (e.g. Roberts, 
1979; Shively, 1990). Recently, the single monitoring 
site-multiple variable category has received the 
greatest attention due to the application of chemical 
mass balance regression-type receptor models (e.g. 
Henry et al., 1984). Receptor model studies also have 
used principal component and factor analysis me- 
thods (e.g. Lowenthal and Rahn, 1987). Single 
site-multiple variable studies have employed time 
series models with pollutant and meteorological var- 
iables (e.g. Finzi et al., 1980) and other procedures such 
as cluster analysis (Gether and Seip, 1979). Most 
multiple site studies have been performed for two 
purposes. Upwind/downwind analyses have been 
used to estimate contributions from distant and local 
emission sources (e.g. Batterman et al., 1987). Various 
contouring routines have been used to derive pollu- 
tant isopleths over a region to estimate exposures and 
other impacts, including the use of kriging (Lefohn et 
al., 1987; Venkatram, 1988; Haas, 1990). A few poten- 
tial multiple site-multiple variable techniques are 
identified in the table; most applications use a Kalman 
filtering approach to reconcile models and data (e.g. 
Mulholland, 1989). 

Bacl~round est imates 

Often it is important to apportion pollutant contri- 
butions attributable to local and distant emission 
sources. Long-range transport by distant sources can 
provide a significant 'regional' or 'background' contri- 
bution which restricts the control options available 
to local authorities. Such situations can occur with 
PM-10, sulfate, ozone and other pollutants. 

Approaches for separating local and regional com- 
ponents use either dispersion modeling or ambient 

monitoring. Both approaches require that monitoring 
and modeling errors are negligible or known. The key 
disadvantage of the dispersion modeling approach is 
the uncertainty of the predictions, which is about a 
factor of two for short-term averages (American 
Meteorological Society, 1981). Also, a suitable model, 
an accurate source inventory, and meteorological 
observations for a representative period are required. 
Thus, this approach is not recommended (EPA, 1984). 
The suggested approach uses ambient monitoring at 
upwind or isolated 'regional' sites. Upwind observa- 
tions should exclude measurements affected by local 
sources. Regional sites should be located away from 
the area of interest and unaffected by local sources 
(EPA, 1984). More detailed guidelines for sites to 
monitor regional atmospheric deposition specify a 
minimum separation distance of 10 km from indus- 
trial and natural sources of emissions exceeding 
10,000 t y -  1 and population centers of 10,000 or more 
(ASTM, 1989). Separation distances should be in- 
creased 'dramatically' if the sampler lies in the pre- 
vailing downwind direction of emission sources. 

Background estimates based on monitoring may 
have several deficiencies caused by insufficient tem- 
poral and spatial coverage in the network. Six ex- 
amples are given. (1)Background contributions 
dominate some pollutants (e.g. PM-10 and SO4), and 
there may not be enough monitoring sites to detect 
relatively small local impacts. (2) It may be difficult to 
designate particular sites as 'upwind' or 'regional' sites 
since some pollutants (e.g. PM-10, NOx, HC) are 
emitted by many well-dispersed sources surrounding 
most monitors. (3)Wind shifts during sampling 
periods may invalidate upwind designations, es- 
pecially for pollutants collected over long periods, e.g. 
24-h particulate samples. (4) Pollutants sampled inter- 
mittently, e.g. TSP measured every sixth day, have 
temporal resolution too coarse to determine back- 
ground. (5)The relative accuracy of measurements 
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decreases with the low concentrations likely at re- 
gional sites (e.g. Evans and Ryan, 1983). (6)Missing 
data may bias results (Davison and Hemphill, 1987) 
especially when there are few monitoring sites. Any of 
these events may cause serious errors. 

Accuracy and representativeness of data 

A general goal of sampling is to obtain 'representat- 
ive' measurements, defined by Geiger (1965) as having 
a wide range of validity. This goal is tempered by the 
need to obtain appropriate spatial and temporal re- 
solution given time and cost constraints, and the need 
to accurately monitor concentrations at specified per- 
centiles and averaging times. For example, air quality 
regulations focus on short-term peak concentrations 
such as the second highest concentration in a year. 
These peak concentrations or extrema can be difficult 
to measure accurately. 

