
JOURNAL OF PARALLEL AND DISTRIBUTED COMPUTING 16, 199-211 (1992)

INVITED PAPER

Report o f the Purdue W o rkshop on Grand Challenges in Computer
Architecture for the Support o f High Performance Computing*

HOWARD JAY SIEGEL,+’ SETH ABRAHAM,’ W ILLIAM L. BAIN,* KENNETH E. BATCHER,~ THOMAS L. CASAVANT,~
DOUG DEGROOT,~ JACK B. DENNIS,~ DAVID C. DOUGLAS,’ TSE-YUN FENG,~ JAMES R. GOODMAN,~

ALAN HUANG,‘~ HARRY F. JORDAN," J. ROBERTJUMP,'~ YALEN.PATT,I~ ALAN JAY SMITH,]~
JAMES E. SMITH,~~ LAWRENCE SNYDER,I~HAROLD S. STONE," Russ TucK,'~ AND BENJAMIN W . WAH'~

‘Purdue University, Vntel Corporation SSD, 3Kent State University, 4Universiiy of Iowa, jTexas Instruments, 6Massachusetts Institute of
Technology, ‘Thinking Machines Corporation, 8Pennsylvania State University, 9Universify of Wisconsin, ‘OAT&T Bell Laboratories,
‘I University of Colorado, ‘=Rice University, “University of Michigan, ‘YJniversity of California at Berkeley, ‘Tray Research, Inc.,

‘hUniversity of Washington, “IBM Thomas .I. Watson Research Center, 18MasPar Computer Corporation, and ‘9University of Illinois

The “Purdue Workshop on Grand Challenges in Computer
Architecture for the Support of High Performance Computing”
was sponsored by the National Science Foundation to identify
critical research topics in computer architecture as they relate to
high performance computing. Following a wide-ranging discus-
sion of the computational characteristics and requirements of the
grand challenge applications, the workshop identified four major
computer architecture grand challenges as crucial to advancing
the state of the art of high performance computation in the coming
decade. These are: (1) idealized parallel computer models; (2)
usable peta-ops (1015 ops) performance; (3) computers in an era of
HDTV, gigabyte networks, and visualization; and (4) infrastruc-
ture for prototyping architectures. This report overviews some of
the demands of the grand challenge applications and presents the
above four grand challenges for computer architecture. Q MZ AM-

demic Press, Inc.

I. INTRODUCTION

A. Origin of the Workshop

“Grand Challenges: High Performance Computing and
Communications” is the title of the widely distributed
“blue book” [3] that describes the United States Federal
High Performance Computing and Communicat ions
(HPCC) program. The goal of this program is “to acceler-
ate signifitantly the commercial availability and utiliza-
tion of the next generat ion of high performance com-
puters and networks.” The booklet presents a set of
“grand chal lenge problems”-applications that need the
major gain in processing power that the HPCC initiative

* This work was supported by the National Science Foundat ion Divi-
sion of Computer and Computat ion Research Computer Systems Pro-
gram under Grant CCR-9200735.

t For complete affiliations, p lease see author biographies following
References.

is expected to provide. These problems are characterized
by massive data sets, complex operations, and/or irregu-
lar data structures that exceed the lim its of current super-
computers and programming paradigms.

However, the blue book does not explicitly explore
what developments in computer architecture are needed
to support the grand chal lenge applications. This topic
arose in discussions between Dr. Zeke Zalcstein of the
National Science Foundat ion and Professor H. J. Siegel
of Purdue University. Dr. Zalcstein felt it was important
to explore, in a workshop environment, what the relevant
key issues in computer architecture are. This report is the
result.

“The Purdue Workshop on Grand Chal lenges in Com-
puter Architecture for the Support of High Performance
Computing” was held at Purdue University on December
12 and 13, 1991, to identify critical research topics in
computer architecture as they relate to high performance
computing. The workshop was sponsored by the Com-
puter Systems Program of the Division of Computer and
Computat ion Research at the National Science Founda-
tion and brought together a small but diverse group of
computer architecture researchers. Professors H. J.
Siegel and Seth Abraham, both of the School of Electrical
Engineering at Purdue University, were the workshop
cochairs, and Dr. Zeke Zalcstein was the NSF liaison.

B. The Workshop Charter

To fully appreciate the architectural grand chal lenges
that were the “output” of this meeting, it is instructive to
keep in m ind the “input” to which the group was re-
sponding. To clarify this, the plan for the workshop is
quoted below from the invitation sent to the participants.

There is a desire to advance significantly the state of the art of
high performance computing. The grand chal lenges for high per-

199
0743-7315192 $5.00

Copyright 0 1992 by Academic Press, Inc.
All rights of reproduct ion in any form reserved.

200 SIEGEL AND ABRAHAM ET AL

formance computing have been discussed in terms of the applica-
tions that can make use of the computing power to be made avail-
able. The focus of this workshop can be stated succinctly as
follows: what are the grand challenges facing computer architec-
ture that must be met to build high performance computers? The
workshop will focus on the design and construction of the hard-
ware architecture. While the hardware cannot be considered in
isolation, application and system software issues are beyond the
scope of this workshop. This workshop will consider software
aspects and application characteristics only where there is an im-
pact on the hardware design.

The goals of the workshop are to list, characterize, categorize,
assess the difficulty of, and interrelate these “grand challenges”
for computer architecture for the support of high performance
computing. This meeting will indicate the areas of computer archi-
tecture research that the participants feel are most important and
should receive the most attention.

Computer architects from both academia and industry
were invited to the workshop. Some invitees could not
attend due to scheduling conflicts. Those who attended
the workshop are the coauthors of this report.

While it was recognized that hardware technology and
software are important considerations and are strongly
interrelated with architecture, the group’s instructions
from NSF were to focus mainly on the hardware archi-
tecture organization. Such a focus was necessary due to
the limited time duration of the workshop.

C. The Report

This report presents four architectural grand chal-
lenges whose achievements would make significant ad-
vances towards the goals of high performance computing
and communication. These four challenges were distilled
from a great variety of views expressed by individual
participants and this report is closer to a union of those
views than an intersection.

The workshop cochairs have assembled this report
from draft material contributed by all workshop partici-
pants. Every attempt has been made to reflect fairly the
(sometimes conflicting) views expressed, while maintain-
ing a coherent style.

Section II of the report establishes the background for
the group’s selection of grand challenges in computer
architecture by discussing the demands on architecture
implied by the U.S. national commitment to supporting
the solution of the grand challenge problems. The grand
challenges in computer architecture the group felt were
most important are stated in Section III. Each challenge
is developed in one of the following four sections. Sec-
tion IV notes that the program execution model sup-
ported by a computer system has a strong influence on
the performance achievable for applications, and then
recommends work toward unifying existing models and
developing more comprehensive models for parallel com-
putation. Section V points out that all components of a
computer system must evolve to meet the demand for

further orders of magnitude improvement in perfor-
mance, and that special attention is needed to ensure that
high performance is realizable in practical applications.
Section VI observes that new developments in computer
architecture will be needed to support the new communi-
cation-intensive applications made possible by advancing
technology. Section VII stresses the need for advanced
infrastructure tools and software to support the design
and evaluation of prototypes for new architectures. Sec-
tion VIII concludes the report.

This report presents architectural grand challenge
problems to the technical community as issues in com-
puter architecture that deserve study. Our hope is to
stimulate interest in funding and supporting research ef-
forts to meet the grand challenges of computer architec-
ture and hasten the day that high performance computers
for the grand challenge application problems will be a
practical reality.

II. GRAND CHALLENGE APPLICATION PROBLEMS AND
COMPUTER ARCHITECTURE

A. Grand Challenge Application Problems

The U.S. Committee on Physical, Mathematical, and
Engineering Sciences has identified a set of “grand chal-
lenge problems” that set a goal for the HPCC initiative,
now funded by the U.S. Congress through several agen-
cies. The grand challenge application problems concern
pressing issues of human welfare on planet Earth and
problems at the exciting frontiers of science that may
open doors to better living for future generations.

