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The “Purdue Workshop on Grand Challenges in Computer 
Architecture for the Support of High Performance Computing” 
was sponsored by the National Science Foundation to identify 
critical research topics in computer architecture as they relate to 
high performance computing. Following a wide-ranging discus- 
sion of the computational characteristics and requirements of the 
grand challenge applications, the workshop identified four major 
computer architecture grand challenges as crucial to advancing 
the state of the art of high performance computation in the coming 
decade. These are: (1) idealized parallel computer models; (2) 
usable peta-ops (1015 ops) performance; (3) computers in an era of 
HDTV, gigabyte networks, and visualization; and (4) infrastruc- 
ture for prototyping architectures. This report overviews some of 
the demands of the grand challenge applications and presents the 
above four grand challenges for computer architecture. Q MZ AM- 

demic Press, Inc. 

I. INTRODUCTION 

A. Origin of the Workshop 

“Grand Challenges: High Performance Computing and 
Communications” is the title of the widely distributed 
“blue book” [3] that describes the United States Federal  
High Performance Computing and  Communicat ions 
(HPCC) program. The  goal of this program is “to acceler- 
ate signifitantly the commercial availability and  utiliza- 
tion of the next generat ion of high performance com- 
puters and  networks.” The  booklet presents a  set of 
“grand chal lenge problems”-applications that need  the 
major gain in processing power that the HPCC initiative 
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is expected to provide. These problems are characterized 
by massive data sets, complex operations, and/or irregu- 
lar data structures that exceed the lim its of current super- 
computers and  programming paradigms. 

However, the blue book does not explicitly explore 
what developments in computer architecture are needed  
to support the grand chal lenge applications. This topic 
arose in discussions between Dr. Zeke Zalcstein of the 
National Science Foundat ion and  Professor H. J. Siegel 
of Purdue University. Dr. Zalcstein felt it was important 
to explore, in a  workshop environment, what the relevant 
key issues in computer architecture are. This report is the 
result. 

“The  Purdue Workshop on  Grand Chal lenges in Com- 
puter Architecture for the Support of High Performance 
Computing” was held at Purdue University on  December 
12  and  13, 1991, to identify critical research topics in 
computer architecture as they relate to high performance 
computing. The  workshop was sponsored by the Com- 
puter Systems Program of the Division of Computer and  
Computat ion Research at the National Science Founda-  
tion and  brought together a  small but diverse group of 
computer architecture researchers. Professors H. J. 
Siegel and  Seth Abraham, both of the School of Electrical 
Engineering at Purdue University, were the workshop 
cochairs, and  Dr. Zeke Zalcstein was the NSF liaison. 

B. The Workshop Charter 

To  fully appreciate the architectural grand chal lenges 
that were the “output” of this meeting, it is instructive to 
keep in m ind the “input” to which the group was re- 
sponding. To  clarify this, the plan for the workshop is 
quoted below from the invitation sent to the participants. 

There is a  desire to advance significantly the state of the art of 
high performance computing. The  grand chal lenges for high per- 
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formance computing have been discussed in terms of the applica- 
tions that can make use of the computing power to be made avail- 
able. The focus of this workshop can be stated succinctly as 
follows: what are the grand challenges facing computer architec- 
ture that must be met to build high performance computers? The 
workshop will focus on the design and construction of the hard- 
ware architecture. While the hardware cannot be considered in 
isolation, application and system software issues are beyond the 
scope of this workshop. This workshop will consider software 
aspects and application characteristics only where there is an im- 
pact on the hardware design. 

The goals of the workshop are to list, characterize, categorize, 
assess the difficulty of, and interrelate these “grand challenges” 
for computer architecture for the support of high performance 
computing. This meeting will indicate the areas of computer archi- 
tecture research that the participants feel are most important and 
should receive the most attention. 

Computer architects from both academia and industry 
were invited to the workshop. Some invitees could not 
attend due to scheduling conflicts. Those who attended 
the workshop are the coauthors of this report. 

While it was recognized that hardware technology and 
software are important considerations and are strongly 
interrelated with architecture, the group’s instructions 
from NSF were to focus mainly on the hardware archi- 
tecture organization. Such a focus was necessary due to 
the limited time duration of the workshop. 

C. The Report 

This report presents four architectural grand chal- 
lenges whose achievements would make significant ad- 
vances towards the goals of high performance computing 
and communication. These four challenges were distilled 
from a great variety of views expressed by individual 
participants and this report is closer to a union of those 
views than an intersection. 

The workshop cochairs have assembled this report 
from draft material contributed by all workshop partici- 
pants. Every attempt has been made to reflect fairly the 
(sometimes conflicting) views expressed, while maintain- 
ing a coherent style. 

Section II of the report establishes the background for 
the group’s selection of grand challenges in computer 
architecture by discussing the demands on architecture 
implied by the U.S. national commitment to supporting 
the solution of the grand challenge problems. The grand 
challenges in computer architecture the group felt were 
most important are stated in Section III. Each challenge 
is developed in one of the following four sections. Sec- 
tion IV notes that the program execution model sup- 
ported by a computer system has a strong influence on 
the performance achievable for applications, and then 
recommends work toward unifying existing models and 
developing more comprehensive models for parallel com- 
putation. Section V points out that all components of a 
computer system must evolve to meet the demand for 

further orders of magnitude improvement in perfor- 
mance, and that special attention is needed to ensure that 
high performance is realizable in practical applications. 
Section VI observes that new developments in computer 
architecture will be needed to support the new communi- 
cation-intensive applications made possible by advancing 
technology. Section VII stresses the need for advanced 
infrastructure tools and software to support the design 
and evaluation of prototypes for new architectures. Sec- 
tion VIII concludes the report. 

