
JOURNAL OF PARALLEL AND DISTRIBUTED COMPUTING 15, 368-381 (1992)

Compile-lime Optimization of Near-Neighbor Communication for
Scalable Shared-Memory Multiprocessors

DAVID E. HUDAK AND SANTOSH G. ABRAHAM

Department of Electrical Engineering and Computer Science, The University of Michigan, Ann Arbor, Michigan 48109-2122

Scalable shared-memory multiprocessor systems are typically
NUMA (nonuniform memory access) machines, where the exploi-
tation of the memory hierarchy is critical to achieving high perfor-
mance. Iterative data parallel loops with near-neighbor communi-
cation account for many important numerical applications. In
such loops, the communication of partial results stresses the mem-
ory system performance. In this paper, we develop data place-
ment schemes that minimize communication time where the near-
neighbor interaction is determined by a stencil. Under a given
loop partition, our compile-time algorithm partitions global data
into four classes for each processor, with each class requiring
specific consistency maintenance requirements. The ADAPT (Au-
tomatic Data Allocation and Partitioning Tool) system was imple-
mented to automatically partition parallel code segments for the
BBN TC2000, a scalable shared-memory multiprocessor. ADAPT
caches global arrays and maintains data consistency in software
through instructions that flush data from private caches. Restruc-
turing of a fluid flow code segment by ADAPT improved perfor-
mance by a factor of more than 3 on the BBN TC2000. Features in
current generation pipelined processors with multiple functional
units permit the overlap of memory accesses with computation.
Our experiments on the BBN TC2000 show that the degree of
overlap is limited by architectural parameters, such as the number
of CPU registers. 8 1992 Academic Press, Inc.

1. INTRODUCTION

Shared-memory multiprocessors offer a familiar model
for programmers. Scalable multiprocessor systems can
be classified as nonuniform memory access (NUMA) ma-
chines where the memory latency depends on the loca-
tions accessed. For instance, an access by a processor in
the BBN Butterfly TC 2000 has a latency of 3, 11, or 38
CPU clock cycles depending on whether the location ac-
cessed is in the cache, local memory, or remote memory,
respectively. Other scalable, shared-memory multipro-
cessors such as the MIT Alewife and Stanford DASH
multiprocessor systems [20] have nonuniform access la-
tencies. The increased latency and reduced bandwidth of
global memory have a substantial impact on perfor-
mance. Restructuring of programs can reduce the num-
ber of global memory accesses and dramatically improve
performance.

We believe that future multiprocessor systems will
have complex memory hierarchies, which cannot be
managed effectively by the hardware. Since the portabil-
ity of parallel programs is an important issue, and since
each multiprocessor will have a unique memory hierar-
chy, the burden of managing the memory hierarchy will
fall on the compiler. The development of compile-time
schemes to manage local memories is therefore an impor-
tant research topic.

Our initial work toward a compiler that automatically
compiles code to utilize the memory hierarchy of a scal-
able multiprocessor system is based on the following
premises. A large amount of execution time is spent in
parallel loops and initial work should focus on such
loops. Numerical programs are typically continuum
models where each point in a multidimensional space can
be updated in parallel but the newly updated values are
required in the next time-step. The particular loop con-
struct studied in this paper is used in coding such itera-
tive data parallel programs. Thinking Machines Corpora-
tion has recently introduced a specialized compiler to
optimize such loops for the Connection Machine [4].

We have developed a theoretical framework for ana-
lyzing communication for such loops. In earlier work, we
also developed optimal loop partitioning schemes to de-
termine the loop partition that minimizes the number of
data points exchanged between processors [1, 161. In this
paper, given the parallel code segment and the loop parti-
tion, we divide each global array into four classes for
each processor. The exclusive read-write set (ERW) may
be moved by each processor into the highest level of its
memory hierarchy. Consistency must be maintained on
the shared read-exclusive write set (SREW) and shared
read-no write set (SRNW). No accesses are made by the
processor to the no read-write set (NRW). Such a data
partition is automatically obtained from a few parame-
ters, viz., communication parameters derived from the
code segment and the loop partition.

Results of this analysis can be used with different data
placement schemes, e.g., placing the ERW set in the lo-
cal memories of each processor. These schemes have
been implemented and experimental results on the But-
terfly TC2000 are reported. Even a simple data partition

368

0743-7315/92 $5.00
Copyright 0 1992 by Academic Press, Inc.
All rights of reproduction in any form reserved.

OPTIMIZATION OF COMMUNICATION FOR SHARED-MEMORY MULTIPROCESSORS 369

that caches the ERW set was shown to have a factor of 3
improvement in execution time over currently used de-
fault data assignments. We focus on minimizing the im-
pact of communication time, first, by choosing the data
assignment to minimize the communication time, and
second, by overlapping as much of the remaining com-
munication time with computation as possible. The over-
lap of computation with communication was shown to
yield execution time improvements of nearly 10% for
some data assignments.

Software systems that partition and manage the consis-
tency of data using messages among processors are cur-
rently being developed for distributed memory machines
[12, 191. In addition, partitioning systems that manage
shared data are being developed commercially for SIMD
machines [4, 181. The optimization of code for a shared-
memory NUMA system requires similar treatment. To-
ward this end, we have developed the ADAPT (Auto-
matic Data Allocation and Partitioning Tool) system to
analyze the Fortran versions of the iterative parallel
loops described in this paper and to generate code for the
BBN TC2000 which employs a proper data partition and
exploits the memory hierarchy.