The blue booklet published by the committee [3] lists
10 areas as posing “problems whose solution is critical to
national needs”:

Climate Modeling Quantum Chromodynamics
Fluid Turbulence Semiconductor Modeling
Pollution Dispersion Superconductor Modeling
Human Genome Combustion Systems
Ocean Circulation Vision and Cognition.

It is estimated that a serious attack on any of these prob-
lems will require computer performance in excess of one
trillion floating point operations per second (one
teraflops).

The grand challenge problems have enormous compu-
tational requirements. Consider, for example, the prob-
lem of modeling the weather. In 5 years time, data collec-
tion facilities will be in place to define detailed
atmospheric structures and permit significant advances in
forecasting capabilities. However, today’s most powerful
supercomputers cannot meet the computational require-
ments. The goal of improving atmospheric modeling res-
olution to a 5-km scale and providing timely results is
believed to require 20 teraflops of performance.

REPORT OF THE PURDUE GRAND CHALLENGE WORKSHOP 201

B. One Teraflops and Beyond

Although substantial progress remains to be achieved
in uniprocessor technology, because of inherent physical
limitations it is assumed that high performance comput-
ing will employ parallel systems. The peak performance
of currently available massively parallel computers of
practical size and cost is at the level of hundreds of
gigaflops (lo9 floating point operations per second). To
produce practical massively parallel computers having at
least one teraflops (lOI floating point operations per sec-
ond) performance, only engineering effort to fully utilize
existing, demonstrated technology is needed. These
teraflops computers can become available in a few years;
however, there is much debate about whether such ma-
chines can be produced at a low-enough cost to make
them commercially viable for a large customer base. Fur-
thermore, there is a need for environments that will allow
application programmers to realize a significant fraction
of such a machine’s peak speed.

Providing performance significantly beyond teraflops
will require major innovations in computer hardware ar-
chitecture, packaging, and device technology. Optical
technology [9] may offer a breakthrough in performance,
but it will require a radical rethinking of computer struc-
ture and how the technology can support appropriate
models of computation. Of course, cost and usability
concerns remain.

Many supporting and related areas must also be devel-
oped. Improvement is needed in the infrastructure that
supports the design, prototyping, and construction of ad-
vanced computer hardware. This is also true for high
performance peripherals to match the capabilities of the
processors. Reliability and fault tolerance will become
increasingly critical issues as high performance machines
become incorporated into networks, begin to handle
communications-intensive information processing, and
satisfy real-time demands. Programmability and usability
must be facilitated by new programming models and envi-
ronments.

C. Effective Use of Potential Performance

Achieving ever greater levels of peak performance is
not the only challenge resulting from the goals of high
performance computing; a significant challenge is to
make those levels of performance easily accessible to the
end user. We are living in a new era of computing in
which the U.S. national laboratories will no longer be the
dominant users of high performance computation, and it
is no longer feasible to spend 10 person-years of effort to
implement an important problem on a supercomputer. In
contrast to this circumstance, in many situations the
computational models used with current massively paral-
lel computers are dismal in comparison to those familiar

to users of conventional computers and workstations.
The feeling one senses among some in the community is
that increased difficulty of programming is a necessary
price to be paid for the benefits of high performance. One
of the challenges is to show that this need not be so.

In the near future, most high performance computing
will be at the level of 100 megaflops to several gigaflops
and will be performed by machines assigned to individ-
uals or small groups of workers, or used in operational
information/communication systems of business and in-
dustry. The effective use of large-scale parallel machines
in these roles requires programming support at least com-
parable in power and generality to that available on
present day workstations. The required programmability
demands the adoption of more general models of compu-
tation. Development of satisfactory computational
models for parallel computers that are efficiently sup-
ported by the hardware is a grand challenge of computer
architecture. Without support for such computational
models, the impact of architectural advancements will be
severely impaired.

D. Programming for Massively Parallel Computation

Current programming practice for most massively par-
allel computers is based on the data parallel model of
computation [5]. In this model, the principal data struc-
tures of a problem (usually large data arrays) are parti-
tioned and assigned to the processors of the machine. It
is rare to see large-scale parallel computation where hun-
dreds of processors are performing functionally distinct
parts of a job (this is sometimes referred to as functional
parallelism).

In the case of machines having a distributed memory
architecture, a data parallel algorithm is expressed as ma-
chine code that is executed by all processors and the
necessary communication among processors is imple-
mented by manually coding explicit message-passing
commands or by the use of a logically shared address
space; the former approach is currently prevalent. Com-
pilers available and under development will automate this
process by letting the programmer specify data partition-
ing and by automatically generating the communications
code for the given data partitioning.

A widespread misconception is that the two most im-
portant parts of the high performance field are architec-
tures and algorithms. However, the interface between
the architecture and the algorithm is a crucial issue as
well. The effective programmability of the machine is
limited by the computational model and how well that
model is supported by the hardware and software of the
system, as mentioned in the previous subsection. A ma-
jor challenge is to move toward architectures that can
efficiently implement a truly general-purpose parallel
computation model. Architectures must support environ-

202 SIEGEL AND ABRAHAM ET AL.

ments that facilitate functional parallelism in a massive
way, as well as data parallelism.

E. The Goal of General-Purpose Parallel Computation

General-purpose computation is not well defined. At
one extreme, the term means simply that one is able to
perform any algorithm expressed in a complete language.
At the other extreme, a general-purpose computer is ex-
pected to be efficient for applications ranging from sci-
ence and engineering to business and industry.

Important programmability features that are standard
for general-purpose workstations are not typically avail-
able for massively parallel computers. One of these is the
ability to execute programs much larger than the physical
main memory of the machine without having to program
the swapping of information between main memory and
disk; this is the familiar virtual memory idea implemented
in all workstations. Another limitation concerns the iink-
ing of separately compiled programs; there are no stan-
dards for communicating large partitioned data structures
between compiled modules. Realizing these features
within the framework of massively parallel machines is a
major challenge in computer science-one that is often
lost amid the concentration on hardware and algorithms.

Two of the major issues to be addressed are: (1) pro-
viding a global virtual memory for massively parallel
computers, and (2) expressing and supporting parallelism
and the interaction of concurrent activities. The model of
computation supported by the architecture must have the
properties necessary to create the desired programming
environment. A basic approach to the challenge is to
choose a model of computation that simultaneously
serves as the specification of an architecture and the tar-
get language for high-level programs. However, portabil-
ity of parallel programs is also an important consider-
ation.

F. Demands of the New Applications

The enormous rise in computer performance is making
qualitative changes in the expectations and interests of
users. For example, experience with larger computa-
tional grids and three-dimensional modeling of physical
phenomena is motivating the use of more sophisticated
data structures. In weather modeling, more effective
methods are possible if computing resources are concen-
trated on unstable portions (e.g., storm systems) of the
simulated space. However, unstructured grids make effi-
cient usage of the processors in a parallel machine diffi-
cult. 7

Other areas include symbolic manipulation, compiling,
heuristic search, etc. These types of computation are im-
portant in image analysis [6] and may be crucial to solv-
ing the human genome problem [3]. University research
has shown that these problems often have high levels of

parallelism. However, as mentioned earlier, these prob-
lems are characterized by massive data sets, complex
operations, and/or irregular data structures that exceed
the limits of current supercomputers and programming
paradigms. Making massive parallelism readily available
in an effective and “user-friendly” manner for applica-
tions involving these characteristics requires the devel-
opment of new techniques for mapping tasks onto paral-
lel architectures.