This report presents architectural grand challenge 
problems to the technical community as issues in com- 
puter architecture that deserve study. Our hope is to 
stimulate interest in funding and supporting research ef- 
forts to meet the grand challenges of computer architec- 
ture and hasten the day that high performance computers 
for the grand challenge application problems will be a 
practical reality. 

II. GRAND CHALLENGE APPLICATION PROBLEMS AND 
COMPUTER ARCHITECTURE 

A. Grand Challenge Application Problems 

The U.S. Committee on Physical, Mathematical, and 
Engineering Sciences has identified a set of “grand chal- 
lenge problems” that set a goal for the HPCC initiative, 
now funded by the U.S. Congress through several agen- 
cies. The grand challenge application problems concern 
pressing issues of human welfare on planet Earth and 
problems at the exciting frontiers of science that may 
open doors to better living for future generations. 

The blue booklet published by the committee [3] lists 
10 areas as posing “problems whose solution is critical to 
national needs”: 

Climate Modeling Quantum Chromodynamics 
Fluid Turbulence Semiconductor Modeling 
Pollution Dispersion Superconductor Modeling 
Human Genome Combustion Systems 
Ocean Circulation Vision and Cognition. 

It is estimated that a serious attack on any of these prob- 
lems will require computer performance in excess of one 
trillion floating point operations per second (one 
teraflops). 

The grand challenge problems have enormous compu- 
tational requirements. Consider, for example, the prob- 
lem of modeling the weather. In 5 years time, data collec- 
tion facilities will be in place to define detailed 
atmospheric structures and permit significant advances in 
forecasting capabilities. However, today’s most powerful 
supercomputers cannot meet the computational require- 
ments. The goal of improving atmospheric modeling res- 
olution to a 5-km scale and providing timely results is 
believed to require 20 teraflops of performance. 
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B. One Teraflops and Beyond 

Although substantial progress remains to be achieved 
in uniprocessor technology, because of inherent physical 
limitations it is assumed that high performance comput- 
ing will employ parallel systems. The peak performance 
of currently available massively parallel computers of 
practical size and cost is at the level of hundreds of 
gigaflops ( lo9 floating point operations per second). To 
produce practical massively parallel computers having at 
least one teraflops ( lOI floating point operations per sec- 
ond) performance, only engineering effort to fully utilize 
existing, demonstrated technology is needed. These 
teraflops computers can become available in a few years; 
however, there is much debate about whether such ma- 
chines can be produced at a low-enough cost to make 
them commercially viable for a large customer base. Fur- 
thermore, there is a need for environments that will allow 
application programmers to realize a significant fraction 
of such a machine’s peak speed. 

Providing performance significantly beyond teraflops 
will require major innovations in computer hardware ar- 
chitecture, packaging, and device technology. Optical 
technology [9] may offer a breakthrough in performance, 
but it will require a radical rethinking of computer struc- 
ture and how the technology can support appropriate 
models of computation. Of course, cost and usability 
concerns remain. 

Many supporting and related areas must also be devel- 
oped. Improvement is needed in the infrastructure that 
supports the design, prototyping, and construction of ad- 
vanced computer hardware. This is also true for high 
performance peripherals to match the capabilities of the 
processors. Reliability and fault tolerance will become 
increasingly critical issues as high performance machines 
become incorporated into networks, begin to handle 
communications-intensive information processing, and 
satisfy real-time demands. Programmability and usability 
must be facilitated by new programming models and envi- 
ronments. 

C. Effective Use of Potential Performance 

Achieving ever greater levels of peak performance is 
not the only challenge resulting from the goals of high 
performance computing; a significant challenge is to 
make those levels of performance easily accessible to the 
end user. We are living in a new era of computing in 
which the U.S. national laboratories will no longer be the 
dominant users of high performance computation, and it 
is no longer feasible to spend 10 person-years of effort to 
implement an important problem on a supercomputer. In 
contrast to this circumstance, in many situations the 
computational models used with current massively paral- 
lel computers are dismal in comparison to those familiar 

to users of conventional computers and workstations. 
The feeling one senses among some in the community is 
that increased difficulty of programming is a necessary 
price to be paid for the benefits of high performance. One 
of the challenges is to show that this need not be so. 

In the near future, most high performance computing 
will be at the level of 100 megaflops to several gigaflops 
and will be performed by machines assigned to individ- 
uals or small groups of workers, or used in operational 
information/communication systems of business and in- 
dustry. The effective use of large-scale parallel machines 
in these roles requires programming support at least com- 
parable in power and generality to that available on 
present day workstations. The required programmability 
demands the adoption of more general models of compu- 
tation. Development of satisfactory computational 
models for parallel computers that are efficiently sup- 
ported by the hardware is a grand challenge of computer 
architecture. Without support for such computational 
models, the impact of architectural advancements will be 
severely impaired. 

D. Programming for Massively Parallel Computation 

Current programming practice for most massively par- 
allel computers is based on the data parallel model of 
computation [5]. In this model, the principal data struc- 
tures of a problem (usually large data arrays) are parti- 
tioned and assigned to the processors of the machine. It 
is rare to see large-scale parallel computation where hun- 
dreds of processors are performing functionally distinct 
parts of a job (this is sometimes referred to as functional 
parallelism). 

In the case of machines having a distributed memory 
architecture, a data parallel algorithm is expressed as ma- 
chine code that is executed by all processors and the 
necessary communication among processors is imple- 
mented by manually coding explicit message-passing 
commands or by the use of a logically shared address 
space; the former approach is currently prevalent. Com- 
pilers available and under development will automate this 
process by letting the programmer specify data partition- 
ing and by automatically generating the communications 
code for the given data partitioning. 

A widespread misconception is that the two most im- 
portant parts of the high performance field are architec- 
tures and algorithms. However, the interface between 
the architecture and the algorithm is a crucial issue as 
well. The effective programmability of the machine is 
limited by the computational model and how well that 
model is supported by the hardware and software of the 
system, as mentioned in the previous subsection. A ma- 
jor challenge is to move toward architectures that can 
efficiently implement a truly general-purpose parallel 
computation model. Architectures must support environ- 
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ments that facilitate functional parallelism in a massive 
way, as well as data parallelism. 

