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A method is proposed for direct mapping of spectral density functions of the rotational 
motions of H-X bond vectors, such as ‘H-“N, by measuring a set of NMR relaxation 
parameters. The well known and frequently measured relaxation parameters T, and T, 
probe the spectral density function J(o) at five frequencies: 0, WN, wn, in - wN, and wu 
t wN. In this study, the longitudinal relaxation time T,( N,), the transverse relaxation 
times of in-phase coherence, T,( N,,Y), and of antiphase coherence, T2( 2H,N,,Y), the re- 
laxation time of longitudinal two-spin order, T,(2H,N,), and the heteronuclear cross- 
relaxation rate bnN are measured for the heteronucleus N. These five relaxation parameters 
sample the spectral density function J(w) at the same five points where each measurement 
samples a subset of these frequencies with different weights. The five measurements permit 
an analytical calculation of J( w ) at these five frequencies. Since longitudinal proton re- 
laxation plays a role in these relaxation parameters, a sixth measurement is necessary to 
determine this relaxation time. The theory and experimental techniques for measuring 
these relaxation parameters are discussed. Preliminary results of these techniques as applied 
to the 15N-enriched protein eglin care described. The proposed approach has the advantage 
that it does not rely on any a priori model assumptions about the shape of J(w); i.e., 
measurement of J(w) and interpretation can be separated. 0 1992 Academic PWS, 1~. 

Heteronuclear NMR relaxation times probe the motions of XH bonds (e.g., 13C- 
‘H, “N- ‘H) in proteins through their dependence on the spectral density functions 
belonging to these bonds. The form of the spectral density functions, J(w), are de- 
termined by the fluctuations of the XH bonds with respect to the external magnetic 
field. Thus, the problem of characterizing the dynamics of the XH bond vectors reduces 
to the problem of characterizing the spectral densities. Current relaxation studies of 
proteins typically measure several parameters (e.g., T1, T2, and NOE) for the backbone 
“N and 13C nuclei (Z-5). While the measured relaxation rates are a function of J(w) 
at specific frequencies, they cannot determine what these values are (vide infra) . Thus, 
the spectral densities cannot be characterized experimentally using these measurements 
alone, and functional forms for J( w ) prescribed by theoretical models of motion must 
be used for further analysis. Most commonly used are the “wobbling-in-a-cone” model 
[see, for example, Woessner et al. (6), Kinoshita et al. ( 7), Richarz et al. (8) or the 
so-called “model-free approach” of Lipari and Szabo ( 9)]. Woessner’s “wobbling-in- 
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a-cone” model dominated the relaxation time research until 1982, while the Lipari 
and Szabo model has had this function for the last decade. Both approaches make an 
a priori assumption about a simple functional form of J(w), depending on some 
parameters, such as an overall rotational correlation time, TV, and order parameter, 
S*, a cone opening angle, and so on. The experimentally measured relaxation times 
are then used to fit the parameters of the model. Recently, more extensive sets of 
relaxation parameters have become available due to “N and 13C labeling and because 
of -the resolution in heteronuclear 2D experiments that have become available for 
measuring relaxation parameters ( 1, 3). The newly available data have shown that 
the simple Lipari and Szabo approach (9) cannot completely describe the relaxation 
data in proteins (4). Therefore, the model can be extended to fit the experimental 
data with more parameters (4) or alternative routes must be sought. 

Here, we describe a more direct approach in which the spectral density functions 
are evaluated at select frequencies independent of a motional model. This is achieved 
by measuring a sufficient number of heteronuclear relaxation parameters, which include 
not only T1 values and NOES, but additional parameters, such as the relaxation rate 
of longitudinal two-spin order and separate transverse relaxation rates of in-phase and 
ant:iphase coherence. The approach facilitates a better comparison with theoretical 
moldels of motion, since it is the spectral densities themselves that are being compared. 
In what follows, we employ the principal results of the semiclassical relaxation theory, 
which expresses relaxation rates in terms of the spectral density functions. The fun- 
damental principles of the semiclassical theory are given in a number of texts (IO- 
12), and detailed discussions concerning the theory of relaxation processes in terms 
of spectral density functions have been given in previous studies by Bain and Lynden- 
Bell (13), We&low and Grant (14), and Vold and Vold ( 1.5). We first highlight 
theye results and then use them to discuss the dynamical information content of various 
heteronuclear NMR relaxation parameters and how they may be used to obtain explicit 
values of J( w ). Finally, we present results of this method as applied to a uniformly 
“N-enriched protein, eglin c. 

THEORETICAL ASPECTS 

Principal results from the semiclassical relaxation theory. We use a nomenclature 
convenient for the discussion of heteronuclear 15N relaxation studies in proteins. In 
what follows, N refers to an “N spin, and HN refers to its directly bound amide proton. 
All other protons are denoted H’. Relaxation parameters are designated by Robs(Q), 
where “obs” refers to the type of nucleus, or nuclei, whose relaxation rates are being 
probed (either H, N, or both), and Q refers to the spin operator(s) relevant to the 
relaxation process. For example, the spin-lattice relaxation rate of a 15N nucleus is 
denoted RN( N,), and the heteronuclear cross-relaxation rate is RN( H? + N,). Al- 
though our discussion will be in the context of 15N relaxation, the results are also 
applicable for the relaxation processes in other heteronuclear XH systems, such as 
directly bonded 13C- ‘H spin pairs. 

VVe denote the perturbing Hamiltonian responsible for the relaxation of the spin 
system by V(t). In general, a variety of interactions may contribute to the net relaxation. 
Accordingly, we express V(t) as the sum 
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where each V,(t) can be expressed in the interaction frame (10-12) as 

X exp[i(pug + (4 - p)~$)t]s,kT:-~. [2] 

Here, we have written the perturbing Hamiltonian in the spherical basis using the 
Wigner 3-J symbols ( 16). The index k in Eq. [I] sums over the possible interactions 
causing relaxation of the spin system. These may include the dipole-dipole and chem- 
ical-shift anisotropy (CSA) interactions provided the latter is described by an axially 
symmetric shielding tensor. To illustrate, k would run from 1 to 3 in a system of three 
nonequivalent spins to account for the three distinct dipole-dipole interactions. If one 
of these spins had significant anisotropy in its chemical-shift shielding tensor, the 
upper limit of k would then extend to 4. Ak is a physical constant which depends on 
the specific nature of interaction k. As an example, for the dipolar interaction between 
the N and HN spins this constant is 37&&i 2/r 3 NAN, where ~NHN is the internuclear 
distance between N and H N. 

The spin degrees of freedom are contained in the Sf: and T&, operators, which are 
the spherical components of the two interacting vector operators specified by the kth 
relaxation mechanism. For the dipole-dipole interaction, Sz and TtP are spin op- 
erators of the interacting nuclei. For the CSA interaction, we can take Ttp to be a 
spin operator of the nucleus with anisotropic shielding. Sj: then represents the com- 
ponents of the static external field, in which case q runs only from - 1 to 1 since p is 
restricted to 0. The laboratory spatial degrees of freedom are contained in the 
Z0$$)[ f&,( t)] terms, which are elements of the Wigner rotation matrices and are pro- 
portional to the second-order spherical harmonics. The fikb(t) symbol denotes the 
polar angles ok(t) , &(t) of the symmetry axis belonging to the kth interaction tensor. 