2. RELATED WORK

Our goal is to develop compiler techniques for restruc-
turing parallel loops for shared memory multiprocessors
to minimize the performance degradation due to the la-
tency and available bandwidth of the memory system.
Related work includes work on loop partitioning, auto-
matic data distribution for nonshared memory machines,
locality enhancement, prefetching, and software consis-
tency maintenance.

Loop partitioning for two-dimensional iteration spaces
is often achieved by tiling the iteration space with geo-
metric shapes that tessellate, as described by Reed et al.
[26] and Carr and Kennedy [7]. In contrast, this paper
discusses a systematic method for reducing the impact of
communication time on the execution time of any stencil-
based, iterative data parallel loop by generating data
placement strategies and overlapping communication and
computation. Ramanujam and Sadayappan [25] and
Tseng [28] present dependence-oriented partitioning ap-
proaches for iteration spaces to be executed on message-
passing, nonshared memory multiprocessors. In con-
trast, our work is oriented toward scalable
shared-memory multiprocessors.

Research on the automatic distribution of data has
been done for message-passing, nonshared memory sys-
tems, e.g., Zima et al. [30], Pingali and Rogers [23], and
Fortran-D [121. Our analysis uses an existing process de-
composition (ADP) [1, 161 that minimizes data exchange
between processors, and then determines the data place-

ment which minimizes communication time. Thus, our
system automates and optimizes all the steps involved in
mapping an iterative parallel loop to a particular shared-
memory multiprocessor system.

Performance improvement through exploitation of
memory hierarchies has been previously studied by Gan-
non et al. [141, Cat-r and Kennedy [8], and Wolf and Lam
[29]. These optimizations attempt to maximize reuse of
cache data in the context of a finite cache, i.e., minimiz-
ing uniprocessor misses. They have a secondary effect of
improving multiprocessor performance by reducing the
bandwidth requirements of each processor, thereby re-
ducing contention in the memory system. In contrast, our
work considers a multiprocessor environment where
each processor has its own memory hierarchy.

In prefetching, the data are brought to a higher level in
the memory hierarchy before they are required. Since
computation continues during the prefetch, the global
memory access latency is hidden; see, e.g., Gannon et al.
[14], Gornish et al. [1.5], and Callahan et al. [6]. How-
ever, prefetching only helps to hide large memory laten-
ties, and does not reduce bandwidth requirements. Our
work is based on multiprocessors that lack explicit sup-
port for prefetching. However, we exploit the parallelism
between the access unit and the floating point unit in the
Motorola 88000 processor [22] to overlap the latency of
the remote memory with useful computation. Unlike ear-
lier analytic or simulation work, we measure actual exe-
cution times to illustrate the achievable overlap of com-
munication and computation. Automatic compile-time
maintenance of consistency for shared data has been ex-
amined by Cheong and Veidenbaum [9] and by Cytron
et al. [lo].

3. MODEL ASSUMPTIONS

3.1. Multiprocessor Model

The data placement and overlap strategies discussed
here are applicable to a wide range of shared-memory
architectures with a scalable memory hierarchy. We as-
sume a multiprocessor with a globally shared address
space across physically distributed memories. Since cur-
rent methods for hardware-maintained cache consistency
do not scale well to large numbers of processors, our
model multiprocessor assumes no hardware support for
cache consistency. We assume a three-level memory hi-
erarchy consisting of a private cache, private local mem-
ory, and globally shared remote memory. Note that the
effects of contention for shared communication media
(memory banks, switches, etc.) are not considered in this
work since the focus is on the minimization of overall
communication requirements, and not on optimization
for any particular interconnection configuration.

The BBN TC2000 Butterfly parallel processor [2] is a

370 HUDAKANDABRAHAM

shared-memory MIMD machine composed of Motorola
88000 processors, each having an individual cache. The
processor is resident on afunction board with a memory
module. The function boards are interconnected by a
multistage interconnection network. The BBN TC2000 is
a nonuniform memory access machine. From the per-
spective of a particular processor on the TC2000, the
memory hierarchy is that processor’s cache, local mem-
ory (i.e., the region of shared memory addresses which
correspond to the memory module which is resident on
the function board), and global memory (i.e., other pro-
cessor’s local memories). Other scalable shared-memory
machines have similar memory hierarchies [20] and con-
form to our model, but substitute a mesh for the multi-
stage interconnection network. The latencies for various
memory operations as determined by BBN [2] are 0.15 ps
or 3 CPU cycles for a cache access, 0.60 ps or 11 CPU
cycles for a local memory access, and 1.89 ,LLS or 38 CPU
cycles for a global memory access.

3.2. Program Model

The iterative data parallel loops analyzed in this paper
are a collection of perfectly nested loops with an outer-
most sequential loop that controls the execution of inner
data parallel loops. For simplicity, a two-dimensional
parallel iteration space of size N x N is assumed, al-
though many of our methods generalize to higher dimen-
sions [171. We assume that the bounds of the inner paral-
lel loop are large enough to warrant parallel execution. A
cycle is an execution of a single iteration of the outer
sequential loop. The body of the loop consists of a series
of assignment statements involving two-dimensional ar-
ray variables. Our analysis assumes that the code body
honors the single assignment property, i.e., that each
array location is written to by only one iteration of the
parallel loops. Additionally, we assume asynchronous se-
mantics for the updating of arrays within the parallel
loops.