E. The Goal of General-Purpose Parallel Computation 

General-purpose computation is not well defined. At 
one extreme, the term means simply that one is able to 
perform any algorithm expressed in a complete language. 
At the other extreme, a general-purpose computer is ex- 
pected to be efficient for applications ranging from sci- 
ence and engineering to business and industry. 

Important programmability features that are standard 
for general-purpose workstations are not typically avail- 
able for massively parallel computers. One of these is the 
ability to execute programs much larger than the physical 
main memory of the machine without having to program 
the swapping of information between main memory and 
disk; this is the familiar virtual memory idea implemented 
in all workstations. Another limitation concerns the iink- 
ing of separately compiled programs; there are no stan- 
dards for communicating large partitioned data structures 
between compiled modules. Realizing these features 
within the framework of massively parallel machines is a 
major challenge in computer science-one that is often 
lost amid the concentration on hardware and algorithms. 

Two of the major issues to be addressed are: (1) pro- 
viding a global virtual memory for massively parallel 
computers, and (2) expressing and supporting parallelism 
and the interaction of concurrent activities. The model of 
computation supported by the architecture must have the 
properties necessary to create the desired programming 
environment. A basic approach to the challenge is to 
choose a model of computation that simultaneously 
serves as the specification of an architecture and the tar- 
get language for high-level programs. However, portabil- 
ity of parallel programs is also an important consider- 
ation. 

F. Demands of the New Applications 

The enormous rise in computer performance is making 
qualitative changes in the expectations and interests of 
users. For example, experience with larger computa- 
tional grids and three-dimensional modeling of physical 
phenomena is motivating the use of more sophisticated 
data structures. In weather modeling, more effective 
methods are possible if computing resources are concen- 
trated on unstable portions (e.g., storm systems) of the 
simulated space. However, unstructured grids make effi- 
cient usage of the processors in a parallel machine diffi- 
cult. 7 

Other areas include symbolic manipulation, compiling, 
heuristic search, etc. These types of computation are im- 
portant in image analysis [6] and may be crucial to solv- 
ing the human genome problem [3]. University research 
has shown that these problems often have high levels of 

parallelism. However, as mentioned earlier, these prob- 
lems are characterized by massive data sets, complex 
operations, and/or irregular data structures that exceed 
the limits of current supercomputers and programming 
paradigms. Making massive parallelism readily available 
in an effective and “user-friendly” manner for applica- 
tions involving these characteristics requires the devel- 
opment of new techniques for mapping tasks onto paral- 
lel architectures. 

Finally, the computing technology of the 1990s will 
enable access to vast information sources such as digital 
libraries, visualization images, and multimedia informa- 
tion objects [l]. Future computers must deal with such 
data entities as though they were the simple textual mes- 
sages of today. The challenge is to incorporate into com- 
puters a high capacity to handle and transform these 
data. 

III. GRAND CHALLENGE PROBLEMS IN COMPUTER 
ARCHITECTURE 

A. The Architectural Grand Challenges 

The workshop opened with a wide-ranging discussion 
surrounding the computational characteristics and de- 
mands of the grand challenge application problems. 
From these requirements, the participants translated the 
application-centered grand challenges into grand chal- 
lenges for computer architecture for high performance 
computing. From a lengthy list of challenges, the attend- 
ees selected four primary challenges for presentation: 

(1) idealized parallel computer models, 
(2) usable peta-ops performance, 
(3) support of I/O and intensive communications, and 
(4) infrastructure for prototyping architectures. 

It was recognized that the list from which these four were 
selected was by no means exhaustive, and that these four 
challenges overlapped and interacted. 

This subsection summarizes these grand challenges for 
computer architecture. Sections IV through VII examine 
each problem in more detail and consider approaches for 
attacking them. 

Grand Challenge I: Idealized Parallel Computer 
Models. The model of parallel computation is funda- 
mental to progress in high performance computing be- 
cause the model provides the interface between parallel 
hardware and parallel software. It is the idealization of 
computation that computer architects strive to support 
with the greatest possible performance. The model is the 
specification of the computational engine that language 
and operating systems designers can assume as they seek 
to enhance the power and convenience of parallel ma- 
chines. It is not clear that a single model can fulfill all of 
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the requirements, but it is essential to reduce the multi- 
tude of alternatives to the fewest possible number. There- 
fore, it is important to identify one “universal” or a small 
number of “fundamental” models of parallel computa- 
tion that serve as a natural basis for programming lan- 
guages and that facilitate high performance hardware im- 
plementations. 

Grand Challenge 2: Usable Peta-Ops Performance. 
Grand challenge applications require usable computer 
performance orders of magnitude greater than the giga- 
ops performance available today and the tera-ops perfor- 
mance that may be achieved soon. This computer perfor- 
mance cannot be obtained by simply interconnecting 
massive quantities of existing CPU, memory, and I/O re- 
sources, because the collective overhead associated with 
these interconnected resources can produce a system 
that is unmanageable to program and ineffectively uti- 
lizes its components. The challenge is to (1) dramatically 
improve and (2) effectively harness the base technologies 
impacting processors, memory, and I/O into a computer 
system such that the grand challenge applications pro- 
grammer has easy access to a peta-ops (IOr operations 
per second) of usable processing performance. 

Grand Challenge 3: Computers in an Era of HDTV, 
Gigabyte Networks, and Visualization. Technology 
will be able to support startling new communications- 
intensive applications. For example, concurrent access 
by thousands of people to a digital version of the Library 
of Congress may be within reach in this decade. Digital 
video will enable workstations of the future to treat im- 
ages as easily as characters and words are treated today. 
How can computer architecture and new communica- 
tions technology evolve to facilitate such applications? 