In most analyses, monitoring observations are as- 
sumed to be representative of ambient levels at the 
monitoring site for the averaging time of the measure- 
ment. With the exception of some receptor modeling 
techniques (e.g. Watson et al., 1984), observations also 
are assumed to be error-free. Errors, however, can 
arise from many sources including (1)analytic tech- 
niques; (2)sampler biases; (3)lack of sampling rep- 
resentativeness; and (4)miscellaneous sources, e.g. 
sample degradation, data entry mistakes, etc. In 
theory, errors can be partitioned into systematic and 
random elements, affecting accuracy and precision, 
respectively. Most concentrations are based on several 
components, e.g. sample volume and particle mass for 
particulate concentrations, each of which contributes 
systematic and random errors. As component errors 
may be additive or multiplicative, correlated or inde- 
pendent, or simply unknown, the total error is often 
uncertain. A good measure of the total random error is 
the sample variance of replicates (Draper and Smith, 
1981), however, true repetitions in routine monitoring 
programs are rare. Assumptions of representativeness 
and accuracy may be particularly problematical for 
the extrema needed to determine regional and local 
contributions. Both the lowest and the highest concen- 
trations may be prone to measurement anomalies. 

Missino data 

An additional concern is the completeness of the 
data. Missing (or invalid) data may result from instru- 
ment failure, calibration and maintenance problems. 
In the case studies described later, about one-quarter 
of the data was missing. A larger percentage was 
missing at specific monitoring sites, especially at rural 
sites which are difficult to service. Many networks 
achieve comparable records. Missing data increase the 
difficulty of establishing trends and determining com- 
pliance with ambient standards based on the number 
of exceedances (Davison and HemphiU, 1987). In 
multivariate applications such as receptor models, the 
omission of a single element may necessitate the 
rejection of the entire observation. 

A number of methods to handle missing data have 
been developed in biostatistics where responses to 
surveys, for example, often contain large amounts of 
missing or incorrect data (e.g. Garfinkel, 1986; Little et 
al., 1989). Geographers have also confronted this 
problem (as reviewed by Bennett et al., 1984). Few 
applications of these or other methods have been used 
for air quality data. One approach for estimating or 
'inputing' missing ozone data used ozone-temper- 
ature relationships (Davison and Hemphill, 1987). 
More general methods, as developed in the following 
section, would be helpful for other pollutants. 

3. OPTIMAL ESTIMATORS 

Statistical framework 

A framework for ambient air concentrations is 
developed considering a single conservative (non- 
reactive) pollutant measured in an urban scale moni- 
toring network. The concentration observed at site i 
and time t, C~,z, consists of three components: 

Ci, t= Li.t + Dt + V/,t, (1) 

where Li.t and D t are local and regional components, 
respectively, and Vii., is measurement error. Local 
contributions result from emission sources situated 
within the urban area. These concentrations typically 
increase towards the source. The regional component, 
produced by long-range transport, has gradients that 
are negligible on the local scale. Thus, Dt is time 
varying, but constant in space at the urban scale. 

The spatial and temporal correlation present in the 
data is used to improve the accuracy and robustness 
(insensitivity to outliers) of concentration estimates. A 
three-part procedure is used. First, an estimate of 
measurement uncertainty V~, r is derived. Next, an 
optimal estimation procedure estimates missing data. 
Lastly, the lowest and highest concentrations are 
estimated from the estimated data set. 

Measurement uncertainty 

Several approaches can be used to estimate error 
V~, t. Random errors may be estimated using replicate 
observations, e.g. colocated samplers, while systematic 
errors can be estimated using reference or calibrated 
samplers. Alternatively, errors may be estimated by 
isolating uncertainties in the component measures and 
then propagating their effects, e.g. using Gaussian 
quadrature. Lastly, empirical means may be used. The 
following examples demonstrate these approaches. 

Since 1981, federal regulations have required state 
and local agencies to assess the accuracy and precision 
of their ambient air quality measurement systems. 
Data collected in the Precision and Accuracy Report- 
ing System (PARS) are based on blind audits using 
calibration gases for continuous instruments (gases), 
and colocated samples for manual instruments (TSP, 
Pb, and older gas measuring instruments). PARS 
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results, expressed as a 95% confidence interval, typi- 
cally show a relative accuracy of about 10% for most 
of the criteria pollutants. The precision of the meas- 
urements, obtained by repeated measures, is about 
10% for 03,  12% for TSP, 20 for SO2, and 46% for 
NO2 (Rhodes and Evans, 1988). These statistics rep- 
resent many thousands of audits. 