Thus, the a)$:)[ n&,(t)] terms are simply trigonometric functions which describe the 
axis’ orientation with respect to the laboratory magnetic field ( 17). For the dipole- 
dipole interaction, this axis is the vector connecting the two nuclei in the interacting 
spin pair. For the CSA interaction it is the symmetry axis of the shielding tensor. 

From the semiclassical relaxation theory ( 10-12), the relaxation of spin order ( Q), 
associated with the spin operator Q, is described by a first-order differential equation. 
In this context, “spin order” includes longitudinal and transverse magnetization (e.g., 
N,, NX,Y), as well as antiphase coherences, longitudinal multispin orders (e.g., 
2HyN,), and more general p-quantum coherences (p # 1). When using the term 
spin order, we follow the convention used by Ernst et al. ( 12 ) . If we use the form of 
the perturbing Hamiltonian given in Eqs. [l] - [ 31, we obtain for d( Q)/dt ( 10-12) 

dt (W’) (q=-2,r=-1) 

+ (4 - I441 
1 1 22 1 Tr{ [Sk;TiLq, [s,“T$-,, Qll(a - a,,)>. [31 
P 4-p -4 
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The traces of the products of the double commutator [Sk’T,k&, [ SiTi-,, Q]] with 
the spin density operator, u, represent macroscopic spin orders. These will consist of 
(Q) itself, and possibly other distinct spin orders. The relaxation rate of(Q) is given 
by its own net coefficient; the coefficients of any other spin orders are then cross- 
relaxation rates. Again, for the CSA interaction, the index P is restricted to 0, and, 
therefore, q runs only from - 1 to 1. 

From a protein dynamics perspective, the salient feature of Eq. [ 31 is that the 
relaxation rate of(Q) depends on the generalized spectral density functions, Jkkt( w ) . 
In particular, Jkk~( w) is the Fourier cosine transform ( 10) 

s 

a 
J)&‘(W) = 2 cos(w~)G~~‘(~)d~, 

0 

where Gkkt( T) is a time-correlation function given by 

G/&T) = (~$‘*[%A~ + WQ~‘,~[%d~)l). [51 

When k = k’, Gkkt( 7) becomes an autocorrelation function and describes the rotational 
diffusion of axis k alone. This case is appropriate for studying the motion of an NH N 
bond, when the NHN dipole-dipole interactions (and possibly the chemical-shift an- 
isotropy of the 15N) are considered dominant. In the case that k f k’, Gkkj(7) is a 
cross-correlation function describing the decay of correlations between the k and k’ 
tensor axes during a time T, resulting from their respective rotational diffusions. Ex- 
amples include correlations between distinct dipole-dipole vectors and between a 
dipole-dipole vector and a CSA symmetry axis. In both cases, one spin must be shared 
between the two vectors or axes (18). In what follows, we consider only those cross 
correlations between the NHN dipole-dipole vectors (i.e., the NHN bond vector) and 
their associated 15N CSA symmetry axes. It has been demonstrated that the effects of 
these cross correlations on the relaxation kinetics can be significant, especially for 
I%- ‘H spin systems in peptide bonds ( 19-22). Therefore, the total sum over k and 
k’ in Eq. [ 31 should include both a sum over autocorrelations (k = k’) for all relevant 
dipole-dipole vectors and shielding tensor symmetry axes and a sum over cross cor- 
relations (k # k’) for all pairs of dipole-dipole vectors and shielding tensor symmetry 
axes that share a common 15N nucleus. However, anticipating the experimental section, 
the use of recently developed pulse schemes can effectively suppress the effects of these 
cross correlations (20, 21). To this end, we can consider only the autocorrelation 
terms in Eq. [ 31, and the fluctuations of the various vectors and symmetry axes are 
approximated as independent. Equation [ 31 also shows that the relaxation rate of 
(Q) actually depends on a weighted sum of J&(w) evaluated at the transition fre- 
quencies [ PLW$ -t (q - P)W $1, of the spin system, as opposed to Jkk( w) directly. Thus, 
a smgle NMR relaxation rate does not “sweep” the spectral density functions; rather, 
it samples them at various places along the w axis. To summarize, the time-correlation 
functions of Eq. [ 51 contain all of the dynamical information concerning the rotational 
fluctuations of various internuclear vectors or tensor symmetry axes within the protein. 
Th’e spectral density functions depicted in Eq. [ 41 are simply frequency representations 
of these time-correlation functions. As such, they act as spectrum analyzers by providing 
the frequency distributions for the fluctuations of the aforementioned vectors and 
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axes. This, then, is how molecular dynamics information is stored in the relaxation 
rate of spin order ( Q) given in Eq. [ 3 J. 

Relaxation rates of spin orders in an NHN spin system. We now consider specific 
cases of Q in Eq. [ 3 J , corresponding to specific Cartesian operator products (22) of 
an NHN spin system. For Q = N, and N,,+ we obtain the familiar expressions for 
1 / Ti , 1/ T2, and cross-relaxation rate applicable to a particular 15N nucleus ( IO). 
These are given respectively as 

RN(N,) = y2;;2 (.&OHN - ON) + 34‘0,) 

A2W2 
+ 6J(wnN + UN)} + 9 J(mN) J6J 

RN(N,,,) = ‘tzih2 {4J(0) + J(6,Hi-d - UN) + 3J(wN) + 6J(k&N) 
NHN 

A’& 2 
+ ~J(COHN + CON)} + --j--- 

1 
-jJ(o)+tJ(w~) [7J 

I 

RN(HF + N,) = ’ t:,iNh 2 { 6J( @HN + UN) - J( WffN - UN) > . [8J 

In the above expressions, the operative mechanisms of relaxation are the dipole- 
dipole interactions between the N spins and their directly bound protons ( HN spins), 
as well as the CSA interaction between the N spins and the external field. J( w ) is the 
spectral density function belonging to the autocorrelation function of a particular 
NHN bond. Thus, the k indices are dropped from Eq. [ 4 J; rNHN is the internuclear 
distance between the N and HN, and A is the chemical-shift anisotropy of the N spin. 
Note that the presumed axial symmetry of the “N shielding tensor conveniently allows 
the same J(w) to be used for the dipolar and CSA contributions ( 17). The steady- 
state heteronuclear NOE is related to the NHN cross-relaxation rate, RN( Hf + N,), 
and RN( N,) through the familiar relation ( 10) 

NOE = 1 + YH RN(@ + Nz) 

YN RN(N,) ' 
[9J 

The relaxation behavior of two-spin orders is also of interest. Various aspects of 
two-spin-order relaxation have been investigated in the literature (2.3-27). Here, our 
focus is on the dynamical information available from these relaxation processes. The 
appropriate rate expressions are given directly by Eq. J3 J. In particular, for Q = 
2HFN, and 2HFNX,Y, one finds 

R,,(2H:N,) = ‘yrE” 2 { 3=f(aN) + 3J(%N)) + 
A2W2 
-f AWN)+ PHNH’ [lOI 

RNH(2H;&,) = r;:Wh2 (4J(0) + J(WHN - %) 
NHN 

+ 3J(0N) + 6J(~m+ + UN)) + - J(0) + i J(wN) -I- pW%i, 
I 

[ill 
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where PHNHI is the sum of rates 