Grand Challenge 4: Infrastructure for Prototyping Ar- 
chitectures. Given that computer generations change 
every 2 to 3 years, new ideas on architecture must be 
evaluated and prototyped quickly. Prototype develop- 
ment involves not only hardware, but also software in the 
form of compilers and operating systems. An infrastruc- 
ture is needed to facilitate the study of the effects of new 
hardware technologies and machine organizations 
against different application requirements. This com- 
puter architecture challenge is to develop sufficient infra- 
structure to allow rapid prototyping of hardware ideas 
and the associated software in a way that permits realistic 
evaluation. 

B. Multidisciplinary Approach 

The architectural grand challenges stated above are in- 
herently multidisciplinary and involve team efforts that 
cross boundaries from software to hardware to applica- 
tions. Early efforts in the development of parallel com- 

puters have shown that their viability and usability is a 
strong function of the supporting software systems. A 
substantial component of effort must be devoted to the 
automation of the software development process to ex- 
ploit the power of the underlying hardware. This includes 
such problem areas as algorithm selection, algorithm op- 
timization, data mapping, and parallelization. In the 
arena of high performance parallel computers, it is more 
important than ever for computer architects to consider 
the issues of system software, application needs, and us- 
ability when designing and implementing machines. 
Computer architects must design systems that will effi- 
ciently support the software tools that will make the sys- 
tems useful; it is a symbiotic relationship that must be 
leveraged to the fullest extent. 

IV. GRAND CHALLENGE 1: IDEALIZED PARALLEL 
COMPUTER MODEL 

This architectural grand challenge is to identify one 
“universal” or a small number of “fundamental” models 
of parallel computation that abstract the essential fea- 
tures of parallel machines. The desired model is an ideal- 
ized parallel computer analogous to the familiar von 
Neumann machine. This idealized machine model must 
characterize those capabilities that are so fundamental to 
parallel computation that all but the most specialized par- 
allel computers can be expected to provide them. The 
abstraction need not imply any structural information, 
but it should capture implicitly the relative costs of paral- 
lel computation. 

A parallel computation model differs from the von 
Neumann model in the ways parallel computing differs 
from serial computing, e.g., having multiple processors 
and a communications structure. Implementation details 
such as the number of processors and the interprocessor 
communications structure are unimportant except to the 
extent to which they affect performance. The challenge 
of constructing such a model is to be “precise enough” 
about performance without being “too explicit” about 
the implementation details. 

This challenge is one of the most widely discussed top- 
ics in parallel architecture circles. The need for a parallel 
model characterizing the capabilities and costs of parallel 
computers has long been recognized [8, IO]. Such a 
model is essential for computer architects, software de- 
velopers, and algorithms designers. 

For parallel computer architects, the model should de- 
fine those capabilities that are critical to parallel compu- 
tation and should execute as fast as possible in any paral- 
lel computer design. Enhancing these basic features (as 
caches have enhanced memory references for the von 
Neumann model) then becomes the focus of computer 
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engineering and architecture research. The hardware 
must support the parallel computation model in a cost- 
effective way by dealing with practical design constraints 
including packaging, available commodity parts, stan- 
dard buses and protocols, and many other technological 
considerations. These considerations lead to the use of 
multiple highly integrated processors, memory hierar- 
chies, and physically and/or logically distributed memo- 
ries. Some implementations may even provide a physical 
structure that is quite different from the logical model. 
Thus, the model must have practical hardware realiza- 
tions, but not dictate specifics of those realizations. The 
goal of computer architecture research will continue to 
be what it has always been: finding hardware realizations 
that perform the computations of the model faster. 

For software developers, the model will specify those 
facilities that can be assumed in the underlying parallel 
computers. Languages and compilers can target this ide- 
alized machine model and then be specialized to any par- 
ticular hardware platform, as is done for portable compil- 
ers for sequential machines. The model must be capable 
of providing information about the relative costs of paral- 
lel computations. This is essential so that language de- 
signers can judge the efficiency of the likely implementa- 
tions of their language constructs, and compiler writers 
can develop efficient execution-time virtual machines. 
The model must be capable of supporting a wide range of 
high-level programming structures. Moreover, it should 
permit program specification with a minimum of explicit 
synchronization. With such a model as a guideline, it 
should be possible to develop efficient and portable paral- 
lel programming systems. 

Finally, for algorithm designers and programmers, this 
fundamental model of parallel computation will provide 
the basis for program development and accurate algo- 
rithm analysis, as well as providing the foundation for a 
realistic theory of parallel algorithms. To do so, the 
model must provide meaningful information on the rela- 
tive costs of computation, communication, and synchro- 
nization. It must also provide a basis for useful feedback 
of performance and debugging information to the pro- 
grammer. The model, therefore, is the foundation on 
which efficient algorithms and programs can be devel- 
oped. 

The properties described above are goals. A model can 
be useful even if it does not achieve all of them. Never- 
theless, they serve as a yardstick by which proposed 
computation models can be judged. 

Developing a model to meet the above specifications 
will be a challenge. However, with the understanding of 
parallel computers, algorithms, and languages expand- 
ing, the prospects for creating an ideal model of parallel 
computation improve. The obvious approaches have ad- 
vantages and disadvantages. 

1. Existing model: There is no existing model of paral- 
lel computation that satisfies the conditions above; for 
example, the well-known PRAM model does not capture 
communication costs. There does not appear to be an 
existing model that is generally applicable, provides the 
necessary information, and is practically realizable. 

2. New model: Discovering an entirely new model of 
parallel computation is perhaps the most ambitious solu- 
tion to the problem. It is not only difficult to fulfill the 
above goals, such as building a physical realization, but it 
appears that feedback and experience are needed to cor- 
rect and enhance a model. Starting from first principles is 
difficult and success is perhaps unlikely. However, due 
to limitations of existing models, this may be a worth- 
while pursuit for the adventurous. 