One theoretical study of errors in mass, flow rate 
and timing measurements suggests errors about half of 
that obtained in field evaluations (Evans and Ryan, 
1983). Other examples of component errors estimate 
filter mass measurement errors (using beta gauge 
attenuation) of 3 #g m-  3 for 12-h samples (Jaklevic et 
al., 1981), and biases between gravimetric and beta 
gauge measurements of < 5% (Courtney et al., 1982). 
With air volume errors of 5-10%, these figures yield a 
total error of 10-20% at typical particle concentra- 
tions. 

An empirical estimate of sampling errors is the 
difference between the lowest two concentrations in 
the network, assuming that these concentrations re- 
sult mainly from regional sources. While imperfect, 
this estimate may be useful in large monitoring net- 
works where the two lowest concentrations can be 
considered replicates. In the case studies (described 
later), this procedure gave relative errors of 15-20%. A 
better, but rarely available measure, is the variance 
between measurements obtained from colocated sam- 
plers. 

The three approaches yield relative errors in the 
range of 10-46%. In most cases, error statistics are 
not accurately known. Also, measurements obtained 
under unusual conditions may yield much larger 
errors. For example, erroneous particulate measure- 
ments can be caused by high loadings which clog 
filters, unusual size distributions, and high wind 
speeds which affect inlet performance. 

Estimating missing data 

This section develops an optimal linear estimator to 
estimate missing observations. Missing observations 
are considered unknown random variables. The stat- 
istics of these variables are based on available data, 
and are selected to preserve the observed spatial and 
temporal correlation. 

Column vector Z, is arranged to contain leading, 
lagging and simultaneous observations at all moni- 
toring sites in the network: 

z , =  [ c , , , _ , . .  c . . , - , I  • • • I c x , , "  c . . , I  

• . . I C ~ , , + . . . c . , , ÷ . ] ' ,  (2) 

where C~,, is the concentration at site i and time t, n is 
the number of monitoring sites, m is the number of 
leading and lagging time periods, and the quote 
denotes transpose. The leading and lagging elements 
permit interpolations in time, while the simultaneous 
observations allow spatial averaging. As shown later, 
one lag and lead period is generally sufficient, so m = 1 
and Zt includes 3n elements (lagging, simultaneous, 

and leading concentrations at n sites). As described 
earlier in Equation (1), observation Z, includes the 
true pollutant level Xt plus error V,: 

Z~ = X, + V,. (3) 

If some data are missing, the corresponding elements 
in vectors Z, and V, have missing values, but these can 
be estimated as the corresponding elements of vector 
Xt and matrix St, as described below. 

Error covariance matrix R, is defined as: 

R, = E l'Vt V ;]. (4) 

Error V t and covariance Rt must be estimated. If 
errors are uncorrelated, Rf is a diagonal matrix. Dia- 
gonal elements of Rt are set to the measurement 
variance. As discussed in section 2, measurement err- 
ors can be estimated in several ways. Here, errors are 
assumed to be time invariant, using a relative error of 
30% and the mean concentration. The diagonal ele- 
ments corresponding to missing observations are set 
to a much larger value, e.g. 1000 times the measure- 
ment variance, to represent the large (prior) variance 
of the missing data. 

First and second moment statistics, namely, mean 
vector M and covariance matrix P, are sample esti- 
mates from available data: 

M = T-  i y., X, (5) 

P = r-'~ XJ-(Xt- M)(X,-  M)'], (6) 

where T is the number of observations used to esti- 
mate M and P. Matrix P contains information regar- 
ding the spatial and temporal correlation of the data. 
Assuming unbiasedness (E[V,] =0) and uncorrelated 
errors (E['X,V;]=0), the best linear, unbiased and 
minimum variance estimate X of the missing observa- 
tions is: 

'.Kt = M + P(P + R,)- 1 ( Z t -  M). (7) 

This Bayesian estimator weights the information pro- 
vided by the observations (the so-called influence 
vector Z t -  M) to yield the estimate X v Results will be 
identical to mean M if there is zero correlation be- 
tween observations, i.e. P = 0. The (posterior) error of 
estimation matrix S is: 

S, = E [(X t -  Xt ) (X, -  Xt)'] = P -  P(P + Rt)- 1 p. (8) 

The estimator in Equation (7) minimizes the diagonal 
terms S, for the stated assumptions, as shown by 
Schweppe (1973). In Equation (7), missing data in Z t 
are set to zero, however, solutions (for missing data) 
are insensitive to the value specified since the variance 
terms in Rt for corresponding elements are so large. 