+ j.&N~i(k$fN) + ~&NHI(WHN + WH’)}. [12] 

RIYH( 2HyN,) is the relaxation rate for longitudinal two-spin order 2HFN, (28)) and 
R,,,n(2H~NXs) is the corresponding rate for antiphase transverse coherence, 
2HFNX,Y. The relaxation rates for pure zero- and two-quantum coherences can also 
be similarly obtained. The PHNHI term given in Eqs. [lo] - [ 121 is simply the net spin- 
lattice relaxation rate of a given HN proton, due to other protons, H’. It consists of 
spectral density functions Ju~ni( o), which describe the motions of the vectors joining 
various HN-H i proton spin pairs. They are not to be confused with J( w ), which is 
associated with fluctuations of a particular NHN bond vector. The presence of the 
&NH’ term in Eqs. [ lo]-[ 1 l] reveals that 2HFN, and 2H?N,,Y will be relaxed addi- 
tionally by dipolar interactions between HN spin and other proton spins H’. In par- 
ticular, these interactions induce HN spin flips that tend to destroy the specific cor- 
re!lations of the HN and N spin states defined by these two-spin orders. As a conse- 
quence, one expects antiphase coherence to relax faster than in-phase coherence (24 
27). Similarly, 2HFN, is expected to relax faster than N,. In 15N-enriched proteins, 
the H N-H ‘relaxation will arise from dipole-dipole interactions between the amide 
proton and other spatially close protons such as the intraresidue Ha protons, or other 
amide protons bound to different “N nuclei. An analogous case can be made for two- 
spin magnetizations involving a 13Ca and its directly bonded proton. The relaxation 
rates of zero- and two-quantum coherences would include a term analogous to 
pn NH’, which would essentially be the HN transverse relaxation rate due to the proton 
dilpolar relaxation. Dipole-dipole interactions between the N and Hi spins are ignored 
in the RNH( 2HyN,) and RNH( 2HyNX,Y) expressions in Eq. [lo] and [ 1 I], since these 
interactions are negligible in practice (29). This is reasonable, given that the Hi spin 
is not bonded to the N spin, and that the dipolar interaction varies with the inverse 
sixth power of the internuclear distance. 

Quantification of the rates given in Eqs. [ 6]- [ 8 1, [lo], and [ 1 l] assumes that the 
associated spin orders Q relax independently and in a monoexponential fashion. How- 
ever, the presence of any cross-relaxation pathways will couple the relaxation kinetics 
of the different spin orders Q, resulting in complex multiexponential decays. Conse- 
quently, it is highly desirable to suppress these cross-relaxation pathways during the 
relaxation experiments, in order to achieve monoexponential behavior as closely as 
possible. For example, as first shown by Solomon (30), the relaxation of nonequilib- 
rium N, magnetization is generally expected to be biexponential under the heteronu- 
clear NHN dipole-dipole interaction. To help enforce a monoexponential decay, the 
attached HN spins are saturated during the relaxation period (vide infra). Another 
example is the aforementioned dipolar-CSA cross-correlation effect, which causes 
cross relaxation between the one-spin and two-spin orders Q. This includes cross 
relaxation between N, and 2H YN, , as well as between NX,Y and 2H ,” NX,Y. These cross- 
relaxation pathways are a manifestation of the uneven relaxation rates of the two 
components constituting the 15N doublet ( 19-21). They can be suppressed using the 
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methods of Boyd et al. (20) for longitudinal relaxation measurements, and Palmer et 
al. (22), for transverse measurements. Finally, cross relaxation between 2HyN, and 
2HfN, and between 2HyN,,, and 2HiN,,Y can, in principal, occur as a result of the 
homonuclear proton-proton dipolar interactions. These NH ’ magnetizations represent 
spin-state correlations between an N spin and a nonbonded proton spin (e.g., between 
an amide 15N nucleus and the intraresidue Ca proton). These spins lack the heter- 
onuclear one-bond scalar coupling, J NH. As a result, these contributions are not re- 
focused in the 2D relaxation experiments discussed below and are not detected. More- 
over, since the NH i magnetizations are initially zero (their value at thermodynamic 
equilibrium) in an NMR pulse sequence and remain much smaller than the NHN 
magnetizations throughout the experiment, their influence on the two-spin relaxation 
rates can be ignored here to a first approximation. 

Thus far, we have discussed relaxation rates native to the laboratory-spin frame. 
Anticipating what follows, it is useful here to discuss relaxation rates in a rotating 
frame as well. Here, we refer to a spin frame that rotates at angular frequency wRF, 
specified by a radiofrequency field applied only to the N spins. Such an RF field could 
be realized by a low-power spin lock. We take the RF field to have a magnitude 
denoted by wl. For spin locking, wI /2~ will typically be restricted to the kilohertz 
frequency range. In the rotating spin frame, the N spins “see” an effective magnetic 
field along a new axis z’, tilted from the laboratory z axis by an angle p and having a 
magnitude of w,. If we denote the offset of the RF frequency wRF from the N spin 
resonance frequency by 6, then w, is given by m In the on-resonance case, w, 
= wr and the effective field is tilted 90” from the laboratory z axis. A relaxation rate 
equation similar to Eq. [ 31 can be written for the various spin orders Q, belonging to 
the rotating frame. This is done conveniently through an interaction representation 
which introduces a tilted, doubly rotating frame for the N spins and retains the more 
familiar rotating frame for the HN spins (10, 31, 32). Since only the N-spin operators 
are described relative to the tilted axes, only they will be decorated with a “p” subscript. 
Here, we consider the cases of Qp = N,,? and 2H FN,,!. N,,! is associated with the 
component of N-spin magnetization along the effective field. For /3 = a/2, N,,? is 
equivalent to the ordinary in-phase NX,Y coherence seen in the laboratory frame. The 
relaxation rate of Npzr is the heteronuclear 1 / T,, . Continuing with our “R” nomen- 
clature, we denote this rate as RN( N,,r) . In terms of the spectral densities, we have 

RN(Npzt) = r~~‘h2 [ 4 sin*(@J(w,) 
NHN 

+ 2 sin4 
1 0 

f J( P WHN - WN + w,) + COST 2 J(wHN - WN - w,) 
0 1 

w,-o.)+os~(~)J~~N+~~~] 

-I- 3 Sh2~[J(WHN + w,) + J(oHN - w,)] 

WHN + WN + We) + sin 
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As seen above, the effect of the RF field is to alter the spectral density sampling 
frequencies from w to w f w,, for 0 = 0, UN, WnN, &$iN - UN, and wnN + UN. Since 
the nonzero w values are in the megahertz range, the w + w, sidebands represent 
deviations on the order of 0.1% from w. Thus, these sidebands represent only miniscule 
excursions away from w, when the megahertz “resolution” afforded by ON, WnN, 
~13~ - wN, and WHN + WN is considered. A more in-depth discussion regarding RN(N,,t) 
is given elsewhere (33). The antiphase counterpart to N,,! is 2HyN,,f. This product 
operator implies that if the H N spin is parallel (antiparallel) to the static field, then N 
is parallel (antiparallel) to the effective field. In the on-resonance limit, 2HyN,,, is 
merely the 90” tilted representation of 2HyNX,Y. As with the previous two-spin orders, 
211~N,,~ will also enjoy the effects of the HN spin relaxation. Accordingly, the rate is 
given by 