3. Evolution: Perhaps the most productive approach 
would be to revise an existing model to resolve its inade- 
quacies. This adaptation, for example, might add struc- 
ture-specifying capabilities to the shared memory model 
or assistance for barrier synchronization in a message- 
passing model [2, 81. It may also involve combining fea- 
tures of different existing models. The ideal is not likely 
to be developed simply by going down the list of goals 
and adding features to the model to achieve each goal. 
Rather, a more satisfactory solution may be derived from 
the combination of an existing model and an enhance- 
ment that is tightly integrated to the other features of the 
model. 

Among the challenges in formulating an idealized 
model of parallel computation and having it be widely 
accepted is the need to balance generality and specificity. 
The model must be sufficiently abstract so as not to limit 
the creativity of machine designers. However, as previ- 
ously stated, to be useful to software developers and al- 
gorithm designers, it must provide realistic information 
on the relative costs of computation, communication, 
and synchronization. At a certain level, the von 
Neumann model has managed to strike this balance for 
sequential computation. Though the parallel case is more 
complicated, achieving a balance is certainly possible in 
principle. 

In summary, this computer architecture challenge is to 
formulate a model of parallel computation that abstracts 
the operational features and the costs of parallel compu- 
tation. This should be approached in a way that will serve 
as a target for architects to implement and the foundation 
on which software developers and programmers can 
build. 

V. GRAND CHALLENGE 2: USABLE PETA-OPS 
PERFORMANCE 

This architectural grand challenge is to dramatically 
improve and effectively harness the base technologies 
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into a future computer system that will provide usable 
peta-ops of computer performance to grand challenge ap- 
plication programmers. Meeting this challenge may re- 
quire research leading to the realization of each of the 
following: (1) a uniprocessor whose microarchitecture 
alone will provide, transparent to the software, a factor 
of 10 improvement in performance over what is feasible 
today; (2) a scalable, logically shared-memory parallel 
processing system node that will provide a seamless ad- 
dress space that will include a programmer-friendly con- 
nection to its I/O subsystem; (3) a massive interconnec- 
tion of these system nodes that will not be severely 
degraded by communication software; (4) modularity of 
design that will allow advances in base technologies such 
as optical interconnects and semiconductor physics to be 
reflected in improved system performance without re- 
quiring massive changes to the rest of the computing par- 
adigm; (5) massive improvements in available memory 
bandwidth and effective utilization of that bandwidth; (6) 
built-in hardware fault tolerance that will allow function- 
ing of this massively concurrent hardware in the presence 
of the faults that one can expect will usually be present; 
and (7) cost-effectiveness that will enable a successful 
commercialization of the hardware. 

Each of these components is important to the goal of 
providing usable peta-ops performance. The current state 
of processor, memory, and I/O technology lacks these 
components: uniprocessors do not exploit available in- 
struction stream parallelism; shared-memory multipro- 
cessors do not scale; address-space partitioning of the 
memory hierarchy and I/O space introduces translation 
overhead resulting in execution-time inefficiencies and 
difficulty in programming and debugging; exposure of un- 
derlying hardware idiosyncrasies adversely affect intro- 
duction of new base technologies such as optical links 
and new semiconductor devices; usable bandwidth is 
only a fraction of the peak bandwidth available; latency 
in information transfer adversely affects throughput; etc. 
A more complete discussion of the importance of each 
component problem is contained in this section, along 
with a brief discussion of approaches to solving that prob- 
lem. If these component challenges can be met, it will be 
possible to have future computer systems consisting of 
integrated processors, memory, and I/O subsystems that 
provide peta-ops of usable computer performance to 
grand challenge applications programmers. 

Ten different component problems that need to be ad- 
dressed to achieve usable peta-ops performance were 
identified. Not all participants in the workshop agreed on 
the method of approach for dealing with each compo- 
nent, or even (more fundamentally) on the relative impor- 
tance of addressing each component. Nonetheless, with 
this disclaimer of nonconsensus, listed below are ap- 
proaches to several components of this grand challenge, 

along with expanded discussions of the importance of 
each. 

1. Optimal uniprocessors: The uniprocessor executes 
the single instruction stream produced by the compiler. If 
it can exploit the existing parallelism present in the in- 
struction stream with its microarchitecture, the perfor- 
mance it would obtain would be transparent to the soft- 
ware. It is expected that a factor of 10 improvement in 
performance can be realized at this level of the execution 
hierarchy. 

Most important is to start with a clean sheet of paper 
and not be concerned with existing software investment 
and the constraints that compatibility imposes. Under- 
standably, this is not easy to undertake in an industrial 
environment. But it may be critical to undertake to 
achieve peta-ops performance. 

Second, one must understand the division of labor be- 
tween what the compiler can provide and what the execu- 
tion-time hardware should provide. This division should 
take into account dramatic increases in hardware capabil- 
ity that will be available in the next few years, for exam- 
ple, 10 to 30 million transistors on a chip and optical 
interconnects. One should design with these technologies 
in mind. 

One should understand the capabilities and limitations 
of compiler technology, and should use these in deter- 
mining how best to utilize the hardware resources in de- 
signing the microarchitecture of the uniprocessor. The 
computational characteristics of the codes in expected 
workloads should also be considered. Choices with re- 
spect to superscalar, superpipelined, VLIW, depth of 
pipelining, degree of branch prediction, and additional 
hardware assists (such as a branch target cache) must be 
made in light of both semiconductor capability and com- 
piler technology. 