Finally, the computing technology of the 1990s will
enable access to vast information sources such as digital
libraries, visualization images, and multimedia informa-
tion objects [l]. Future computers must deal with such
data entities as though they were the simple textual mes-
sages of today. The challenge is to incorporate into com-
puters a high capacity to handle and transform these
data.

III. GRAND CHALLENGE PROBLEMS IN COMPUTER
ARCHITECTURE

A. The Architectural Grand Challenges

The workshop opened with a wide-ranging discussion
surrounding the computational characteristics and de-
mands of the grand challenge application problems.
From these requirements, the participants translated the
application-centered grand challenges into grand chal-
lenges for computer architecture for high performance
computing. From a lengthy list of challenges, the attend-
ees selected four primary challenges for presentation:

(1) idealized parallel computer models,
(2) usable peta-ops performance,
(3) support of I/O and intensive communications, and
(4) infrastructure for prototyping architectures.

It was recognized that the list from which these four were
selected was by no means exhaustive, and that these four
challenges overlapped and interacted.

This subsection summarizes these grand challenges for
computer architecture. Sections IV through VII examine
each problem in more detail and consider approaches for
attacking them.

Grand Challenge I: Idealized Parallel Computer
Models. The model of parallel computation is funda-
mental to progress in high performance computing be-
cause the model provides the interface between parallel
hardware and parallel software. It is the idealization of
computation that computer architects strive to support
with the greatest possible performance. The model is the
specification of the computational engine that language
and operating systems designers can assume as they seek
to enhance the power and convenience of parallel ma-
chines. It is not clear that a single model can fulfill all of

REPORT OF THE PURDUE GRAND CHALLENGE WORKSHOP 203

the requirements, but it is essential to reduce the multi-
tude of alternatives to the fewest possible number. There-
fore, it is important to identify one “universal” or a small
number of “fundamental” models of parallel computa-
tion that serve as a natural basis for programming lan-
guages and that facilitate high performance hardware im-
plementations.

Grand Challenge 2: Usable Peta-Ops Performance.
Grand challenge applications require usable computer
performance orders of magnitude greater than the giga-
ops performance available today and the tera-ops perfor-
mance that may be achieved soon. This computer perfor-
mance cannot be obtained by simply interconnecting
massive quantities of existing CPU, memory, and I/O re-
sources, because the collective overhead associated with
these interconnected resources can produce a system
that is unmanageable to program and ineffectively uti-
lizes its components. The challenge is to (1) dramatically
improve and (2) effectively harness the base technologies
impacting processors, memory, and I/O into a computer
system such that the grand challenge applications pro-
grammer has easy access to a peta-ops (IOr operations
per second) of usable processing performance.

Grand Challenge 3: Computers in an Era of HDTV,
Gigabyte Networks, and Visualization. Technology
will be able to support startling new communications-
intensive applications. For example, concurrent access
by thousands of people to a digital version of the Library
of Congress may be within reach in this decade. Digital
video will enable workstations of the future to treat im-
ages as easily as characters and words are treated today.
How can computer architecture and new communica-
tions technology evolve to facilitate such applications?

Grand Challenge 4: Infrastructure for Prototyping Ar-
chitectures. Given that computer generations change
every 2 to 3 years, new ideas on architecture must be
evaluated and prototyped quickly. Prototype develop-
ment involves not only hardware, but also software in the
form of compilers and operating systems. An infrastruc-
ture is needed to facilitate the study of the effects of new
hardware technologies and machine organizations
against different application requirements. This com-
puter architecture challenge is to develop sufficient infra-
structure to allow rapid prototyping of hardware ideas
and the associated software in a way that permits realistic
evaluation.

B. Multidisciplinary Approach

The architectural grand challenges stated above are in-
herently multidisciplinary and involve team efforts that
cross boundaries from software to hardware to applica-
tions. Early efforts in the development of parallel com-

puters have shown that their viability and usability is a
strong function of the supporting software systems. A
substantial component of effort must be devoted to the
automation of the software development process to ex-
ploit the power of the underlying hardware. This includes
such problem areas as algorithm selection, algorithm op-
timization, data mapping, and parallelization. In the
arena of high performance parallel computers, it is more
important than ever for computer architects to consider
the issues of system software, application needs, and us-
ability when designing and implementing machines.
Computer architects must design systems that will effi-
ciently support the software tools that will make the sys-
tems useful; it is a symbiotic relationship that must be
leveraged to the fullest extent.

IV. GRAND CHALLENGE 1: IDEALIZED PARALLEL
COMPUTER MODEL

This architectural grand challenge is to identify one
“universal” or a small number of “fundamental” models
of parallel computation that abstract the essential fea-
tures of parallel machines. The desired model is an ideal-
ized parallel computer analogous to the familiar von
Neumann machine. This idealized machine model must
characterize those capabilities that are so fundamental to
parallel computation that all but the most specialized par-
allel computers can be expected to provide them. The
abstraction need not imply any structural information,
but it should capture implicitly the relative costs of paral-
lel computation.

A parallel computation model differs from the von
Neumann model in the ways parallel computing differs
from serial computing, e.g., having multiple processors
and a communications structure. Implementation details
such as the number of processors and the interprocessor
communications structure are unimportant except to the
extent to which they affect performance. The challenge
of constructing such a model is to be “precise enough”
about performance without being “too explicit” about
the implementation details.

This challenge is one of the most widely discussed top-
ics in parallel architecture circles. The need for a parallel
model characterizing the capabilities and costs of parallel
computers has long been recognized [8, IO]. Such a
model is essential for computer architects, software de-
velopers, and algorithms designers.

For parallel computer architects, the model should de-
fine those capabilities that are critical to parallel compu-
tation and should execute as fast as possible in any paral-
lel computer design. Enhancing these basic features (as
caches have enhanced memory references for the von
Neumann model) then becomes the focus of computer

204 SIEGEL AND ABRAHAM ET AL.

engineering and architecture research. The hardware
must support the parallel computation model in a cost-
effective way by dealing with practical design constraints
including packaging, available commodity parts, stan-
dard buses and protocols, and many other technological
considerations. These considerations lead to the use of
multiple highly integrated processors, memory hierar-
chies, and physically and/or logically distributed memo-
ries. Some implementations may even provide a physical
structure that is quite different from the logical model.
Thus, the model must have practical hardware realiza-
tions, but not dictate specifics of those realizations. The
goal of computer architecture research will continue to
be what it has always been: finding hardware realizations
that perform the computations of the model faster.

For software developers, the model will specify those
facilities that can be assumed in the underlying parallel
computers. Languages and compilers can target this ide-
alized machine model and then be specialized to any par-
ticular hardware platform, as is done for portable compil-
ers for sequential machines. The model must be capable
of providing information about the relative costs of paral-
lel computations. This is essential so that language de-
signers can judge the efficiency of the likely implementa-
tions of their language constructs, and compiler writers
can develop efficient execution-time virtual machines.
The model must be capable of supporting a wide range of
high-level programming structures. Moreover, it should
permit program specification with a minimum of explicit
synchronization. With such a model as a guideline, it
should be possible to develop efficient and portable paral-
lel programming systems.

Finally, for algorithm designers and programmers, this
fundamental model of parallel computation will provide
the basis for program development and accurate algo-
rithm analysis, as well as providing the foundation for a
realistic theory of parallel algorithms. To do so, the
model must provide meaningful information on the rela-
tive costs of computation, communication, and synchro-
nization. It must also provide a basis for useful feedback
of performance and debugging information to the pro-
grammer. The model, therefore, is the foundation on
which efficient algorithms and programs can be devel-
oped.

The properties described above are goals. A model can
be useful even if it does not achieve all of them. Never-
theless, they serve as a yardstick by which proposed
computation models can be judged.