This work develops data storage techniques that opti-
mize near-neighbor communication. Typically, regular
near-neighbor communication is expressed in applica-
tions through the use of subscript offsets, as in Fig. 1, and
irregular communication is characterized by maintaining
an array of pointers. Such arrays have been analyzed in
substructuring methods for finite element domains [111.
Since such run-time information is not amenable to com-
pile-time analysis, we focus on subscript offsets. Such
offsets appear in many numerical application programs,
e.g., asynchronous solutions to partial differential equa-
tions, continuum modeling, and image smoothing 111.
Therefore, the subscript expressions for right-hand side
references of an array are restricted to one of the parallel
loop indices plus or minus a small constant. The ordering
of the appearance of loop indices is assumed to be identi-

do k = 1, 1000
do j = 2, N-l

do i = 2, N-i
A(i,j) =(B(i+l,j)+B(i-l,j)+B(i+l,j+l)+B(i.j-1))*0.25

enddo
enddo
do j = 2, N-l

do i = 2, N-l
B(i,j) =(A(i+l,j)+A(i-l.j)+A(i,j+l)+n(i,j-1))*0.25

enddo
enddo

enddo

FIG. 1. Example of an iterative data parallel loop.

cal for all array references. For simplicity, the subscript
expressions for left-hand side references of an array are
restricted to parallel loop indices. Different types of sub-
script expressions, such as those found in Gaussian elimi-
nation, induce different types of communication, thus re-
quiring further analysis. This is an avenue of important
future work.

In previous work [I, 161, we developed a theoretical
framework for analyzing near-neighbor communication
in iterative data parallel loops. Since we use the same
framework in this paper, we summarize relevant work.
Given an iterative parallel loop that updates a single, two-
dimensional, global array as in Fig. 1, the communication
is determined by the stencil, S, which is the offsets of the
array accesses:

For example, for Fig. 1,

s = -x0, -11, (0, 11, c-1, 01, (1, 0))

Each offset pair in S is an access vector. Figure 2
shows the access vectors for a square partition under the
stencil {(1, 0), (2, 0)). A loop partitioning, p, is a mapping
from the iteration space to a processor identification
number (PID). The communication is defined to be the
number of data points read (in each cycle) by a particular
processor that are computed by another processor. Note
that the first offset in each pair induces communication
across the horizontal plane, as in Fig. 2, while the second
offset induces communication across the vertical plane.
Therefore, stencil elements provide communication per
unit length across horizontal and vertical partition bor-
ders. For rectangular partitions of dimensions h X u, the
communication is expressed as C, = nhh + nvu, where fib
and n, are measures of communication along the horizon-
tal and vertical dimensions. These are obtained from S by
applying either the additive or the max-min construction
procedure. The calculation of communication weight per
orientation using the additive construction assumes that

OPTIMIZATION OF COMMUNICATION FOR SHARED-MEMORY MULTIPROCESSORS 371

F,= 1

F,= 2

F, = 3

F, = 3

F,= 2

F, = 1

For a machine with private caches, nh and n, are replaced
by ni and n”, in the above. A more detailed treatment of
this work is available elsewhere [1, 161.

In a private-cache bus-based multiprocessor, the
movement of data between cache and main memory is
managed by the hardware and the specification of the
loop partition, p, determines the communication over-
head [16]. In a scalable multiprocessor such as the BBN
Butterfly, there is an additional degree of flexibility be-
cause the data assignment can be specified by the soft-
ware and affects the communication time. A data assign-
ment,a, isamappingfrom{l,2, N} X {1,2, N}+
(1, 2, *-., S}, i.e., a mapping from a data element to a
processor, a. The element is stored in a memory that is

FIG. 2. The partition exterior is heavily referenced

each reference made to a point outside the partition re-
quires interprocessor communication, and is given by

n{ = 5 Inhil.
i=l

(3.1)

The calculation of communication weight using the max-
min construction procedure assumes that interprocessor
communication is only required once to establish a local
copy of a datum and all successive reads (for the duration
of the cycle) can be performed locally. In this case, the
COIIIIYIUniCatiOn weight per orientation iS given by nh =
nh’ -!Y n;, where n$ = max({nhilnhi 2 0} U (0)) and nh =
Imin({nhilnhi < 0} U {O})l, where nhi is the first element of
the ith access vector. The constructions for nv are analo-
gous.

For multiprocessor systems with caches, the commu-
nication weights are converted from the number of data
points shared between processors to the number of cache
lines shared between processors [l]. Let 1 be the number
of data points per cache line. Assuming column-major
storage, the number of data points required per unit
length along the horizontal boundary must be rounded up
to the number of cache lines required per unit length nf, =
[nh/l]. For the vertical boundary we must compensate for
the aggregation of multiple references into a single cache
line, n”, = n,/l. For example, if 1 = 4 and nh = nv = 1, nf,
= 1, since one cache line is required per unit length along
the horizontal border, and n’, = l/4 = 0.25, since one of
every four references along the vertical border requires a
new cache line.