R,,(2H;&) = ‘;;zkh2 [ 4 sin2(P)J(&) + sin’(fl)J(WnN - wN) 
NHN 

+ 6 sin4 
[ 0 

f J( W~J-W~)+COS~(~)J(WN+W~)] 

+ 6 COS2(p)J(w~~) + 6 sin’(@)J(wHN + WN) 
I 

sin2(P)J(we) + sin4 
1 0 

f J( ON - we) 

+ cos4( $J(o, + we)]) + PHNHl. 1141 

E,quations [ 131 and [ 141 simplify considerably in the on-resonance limit when /3 ap- 
proaches a/2. If we make the approximation that J( w + w,) QS J(w) for a given w, 
then RN(N,,r) and RNn(2HyN,,t) reduce to RN(Nx,Y) and RNH( 2HyNX,Y), respec- 
tively, in the on-resonance limit. This can be seen by comparing Eq. [ 71 with Eq. [ 131 
for the case of RN(Npzf) and Eq. [l l] with Eq. [ 141 for the case of RNn(2HyN,,r). 
This approximation requires that J(w) vary slowly for small deviations on the order 
ofw, (= lo3 rad/s), the neighborhood ofa specific w (x lo6 rad/s). For our purposes, 
we need only worry about this approximation for w # 0. This is discussed in more 
detail in the following sections. 

Use of the relaxation rates to calculate spectral density samplings. Collectively, the 
rate expressions in Eqs. [ 6]- [ 8 1, [lo], and [ 111 evaluate J( w ) at five frequencies, 
including 0, WN, WHN, WHN - WN, and WHN + w N. Thus, in principle, we have available 
for each NHN bond vector five samplings of its individual spectral density function. 
The sampling properties of the relaxation rates are schematized in Fig. 1. As stated, 
p:resent relaxation studies of proteins measure RN( N,), RN( NX,Y), and NOE values 
for individual backbone “N or 13C nuclei. However, these three parameters constitute 
only three equations for five unknowns: J(O), J( WN), J( WHN), J( WHN - wN), and 
J( WHN -I- WN). Hence, they are intrinsically incapable of determining the spectral 
density at any of the sampling frequencies that they introduce. In essence, by measuring 
only three parameters, we are missing potentially valuable information about J(W) . 
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FIG. 1. Schematic representation of the samplings of J( w ) by the six relaxation parameters. These parameters 
include: (i) spin-lattice relaxation rate, RN( N,), for the heteronucleus N, (ii) in-phase transverse relaxation 
rate, R,(Nx,y), for the heteronucleus N, (iii) antiphase transverse relaxation rate, RNH( 2H$N,,r); (iv) 
relaxation rate for longitudinal two-spin order, RNH( ZHFN,); (v) spin-lattice relaxation rate, RH( Hy), for 
the HN proton; and (vi) heteronuclear cross-relaxation rate, RN( Hr --t N,) The heavy circles indicate the 
sampling points of each relaxation rate denoted on the left. The weight for each sampling is indicated above 
the circles in accordance with Eq. [ 161 in the text. The “+p Nan?’ term indicates that the parameter also 
contains terms relating to proton-proton dipolar relaxation between a particular heteronuclear proton HN 
and other protons H’. 

Note that the use of different field strengths will not reduce the number of unknowns. 
Since the spectral density samplings remain undetermined, motional models must 
immediately be introduced if there is to be further analysis of the relaxation data. 
These models make assumptions about the dynamics of the NHN bond and then 
introduce spectral densities composed of adjustable parameters to describe the pur- 
ported motions. Thus, the very act of relating the observed relaxation times to the 
spectral density functions biases the dynamical analysis toward the basic assumptions 
of the motional model. If the model is quite complex, then one may be tempted to 
make exotic dynamical interpretations unjustified by the actual amount of information 
present in the relaxation data. In contrast, if the model is overly cautious, overinter- 
pretation of the data is avoided, but one loses specific information about the bond 
dynamics. In either case, the information obtained can be misleading. 
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The situation is improved if the J(w) samplings can be determined directly by 
experimental means. This is possible if we exploit the information contained in the 
relaxation rates of both one- and two-spin relaxation measurements. For example, 
one could measure RNH( 2HyN,) and RNH(2HyNx,y) values, in addition to the more 
customary RN( N,), RN( NX,Y), and NOE values. In principle, any pair of two-spin 
relaxation rates could be used, including the zero- and two-quantum coherence re- 
laxation rates. Here, we focus on the use of antiphase coherence and longitudinal two- 
spin-order relaxation rates since these are more easily measured in practice. Once the 
selection of two-spin relaxation parameters has been made, we can define a complete 
set of relaxation parameters capable of determining J( w ) at specific frequencies without 
recourse to a motional model. In particular, the rate expressions in Eqs. [ 6]- [ 8 1, 
[lo], and [ 1 I] can be considered a system of linear algebraic equations with six un- 
knowns: J( 0), J( ON), J( OHN), J( WHN - UN), J( WHN + UN), and &NHI. Note that for 
a given NHN bond, the pHNHi term can be treated as a single unknown, since it is 
composed of spectral densities different from J(w) . To solve for these unknowns, we 
must measure six relaxation parameters. It can be verified that relaxation rates in Eqs. 
[ 6]- [ 8 1, [ lo], and [ 1 l] are already linearly independent in the samplings. Thus, a 
sixth independent relaxation parameter is required. The spin-lattice relaxation rates 
for the HN spins can fulfill this need. For a given HN spin, this rate is 

R,(H?) = WHN - WN) + 3J(W,N) + 6J(+N + UN)} + PHNHI, [I51 

where the first three terms account for the effects of the NH N dipolar relaxation. Thus, 
these six relaxation rates allow us to determine J( w ) at five frequencies. This is seen 
if we cast the problem in matrix algebra formalism below as 

R,(Nz) - 

RN(Nx,Y) 

= 

0 d 3d+c 0 6d O- 

6d+2c d 3d+c 
3 2 

___ 
2 

3d 3d 0 

6d+2c d 3d+c o 3d 1 
3 2 2 

0 0 3d-bc 3d 0 1 

0 d 0 3d 6d 1 

0 -d 0 0 6d 0 

40) - 

J(wHN-wN) 

J(wN) 

J(WHN) 

J(‘dHh. + ‘dN) 

PHNH~ 

[I61 

whered= y&ykft2/4r6 NAN, and c = A 2w &/ 3. The right-hand column vector consists 
of the unknown J( w ) samplings to be solved for. The left-hand vector consists of the 
six relaxation rates obtained from 2D NMR experiments. Thus, for a given NHN 
bond, one multiplies the vector of relaxation rates by the inverse of the matrix above 
to obtain the desired values of the spectral density function. In fact, it is straightforward 
to invert the matrix in Eq. [ 161 to yield the analytical solutions 
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J(O) =;j& I - ; RN(N,) + RNN,,) + ;RNHVH%,~) 

- ;R,,(2H?Nz) - ;Rn(H:) [17] 

J(w”N - wN) = $ + {RN(N,) - R&2H,NN,) 

+R&C'>--MH,N--z)) [If41 

J(WN) = - ; & {RN(N) + &,(2H:~z) - RH<H!> > [I91 

4q.p) = ; ; { -RN(N,) + 2MNx,,) - %wCW%x,y) 

+RNH(~HW,) +R,W:)) [201 

+ Rn(Hy) + ~RN(H~ + N,)}. [21] 

The contribution of exclusively proton dipolar interactions to the amide proton spin- 
lattice relaxation rate is given by 

+ $&,(2H;N,)+ &(Hy)}. [22] 

For a CSA value of A = - 160 ppm (34) and an internuclear “N-‘H bond distance .a 
ofrNHN= 1.02A(35),theconstantscanddbecome~1.3X 10gand0.9X 10g(rad/ 
s ) * , respectively. 