Developing a model to meet the above specifications
will be a challenge. However, with the understanding of
parallel computers, algorithms, and languages expand-
ing, the prospects for creating an ideal model of parallel
computation improve. The obvious approaches have ad-
vantages and disadvantages.

1. Existing model: There is no existing model of paral-
lel computation that satisfies the conditions above; for
example, the well-known PRAM model does not capture
communication costs. There does not appear to be an
existing model that is generally applicable, provides the
necessary information, and is practically realizable.

2. New model: Discovering an entirely new model of
parallel computation is perhaps the most ambitious solu-
tion to the problem. It is not only difficult to fulfill the
above goals, such as building a physical realization, but it
appears that feedback and experience are needed to cor-
rect and enhance a model. Starting from first principles is
difficult and success is perhaps unlikely. However, due
to limitations of existing models, this may be a worth-
while pursuit for the adventurous.

3. Evolution: Perhaps the most productive approach
would be to revise an existing model to resolve its inade-
quacies. This adaptation, for example, might add struc-
ture-specifying capabilities to the shared memory model
or assistance for barrier synchronization in a message-
passing model [2, 81. It may also involve combining fea-
tures of different existing models. The ideal is not likely
to be developed simply by going down the list of goals
and adding features to the model to achieve each goal.
Rather, a more satisfactory solution may be derived from
the combination of an existing model and an enhance-
ment that is tightly integrated to the other features of the
model.

Among the challenges in formulating an idealized
model of parallel computation and having it be widely
accepted is the need to balance generality and specificity.
The model must be sufficiently abstract so as not to limit
the creativity of machine designers. However, as previ-
ously stated, to be useful to software developers and al-
gorithm designers, it must provide realistic information
on the relative costs of computation, communication,
and synchronization. At a certain level, the von
Neumann model has managed to strike this balance for
sequential computation. Though the parallel case is more
complicated, achieving a balance is certainly possible in
principle.

In summary, this computer architecture challenge is to
formulate a model of parallel computation that abstracts
the operational features and the costs of parallel compu-
tation. This should be approached in a way that will serve
as a target for architects to implement and the foundation
on which software developers and programmers can
build.

V. GRAND CHALLENGE 2: USABLE PETA-OPS
PERFORMANCE

This architectural grand challenge is to dramatically
improve and effectively harness the base technologies

REPORT OF THE PURDUE GRAND CHALLENGE WORKSHOP 205

into a future computer system that will provide usable
peta-ops of computer performance to grand challenge ap-
plication programmers. Meeting this challenge may re-
quire research leading to the realization of each of the
following: (1) a uniprocessor whose microarchitecture
alone will provide, transparent to the software, a factor
of 10 improvement in performance over what is feasible
today; (2) a scalable, logically shared-memory parallel
processing system node that will provide a seamless ad-
dress space that will include a programmer-friendly con-
nection to its I/O subsystem; (3) a massive interconnec-
tion of these system nodes that will not be severely
degraded by communication software; (4) modularity of
design that will allow advances in base technologies such
as optical interconnects and semiconductor physics to be
reflected in improved system performance without re-
quiring massive changes to the rest of the computing par-
adigm; (5) massive improvements in available memory
bandwidth and effective utilization of that bandwidth; (6)
built-in hardware fault tolerance that will allow function-
ing of this massively concurrent hardware in the presence
of the faults that one can expect will usually be present;
and (7) cost-effectiveness that will enable a successful
commercialization of the hardware.

Each of these components is important to the goal of
providing usable peta-ops performance. The current state
of processor, memory, and I/O technology lacks these
components: uniprocessors do not exploit available in-
struction stream parallelism; shared-memory multipro-
cessors do not scale; address-space partitioning of the
memory hierarchy and I/O space introduces translation
overhead resulting in execution-time inefficiencies and
difficulty in programming and debugging; exposure of un-
derlying hardware idiosyncrasies adversely affect intro-
duction of new base technologies such as optical links
and new semiconductor devices; usable bandwidth is
only a fraction of the peak bandwidth available; latency
in information transfer adversely affects throughput; etc.
A more complete discussion of the importance of each
component problem is contained in this section, along
with a brief discussion of approaches to solving that prob-
lem. If these component challenges can be met, it will be
possible to have future computer systems consisting of
integrated processors, memory, and I/O subsystems that
provide peta-ops of usable computer performance to
grand challenge applications programmers.

Ten different component problems that need to be ad-
dressed to achieve usable peta-ops performance were
identified. Not all participants in the workshop agreed on
the method of approach for dealing with each compo-
nent, or even (more fundamentally) on the relative impor-
tance of addressing each component. Nonetheless, with
this disclaimer of nonconsensus, listed below are ap-
proaches to several components of this grand challenge,

along with expanded discussions of the importance of
each.

1. Optimal uniprocessors: The uniprocessor executes
the single instruction stream produced by the compiler. If
it can exploit the existing parallelism present in the in-
struction stream with its microarchitecture, the perfor-
mance it would obtain would be transparent to the soft-
ware. It is expected that a factor of 10 improvement in
performance can be realized at this level of the execution
hierarchy.

Most important is to start with a clean sheet of paper
and not be concerned with existing software investment
and the constraints that compatibility imposes. Under-
standably, this is not easy to undertake in an industrial
environment. But it may be critical to undertake to
achieve peta-ops performance.

Second, one must understand the division of labor be-
tween what the compiler can provide and what the execu-
tion-time hardware should provide. This division should
take into account dramatic increases in hardware capabil-
ity that will be available in the next few years, for exam-
ple, 10 to 30 million transistors on a chip and optical
interconnects. One should design with these technologies
in mind.

One should understand the capabilities and limitations
of compiler technology, and should use these in deter-
mining how best to utilize the hardware resources in de-
signing the microarchitecture of the uniprocessor. The
computational characteristics of the codes in expected
workloads should also be considered. Choices with re-
spect to superscalar, superpipelined, VLIW, depth of
pipelining, degree of branch prediction, and additional
hardware assists (such as a branch target cache) must be
made in light of both semiconductor capability and com-
piler technology.

2. Scalable parallel processing system nodes: One ele-
ment of a peta-ops machine is the scalable logically
shared memory parallel processing system node. In this
context, scalable implies that the node may be used effec-
tively in massively parallel systems that have a shared
address space and provide usable peta-ops performance.
It is the architectural element for which future compilers
will be required to generate optimized code. The devel-
opment of a logically shared memory parallel processing
system requires substantive awareness of the capabilities
of compilers and operating systems and the detailed un-
derstanding of the individual uniprocessors, as well as
knowledge of the basic issues indigenous to parallel pro-
cessing itself, such as interconnection structures, cache
consistency protocols, and synchronization mechanisms.

The goal is to integrate the system design with com-
piler optimization technology to provide performance
that is a significant fraction of N x P, where N is the

206 SIEGEL AND ABRAHAM ET AL.

number of processors and P is the power of a component
uniprocessor. This means that the aggregate power grows
with the number of processors, and that the power that
can be applied to a single process also scales similarly
with the number of processors.

3. I/O subsystems: As processor speeds continue to
improve dramatically and memory sizes (and to a lesser
extent, memory access times) continue to improve, the
bottleneck to a balanced high performance computing
system increasingly becomes the I/O subsystem. I/O
subsystems should be designed to accommodate the fol-
lowing features. They should be usable by applications
and by most of the operating system with little or no
knowledge of device technology or low-level interfaces.
The actual interfaces implemented should permit perfor-
mance close to that available from the raw hardware,
with high levels of parallelism. Once they are defined,
these interfaces should not be changed over time without
significant reason so that investments in applications and
operating system software are maintained. The interfaces
should implement default parameters which give good
performance over a wide variety of workloads and tech-
nologies (e.g., block sizes). Interfaces should support the
use of I/O devices as part of a uniform memory address
space. References to I/O devices should be independent
of the topology of the overall system and of how and
where the I/O devices are connected. I/O devices should
be designed to incorporate modern VLSI technology to
the maximum extent possible so as to improve perfor-
mance and reliability.