As ambient data are generally highly correlated, the 
estimate of the ith missing observation )(~.t often is 
very different from the mean, with a variance S~,l., 
which is greatly reduced from the assumed prior 
variance. Conversely, if the measurement variance is 
zero for the ith (known) observation, then estimate Xt.t 
is unchanged from observation Z~.t and S~. ~.,= 0. 
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Estimate Xt is the mean of the conditional distribu- 
tion given Zf (Schweppe, 1973), that is, it is the 
expected value or average of the missing data based on 
many instances in which the same pollutant condi- 
tions prevailed. The actual pollutant levels for any 
single instance (if available) would differ from this 
mean and show a broader distribution than obtained 
from the estimator. Conditional simulation is used to 
obtain the original distribution by adding a random 
term to the mean, e.g. post-whitening: 

A t ^ 

X i = E [  Xi.,l Zt] + ~ti.,, (9) 

where %, is a zero mean random variable with 
variance S~,~., obtained in Equation (8). Because pol- 
lutant observations are roughly log-normally distri- 
buted with primarily multiplicative errors, the log- 
arithms of observations are used in Equations (1)-(9). 
The final estimate employs conditional simulation and 
exponentiation: 

~ t n  A t  
X , . ,=exp(X ,,t + S~/~2tw), (10) 

where w is a normally distributed, unit variance 
random variable. 

Estimating extrema 

Extrema are found using an optimal estimation 
procedure similar to Equations (2)-(10). The proced- 
ure is developed for the highest three concentrations. 
Let Ht,t, H2.t and Ha.e, respectively, represent the 
highest, second and third highest concentrations in the 
network at time t. Redefining the symbols used earlier, 
Z, contains the top three concentrations in the net- 
work for the current, and m leading and lagging 
periods: 

Z, = [HI.,_,,,H2.,_mH3a-ml . . . [HL,H2.tH3,tl 

. . .  (11) 

The observation Z, of these concentrations differs 
from the true concentration Xt by sampling error Vt 
(Equation (3)). Covariance matrix P in Equation (6) 
does not include sampling errors. Let R represent the 
error covariance matrix of sampling errors. If R is 
known and uncorrelated with the measurements, then 
P can be estimated as: 

P,,~ T-~ Z r ( Z t - M ) ( Z , - M )  ' - R ,  (12) 

where M is the sample mean. Observations (not 
estimated values) are used to compute M and P. 
Matrix R is estimated as: 

R = k l ,  (13) 

where I is an identity matrix and k is the sampling 
error which is assumed constant at all sites. Parameter 
k may be selected based on the expected relative error 
for extrema in the network, e.g. if the relative error was 
30%, k is the square of the product of 0.3 and the mean 
concentration. Restrictions must be placed on R to 
ensure that P is positive semi-definite, and tests for 
positive definiteness may be made. Again, Equa- 
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tion (7) provides an unbiased minimum variance es- 
timate of X. 

The lowest concentrations in the network are an 
estimate of the regional component De as described 
earlier in Equation (1). These concentrations are de- 
termined in the same manner as the peak concentra- 
tions except that the lowest three concentrations 
replace the three peak values. High and low extrema 
can be simultaneously estimated by including the 
highest and the lowest concentrations in the observa- 
tion vector. Local impacts Li, t can then be estimated 
as the difference between estimated peaks Xt and the 
estimated background level Dr. 

4. APPLICATION 

Implementation and evaluation 

The estimators described in section 3 were coded in 
FORTRAN and run on an 80386-based computer. A 
LU inversion algorithm (Press et al., 1987) was used. 
Both single and double precision programs were 
written. A jack-knife procedure was used to evaluate 
the estimators' performance. A portion of the data in 
the case studies, selected randomly, was intentionally 
deleted. Deleted data were then predicted using the 
first estimator. Estimates were made if half or more of 
the elements in vector Z t were available. This criterion 
provides a compromise between the reliability of the 
estimator and demands placed on the procedure. 
Predictions were compared to the actual observations 
using linear correlation coefficients, mean bias, and 
scatterplots. Because the actual errors were unknown, 
the estimators were tested with errors ranging from 0 
to 60%. 