Since the J(w) values can now be determined at a given field strength, it becomes 
useful to perform identical measurements at different field strengths to expand the 
number of sampling points. If 12 fields are used, then we obtain potentially (4n + 1) 
unique determinations of J( w ). The result is an actual mapping of J( w ), independent 
of any motional models for the NHN bond vectors. Direct comparison between the 
experimentally determined and theoretical spectral density functions becomes feasible. 
The physical relevance of a given model can now be assessed on the basis of its ability 
to reproduce the values of J( w ) at the specified frequencies. This kind of assessment 
is not possible with three-parameter measurements in general, which fail to define 
J(w) at even one frequency. 

PULSE SEQUENCES FOR MEASURING RELAXATION PARAMETERS 

Two-dimensional heteronuclear pulse sequences for measuring the six relaxation 
rates are shown in Figs. 2a-2f. Some of these sequences, or similar versions have 
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a ‘H 
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FIG. 2. Two-dimensional heteronuclear pulse sequences for measuring the six relaxation parameters dis- 
cur;sed in the text. The upper trace indicates proton pulses while the lower trace indicates heteronucleus (N- 
spin) pulses. To compensate for relaxation losses, A/2 is customarily set to be slightly less than 1 /4JNH, 
i.e. , ~2.3 ms. The minimum phase cycle for all sequences is eight steps with the receiver phase alternating 
as tx, -x, -x, +x, -x, +x, +x, -x. Pulse phases are illustrated above the pulses themselves according 
to ,the following key: (Y = +x, -x; p = fy, -y; y = +x, +x, -x, -x; 6 = +y, +y, -y, -y; c = 4(+x), 
4(--x); # = 4( +,I), 4(-y). For those sequences using the spin lock, the TPPI phase modulation is done 
on the first 90”N pulse following the t, period. Otherwise, the TPPI phasing occurs before the t, period. (a) 
RN( N,) pulse sequence using a double-INEPT strategy. The minimum 7 length should allow for both long 
ptiises (X 1 ms each) to be executed prior to the train of 90” pulses. The 90”N pulse just prior to the 7 
period is cycled as # = +y, -y, -y, +y. (b) Heteronuclear cross-relaxation (NOE) sequence for measuring 
R,,(Hy + NJ. (c) R,(Nx,y) sequence. Typical spin-lock strengths are 2.5 to 3 kHz. The spin lock consists 
of contiguous 180” pulses on N with alternating phases +x. Hard proton 180” pulses are regularly interspersed 
aftl:r an even number of contiguous N pulses. (d) RNH( 2HyN,) pulse sequence for measuring the relaxation 
rate of longitudinal two-spin order, or “zz” magnetization. (e) RNH( 2HyNX,y) pulse sequence for measuring 
the decay of antiphase coherence. The spin lock is the same as that in sequence (c) but with only a single 
proton 180” hard pulse in the center of the relaxation delay. (f) N-spin-relayed NOESY sequence for 
measuring spin-lattice relaxation rates Rn(Hy) for the HN protons. 
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FIG. 2-Continued 

already been given in the literature (I-5, 20, 21). In all cases, a variable relaxation 
delay is incorporated into a double- or single-INEPT-type (36) inverse-detected het- 
eronuclear correlation sequence. One-spin relaxation rates [RN ( N,) and RN ( Nx,y)] 
can also be measured by using a double-DEPT strategy ( 1, 37). Sign discrimination 
in F, can be achieved with TPPI phase modulation ( 38). In contrast to ’ 3C studies, 
solvent suppression is a major concern in “N relaxation measurements. Initial pre- 
saturation of the solvent line can be used if the solution conditions prohibit rapid 
hydrogen exchange. If this is not possible, then techniques such as the long pulse 
methods of Messerle et al. (39) can be used. In these methods, long ‘H pulses are 
used to spoil magnetizations not associated with the NHN spin system prior to t2 
detection. Specifically, the phases of these long pulses are parallel to those of the 
desired coherences and are orthogonal to the undesired coherences (i.e., solvent). The 
undesired coherences are destroyed by the applied RF field inhomogeneity. The pulses 
have a maximum length of a couple of milliseconds and use no attenuation. They 
can be applied when the magnetization consists of proton antiphase coherence (e.g., 
2HE, N,) during the reverse INEPT, or just prior to detection. We now discuss specific 
aspects of the 2D sequences in turn. 

(i) RN(Nz) and R,(HF --f NJ measurements. The spin-lattice relaxation rates of 
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the: N spins, RN( N,), can be measured with the sequence shown in Fig. 2a. The N- 
spin magnetization is inverted for the variable delay 7 after a refocused INEPT. Note 
tha,t the refocused INEPT forces a nonequilibrium condition of zero H y magnetization 
by rotating the proton spins onto the transverse plane. If no additional pulses are 
applied during the T delay, immediate cross relaxation, due to the heteronuclear dipolar 
interaction, will ensue between the Hy and N, magnetizations, resulting in a biex- 
ponential recovery of N, (30). The rate of recovery will then depend on both the 
spin-lattice relaxation rate RN( N,) and the cross-relaxation rate RN( H 2 + N,) . Thus, 
subsequent attempts to equate the recovery rate to RN( N,) will have some error. The 
severity of error introduced will depend on the relative magnitudes of RN( Hr + NZ) 
to RN( N,), which is essentially a measure of the heteronuclear NOE. If RN( Hy --) 
N,) is much smaller than the spin-lattice relaxation rate, RN( N,), then this error will 
be insignificant. This may be the case for rigid NHN bonds in a larger proteins which 
tumble more slowly in solution (i.e., overall rotational correlation times 2 10 ns). 
However, if the bonds experience significant internal mobility, then cross-relaxation 
efiects cannot be ignored. Since these are the cases of interest, it is generally desirable 
to suppress the cross-relaxation effects throughout the relaxation period. As stated 
ab’ove, this is achieved by saturating the protons during the T delay as shown in Fig. 
2a. The saturation is maintained by a combination of long pulses ( = 1 ms) followed 
by a train of hard 90” proton pulses. The saturation effectively reduces the longitudinal 
magnetization kinetics from those of a two-spin system to those of a one-spin system 
insofar as the heteronuclear dipolar interaction is concerned. The proton saturation 
also suppresses the aforementioned dipolar-CSA cross-correlation effects. In particular, 
the cross relaxation to longitudinal two-spin order, 2H?N, is suppressed since the 
proton saturation forces 2HFN, to zero. This essentially follows the technique of Boyd 
et ~1. (20), who used proton broadband decoupling to achieve saturation of the attached 
protons. Thus, cross-relaxation pathways stemming from both the heteronuclear dipolar 
NHN interaction and the dipolar-CSA cross correlation are suppressed in the pulse 
sequence in Fig. 2a; therefore, N, magnetization recovers monoexponentially at the 
rate RN(NZ), until it reaches the steady-state heteronuclear NOE intensity. Clearly, 
the same considerations for applying the proton saturation hold when the double- 
DEPT strategy is used. 