4. Uniform address space: Grand challenge applica-
tions will deal with large amounts of data (e.g., large data
bases, extremely large data sets, HDTV video images).
Some mechanism for addressing these data must be de-
veloped.

Considerable time and effort are required to manage
the memory system. To the extent that the architectural
design gives a memory hierarchy of low average access
time and high average bandwidth without significant ex-
plicit programmer effort, software development is greatly
facilitated, and the generality of the software (with re-
spect to system configuration across sites and across
time) is greatly enhanced.

One approach is to design a technology transparent
memory hierarchy providing a very large address space
that automatically provides, with high probability, very
low mean access time and high bandwidth. The memory
system should be logically sharable among large numbers
of processors. This sharing should provide a consistency
model. The memory should be scalable to a large number
of processors without bottlenecks or loss of perfor-
mance. It should be able to integrate I/O devices and
devices at remote systems into the address space.

5. Technology evolution: Technological evolution is

enhanced by hiding the detailed knowledge of underlying
hardware idiosyncrasies so as to facilitate the introduc-
tion of new technologies. Current high performance com-
puting engines are designed on the basis of connectivity
and serial bandwidth on the order of hundreds of connec-
tions and megabits/second, and chip densities on the or-
der of 2 to 3 million transistors/chip. Architectural design
methods will change dramatically when (in the next few
years) optical links provide thousands of connections and
gigabits/second bandwidth, and semiconductor technol-
ogy provides chip densities of 10 to 30 million transistors/
chip.

One approach to managing the evolution is, to the ex-
tent possible, partition and modularize the design. Also,
drive the implementation details to the low-level hard-
ware structures, while retaining at the module intercon-
nection level as high a level of abstraction as possible.

6. Memory bandwidth and access time: The actual
performance of processors is strongly influenced (and
limited) by the ability of the memory system to provide
instructions and operands, and to accept results. Unfor-
tunately, while processor performance has been grow-
ing at a rate of 50 to 100% per year for the last 7
years, DRAM performance (measured in access time)
has been growing at a rate of only 7% per year [4]. This
exponentially growing disparity in need versus supply
of memory performance provides a grand challenge to
architects.

Memory bandwidth can be increased by addressing (1)
individual DRAM device bandwidth, using techniques
such as adding more pins (at approximately the same
package cost), employing multi-chip modules that add
signal wires in some other form, and implementing block
mode data transfers; (2) processor-to-memory intercon-
nect, e.g., reexamining the partitioning of processors and
DRAMS vis-a-vis the same chip, same memory control
unit, etc.; and (3) inserting supporting computational ca-
pabilities directly into the memory architecture. Memory
access time can be reduced by improved caching tech-
niques and improved cache designs [71. Because proces-
sor cycle times have been reduced faster than memory
access time and bandwidth have improved, this issue
continues to deserve attention.

7. Software component of communications latency:
As processor speed and network bandwidth continue to
improve, communications latency has not kept pace.
This is because the latency for short messages is domi-
nated by software overhead. If massively parallel sys-
tems are to maintain and improve their computation/
communication ratios (which fundamentally determine
the speedup of an application), then communications la-
tency must be aggressively reduced. These improve-
ments will also enable the exploitation of finer grain pro-
gramming models than are practical today.

REPORT OF THE PURDUE GRAND CHALLENGE WORKSHOP 207

Hardware techniques for implementing software proto-
cols for message passing need to be developed. These
techniques should seek to eliminate operating system
overhead at the sending/receiving ends, while maintain-
ing system protection. They should implement the neces-
sary protocols to form messages, inject these messages
into the network, and remove them at the receiving end.
They should also deal with retransmissions and other re-
liability issues.

8. Fault tolerance: To achieve peta-ops of perfor-
mance, parallelism should be exploited at all levels. This
includes a massive number of nodes. Without substantial
built-in fault tolerance, the mean time between failures
will decrease rapidly as the number (and complexity) of
the components increases. Maintaining acceptable sys-
tem availability will become a major concern.

Research is needed to analyze the failure modes and
rates for massively parallel systems. Architectural tech-
niques are needed to detect, isolate, and recover from
failures while minimizing the need to terminate applica-
tions and/or restart the system. These techniques will
impact node and network designs, as well as operating
systems. For example, adaptive routing techniques are
required to deal with failures in the interconnection net-
work. Error detection and reporting techniques are
needed to propagate failure information to unaffected
nodes. Efficient checkpointing schemes must be devel-
oped to allow the rollback recovery of affected applica-
tions (which may be sending messages).

9. Reducing latency: Reducing or hiding latency
makes the problem-solving speed depend primarily on
the bandwidth of system components. However, it is eas-
ier to increase bandwidth than to reduce latency when
scaling large systems suitable for grand challenge prob-
lems. Several mechanisms can be invoked to reduce la-
tency, including optimal use of caches, multiplexing the
execution of multiple threads, pipelining macro opera-
tions, multiprogramming, parallelism (asynchronous) of
computation and I/O, and facilitating process and data
migration.

10. Cost-effectiveness: An obstacle to building peta-
ops/petaflops systems lies in improving the cost-effec-
tiveness of existing architectural approaches. This is re-
quired to reduce the cost of such systems to a level that
makes them affordable to build.

Meeting this challenge requires making substantial pro-
gress in the following areas: memory bandwidth and ac-
cess time, communication bandwidth and latency (either
explicit or implicit, as in the case of memory being
treated as a single global address space), I/O bandwidth
and latency, processing power, and high-density packag-
ing. Each involves dramatically improving a critical as-
pect of performance with minimal change in subsystem
cost.

VI. GRAND CHALLENGE 3: COMPUTERS IN AN ERA OF
HDTV, GIGABYTE NETWORKS, AND VISUALIZATION

The combination of computing and communications
technology in the 1990s will enable access to vast infor-
mation sources such as digital libraries, images, visual-
ization of physical processes, and interactive multimedia.
For example, just as today’s processors manipulate indi-
vidual characters, the processors of the year 2000 will
manipulate images. How can computer architecture and
new communications technology evolve to enable such
applications?

The enabling technology for communications-intensive
computing exists today in primitive form and will evolve
rapidly in the next decade. This technology includes
high-bandwidth networking, high-definition imaging, new
compression/decompression techniques, gigaflops arith-
metic, and high-density memory devices. The potential
applications can bring a dramatic change in the way we
live and work. The digital library provides easy and inex-
pensive access to information sources on a scale never
before achieved. Scientific visualization builds physical
understanding of complex phenomena and enables scien-
tists to solve problems orders of magnitude more difficult
than can be solved with conventional use of computers.
Communications can be enhanced by combining voice,
animated images, and text where formerly there was only
voice or text in isolation, and, only in recent years, video
to some extent.

The applications addressed by this architectural grand
challenge are those in which a major portion of the com-
puter power is devoted to the processing of high-band-
width streams of data. Such computers will attach to gi-
gabyte networks and high-definition displays to provide a
means for viewing and sharing the massive pools of data
that can be processed at one site.

In recent years, there have been both evolutionary and
revolutionary advances in base technology. Evolutionary
advances in memory devices have lowered the cost per
bit and greatly increased capacity. Similar evolutionary
advances exist in processing, communications, and stor-
age of all types. Revolutionary advances are bringing
quantum leaps in communications and storage. Examples
are the application of optical transmission to long-
distance networks and optical storage for write-once per-
manent data storage.