Assuming that 9, the number of processors, is fixed for
all cycles, we prove in [l] that

hopt = &$ uopt = $$. (3.2)

closer to processor a than any other processor. In this
paper, we determine a data assignment for a single global
array based on the predetermined loop partition and the
references made to the array in the code body. T,, the
communication time incurred by a processor on each cy-
cle, is a function of the loop partition and the data assign-
ment. There are two ways to reduce the impact of T, on
the execution time of the loop. First, T, can be reduced
by altering p and (+. Second, T, can be overlapped with
the computation time of the loop.

4. DATA ASSIGNMENTS

Three factors should be considered in specifying the
data assignment. First, the consistency requirements
may limit the possible locations for data. Second, subject
to the first constraint, data that a processor references
heavily should be assigned to the private levels of that
processor. A third factor in determining data placement
is the storage size available at each level in the hierarchy.
Other researchers have developed efficient techniques
for handling storage size limitations [13, 291 which can be
applied following the use of our techniques.

In the general data assignment problem, an element of
the global array may be assigned to several distinct stor-
age locations in the multiprocessor memory hierarchy.
First, we restrict the problem by simplifying the memory
hierarchy to consist of two levels, i.e., local and remote
memory. Each processor has fast access to an associated
local memory and slower access to the remote memory,
which is similar to a TC2000 when the private caches are
not considered. Second, we require that each element of
the global array be present in precisely one of the proces-
sors’ local memories. These two restrictions simplify the
data assignment problem to a data partitioning problem.
We consider the optimization of the one-to-one mapping
from each element of the global array to a particular local
memory.

372 HUDAKANDABRAHAM

4.1. Data Partitioning

We assume that a loop partition p has been specified to
minimize the data points exchanged between processors
using ADP. We denote the rectangle that has its lower
left-hand corner at coordinates (i, , jr) and its upper right-
hand corner at coordinates (i2, j,) as [i, : i2, jr : j,]. There-
fore, the partition of the iteration space assigned to pro-
cessor a under loop partition p is the rectangle [il: i2,
jr : j,], with lower left-hand corner (il , jr) and upper right-
hand corner (il, j,). The target set ofy under S, where
y = (i, j) E A, the global matrix, and S is the stencil set,
is Ts(y> = {(i + &,I, j + Q), (i + nhk, j + nhk)} and
gives all data points required for the computation of y
[16]. The read set, %(a, p), is the set of data which are
read by processor a under loop partition p, %(a, p) =
(x13y s.t. p(y) = a and x E Ts(y)}. The write set, W(a, p),
consists of data which are written by processor a under
loop partition p. Note that W(a, p) = {(i, j) E N x

Nlp(i, j) = a} since each iteration updates A(i, j). The use
set, %.(a, p) = %(a, p) U W(a, p), consists of data that are
read or written by processor a under the loop partition, p.
The use reference frequency of a data point A(i, j) by a
processor a is the number of times processor a references
A(i, j), and is denoted Fcu,,)(i, j). Consider a data parti-
tion (T that maps each element of the global array to a
single processor. The local references of processor a are
L(a) = {(i, j) E N x Nla(i, j) = a}.

For this section we assume a true partition of the data
set, i.e., a division of the data set into mutually disjoint
subsets. If tl is the latency to access local memory and t,

is the latency to access remote memory, the latency for
accesses to locations in L(a) is tl, while the latency for
accesses to all other locations is t,. Then, T, , the com-
munication time, reduces to

Tc = 2 (F(u,dL j)tl) + c (F(u,& jM. (4.1)

The objective of minimizing execution time is equiva-
lent to the objective of minimizing communication time,
since the loop partition evenly distributes a fixed amount
of computational work among the processors. The fact
that the loop partition is fixed also implies that
E(i,j)ENxNFcu,a)(i, j) is constant. Therefore, the perfor-
mance is optimized when C(i,J~EL(a~F~u,a)(i, j) is maxi-
mized .

Consider Fig. 2, which shows the target sets for a
square partition under the stencil ((1, 0), (2, 0)). The val-
ues of Fu,,) are given for various rows. Observe that the
row across the top border of the square has a frequency
access of 2, while the row along the bottom border has a
frequency access of 1. Therefore, the data partition that
maximizes local accesses should hold the row across the

top border rather than the row along the bottom border.
The data partition that maximizes local accesses is ob-
tained by shifting the loop part {(i, j)lp(i, j) = a} up by
one row.

In general, the information provided by the stencil can
determine how to shift the data partition. By restricting
the discussion to rectangles, we can consider shifts along
two dimensions: vertical shifts and horizontal shifts.
We will discuss vertical shifts, the horizontal shifts
being analogous. Consider a stencil s = {(nhi , &I),
(nhk, &k)} that is sorted by nhi, i.e., nhl 5 nh2 5 ..* 5 nhk.

THEOREM 1. Let r, = I{nhj s.t. nh; < O}l (where the bar
notation refers to set cardinality), r, = i{nhi s.t. nhi = O>l,
and rp = I{& s.t. nhi > O}/. Upward shifts are made when
rp > rn + rz, and downward shifts are made when r,, >
rp + r,. Assuming Ii1 - izI S maX{lnhll, inhkl}, the shift,
s, from the loop part that maximizes the number of
local references made by a processor, max.J~~~~~+,F~u,a~
WI, is

I

nhj where i = y, k odd.
Sopt = (4.2)

k
nhr where i = -, k even.