Case studies 

Three case studies were used to evaluate the esti- 
mators. The first employed particulate data collected 
in St Louis, IL from May to September 1976 as part of 
the Regional Air Pollution Study (Strothmann and 
Schiermeier, 1979). In this study, dichotomous sam- 
plers at 10 sites collected 12-h samples in fine and 
coarse size fractions. Because of long gaps of missing 
data, fewer sites are used here (Table 2). Most sites 
were urban; coverage extended to about 45 km from 
the city center. The second study is the Philadelphia 
Area Field Study (Toothman, 1984) in which ambient 
data were collected from 14 July to 13 August 1982 at 
six sites. As in St Louis, dichotomous samplers collec- 
ted 12-h particulate samples, also in two size fractions. 
This urban area was considerably larger than St 
Louis, yet the monitoring network was smaller. Most 
sites were urban and industrial. The study included a 
'special studies' site with impacts from a nearby oil 
tank farm, local truck traffic and ongoing construc- 
tion, and a rural site in New Jersey. The third case 
study used O 3 observations taken at 11 sites in 
Houston, TX from April to September 1987. In this 
study, monitoring sites ranged over a distance of 
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Table 2. Number of available and deleted data in case studies. Range is shown in parentheses 

Number Number of observations per site 
monitoring Maximum Average Average 

sites possible available deletions 

St Louis 
Fine particles 9 
Coarse particles 7 

Philadelphia 
Fine particles 6 
Coarse particles 6 

Houston 
Ozone average 11 
Ozone peak 11 

Average percentage of total 

92 62 (58-79) 23 (16-32) 
92 62 (55-82) 22 (17-27) 

62 54 (38-60) 7 (1-13) 
62 49 (30-95) 5 (4-6) 

152 120 (97-147) 7 (6--8) 
152 120 (9%147) 17 (9-22) 

100% 78% 14% 

60km; most were located within urban Harris 
County. Daily averages and daily hourly peaks were 
calculated at each site from hourly observations. If 
fewer than 12-h were available at a site in a given day, 
the observation was considered to be missing. 

The data capture rates of the three networks are 
summarized in Table 2. For  the monitoring networks 
and time periods selected, network data capture aver- 
aged 78%. For  single sites, 48-97% of the data were 
available. 

Estimates of missing data 

Table 2 also shows the number of observations 
deleted from each data set in order to evaluate the 
estimator. An average of 14% of the available obser- 
vations was deleted. This posed a severe test of 
performance since an average of 22% of the data was 
already missing, thus an average of only 64% of the 
data was utilized to predict missing observations. 

Linear correlation coefficients and biases between 
estimated and actual data are shown in Table 3. These 
calculations were obtained for each data set using 0, 1 
and 2 lead/lags. A relative error of 30% was used in 
each case. Correlations were high, between 0.66 and 
0.90, and biases were small. Despite the improvement 
expected, the number of leads/lags did not have 
dramatic effects. In fact, performance sometimes de- 
graded as the number of lead/lag periods increased as 

illustrated by results for St Louis. This resulted as 
round-off errors increased with additional lags and 
negated the small (and diminishing) information pro- 
vided with longer lead and lag periods. For  example, 
with 2 leads/lags and n = 10 (10 monitoring sites), an 
ill-conditioned matrix of rank 50 must be inverted. 
While the double precision version of the program 
reduced these errors, more accurate inversion routines 
might be advantageous. 

Means and standard deviations of the observations 
and estimates matched closely. Over 60-80% of the 
predictions were within 25% of the observation, and 
80-90% were within 50%. Scatter plots show very 
good agreement with the Texas data set (Figs le and 
If). However, the variability of the particulate data is 
not fully reproduced, e.g. peak values are under- 
estimated and low values are overestimated (especially 
Figs lb  and lc). This analysis assumes that monitoring 
observations are error-free. Better agreement could be 
obtained by (1) changing the relative error; (2) chang- 
ing the number of lead/lags; (3)altering the log- 
normal assumption; (4)decreasing the fraction of 
missing data; and (5)increasing post-whitening. For  
example, excellent agreement could be obtained 
(r i> 0.95) for the Philadelphia fine fraction particulate 
data using 1 lead/lag, a relative error of 0.10, and 
assuming normal, rather than log-normal distribu- 
tions. In practice, such parameters could be calibrated 