2. Scalable parallel processing system nodes: One ele- 
ment of a peta-ops machine is the scalable logically 
shared memory parallel processing system node. In this 
context, scalable implies that the node may be used effec- 
tively in massively parallel systems that have a shared 
address space and provide usable peta-ops performance. 
It is the architectural element for which future compilers 
will be required to generate optimized code. The devel- 
opment of a logically shared memory parallel processing 
system requires substantive awareness of the capabilities 
of compilers and operating systems and the detailed un- 
derstanding of the individual uniprocessors, as well as 
knowledge of the basic issues indigenous to parallel pro- 
cessing itself, such as interconnection structures, cache 
consistency protocols, and synchronization mechanisms. 

The goal is to integrate the system design with com- 
piler optimization technology to provide performance 
that is a significant fraction of N x P, where N is the 
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number of processors and P is the power of a component 
uniprocessor. This means that the aggregate power grows 
with the number of processors, and that the power that 
can be applied to a single process also scales similarly 
with the number of processors. 

3. I/O subsystems: As processor speeds continue to 
improve dramatically and memory sizes (and to a lesser 
extent, memory access times) continue to improve, the 
bottleneck to a balanced high performance computing 
system increasingly becomes the I/O subsystem. I/O 
subsystems should be designed to accommodate the fol- 
lowing features. They should be usable by applications 
and by most of the operating system with little or no 
knowledge of device technology or low-level interfaces. 
The actual interfaces implemented should permit perfor- 
mance close to that available from the raw hardware, 
with high levels of parallelism. Once they are defined, 
these interfaces should not be changed over time without 
significant reason so that investments in applications and 
operating system software are maintained. The interfaces 
should implement default parameters which give good 
performance over a wide variety of workloads and tech- 
nologies (e.g., block sizes). Interfaces should support the 
use of I/O devices as part of a uniform memory address 
space. References to I/O devices should be independent 
of the topology of the overall system and of how and 
where the I/O devices are connected. I/O devices should 
be designed to incorporate modern VLSI technology to 
the maximum extent possible so as to improve perfor- 
mance and reliability. 

4. Uniform address space: Grand challenge applica- 
tions will deal with large amounts of data (e.g., large data 
bases, extremely large data sets, HDTV video images). 
Some mechanism for addressing these data must be de- 
veloped. 

Considerable time and effort are required to manage 
the memory system. To the extent that the architectural 
design gives a memory hierarchy of low average access 
time and high average bandwidth without significant ex- 
plicit programmer effort, software development is greatly 
facilitated, and the generality of the software (with re- 
spect to system configuration across sites and across 
time) is greatly enhanced. 

One approach is to design a technology transparent 
memory hierarchy providing a very large address space 
that automatically provides, with high probability, very 
low mean access time and high bandwidth. The memory 
system should be logically sharable among large numbers 
of processors. This sharing should provide a consistency 
model. The memory should be scalable to a large number 
of processors without bottlenecks or loss of perfor- 
mance. It should be able to integrate I/O devices and 
devices at remote systems into the address space. 

5. Technology evolution: Technological evolution is 

enhanced by hiding the detailed knowledge of underlying 
hardware idiosyncrasies so as to facilitate the introduc- 
tion of new technologies. Current high performance com- 
puting engines are designed on the basis of connectivity 
and serial bandwidth on the order of hundreds of connec- 
tions and megabits/second, and chip densities on the or- 
der of 2 to 3 million transistors/chip. Architectural design 
methods will change dramatically when (in the next few 
years) optical links provide thousands of connections and 
gigabits/second bandwidth, and semiconductor technol- 
ogy provides chip densities of 10 to 30 million transistors/ 
chip. 

One approach to managing the evolution is, to the ex- 
tent possible, partition and modularize the design. Also, 
drive the implementation details to the low-level hard- 
ware structures, while retaining at the module intercon- 
nection level as high a level of abstraction as possible. 

6. Memory bandwidth and access time: The actual 
performance of processors is strongly influenced (and 
limited) by the ability of the memory system to provide 
instructions and operands, and to accept results. Unfor- 
tunately, while processor performance has been grow- 
ing at a rate of 50 to 100% per year for the last 7 
years, DRAM performance (measured in access time) 
has been growing at a rate of only 7% per year [4]. This 
exponentially growing disparity in need versus supply 
of memory performance provides a grand challenge to 
architects. 

Memory bandwidth can be increased by addressing (1) 
individual DRAM device bandwidth, using techniques 
such as adding more pins (at approximately the same 
package cost), employing multi-chip modules that add 
signal wires in some other form, and implementing block 
mode data transfers; (2) processor-to-memory intercon- 
nect, e.g., reexamining the partitioning of processors and 
DRAMS vis-a-vis the same chip, same memory control 
unit, etc.; and (3) inserting supporting computational ca- 
pabilities directly into the memory architecture. Memory 
access time can be reduced by improved caching tech- 
niques and improved cache designs [71. Because proces- 
sor cycle times have been reduced faster than memory 
access time and bandwidth have improved, this issue 
continues to deserve attention. 

7. Software component of communications latency: 
As processor speed and network bandwidth continue to 
improve, communications latency has not kept pace. 
This is because the latency for short messages is domi- 
nated by software overhead. If massively parallel sys- 
tems are to maintain and improve their computation/ 
communication ratios (which fundamentally determine 
the speedup of an application), then communications la- 
tency must be aggressively reduced. These improve- 
ments will also enable the exploitation of finer grain pro- 
gramming models than are practical today. 
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Hardware techniques for implementing software proto- 
cols for message passing need to be developed. These 
techniques should seek to eliminate operating system 
overhead at the sending/receiving ends, while maintain- 
ing system protection. They should implement the neces- 
sary protocols to form messages, inject these messages 
into the network, and remove them at the receiving end. 
They should also deal with retransmissions and other re- 
liability issues. 

8. Fault tolerance: To achieve peta-ops of perfor- 
mance, parallelism should be exploited at all levels. This 
includes a massive number of nodes. Without substantial 
built-in fault tolerance, the mean time between failures 
will decrease rapidly as the number (and complexity) of 
the components increases. Maintaining acceptable sys- 
tem availability will become a major concern. 