2

Proof. r,, and rp represent the quantity of references
made across the il and i2 borders, respectively. rz repre-
sents the volume of references made exclusively to the
partition interior. Shifting is done in order to include data
that are more heavily referenced than some data which
are currently included. Vertical shifts can be done either
in the upward or downward direction. An upward shift
includes data higher than i2 at the cost of excluding data
near iI. Therefore, upward shifts should be done when
rp > r, + r,. Similarly, downward shifts should be
done when r, > r, + rp.

We focus on an upward shift, the downward shift
being analogous. The number of local accesses is
maxS(~~i,F~u,,,(i) + ~~~~+,FCu,,,(i) - ~~$~+,F~u,,)
(i - 1)). Since x&Fcu,,,(i) is constant with respect to s,
the objective, this is restated as maxs[~~Z1(F,u,,,(i, + I) -
F(u,diI - 1 + ON. Assuming Ii, - &I 9 max{lnhlj, Inhkl),

we have FCU,a)(iZ + f) = [{nhi s.t. nhi 2 /}I. Therefore,
FcUJiZ + 1) is a monotonically decreasing function of 1
decreasing from rp for 1 = 1 to 0 for 1 > nhk. Similarly,
FcU&)(i[- 1 + 1) = I{nhi s.t. nhi < f}l is a monotonically
increasing function of 1. Recall that Iit - izI + max{lnhIl,
Inhkl}, (FcUJi2 + I) - F(u,,)(i, + 1)) is a monotonically
decreasing function of 1 decreasing from rp - (r, + r,) for
l = I t0 -(V, f r, + Yp) for 1 > nhk. Therefore, the
summation is maximized when FcU,a)(i;! + sopt) - FCu,,)
(il - 1 + s,& 2 0 and Fcu,,)(i2 + sopt + 1) - Fcu,,)(i, - 1 +

OPTIMIZATION OF COMMUNICATION FOR SHARED-MEMORY MULTIPROCESSORS 373

sopt + 1) < 0, i.e., when I{nhi s.t. nh; 2 S,rt}J 2 [{nhj s.t. nhi
< S,rt}] and I{nhj S.t. nhi 2 Sopt f l}i < [{nhi s.t. nhi < Sopt +
1}1. Since S,rt partitions the nhi set into two subsets, the
optimum shift, Sopt, is given by Eq. (4.2). And so the
claim is shown. n

The above result can be extended as follows. Under
the assumption that the loop part dimensions are much
larger than the stencil, the optimal data partition within a
constant factor involving the product of max(ln& and
max(ln,il) is obtained by applying the optimal shifts in
each direction as specified by Theorem 1. The proof is
not included due to space limitations. The main result of
this section is that for a multiprocessor memory hierar-
chy consisting of just local and remote memories, a sim-
ple procedure derived from Theorem 1 can be used to
find the optimal data partition that minimizes communi-
cation time for iterative parallel loops.

4.2. Hardware Redundancy

In this section, we expand the scope of the data assign-
ment problem to include multiprocessor memory hierar-
chies with private caches. The private level of a memory
hierarchy is only accessible to a particular processor,
e.g., the private caches on the TC2000. In such a system,
frequently accessed data can be copied into a private
cache, thus introducing redundancy in storage, i.e., mul-
tiple copies of a datum. This redundancy is referred to as
hardware redundancy because it is largely managed by
the hardware. Only one logical address is used for all the
multiple copes of the datum. In contrast, software redun-
dancy, which is discussed in Section 7, involves multiply
addressed copies of the same datum in different local
memories managed explicitly in software.

In contrast to the data partitioning problem, where the
partition only influenced the performance, hardware re-
dundancy also involves correctness and consistency con-
siderations. In the absence of hardware or software co-
herency schemes, only those data elements that are used
exclusively by a processor can be cached by that proces-
sor. In this section, we assume that the data have been
partitioned as described previously into the different lo-
cal memories. We exploit the lower latency of the cache
by selectively declaring regions of the data part assigned
to a local memory to be cacheable.

Every array location has read and write characteristics
(with respect to a given processor) in the set {shared,
exclusive, no}. For example, an array location which is
exclusively read from and written to by a single proces-
sor is an exclusive read-exclusive write location with
respect to that processor. Potentially, locations could be
classified into as many as nine different categories of
read-write characteristics. However, only four of these
categories are of interest in our current context. Since the

single assignment property has been assumed, all catego-
ries with the shared-write characteristic are eliminated.
Cycle-by-cycle communication is only induced (assum-
ing sufficient local storage) by array locations which are
both read from and written to in a single cycle. Read-only
arrays have fixed values across all cycles, and represent
startup communication which should not influence parti-
tioning decisions.