Table 3. Correlation coefficient (r) and bias (b) of the estimator 

Philadelphia St Louis Houston 
Fine Coarse Fine Coarse Peak Average 

Lags =0 
r 0.84 0.84 0.73 0.66 0.90 0.90 
b 0.88 2.11 4.10 4.74 0.36 0.05 

Lags = 1 
r 0.84 0.82 0.68 0.67 0.86 0.89 
b 0.07 1.00 3.25 5.65 0.39 0.04 

Lags = 2 
r 0.81 0.82 0.33 0.76 0.88 0.82 
b 0.61 1.23 3.50 3.68 0.06 0.24 
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Fig. 1. Scatterplots of predicted vs estimated data for the three case studies. 

using site-specific results. Even without such calib- 
rations, the predictions preserve the actual spatial and 
temporal trends using solely the data's correlation 
structure. 

The largest relative errors result from overpredic- 
tion of very low observations, e.g. particulate concen- 

trations averaging 6 and 9 #g m -  3 in coarse and fine 
fractions, respectively. These observations were sev- 
eral times smaller than those at other sites, and also 
smaller than preceding and following concentrations. 
These measurements are anomalies and possibly erro- 
neous. The largest errors at high concentrations occur 



120 STUART A. BATTERMAN 

with the coarse fraction particulate data sets, probably 
a result of local influences which were uncorrelated 
with observations at other sites. Such cases cannot be 
predicted without highly detailed information. In 
general, the technique of deleting and then predicting 
each observation can provide a good check on data 
validity. 

Extrema estimates 

Extrema estimates were calculated for each data set, 
using various lead/lags and relative errors. Figs 2 and 
3 show typical results for highly correlated (fine frac- 
tion) and poorly correlated (coarse fraction) data 
using the Philadelphia data for the period of 16-31 
July 1982. All available data were used, and no 

deliberate deletions were made (as in the previous 
application). One lead/lag period is used. Pollutant 
observations and estimates are shown as points, while 
extrema estimates are drawn as lines. Three extrema 
estimates are shown. (The second and third highest 
and lowest extrema estimates have been omitted from 
the graph for clarity.) Extrema with 0% relative error 
provide an exact match between actual or expected 
extrema, e.g. the estimate is unchanged from the 
observation, and the two lines simply connect sequen- 
tial maxima or minima. As the relative error increases 
to 20 and then 60%, the variation in pollutant levels is 
dampened, neither completely rising to the peak con- 
centrations nor falling to the lowest values. In general, 
the upper and lower envelopes converge towards the 
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Fig. 2. Observations, estimates and extrema envelopes for fine fraction particulate 
data in Philadelphia. 
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mean as the relative error increases, thus maximum 
concentrations are underpredicted and minimum con- 
centrations are overpredicted. Local impacts L~,t are 
represented as the width of the envelope. Estimates of 
the lowest concentration appear smoothed or dam- 
pened in time, possibly reflecting the regional com- 
ponent which usually changes slowly with respect to 
the sampling frequency. 

Peak coarse fraction concentrations (Fig. 3) occur 
at the Fireboat site, due to local impacts which are 
largely uncorrelated to concentrations at other sites. 
This is clearly shown by the extrema estimated with 
/>20% error which do not approach these peaks. 
Conversely, the fine fraction data is highly correlated 
and the envelope maintains a nearly constant width. 
In both cases, upper extrema are sensitive to the 
relative error used, while lower extrema are not. In 
part, this results from the use of a logarithmic trans- 
formation. 

As discussed, the lowest and highest concentrations 
are prone to measurement anomalies, unusual 
meteorological factors and source conditions. Large 
differences between observed and estimated extrema 
may indicate such events; definitely, these cases need 
further investigation. This simple strategy can isolate 
atypical extrema which may affect estimates of local 
and regional impacts. 

Computational demands 

The computational demands of estimation depend 
on m, the number of leads/lags, and n, the number of 
sites. Covariance matrix P and mean vector M are 
determined once for each data set. To interpolate 
missing data for each sampling period requires inver- 
sion of a rank n(2m+l) matrix and several matrix 
multiplications. About 2 s of computer time were 
required for each sampling period using a fast 
(33 MHz) 80386/7 microcomputer and a high accur- 
acy LU decomposition inversion algorithm. Extrema 
estimates require a single inversion for the entire data 
set. Only simple matrix operations are needed for 
each observation, thus these estimates are quickly 
calculated. 