Research is needed to analyze the failure modes and 
rates for massively parallel systems. Architectural tech- 
niques are needed to detect, isolate, and recover from 
failures while minimizing the need to terminate applica- 
tions and/or restart the system. These techniques will 
impact node and network designs, as well as operating 
systems. For example, adaptive routing techniques are 
required to deal with failures in the interconnection net- 
work. Error detection and reporting techniques are 
needed to propagate failure information to unaffected 
nodes. Efficient checkpointing schemes must be devel- 
oped to allow the rollback recovery of affected applica- 
tions (which may be sending messages). 

9. Reducing latency: Reducing or hiding latency 
makes the problem-solving speed depend primarily on 
the bandwidth of system components. However, it is eas- 
ier to increase bandwidth than to reduce latency when 
scaling large systems suitable for grand challenge prob- 
lems. Several mechanisms can be invoked to reduce la- 
tency, including optimal use of caches, multiplexing the 
execution of multiple threads, pipelining macro opera- 
tions, multiprogramming, parallelism (asynchronous) of 
computation and I/O, and facilitating process and data 
migration. 

10. Cost-effectiveness: An obstacle to building peta- 
ops/petaflops systems lies in improving the cost-effec- 
tiveness of existing architectural approaches. This is re- 
quired to reduce the cost of such systems to a level that 
makes them affordable to build. 

Meeting this challenge requires making substantial pro- 
gress in the following areas: memory bandwidth and ac- 
cess time, communication bandwidth and latency (either 
explicit or implicit, as in the case of memory being 
treated as a single global address space), I/O bandwidth 
and latency, processing power, and high-density packag- 
ing. Each involves dramatically improving a critical as- 
pect of performance with minimal change in subsystem 
cost. 

VI. GRAND CHALLENGE 3: COMPUTERS IN AN ERA OF 
HDTV, GIGABYTE NETWORKS, AND VISUALIZATION 

The combination of computing and communications 
technology in the 1990s will enable access to vast infor- 
mation sources such as digital libraries, images, visual- 
ization of physical processes, and interactive multimedia. 
For example, just as today’s processors manipulate indi- 
vidual characters, the processors of the year 2000 will 
manipulate images. How can computer architecture and 
new communications technology evolve to enable such 
applications? 

The enabling technology for communications-intensive 
computing exists today in primitive form and will evolve 
rapidly in the next decade. This technology includes 
high-bandwidth networking, high-definition imaging, new 
compression/decompression techniques, gigaflops arith- 
metic, and high-density memory devices. The potential 
applications can bring a dramatic change in the way we 
live and work. The digital library provides easy and inex- 
pensive access to information sources on a scale never 
before achieved. Scientific visualization builds physical 
understanding of complex phenomena and enables scien- 
tists to solve problems orders of magnitude more difficult 
than can be solved with conventional use of computers. 
Communications can be enhanced by combining voice, 
animated images, and text where formerly there was only 
voice or text in isolation, and, only in recent years, video 
to some extent. 

The applications addressed by this architectural grand 
challenge are those in which a major portion of the com- 
puter power is devoted to the processing of high-band- 
width streams of data. Such computers will attach to gi- 
gabyte networks and high-definition displays to provide a 
means for viewing and sharing the massive pools of data 
that can be processed at one site. 

In recent years, there have been both evolutionary and 
revolutionary advances in base technology. Evolutionary 
advances in memory devices have lowered the cost per 
bit and greatly increased capacity. Similar evolutionary 
advances exist in processing, communications, and stor- 
age of all types. Revolutionary advances are bringing 
quantum leaps in communications and storage. Examples 
are the application of optical transmission to long- 
distance networks and optical storage for write-once per- 
manent data storage. 

Needs for proposed applications, such as concurrent 
access to national databases and interactive HDTV visu- 
alization, are beyond the reach of the most aggressive 
existing systems. These applications require improve- 
ments in all aspects of system bandwidth, processing 
power, memory capabilities, and storage far in excess of 
today’s systems. Furthermore, these applications have 
strict cost thresholds that must be met to make them 
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practical to pursue. Applications for high performance 
computing that have yet to be conceived will further 
stretch the bounds of performance and cost. 

The computer architecture challenge is to apply tech- 
nology advances to the applications in new and innova- 
tive ways that produce results unachievable in the past. 
Revolutionary improvements can come from the innova- 
tive application of evolutionary technologies to existing 
applications. 

The approach to this grand challenge will be through 
the selection of high priority problems to be addressed. 
Then, research efforts devoted to these priority areas will 
be used to solve fundamental problems, demonstrate the 
art, and create the market for commercialization of the 
technology. The following list of problems serves as an 
indication of the potential directions of this architectural 
grand challenge. 

1. Highly concurrent access to huge, centralized data- 
bases such as to a digitally stored Library of Congress: 
This can be approached with a combination of high-speed 
communications, advances in data-base organization, 
and new means for incorporating high-speed processing 
capability into a database system. Such processing might 
be in the form of intelligent memory subsystems or in 
dedicated coprocessors. A possible objective is to shift 
the processing load from central processors to special- 
ized units to increase performance and to lower system 
cost. The system must also support the high-speed trans- 
fer of digital images, multimedia, hypermedia, and hyper- 
text. 