The sequence for measuring the heteronuclear cross-relaxation rates RN( H; --* 
NJ and NOE intensities is shown in the pulse sequence in Fig. 2b. The protons are 
saturated in the same manner as in the RN( N,) experiment in Fig. 2a for progressively 
longer times T. Thus, the N, magnetization begins at the equilibrium Zeeman value 
fo:r 7 = 0 and reaches the steady-state heteronuclear NOE value for long 7. As a result, 
the initial slope of N, with respect to 7 is proportional to RN( H F + N,). Alternatively, 
the RN( H? + N,) rates can be obtained with the steady-state NOE intensities and 
the RN( N,) values using Eq. [ 91. In principle, only the T = 0 and 7 = cc spectra are 
necessary to obtain the NOE intensities. However, a series of spectra should still be 
acquired for these 7 values to get an estimate for the error in the recorded NOE values. 
This is important if the NOE values are small. 

(ii) R,(N,,) measurements. Figure 2c shows a sequence for measuring the in- 
phase transverse relaxation rates, RN( N,,y). The sequence uses a low-power spin-lock 
consisting of contiguous phase-alternating 180” pulses to maintain transverse N, mag- 
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netization for the relaxation delay 7. Adopting procedures analogous to that of Palmer 
et al. (21)) hard 180” pulses on the attached H N protons are periodically inserted 
between fixed lengths of spin locking. The spin lock not only suppresses “fan out” of 
the N, coherence arising from inhomogeneities in the static field, but also prevents 
the oscillation between in-phase coherence and antiphase 2HFN, coherence (27). 
Erroneously fast RN( NX,Y) rates will be recorded if significant antiphase coherence is 
allowed to develop during the 7 period. As seen in Eq. [ 1 I], antiphase coherence 
relaxes considerably faster than its in-phase counterpart due to proton-proton dipolar 
relaxation. The PHNH~ term given in Eq. [ 121 expresses this effect. Consequently, a 
significant fraction of the in-phase coherence that evolves into antiphase coherence is 
irreversibly lost. In our experience with 15N relaxation, failure to compensate for these 
effects can produce apparent RN(N,,,) values which are faster than those obtained 
with a spin lock by as much as twofold. This is discussed in more detail elsewhere 
(27, 33). In contrast, erroneously long RN( NX,Y) values will be recorded if the effects 
of the dipolar-CSA cross correlation are left unchecked. The cross-correlation errors 
can be effectively removed by the method of Palmer et al. (21)) which applies hard 
180’ pulses to the amide HN protons after every even echo of a CPMG (40,41) pulse 
train on the N spins. In the spin-lock version of this experiment shown in Fig. 2c, the 
180” proton pulses occur after a set number of even, phase-alternating, and contiguous 
180” 15N pulses constituting a low-power spin lock on the order of 3 ms. No significant 
in-phase and antiphase evolution of the N spins is expected to take place during the 
proton 180” pulse ( x 17 ps). Rigorously, the sequence in Fig. 2c measures the afore- 
mentioned spin-lattice relaxation rate in the rotating frame, RN(Np,r), given in Eq. 
[ 131. As stated, if the spin lock is sufficiently on resonance for all N spins and if J( w 
*Lo,) = J( o ) , then RN( N,,,t) is identical to RN( NX,Y) ( 2 7). In our amide 15N relaxation 
studies of the protease inhibitor eglin c (M, = 8 111, 70 residues), the amide 15N 
resonances are completely contained within a spectral width of 1200 Hz at a field of 
11.7 T. Under a 2.5 kHz spin lock, this results in tip angles of 77” at k600 Hz. Since 
the leading term of RN(NpZf) varies as sin’(p), where ,f3 is the tip angle, the spin lock 
can be reasonably approximated as on resonance for all cross peaks within the spectral 
width. For significantly wider spectral widths, the relaxation rates can be measured 
with different spin-lock carrier positions such that the desired spectral range is covered 
with minimal off-resonance errors. The applicability of the approximation J( w ? w,) 
= J( w ) can be checked by measuring the relaxation rates as a function of the spin- 
lock field strength. In particular, our preliminary studies on eglin c show that relaxation 
rates exhibit no significant variation as the spin-lock strength is varied from 3 kHz 
down to 700 Hz for the on-resonance cross peaks. Therefore, the identification of 
RN ( N,, r) with RN ( NX,Y) appears reasonable in this case. Note that we need worry only 
about the approximation J( o f 0,) = J( w ) for w # 0. A significant difference between 
J( w,) and J( 0) is quite tolerable since no additional unknowns are introduced. J( w,) 
simply replaces J(0) as the lowest frequency spectral density sampling to be solved 
for. One can also use the CPMG pulse train to measure RN(Nx,y) and avoid this 
concern altogether. However, the spacing between consecutive 180” refocusing pulses 
must be much smaller than 1 /2JNH (5.5 ms for the case of “N- ‘H one-bond coupling). 
If this cannot be achieved, then erroneously fast relaxation times will be recorded as 
described above. It is therefore advisable to measure the CPMG rates with variable 
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pulse spacings to ensure that there is no uniform decrease of relaxation rates as the 
pulse spacing is narrowed. Uniform decreases would imply that the antiphase relaxation 
is istill significantly contaminating the desired in-phase measurements. Thus, the ad- 
vantage of the spin-lock experiment is that this concern is eliminated. Finally, it should 
be noted that measurement of RN( N,,!) as a function of spin-lock field strength is of 
interest not only for reasons described above, but also if one is dealing with resonances 
that give indication of a chemical-exchange process. In such cases, the field dependence 
of RN( N,,!) can be used to characterize exchange processes with rates on the order of 
the spin-lock field strength, wl. These techniques have been developed by Deverell et 
al. (42). 