5. DISCUSSION AND CONCLUSION 

This paper has developed linear estimators to estim- 
ate data and extrema with the purposes of handling 
missing data and accounting for errors. Extrema are 
estimated from the full (estimated) data set. Estimators 
of the lowest concentration in the network may repres- 
ent regional levels if the monitoring system includes 
sites which are largely unaffected by local sources. 
Peak estimates, provided by the same estimator, ind.i- 
cate the contribution of local sources. Both estimates 
should be more robust than observations from single 
stations since spatial and temporal information from 
all sites is utilized. 

In application to three diverse data sets in St Louis, 
Philadelphia and Houston, the estimators provided 

reliable results. The high spatial and temporal correla- 
tion present in ambient pollutant levels at the urban 
scale makes such estimators practicable. The esti- 
mators may be less appropriate for observations with 
little correlation, e.g. some coarse fraction partic- 
ulates, networks with intermittent sampling, or net- 
works covering very large spatial scales. The Bayesian 
estimator in Equation (7), which also can be viewed as 
a linear contraction operator, tended to reduce the 
scatter in the original data. In general, this is an 
undesirable property. However, the original disper- 
sion of the data can be restored by changing the degree 
of post-whitening, altering the relative error, or by 
using a different data transformation. Such network- 
specific calibrations may further increase the accuracy 
of the estimators. 

The estimators view historical observations as im- 
perfect (error-containing) random variables, a funda- 
mentally different perspective than the usual assump- 
tions that the observations are representative and 
error-free. Spatial and temporal information has been 
used in the opposite manner to select sites in the 
optimal design of air monitoring networks (e.g. 
Shindo et al., 1990). Results obtained in the case 
studies imply that monitoring observations, to vary- 
ing degrees, are redundant in providing site-specific 
information since observations at some sites can be 
used to predict concentrations at other sites. 

The behavior of the estimator depends on the 
relative strengths of the temporal and spatial correla- 
tion. If temporal correlation is dominant, a missing 
observation both preceded and followed by valid 
observations at the same site is estimated using prim- 
arily a weighted sum of leading and lagging observa- 
tions at that site. If leading and lagging observations 
are missing, the estimate is derived from simultaneous 
observations at other sites. If spatial correlation is 
dominant, results depend on simultaneous measure- 
ments taken at other sites and to a lesser extent on 
leading and lagging observations. If many simultan- 
eous measurements are missing, leading and lagging 
observations and the constant (mean) are emphasized. 
In each case, weights given to leading and lagging 
observations can be significant, and the coefficients 
are site-specific and depend on the data available. In 
comparison with the estimators for missing values, 
extrema estimates primarily depend on simultaneous 
observations. Thus, these estimators might be simpli- 
fied to use observations at only the current time. The 
estimator automatically determines the weightings so 
as to minimize the variance of the estimate. The 
estimation procedure is flexible and applicable to 
other types of data. 

Several refinements to the estimation procedures 
are possible. Although not attempted here, additional 
variables could be used to augment the pollutant 
variables and improve performance, For example, 
ambient temperature could be used to help predict 03 
concentrations. More accurate estimators might dis- 
aggregate by season, wind direction, or other features 
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- - i f  the data are sufficient to estimate covariance 
matrix P. In the case studies, however, estimates based 
on seasonal data, first, second and third order lags 
were similar. In the case studies, estimates were ob- 
tained when up to 50% of the data were missing. A 
more restrictive parameter would improve per- 
formance. A stepwise procedure might be used to 
determine how many sites and how many lead/lag 
periods are necessary for estimation. While additional 
data would be expected to improve results, it also 
introduces greater numerical errors in matrix inver- 
sion. An automated procedure could be used to test 
various or all possible subsets of sites and variables, 
and have the added benefit of showing the sensitivity 
of results to these factors. 

The estimators have several applications. They can 
be used to estimate missing data, thus providing a 
more complete data set, Although the estimators 
performed well, the use of estimated data must be 
carefully considered in interpreting results, especially 
if few data are available. Second, they may be used to 
check the validity of observations. Suspiciously low or 
high observations may be easily identified. An auto- 
mated bootstrapping procedure is suggested to ac- 
complish this task. Third, the estimators may provide 
more robust estimates of extrema from which local 
and regional contributions may be determined. Such 
estimates can be used in trend analysis and to deter- 
mine compliance with air quality standards. 
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