Global array locations fall into one of four sets. A
datum A(i, j) belongs to the exclusive read-write set
of processor u if A(i, j) E %(a, p) rl %‘“(a, p) and
A(& j> $ WP, P) U WP, P) VP $: a. A datum AC, j)
belongs to the shared read-exclusive write set of proces-
sor a if A(i, j) E W(u, p) and A(i, j) $Z W(p, p) Vp # a
and 3p # a s.t. A(i, j) E %(p, p). A datumA(i, j) belongs
to the shared read-no write set of processor a if A(i, j) E
%(a, p) and A(i, j) @ W(a, p) and 3p # a s.t. A(i, j) E
%V”(p, p). In addition, the data not used by processor a
belong to the no read-write set (NRW) of processor a.
An important feature of our scheme is that these sets are
identified at compile-time as a function of the array di-
mensions, the number of processors, and the communi-
cation parameters (n,’ , nh, n: , n;).

THEOREM 2. Given a loop part of processor a, p(a) =
[il : i2, j, : j,] of dimensions h X v, the ERW set is [i, +
nz :i2 - n;, j, + n,+:j, - 61, the SREW set is
p(a)\ERW = [i, : iz, j, : jJ\[i, + nh’ : iz - nh, j, + n: : j, -
n;], the SRNW set is contained by [il - nh : i2 + nl , j, -
n; : j, + n:]\[i, : i2, j, : j,], and the NRW set is a superset
of N x N\(ERW U SRNW U SREW).

Proof. From the code construct, observe that every
iteration writes only one data element. Therefore, the
write set, rllr(u, p) = p(a) = [il : iz, j, : j,], is the exclusive
write set. A subset of the exclusive write set is the shared
read-exclusive write, which is given by

{G, A E 1i1 : i2, .A : jd I 3(L, K) $i [il : i2, j, : j2] s.t. (i, j)
E Ts(L, K)).

(L, K) fits at least one of the following criteria: L < i, , or
L > i2, or K < jr, or K > j2. Therefore, the shared read-
exclusive write set is

{(i, j) E [il : iz, j, : j,] I 3(~, K) with L < i, or L > i2 or
K < j, or K > j2 s.t. (i, j) E &(L, K)}

= {(i, j) E [i, : i2, j, : j2] Ii < i, + n; or i > i2 - nh
or j < j, + n: or j > j, - n;}

=[i,:i2,j,:j2]\[i,+nh+:i2-nh,j,+nII::j2-nV].

The above expressions of the SREW set and the EW
set yield the expression for the ERW set. The shared
read-no write set is

374 HUDAK AND ABRAHAM

{(i, j) $ [in : i2, .A : j21 1 3(6, K) E [il : i2, j, : j21 s.t. (i, j)

which, from the definition of the communication parame-
ters, implies that at least one of the following is true: i 5
i2+nh+,oriIil-nh,orj%j2+n:,orjrj,-nh.
And so the claim is shown. n

For example, consider the stencil S = ((3, 2), (1, 3),
(-1, -3), (-2, 3)). Observe that nl = 3, n; = 2, n: = 3, -
nv = 3. Consider Fig. 3, where p(a) = [i, : i2, j, : j2] and
the ERW, SREW, and SRNW sets are shown. The empty
corners of the outermost rectangle correspond to regions
of the NRW set which are included in our approximation
of the SRNW set as demonstrated in Theorem 2.

Our compile-time analysis of communication and the
subsequent partitioning of the array into four sets with
respect to each processor permits the introduction of ca-
ching schemes. The simpler scheme only caches the
ERW set and does not require cache invalidates. The
more sophisticated scheme achieves even smaller com-
munication time by caching the entire exclusive write set
and using cache invalidates to maintain consistency, i.e.,
by flushing the SREW from the cache at the end of each
cycle, thus updating the copy of the SREW set in main
memory.

Let us first analyze the simpler scheme without cache
invalidates. In this scheme, at the beginning of the paral-
lel section of the program, an array of the appropriate
dimension is allocated by each processor in its local
memory and declared cacheable. Each processor copies
the portion of the array corresponding to its ERW set into

FIG. 3. The regions of a data set.

this local array. Also, each processor allocates a non-
cacheable array for storing its SREW in its local memory.
Subsequent references during the execution of the paral-
lel section are made to the local copies. The communica-
tion time is reduced to T, = C(i,j)E ERWFcU,a)(i, j)t, +
x(i,j)E SREW~KJ,u)k .dfl + x((i,j)E SRNW~(U,& j>t,. If cache

invalidates are used, the communication time is ex-
pressed as T, = C(i,j)E ERW U SREW~KI,a)(i7 .dfc + x(i,j)E

SRNWF&r,a)(i, j)t,, ignoring the time required for cache in-
validates.

Consider the example presented in Fig. 1. Assuming a
square partitioning with parts of size 25 x 25, and using
the times supplied by BBN, i.e., t, = 1.89 ps, tl = 0.60
ps, and tc = 0.15 ps, Eq. (4.1) yields T, = 571.56 pus per
cycle, the former expression yields T, = 331.51 us per
cycle, and the latter yields T, = 290.31 ps per cycle.
Clearly, the ability to exploit an efficient loop partitioning
strategy by moving large quantities of data high into the
memory hierarchy has a significant impact on communi-
cation time.

5. EXPLOITING OVERLAP

Research on iterative parallel loops has focused on re-
ducing communication time through exploitation of the
memory hierarchy. An alternative approach to reducing
the overhead of communication is to overlap computa-
tion and communication time. However, aspects of a pro-
cessor’s architecture can limit the maximum achievable
overlap. For instance, the number of available registers
may be too few to hold the partial results of many loop
iterations, or the processor may lack special hardware
required for a large maximum overlap (e.g., separate
ports to local and global memory). In practice, program-
ming and compilation techniques also influence the over-
lap achieved. Our objective is to focus on both reducing
communication time and increasing overlap to reduce
communication overhead.