(iii) R,&ZHfN,) measurements and R,(2HfN,,) measurements. Figure 2d 
shows the pulse sequence for measuring the decay of longitudinal two-spin order, 
2HpN,. Longitudinal two-spin order is created immediately after the second 90” 
proton pulse. After the 7 delay, it is converted into antiphase “N coherence for sub- 
sequent t, labeling and inverse detection. In the sequence in Fig. 2e, the aforementioned 
antiphase coherence is maintained with low-power spin lock prior to the t, labeling, 
in order to measure the antiphase relaxation rate. The spin lock is of the same type 
as that described for the RN(Nx,,) measurements in Fig. 2c. The essential difference 
is that only one 180” pulse is applied to attached HN protons during the relaxation 
delay. An identical 180” pulse is placed in the middle of the relaxation delay for the 
RlrlH( 2HyN,) sequence in Fig. 2d. As discussed by Palmer et al. (21)) this pulse helps 
reduce dipolar-CSA cross-correlation effects. In analogy with the in-phase measure- 
ments just described, the actual parameter being measured in Fig. 2e is 
RIqH ( 2H ZN,, 0. Given the same provisions concerning off-resonance effects and spec- 
tral densities as those described above, RNn(2HFN,,f) is identical to 
RI& 2HyN,,+). Here, the spin lock is necessary to prevent the evolution of antiphase 
coherence into in-phase coherence. In this way one is assured that the in-phase and 
antiphase rates are measured separately. Using this experiment, we have verified that 
the RNH( 2HyN,,,) rates are significantly faster than the corresponding RN( NX,y) rates 
for all amide ‘jN- ‘H spin systems in the 70-residue protein eglin c (27). 

(iv) R,(Hf) measurements. The spin-lattice relaxation rates of the HN protons 
can be measured using the sequence shown in Fig. 2f. This sequence is an N-spin- 
relayed NOESY experiment (43). Specifically, a ‘H- ‘H NOESY mixing period is 
appended just after the double-INEPT heteronuclear correlation experiment. Thus, 
after the H N spins are labeled with the N-spin chemical-shift frequencies fiN, they are 
rotated onto the t-z axis in an alternate fashion by a 90?, ( ‘H) pulse so that NOES 
can develop during the 7 period. H’ protons not bound to the N spins are initially 
placed on the -y axis and do not experience any of the antecedent phase cycling. 
These protons are rotated back to the +z axis at the start of the mixing period, T, for 
all scans. In the resulting 2D spectrum, the cross-peak intensities of the direct NHN 
correlations follow behavior similar to that of the diagonal peaks in a 2D homonuclear 
NOESY and tend to 0 for long 7. Additionally, cross relaxation between spatially close 
proton pairs HNHi will yield cross peaks at Q2, (the frequency label of the HN spin) 
along F, and at QuL along F2. A series of these N-spin-relayed NOESY spectra is 
acquired for variable mixing delays T. Since the directly bound amide protons H N are 
inverted at different times, while all other protons are placed on the +z axis, the 
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relaxation behavior is expected to be similar to that seen in selective T, experiments. 
The relaxation of the nonequilibrium HF magnetizations can then be approximated 
by exponential decays, to yield Rn( HF) previously shown in Eq. [ 131. Alternatively, 
the cross-peak intensities can be fitted to a polynomial in the relaxation (mixing) 
delay 7. These methods follow that described by Hyberts and Wagner (44). In par- 
ticular, the fitted linear coefficient of the direct cross peaks then supplies the desired 
rate, Rn(HF). 

EXPERIMENTAL RESULTS 

We have recently applied these techniques to the uniformly “N-enriched protein 
eglin c in order to investigate the spectral densities of the backbone amide 15N- ‘H 
bond vectors. Eglin c is a protein of 70 residues. It inhibits proteases, such as elastase, 
subtilisin, thermistase, and chymotrypsin. The sample was degassed prior to the mea- 
surements. The protein concentration was 3.8 mA4 and the pH was set to 3.0. Two- 
dimensional spectra for all six relaxation series were acquired on a Bruker AMX-500 
spectrometer at 36°C. The pulse sequences not involving amide ‘H saturation during 
the relaxation delay typically demanded 1.5 days of instrument time for a nine 2D 
spectra series. The longitudinal R,(N,) and R,(Hz + N,) experiments demand 
somewhat longer measuring times (2.5 and 4 days, respectively) owing to “N relaxation 
delays on the order of seconds and the lack of an initial heteronuclear polarization 
transfer in the heteronuclear NOE RN( Hy + N,) experiment. The data sets consisted 
of 128 t, blocks of 2048 complex tz points. Sign discrimination in the F, (“N) di- 
mension was achieved using the TPPI technique (38). The “N spin-lock field strengths 
were set to 2500 Hz for the two transverse relaxation experiments shown in Figs. 2c 
and 2e. This amounts to minimum tip angles of about 77” at the edges of the eglin c 
15N sweep width of 1200 Hz. Thus, the maximum overestimate of RN(Nx,y) and 
R,,(2HFN,,y) is about 6% for resonances at the extreme edges of the eglin c 15N 
sweep width. The transverse experiments used 15N spin locks containing regularly 
interspersed ‘H 180” pulses every 3.2 ms. We note that the single 180” proton pulses 
in the center of the relaxation delays for the RNH( 2HFN,) and RN& 2H yN,,y) ex- 
periments shown in Figs. 2d and 2e are not expected to completely suppress the cross 
relaxation caused by the dipolar-CSA cross correlation (21) . Accordingly, additional 
cross-relaxation experiments are in progress to better gauge the magnitude of the cross- 
correlation effects. 

Data analysis was facilitated by the use of the software package PLOT (New Unit 
Inc., Ithaca, New York). For each relaxation series, the peak intensities of the “N- 
‘H correlations were measured by integrating slices along the ‘H (F2) dimension 
through the cross-peak maxima in the constituent 2D spectra. Relaxation rates were 
extracted by fitting the peak intensities to single-exponential functions using the Lev- 
enburg-Marquardt nonlinear least-squares (45) routine in PLOT. Examples of the 
six resulting fits for Arg 5 1 are shown in Fig. 3. For the well-structured portion of the 
protein (residues 8-70), the average values of the six rates were 2.5, 4.2, 8.1, 6.4,4.5, 
and 0.08 SC’ for the RNW,), RN(N~,~), RNH(~H~N~,~), RNH(~HFN,), &tH~), 

and RN( H y + N,), respectively. Additionally, the average fractional uncertainties 
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in the fitted rates calculated from the function fitting routine were +1.5,4.5, 5, 5, 3.5, 
and 2.5% for R,(N), RNWx,J, RNH(2Hi%J, RNH(2H%), R,(%‘h and 
RN( H F --) N,), respectively. 

Using Eqs. [ 17 ] - [ 221 above, we have calculated the five spectral density samplings 
for all backbone amide ’ ‘N- ’ H bond vectors in eglin c. Two examples of the resulting 
spectral density plots are shown in Figs. 4a and 4b. The samplings are plotted against 
frequency given in megahertz. As the error bars indicate, a precise determination of 
the higher fixXp.EnCy Samplings, J(wH N - ON) and J( WHN), can be difficult since the 
errors become comparable to the J( w ) values themselves. 