Needs for proposed applications, such as concurrent
access to national databases and interactive HDTV visu-
alization, are beyond the reach of the most aggressive
existing systems. These applications require improve-
ments in all aspects of system bandwidth, processing
power, memory capabilities, and storage far in excess of
today’s systems. Furthermore, these applications have
strict cost thresholds that must be met to make them

208 SIEGEL AND ABRAHAM ET AL.

practical to pursue. Applications for high performance
computing that have yet to be conceived will further
stretch the bounds of performance and cost.

The computer architecture challenge is to apply tech-
nology advances to the applications in new and innova-
tive ways that produce results unachievable in the past.
Revolutionary improvements can come from the innova-
tive application of evolutionary technologies to existing
applications.

The approach to this grand challenge will be through
the selection of high priority problems to be addressed.
Then, research efforts devoted to these priority areas will
be used to solve fundamental problems, demonstrate the
art, and create the market for commercialization of the
technology. The following list of problems serves as an
indication of the potential directions of this architectural
grand challenge.

1. Highly concurrent access to huge, centralized data-
bases such as to a digitally stored Library of Congress:
This can be approached with a combination of high-speed
communications, advances in data-base organization,
and new means for incorporating high-speed processing
capability into a database system. Such processing might
be in the form of intelligent memory subsystems or in
dedicated coprocessors. A possible objective is to shift
the processing load from central processors to special-
ized units to increase performance and to lower system
cost. The system must also support the high-speed trans-
fer of digital images, multimedia, hypermedia, and hyper-
text.

2. HDTV interactive video: This may require the in-
corporation of specialized communications and buffering
components with coprocessors, such as digital signal pro-
cessors, to produce the required processing and I/O rates
for high-definition video. The HDTV interface can trans-
form a workstation into a video phone in which electronic
mail or real-time conversations can take place using mul-
timedia: TV image, text, voice, computer generated
graphics, and synthesized sound. Documents and infor-
mation sources can be created as a combination of such
sources. Consider, for example, creating video images
for a high-definition display that may contain 2 million
pixels per image. Images will be transmitted in some
compressed form that might require as much as hundreds
or thousands of floating-point operations per pixel to re-
construct. Because 30 or 60 frames are required each
second, the data processing requirements alone exceed
several gigaflops. Additionally, moving such vast
amounts of data through the system rapidly will prove
challenging. Given that such computing capability must
find its way into cost-effective consumer products as well
as the scientific computing arena, the architectural chal-
lenges are formidable.

3. Large transaction systems: Managing this problem

will involve the use of new technologies for data net-
works, distributed transaction storage, and a means for
accessing and updating a shared, distributed data base.
This enables the largest commercial and government
computer users to provide centralized services on a scale
never before achieved. The research should investigate
special techniques for communications, journaling and
logging, recovery, and consistency control that are suit-
able for large-scale transactions systems.

4. Advanced interactive design systems that produce
“instant” design samples through modeling in plastic or
through holographic imaging: These systems require in-
ternal communications designed for very high band-
width, and special high performance attachment to me-
chanical and video peripherals. Special needs include
processing power sufficient to manipulate detailed 3D
representations of objects.

5. Virtual reality: This research area requires the mer-
ger of new sensor technology with new 3D graphics,
video processing, and multimedia techniques to create
new levels of virtual world fidelity. Applications include
design visualization of such objects as automobiles, air-
craft, buildings, and the human anatomy.

6. Portable high performance computers for on-site
processing in special situations: This research requires
special packaging techniques plus advanced technology
for low power consumption and cooling to reduce the
size and weight of high performance systems. Typical
applications are environments where data reduction has
to be done at the site of data collection, and are exempli-
fied by seismic applications and space-borne applica-
tions.

VII. GRAND CHALLENGE 4: INFRASTRUCTURE FOR
PROTOTYPING ARCHITECTURES

A grand challenge in the development of new architec-
tural ideas is the testing of architectural alternatives and
their interactions with software, technology, and applica-
tions. The design of computer systems not only involves
simulation tools and hardware prototyping facilities, but
also requires compilers, operating systems, and applica-
tion programs that execute on the hardware. Thus, rapid
prototyping tools must include facilities for hardware and
software integration.

The problem is important because it is costly and time
consuming to test ideas and evaluate alternate architec-
tural decisions, especially when hardware and software
integration is needed. With computer generations chang-
ing every 2 to 3 years, it is not feasible to evaluate prom-
ising approaches for a fixed environment, but rather the
evaluation requires a “guess” as to the technology and
requirements of the future. Simulation is often a poor
substitute for prototyping because many facets of the
problem may be simplified or overlooked.

REPORT OF THE PURDUE GRAND CHALLENGE WORKSHOP 209

To provide an infrastructure for testing new architec-
tural ideas and alternatives, it is essential for researchers
to have easy access to new commercial computers as well
as powerful prototyping facilities. The former allows
grand challenge applications to be implemented and eval-
uated quickly, while the latter allows new ideas to be
tested and prototyped with a short lead time.

The first goal can be achieved by providing one or more
national facilities in which new commercial architectures
and experimental parallel processing systems can be ac-
cessed. Support by a fast computer network, multimedia
access, technical consultation, and on-line documenta-
tion are essential. Such facilities are currently available
to a certain extent.

The second goal can be achieved by providing national
facilities for testing new architectural ideas. Currently,
such support is provided by MOSIS in the development
of custom chips. However, the concern here goes past
chips and on to full systems. The design and evaluation of
system-level prototypes takes an inordinate amount of
time, especially when it is necessary to integrate hard-
ware and software together. To this end, support of more
powerful hardware and software simulation tools can aid
designers in rapidly developing new prototypes. Soft-
ware tools for such rapid prototyping include the use of a
common parallel programming model and the develop-
ment of portable compiler and operating system modules
so a working software system can be assembled quickly.
In simulating complete systems comprised of both hard-
ware and software, better tools that span the spectrum
from chip-level tim ing analysis to program-level debug-
ging are desirable.

VIII. CONCLUSIONS

The grand challenge application problems are far more
difficult than any problems yet solved by computers.
They require systems of unheralded capability. Such sys-
tems appear to be within reach by the year 2000 at rea-
sonable cost, but only if significant advances are made in
a large number of interrelated areas. Advances in device
technology can supply only some of the improvement.
The remainder has to be provided by architectures, algo-
rithms, matching architectures and algorithms, system
models, and new ideas in structuring systems to meet the
application problem challenges.

Computers for the grand challenge application prob-
lems will necessarily have characteristics not present to-
day, such as advanced visualization, access to geographi-
cally distributed data bases, multigigabyte main
memories, and terabyte-per-second communications
links. These characteristics need to be factored into the
design of architectures to create the hardware and soft-
ware features that can support and exploit them.

This report has discussed some of the grand challenge
problems in computer architecture for the support of high
performance computing. In particular, (1) inventing a
useful and widely accepted idealized parallel computer
model or small set of models; (2) implementing systems
that provide sustained usable peta-ops performance; (3)
designing architectures that provide the capabilities
needed in an era of HDTV, gigabyte networks, and visu-
alization; and (4) creating an infrastructure for the rapid
prototyping of new architectural organizations with the
associated system software.

These problems are presented to the technical commu-
nity as issues in computer architecture that demand fur-
ther study if success is to be achieved in this nation’s
grand challenge applications. The purpose of this report
is to help stimulate some of the research needed to make
high performance computers for the grand challenge ap-
plication problems a practical reality.

ACKNOWLEDGMENTS

The coauthors express their gratitude to Dr. Zeke Zalcstein of NSF
for suggesting the workshop and making it possible. In addition, the
workshop cochairs thank Dr. Zalcstein for his advice in organizing and
focusing the workshop. The cochairs appreciated the efforts of the
following people at Purdue University for their assistance in administer-
ing the workshop and producing the report: their secretaries Mary De-
Bruicker and Carol Edmundson; the technical typists Vicky Spence and
Kitty Cooper; the workshop student assistants James B. Armstrong,
Sameer Gupta, Gene Saghi, and Daniel W. Watson; the financial coor-
dinator Brenda McElhinney; and Continuing Education Administration
Conference Coordinator Susan Umberger. We also thank Pearl Wang
and Gene Saghi for their comments on the manuscript. A summary of
this report was presented at Frontiers ‘92: The Fourth Symposium on
the Frontiers of Massively Parallel Computation, sponsored by the
IEEE Computer Society and NASA, October 1992.