Results by Callahan et al. IS] and Mangione-Smith ef
al. [21] are useful in the subsequent discussion. A proces-
sor’s resources are broadly classified into compute and
access resources [S]. The maximum performance of a
particular loop is achieved once one of the resources is
fully utilized. Accordingly, loops are classified into com-
pute-bound and memory-bound loops. In our framework,
loop iterations can be similarly classified as compute-
bound if all data references can be satisfied by the cache
or communication-bound if some data references require
local or remote memory accesses.

The compute-bound set is the subset of p(a) = [if : i2,
j, : j,] whose use set is contained by the ERW set of pro-
cessor a, and is given by Z = [il + nh: i2 - nh, jl +

12, : jZ - n,]. Z is much larger than the rest of the itera-

OPTIMIZATION OF COMMUNICATION FOR SHARED-MEMORY MULTIPROCESSORS 375

tions to be performed, r = p(a)\E. We propose a com-
piler which schedules code for a communication-bound
iteration from r together with a sufficient number of com-
pute-bound iterations from E. We refer to such a group of
iterations as a node. Code scheduling within a node or-
ders the instructions as follows: loads for the iterations
from ti (which are all satisfied by the cache), loads for the
iterations from r (which may require long latencies), exe-
cution of the iterations from H (which are executed si-
multaneously with the loads of r), and execution of the
iterations from r. Finally, the results computed by the
iterations in the node are stored.

Despite a lack of hardware support, the overlapping of
computation and communication can be accomplished on
the BBN TC2000 through special code scheduling. The
Motorola 88000 [22] issues one instruction on every cy-
cle, unless there is a stall in the instruction issue unit. The
instruction issue unit stalls when it must dispatch to a
pipe which is full. The memory access pipe on the 88000
has three stages. The pending accesses to local and re-
mote memory wait at the third stage for their data.
Should the load pipe be filled with two memory opera-
tions that are waiting behind a pending memory opera-
tion, the instruction issue unit stalls on another memory
access instruction. The feature of the 88000 that influ-
ences our methods for reducing communication overhead
is the overlap possible between the access and floating
point units that enables us to execute floating-point oper-
ations while waiting for memory.

Some architectural specifics of the Motorola 88000
point to fundamental limits to maximum overlap. The
memory system of the 88000 operates in a pipelined fash-
ion. The in-order operation of memory requires that all
loads for a computation to be overlapped with a remote
memory access must be issued before the remote access
is issued. In order to avoid waiting on the remote mem-
ory access, data for compute-bound iterations must be in
registers before initiating the remote load. The number of
CPU registers seriously limits the maximum number of
compute-bound iterations that can be overlapped, as the
following analysis indicates.

Assume that a node consists of one communication-
bound iteration requiring a single remote load and several
compute-bound iterations. A remote load requires at
least 38 cycles to complete. This latency is completely
overlapped only if 38 floating point operations whose op-
erands are already in registers can be issued. Assuming
four floating point operations and four operands per com-
pute-bound iteration for the code in Fig. 2, at least 38
registers are required. Composing a node using a square
compute-bound tile of size 3 x 3 with each communica-
tion-bound iteration will reduce register requirements to
approximately 25, but this introduces additional compila-
tion complexity [4].

6. SOFTWARE REDUNDANCY

In software redundancy, the data assignment is ex-
tended to create additional copies of the data in the local
memories of individual processors. Consistency is main-
tained by inserting separate stores in the instruction
stream for each update. Software redundancy is a natural
extension to the hardware redundancy already exploited
to reduce latencies; e.g., one datum may be simulta-
neously in a memory location and in cache. In this sec-
tion, we permit the data assignment to be a one-to-many
mapping from the elements of the global array to proces-
sors. A particular element may appear in several local
memories. We concern ourselves with maximum soft-
ware redundancy, which is the replication of data ele-
ments so that each processor has a local copy of all ele-
ments in its use set. The corresponding data assignment,
(T, maps (i, j) to those processors that access (i, j), and
is the inverse of the use set mapping, %(a, p): v(i, j) =
{alk j) E Way ~11.

Two factors to be considered in using software redun-
dancy are the extra memory space and additional consis-
tency updates it incurs. In the following, we quantify
each of these factors. The amount of memory space allo-
cated per processor is I%(a, p)I as compared to IL(a)1
previously. Note that l%(a, p)I = I[il - n; : i2 + nl, j, -
n; : j, + n:]l = (u + nh)(h -t IZ”), while IL(a)1 = hu.
Therefore, the additional storage required is l%(a, p)I -
/L(a)/ = un, + hnh + nhnv and the fractional increase in
memory requirements is

unv + hnh + nhnv

hu (6.1)

Observe that, since h and u are typically at least an
order of magnitude larger than nh and n, , the value com-
puted by Eq. (6.1) is small. Since our analysis accurately
identifies elements used by a particular processor, even
maximum software redundancy only marginally in-
creases storage requirements.

Let us examine the impact of maximum software re-
dundancy on consistency traffic.