2. HDTV interactive video: This may require the in- 
corporation of specialized communications and buffering 
components with coprocessors, such as digital signal pro- 
cessors, to produce the required processing and I/O rates 
for high-definition video. The HDTV interface can trans- 
form a workstation into a video phone in which electronic 
mail or real-time conversations can take place using mul- 
timedia: TV image, text, voice, computer generated 
graphics, and synthesized sound. Documents and infor- 
mation sources can be created as a combination of such 
sources. Consider, for example, creating video images 
for a high-definition display that may contain 2 million 
pixels per image. Images will be transmitted in some 
compressed form that might require as much as hundreds 
or thousands of floating-point operations per pixel to re- 
construct. Because 30 or 60 frames are required each 
second, the data processing requirements alone exceed 
several gigaflops. Additionally, moving such vast 
amounts of data through the system rapidly will prove 
challenging. Given that such computing capability must 
find its way into cost-effective consumer products as well 
as the scientific computing arena, the architectural chal- 
lenges are formidable. 

3. Large transaction systems: Managing this problem 

will involve the use of new technologies for data net- 
works, distributed transaction storage, and a means for 
accessing and updating a shared, distributed data base. 
This enables the largest commercial and government 
computer users to provide centralized services on a scale 
never before achieved. The research should investigate 
special techniques for communications, journaling and 
logging, recovery, and consistency control that are suit- 
able for large-scale transactions systems. 

4. Advanced interactive design systems that produce 
“instant” design samples through modeling in plastic or 
through holographic imaging: These systems require in- 
ternal communications designed for very high band- 
width, and special high performance attachment to me- 
chanical and video peripherals. Special needs include 
processing power sufficient to manipulate detailed 3D 
representations of objects. 

5. Virtual reality: This research area requires the mer- 
ger of new sensor technology with new 3D graphics, 
video processing, and multimedia techniques to create 
new levels of virtual world fidelity. Applications include 
design visualization of such objects as automobiles, air- 
craft, buildings, and the human anatomy. 

6. Portable high performance computers for on-site 
processing in special situations: This research requires 
special packaging techniques plus advanced technology 
for low power consumption and cooling to reduce the 
size and weight of high performance systems. Typical 
applications are environments where data reduction has 
to be done at the site of data collection, and are exempli- 
fied by seismic applications and space-borne applica- 
tions. 

VII. GRAND CHALLENGE 4: INFRASTRUCTURE FOR 
PROTOTYPING ARCHITECTURES 

A grand challenge in the development of new architec- 
tural ideas is the testing of architectural alternatives and 
their interactions with software, technology, and applica- 
tions. The design of computer systems not only involves 
simulation tools and hardware prototyping facilities, but 
also requires compilers, operating systems, and applica- 
tion programs that execute on the hardware. Thus, rapid 
prototyping tools must include facilities for hardware and 
software integration. 

The problem is important because it is costly and time 
consuming to test ideas and evaluate alternate architec- 
tural decisions, especially when hardware and software 
integration is needed. With computer generations chang- 
ing every 2 to 3 years, it is not feasible to evaluate prom- 
ising approaches for a fixed environment, but rather the 
evaluation requires a “guess” as to the technology and 
requirements of the future. Simulation is often a poor 
substitute for prototyping because many facets of the 
problem may be simplified or overlooked. 
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To provide an infrastructure for testing new architec- 
tural ideas and alternatives, it is essential for researchers 
to have easy access to new commercial computers as well 
as powerful prototyping facilities. The former allows 
grand challenge applications to be implemented and eval- 
uated quickly, while the latter allows new ideas to be 
tested and prototyped with a short lead time. 

The first goal can be achieved by providing one or more 
national facilities in which new commercial architectures 
and experimental parallel processing systems can be ac- 
cessed. Support by a fast computer network, multimedia 
access, technical consultation, and on-line documenta- 
tion are essential. Such facilities are currently available 
to a certain extent. 

The second goal can be achieved by providing national 
facilities for testing new architectural ideas. Currently, 
such support is provided by MOSIS in the development 
of custom chips. However, the concern here goes past 
chips and on to full systems. The design and evaluation of 
system-level prototypes takes an inordinate amount of 
time, especially when it is necessary to integrate hard- 
ware and software together. To this end, support of more 
powerful hardware and software simulation tools can aid 
designers in rapidly developing new prototypes. Soft- 
ware tools for such rapid prototyping include the use of a 
common parallel programming model and the develop- 
ment of portable compiler and operating system modules 
so a working software system can be assembled quickly. 
In simulating complete systems comprised of both hard- 
ware and software, better tools that span the spectrum 
from chip-level tim ing analysis to program-level debug- 
ging are desirable. 

VIII. CONCLUSIONS 

The grand challenge application problems are far more 
difficult than any problems yet solved by computers. 
They require systems of unheralded capability. Such sys- 
tems appear to be within reach by the year 2000 at rea- 
sonable cost, but only if significant advances are made in 
a large number of interrelated areas. Advances in device 
technology can supply only some of the improvement. 
The remainder has to be provided by architectures, algo- 
rithms, matching architectures and algorithms, system 
models, and new ideas in structuring systems to meet the 
application problem challenges. 

Computers for the grand challenge application prob- 
lems will necessarily have characteristics not present to- 
day, such as advanced visualization, access to geographi- 
cally distributed data bases, multigigabyte main 
memories, and terabyte-per-second communications 
links. These characteristics need to be factored into the 
design of architectures to create the hardware and soft- 
ware features that can support and exploit them. 

This report has discussed some of the grand challenge 
problems in computer architecture for the support of high 
performance computing. In particular, (1) inventing a 
useful and widely accepted idealized parallel computer 
model or small set of models; (2) implementing systems 
that provide sustained usable peta-ops performance; (3) 
designing architectures that provide the capabilities 
needed in an era of HDTV, gigabyte networks, and visu- 
alization; and (4) creating an infrastructure for the rapid 
prototyping of new architectural organizations with the 
associated system software. 

These problems are presented to the technical commu- 
nity as issues in computer architecture that demand fur- 
ther study if success is to be achieved in this nation’s 
grand challenge applications. The purpose of this report 
is to help stimulate some of the research needed to make 
high performance computers for the grand challenge ap- 
plication problems a practical reality. 
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