1.

2.

3.

4.

5.

6.

7.

REFERENCES

Fox, E. A. Advances in interactive digital multimedia systems.
Computer 24, 10 (Oct. 1991), 9-21.
Goodman, J. R., Vernon, M. K., and Woest, P. J. Efficient syn-
chronization primitives for large-scale cache-coherent multiproces-
sors. Third International Conference on Architectural Support for
Programming Languages and Operating Systems (ASPLOS-III),
Apr. 1989, pp. 64-75.
Grand Challenges: High Performance Computing and Communi-
cations. Committee on Physical, Mathematical, and Engineering
Sciences, National Science Foundation, 1991.
Hennessy, J. L., and Patterson, D. A. Computer Architecture: A
Quantitative Approach. Morgan Kaufman, San Mateo, CA, 1990,
p. 426.
Hillis, W. D., and Steele, G. L., Jr. Data parallel algorithms.
Comm. ACM 29, 12 (Dec. 1986), 1170-l 183.
Kanal, L., Kumar, V., and Gopalakrishnan, P. S. (Eds.). Parallel
Algorithms for Machine Intelligence and Pattern Recognition,
Springer-Verlag, New York, 1990.
Smith, A. J. Cache memories. Comput. Surveys 14, 3 (Sept. 19821,
473-530.

210 SIEGEL AND ABRAHAM ET AL.

8.

9.

IO.

Snyder, L. Type architecture, shared memory and the corollary of
modest potential. Annual Reu. Comput. Sci. 1 (1986), 289-318.
Streibl, N., Brenner, K.-H., Huang, A., Jahns, J., Jewell, J.,
Lohmann, A. W., Miller, D. A. B., Murdocca, M., Prise, M. E.,
and Sizer, T. Digital optics. Proc. IEEE 77, 12 (Dec. 1989), 1954-
1969.
Tuck, R. An optimally portable SIMD programming language.
Frontiers ‘88: The Second Symposium on the Frontiers of Mas-
sively Parallel Computation, Oct. 1988, pp. 617-624.

HOWARD JAY SIEGEL is a professor and coordinator of the Paral-
lel Processing Laboratory in the School of Electrical Engineering at
Purdue University. He received two B.S. degrees from the Massachu-
setts Institute of Technology, and the M.A., M.S.E., and Ph.D. degrees
from Princeton University. His current research focuses on intercon-
nection networks, heterogeneous computing, and the use and design of
the PASM reconfigurable parallel computer system (a prototype of
which is supporting active experimentation). He is a Fellow of the
IEEE and was a Coeditor-in-Chief of the Journal of Parallel and Dis-
tributed Computing. (Parallel Processing Laboratory, School of Electri-
cal Engineering, 1285 Electrical Engineering Building, Purdue Univer-
sity, West Lafayette, IN 47907-1285)

SETH ABRAHAM is an assistant professor in the School of Electri-
cal Engineering at Purdue University, West Lafayette, IN. He received
the B.S. degree in computer engineering, the M.S. degree in electrical
engineering, and the Ph.D. degree in computer science, all from the
University of Illinois at Urbana-Champaign. His research interests in-
clude interconnection networks and high performance computer archi-
tectures. (Parallel Processing Laboratory, School of Electrical Engi-
neering, 1285 Electrical Engineering Building, Purdue University, West
Lafayette, IN 47907-1285)

WILLIAM L. BAIN is currently developing Block Island Technolo-
gies, a parallel software company. He worked at Bell Laboratories from
1978 to 1981 and at Intel Corporation from 1981 to 1992. He received his
Ph.D. in electrical engineering from Rice University in 1978. His re-
search interests include parallel computer architecture, concurrent pro-
gramming, and parallel simulation. (Block Island Technologies, 15455
NW Greenbrier Parkway, Suite 210, Beaverton, Oregon 97006)

KENNETH E. BATCHER is a professor in the Department of Math-
ematics and Computer Science at Kent State University, Kent, OH. He
received a B.S.E.E. degree from Iowa State University and an M.S.
and Ph.D. from the University of Illinois. His current research focuses
on parallel sorting algorithms, shuffle-exchange networks, and other
interconnection networks. He received the ACM-IEEE Computer So-
ciety Eckert-Mauchly Computer Architecture Award in 1990. (Depart-
ment of Mathematics and Computer Science, Kent State University,
Kent, OH 44242-0001)

THOMAS LEE CASAVANT is an associate professor with the De-
partment of Electrical and Computer Engineering at the University of
Iowa. From 1986 to 1989, he was on the faculty of the School of Electri-
cal Engineering at Purdue University, where he also served as director
of the Parallel Processing Laboratory. He received the B.S. degree in
computer science in 1982, and the M.S. and Ph.D. degrees in electrical
and computer engineering from the University of Iowa in 1983 and 1986,
respectively. His research interests include parallel processing, com-
puter architecture, programming environments for parallel computers,
and performance analysis. He is a member of the IEEE Computer
Society and the ACM. (Department of Electrical and Computer Engi-
neering, University of Iowa, Iowa City, IA 52242)

DOUG DEGROOT is a senior member of the technical staff in the
Advanced Technologies and Components Division of Texas Instru-

ments. He received both a B.S. and a Ph.D. degree from the University
of Texas at Austin. His current activities center on reconfigurable paral-
lel processing architectures, architectural synthesis, and visualization
design and analysis tools. He is coprincipal architect of the TI Tapestry/
Aladdin parallel processor. DeGroot is past chairman of the ACM
SIGARCH, and he is a subject area editor of the Journal of Parallel and
Distributed Computing and an associate editor of the IEEE Transac-
tions on Parallel and Distributed Systems. (Texas Instruments, Ad-
vanced Technologies and Components, 6550 Chase Oaks Boulevard,
MS 8435, Plano, TX 75023)

JACK B. DENNIS is Professor Emeritus in the Department of Elec-
trical Engineering and Computer Science at the Massachusetts Institute
of Technology, where he led a research group in computer system
architecture that developed and refined concepts for dataflow computa-
tion. He has founded a company to develop and market dataflow com-
puters for scientific computation. Professor Dennis earned his under-
graduate and graduate degrees in electrical engineering at MIT. He is a
Fellow of the IEEE and the 1984 recipient of the ACM-IEEE Com-
puter Society Eckert-Mauchly Award for his work in advanced com-
puter architecture. (Massachusetts Institute of Technology, Laboratory
for Computer Science, 545 Technology Square, Cambridge, MA 02139)

DAVID C. DOUGLAS is the leader of the Connection Machine sys-
tem architecture group for Thinking Machines Corporation in Cam-
bridge, MA. He received a B.S.E.E. and an M.S.E.E. from the Massa-
chusetts Institute of Technology, and has contributed to the
architectures of the CM-2 and CM-5 versions of the Connection Ma-
chine. He is currently working on future CM architectures. (Thinking
Machines Corporation, 245 First Street, Cambridge, MA 02142)

TSE-YUN FENG is Binder Professor of Computer Engineering in
the Department of Electrical and Computer Engineering at the Pennsyl-
vania State University. He received his B.S. degree from National
Taiwan University, M.S. degree from Oklahoma State University, and
Ph.D. degree from the University of Michigan. His current research
interests are in the area of parallel and concurrent processing, intercon-
nection networks, and computer architecture. He is a Fellow of the
IEEE and Editor-in-Chief of the IEEE Transactions on Parallel and
Distributed Systems. (Department of Electrical Engineering, 121 Elec-
trical Engineering East, The Pennsylvania State University, University
Park, PA 16802)