In order to make comparisons between the J( w ) values belonging to different res- 
idues, or between the experimental values and those obtained from motional models, 
it is necessary to assess the sensitivity of the J(w) values to errors in the rate mea- 
surements. Equations [ 17 ] - [ 22 ] allow us to perform an initial, elementary error anal- 
ysis of the J( w ) values. If the rate measurement uncertainties, 6Rj, are independent 
and due only to random errors, then the net uncertainty propagated to a particular 
J(w) consists simply of the weighted sum, in quadrature, of the 6Rj. That is, for each 
sampling we have 

(c?J)~ = ; c’(SR,)~. [231 

Tlhe c: weights are the squares of the various rate coefficients seen in Eqs. [ 17 ] - [ 2 1 ] 
and the 6 J denotes the propagated uncertainty in a given spectral density sampling. 
Tlhe error bars shown in Figs. 4a and 4b are derived from the resulting 6 J in Eq. [ 23 1. 
Application of Eq. [ 231 reveals that the uncertainties of the transverse relaxation rates, 
R,( Nx,y) and RNH( 2HFNX,Y), propagate significantly larger uncertainties to a given 
JI: w ) value than the longitudinal relaxation rates RN (N,) and RNH (2H y N,) . This is 
due to the fact that the transverse rates are weighted more heavily in Eqs. [ 17 ] - [ 22 1, 
and that their measurements are typically less precise. That is, the transverse rates 
contribute relatively larger Ci and 6Ri values to the sum in Eq. [23] than the longitudinal 
rates. Random errors in the amide proton spin-lattice relaxation rates, RH( HF), are 
another potent source of uncertainty. This is because the RH (H y) contribute to all 
of the J(o) samplings as well as PHNHI; hence, they contribute their random errors to 
all of these values. In particular, we note that J( wH N - UN) is extremely sensitive to 
random errors in RH( H y ) . This is because J( w HN - wN) has the largest RH( Hr) rate 

FIG. 3. Examples of relaxation curves for Arg 5 1 resulting from the six experiments discussed in the text. 
Intensities were measured by integrating cross peaks along the Fz (‘H) dimension through the cross-peak 
maxima. (a) R,(N,) fit consisting of I1 points at 10,50, 100, 150,200,300,400,500,800,2000, and 3000 
ms. The fitted decay rate R,(N,) = 2.5 + 0.03 s-l. (b) R,(Nx,y) fit consisting of 9 points at 6.4, 12.8, 19.2, 
51.2, 76.8, 102.4, 128.0, 172.8, and 192.0 ms. R,(N,,?) = 4.4 + 0.08 SK’. (c) R,,(2HrNX,Y) fit with data 
pointsat6.4, 12.8, 19.2, 38.4, 51.2, 76.8, 102.4, 128.0.and 172.8 ms. RNH(2Hr(NXS) = 7.3 +O.ll s-‘.(d) 
R,,,(2HyN,) fit with 9 data points at 2, 10, 20, 30, 50, 70, 100, 130, and 170 ms. R,,(2HFN,) = 5.7 t 
0.05 s-‘. (e) R,(Hy) fit with data points at 25, 50, 75, 100, 140, 180, and 200 ms. R,(HF) = 4.1 + 0.08 
SC’. (f) R,(Hy --* N,) fit with data points at 0, 50, 100, 150, 200,250, 300,400, 500, 600, 1000, 2000, 
and 3000 ms. R,(HF + NJ was calculated to be 0.086 + 0.002 s-l corresponding to an NOE of 0.67 It 
0.02. 
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FIG. 4. Spectral density samplings for Arg 5 1 and Asp 46 as a function of frequency in megahertz. The five 
samplings frequencies occur at 50,450,500, and 550 MHz and 2500 Hz. (a) Spectral density samples for Arg 
51. ‘T’hevaluesinorderofincreasingl?equencyare8.8 +- 0.2,4.4 +0.1,0.33 kO.06, 1.0 k0.2, and 1.3 10.2 
X 10-‘” s/rad. (b) Spectral density samples for Asp 46 with values 5.2 f 0.6, 3.2 f 0.1, 0.22 + 0.04, 0.10 k 
0.5, and 0.48 f 0.1 X lo-” s/rad. The burnt contribution to the amide proton spin-lattice relaxation rates 
Rn( HF) were found to be 3.3 + 0.08 and 2.4 rfr 0.1 s-r and for Arg 51 and Asp 46, respectively. 
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coefficient of all the samplings ( ci = 1/4d), and therefore the uncertainties are the 
most amplified here. 

Figures 4a and 4b depict the five J( w ) values for Arg 5 1 and Asp 46, respectively. 
It is clear that Arg 5 1 has a J( 0) component significantly larger than that of Asp 46. 
In particular, for Arg 5 1 J( 0) = 8.8 f 0.2 X lo-” s/i-ad, whereas J( 0) = 5.2 + 0.6 
X lo-” s/rad for Asp 46. As seen in the plots, the difference between these J(0) 
values well exceeds the size of the corresponding error bars. Additionally, Arg 5 1 has 
a discrepancy between the J(w~N + UN) and J(o~N - UN) components larger than 
that of Asp 46. This reflects the slower cross-relaxation rate (smaller NOE enhance- 
ment) of Arg 5 1 (0.086 f 0.002 s-’ ) as compared to that of Asp 46 (0.107 + 0.002 
s-’ ), Together, these observations accentuate the fact that a single Lorentzian spectral 
density is not sufficient to describe the motions for all of the 15N- ‘H bonds. The fact 
that J( 0) is significantly larger for Arg 5 1 suggests that its “N- ‘H bond reorients on 
a characteristically slower time scale than that of the 15N- ‘H bond of Asp 46. This is 
consistent with what is known about the structure of eglin c (46). Specifically, Arg 
5 1 participates in a parallel fi sheet and therefore represents a “N- ‘H bond involved 
in a well-defined secondary structure. In contrast, Asp 46 is part of a surface-binding 
loop (residues 42-47) which adopts a rigid conformation only after eglin c binds to 
its target protease. It is therefore reasonable the its “N- ‘H bond experiences signifi- 
cantly more motion than that of Arg 5 1 for the present case of unbound eglin c. Thus, 
the approach of spectral density mapping is sensitive to different local dynamics within 
the protein molecule. 

CONCLUDING REMARKS 

In summary, we have described how the spectral density functions of individual 
NH N bonds in proteins can be evaluated at specific frequencies by purely experimental 
means. This is facilitated by taking advantage of the information contained in both 
one- and two-spin relaxation measurements. Although we have focused on the use of 
antiphase and longitudinal two-spin-order relaxation rates here, the zero- and two- 
quantum relaxation rates could be used as well. The essential requirement is mea- 
surement of a sufficient number of relaxation parameters that depend on the same 
samplings of the spectral density function. The method is an improvement over the 
current approaches to protein relaxation studies, which are incapable of evaluating 
the spectral densities in the absence of a motional model. We note from Figs. 4a and 
4b that spectral density mapping using ’ 3C relaxation might provide a better distribution 
of sampling points in the spectral density, In this case, selectively labeled 13C sites 
would be preferable to avoid the aforementioned complications from 13C- 13C cou- 
plings. We are currently investigating these possibilities. 

We have applied the method of spectral density mapping to the protein eglin c and 
have illustrated the feasibility of the approach with examples of spectral density sam- 
plings for two NHN bonds belonging to Arg 5 1 and Asp 46. The results indicate that 
method is sensitive to differences in the internal dynamics of these bonds. A more 
detailed examination of the spectral density data, including a more elaborate error 
analysis, is in progress for all individual NHN bonds, so that we may address the 
motivating problem of characterizing the internal motions of these bonds. This work 
will be presented elsewhere. 
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