JAMES R. GOODMAN is a professor of computer sciences at the
University of Wisconsin at Madison. He received the B.S. degree from
Northwestern University, the M.S.E.E. degree from the University of
Texas at Austin, and the Ph.D. degree from the University of California
at Berkeley. His current research interests focus on high performance
computing, particularly memory systems and synchronization. He is
currently on sabbatical at the Advanced Computer Research Institute
(A.C.R.I.) in Lyons, France. (Department of Computer Sciences, Uni-
versity of Wisconsin at Madison, Madison, WI 53706)

ALAN HUANG is head of the Digital Optics Research Department
at AT&T Bell Laboratories in Holmdel, NJ. He received a B.S. and
MS. in electrical engineering from Cornell University and a Ph.D. from
Stanford University. His research interests have included computer
architecture, VLSI algorithms, and broadband switching networks. His
current interests involve optical digital computing and optical intercon-
nection networks. (AT&T Bell Laboratories, Room 4G-514, Crawfords
Comer Road, Holmdel, NJ 07733)

HARRY F. JORDAN is a professor in the Departments of Electrical
and Computer Engineering and of Computer Science at the University
of Colorado and program manager for digital optical computing at the
Center for Optoelectronic Computing Systems. He received the B.A.
degree from Rice University and the M.S. and Ph.D. from the Univer-
sity of Illinois. His interests in computer systems center on the interface

REPORT OF THE PURDUE GRAND CHALLENGE WORKSHOP 211

between hardware and software with a focus on the application and
performance of multiple instruction stream computers; an interest in
optical computing and its effect on computer architecture has led to his
involvement in a project to build and operate an optical, stored pro-
gram, digital computer. He is a subject area editor of the Journal of
Parallel and Distributed Compuring. (Departments of Electrical and
Computer Engineering and Computer Science, Campus Box 425, Uni-
versity of Colorado, Boulder, CO 80309-0425)

J. ROBERT JUMP is a professor in the Department of Electrical and
Computer Engineering at Rice University. He received the B.S. and
M.S. degrees from the University of Cincinnati and the Ph.D. degree in
computer science from the University of Michigan. His research inter-
ests are in the area of parallel computer architecture with special focus
on interconnection networks and the simulation of parallel systems. He
has served as an associate editor of the IEEE Transactions on Com-
puters and is currently serving as an associate editor of the IEEE Trans-
actions on Parallel and Distributed Systems. (Department of Electrical
Engineering, Rice University, P.O. Box 1892, Houston, TX 77251)

YALE N. PATT is a professor of electrical engineering and computer
science at the University of Michigan, Ann Arbor, where he teaches
graduate and undergraduate courses in computer architecture and di-
rects Ph.D. students in experimental research on the implementation of
high performance computer systems. He received his B.S. from North-
eastern University and M.S. and Ph.D. from Stanford University, all in
electrical engineering. His current research focuses on optimizing con-
currency at the single-instruction stream level (exploiting the HPS para-
digm) and at the tightly coupled multiprocessor level. He is a Fellow of
the IEEE, an associate editor of the IEEE Transactions on Computers,
and a member of the editorial board of Computer magazine. (The Uni-
versity of Michigan, Department of Electrical Engineering and Com-
puter Science, 1101 Beal Avenue, Ann Arbor, MI 48109-21 IO)

ALAN JAY SMITH is a professor of computer science at the Univer-
sity of California at Berkeley. He received his B.S. in electrical engi-
neering from the Massachusetts Institute of Technology and his M.S.
and Ph.D. from Stanford University. His research interests are in com-
puter system performance, particularly memory hierarchies. He is a
Fellow of the IEEE, chairman of the ACM Special Interest Group on
Computer Architecture (1991-1993) was chairman of the ACM Special
Interest Group on Operating Systems (SIGOPS) from 1983-1987, was
on the board of directors of the ACM Special Interest Group on Mea-
surement and Evaluation (SIGMETRICS) from 1985-1989, was an
ACM National Lecturer (1985-1986) and an IEEE Distinguished Visi-
tor (1986-1987), is an associate editor of the ACM Transactions on
Computer Systems (TOCS), a subject area editor of the Journal of
Parallel and Distributed Computing, and is on the editorial board of the
Journal ofMicroprocessors and Microsystems. He was program chair-
man for the Sigmetrics ‘89 / Performance ‘89 Conference and program
cochair for the Second (1990) Hot Chips Conference. (Computer Sci-
ence Division, 573 Evans Hall, University of California at Berkeley,
Berkeley, CA 94720)

JAMES E. SMITH received the B.S., M.S., and Ph.D. degrees from
the University of Illinois. He has been with Cray Research, Inc., in
Chippewa Falls, WI, since June of 1989. At Cray Research, he heads a
small research team that is participating in the development of future
supercomputer architectures. (Gray Research, Inc., 900 Lowater Road,
Chippewa Falls, WI 54729)

LAWRENCE SNYDER is a professor in the Department of Com-
puter Science and Engineering at the University of Washington in Seat-
tle. He was awarded a B.A. in mathematics and economics from the
University of Iowa, and he received his Ph.D. in computer science from
Carnegie-Mellon University. His research interests are parallel com-
puter architecture, including routing and networks, and parallel pro-
gramming languages and environments. He is inventor of the CHiP
architecture and the Poker parallel programming environment, co-
inventor of Chaos routing, a Fellow of the IEEE, and an associate
editor of the IEEE Transactions on Parallel and Distributed Systems.
(Department of Computer Science FR-35, University of Washington,
Seattle, WA 98195)

HAROLD STONE is engaged in computer architecture research at
the IBM T. J. Watson Research Laboratory in Yorktown Heights, NY.
He has been on the faculty at Stanford University and the University of
Massachusetts prior to joining IBM. He received a B.S.E.E. degree
from Princeton University and M.S.E.E. and Ph.D. degrees in electri-
cal engineering from the University of California at Berkeley. He was
elected fellow of the IEEE in 1986, received the IEEE Emanuel R.
Piore Award in 1992 for work in parallel computation, and is an associ-
ate editor of the IEEE Transactions on Parallel and Distributed Sys-
tems. (IBM Thomas J. Watson Research Center, P.O. Box 704,
Yorktown Heights, NY 10598)

RUSS TUCK is systems architect at MasPar Computer Corpora-
tion. He received his B.S., M.S., and Ph.D. in computer science from
Duke University, and did his dissertation research at the University of
North Carolina at Chapel Hill. His research interests include Autono-
mous SIMD (ASIMD) architectures and data parallel languages. His
focus at MasPar is to architect future generations of massively parallel
systems and help bring them into the present. (MasPar Computer Cor-
poration, 749 North Mary Avenue, Sunnyvale, CA 94086)

BENJAMIN W. WAH is a professor in the Department of Electrical
and Computer Engineering and the Computer and Systems Research
Laboratory of the University of Illinois at Urbana-Champaign. He re-
ceived his B.S. in EECS from Columbia University, M.S. degrees from
Columbia University in EECS and the University of California at
Berkeley in CS, and a Ph.D. degree from the University of California at
Berkeley in engineering. He has published extensively in the areas of
computer architecture, parallel processing, artificial intelligence, dis-
tributed databases, and computer networks. He is a Fellow of the
IEEE, is Associate Editor-in-Chief of the IEEE Transactions on Knowl-
edge and Dafa Engineering (Editor-in-Chief, as of January 1993), and
serves on the IEEE Board of Governors. (Computer and Systems Re-
search Laboratory, University of Illinois at Urbana-Champaign, 1308
West Main Street, MC225, Urbana, IL 61801)