LEMMA 1. When using maximum software redun-
dancy, the increase in the number of local loads is hng +

a unv, where n{, nt are quantified by Eq. (3.1) and the
increase in the number of remote stores is hnh + un,
and the savings in communication time is (hni + unt)
(t, - t,) - (hnh + Un,)t,.

Proof. The increase in the number of local loads is
equal to the number of read references made by a proces-
sor to its SRNW set. The communication parameters ob-
tained by the additive construction procedure quantifies

376 HUDAK AND ABRAHAM

the number of such references per unit length of the part
border [I, 161. Therefore, the increase in the number of
local loads is hni: + unt. There is a corresponding de-
crease in the number of remote loads, resulting in a net
decrease in communication time of (hni: + unc)(tr - t,).

A data element in the SRNW set is computed by an-
other processor. When the maximum software redun-
dancy data assignment scheme is used, such points re-
quire consistency updates by another processor.
Therefore, the number of points in the SRNW set is equal
to the number of extra stores required to implement this
scheme. The size of the SRNW set is approximately
hnh + un,. Therefore, the communication time is in-
creased by (hnh + un,)t,. w

For data which are written by one processor and read
by another, the consistency is maintained on the TC2000
among the multiple copies by the processor performing
the update. The traditional method of transferring data
between processors is a demand-based, or pull, protocol.
Software redundancy replaces this with a push protocol.
A processor which is writing a datum back to memory
has a list of storage locations which also must be up-
dated. The processor updates its copy of the datum,
along with all copies on the list. The net effect is that the
processor “pushes” the new data value into the local
memory of the processor which is waiting on the datum.

7. ADAPT

The ADAPT (automatic data allocation and partition-
ing tool) system generates code to automatically manage
data assignments for iterative parallel loops. ADAPT
consists of a set of routines which are implemented
within the PAT (Parallelizing Assistant Tool) system de-
veloped at Georgia Tech by Appelbe et al. [27]. Existing
facilities within PAT were used to identify triply nested
loops in sequential FORTRAN code and to analyze the
code body of the innermost loop for array references.
The ADAPT routines analyze these references to deter-
mine the optimal aspect ratio. In addition, BBN parallel
FORTRAN is generated to implement a partitioning
based on the size of the iteration space, the number of
processors, and the aspect ratio.

In addition to partitioning, ADAPT also exploits the
memory hierarchy of the BBN by declaring shared arrays
to be cacheable. ADAPT uses the access vectors ob-
tained from an analysis of the input code to determine the
SREW and SRNW sets for each part. Cache flush in-
structions are then inserted into the code to flush the
SREW and SRNW sets after each cycle. The false shar-
ing of data between processors introduced by cache lines
further complicates consistency maintenance and will be
discussed shortly.

7.1. ADAPT’s Preamble and Run-Time Partitioning

Assuming the stencil set is fixed, partitioning at com-
pile time is desirable in order to avoid the expense of
communication analysis at run time. However, a strictly
static partitioning approach is not practical for many pro-
grams where the array and loop bounds, as well as the
number of processors, are not known at compile time.
ADAPT’s solution to this dilemma lies in the recognition
of the partitioning problem as two distinct phases: com-
munication analysis (i.e., determination of the optimal
aspect ratio from the access vectors) and partition gener-
ation (i.e., the determination of the part boundaries for
each processor executing the parallel loops). At compile
time, ADAPT performs communication analysis and col-
lects other information from the program which is re-
quired for partition generation, i.e., the bounds of the
parallel loops (which may be expressions that cannot be
evaluated at compile time). This information is placed
within a preamble which is inserted just in front of the
parallel loop in the output code generated by ADAPT. At
run time, each processor executes the preamble prior to
the first cycle, thus completing partition generation.

Eq. (3.2) give the dimensions of a rectangular partition
with parts of a given size (i.e., N2/9) that has the mini-
mum value of C, = hnh + uny. However, the ability of
the partition to tessellate the iteration space is not guar-
anteed. The partition generation algorithm of the ADAPT
preamble takes a different approach: it considers the set
of rectangular partitions that tessellate the iteration
space, and selects the one with the aspect ratio that is
closest to the optimal aspect ratio.

Assume an N x M iteration space. For a given number
of processors, 9, the set of rectangular partitions which
tessellate can be generated from the set of divisors of 9.
Let qr = 8, and assume (for the moment) that q divides
N and r divides M. In a treatment similar to the OPTAL
algorithm of Polychronopoulos [24], the rows of the itera-
tion space are assigned into q classes and the columns are
assigned into r classes. The part to be executed by pro-
cessor p is located in row class (p/r) and in column class
(p and r). For such a partitioning, the aspect ratio is Nqi
Mr. The preamble of ADAPT examines this aspect ratio
for all possible values of q and r. The values of q and r for
which the aspect ratio is closest to the optimal aspect
ratio, i.e., hoptluOpt is chosen as the partition.

Now consider the case when q does not divide N
evenly, i.e., let N mod q = O,, where 0, # 0. In such a
case, load imbalance is introduced. The first oq row
classes contain an extra row while the remaining q - 0,
row classes contain [N/q] rows. The case when r does
not divide M evenly is handled analogously. Under these
assumptions the maximum number of iterations that any
processor must execute in addition to the original [N/q]

OPTIMIZATION OF COMMUNICATION FOR SHARED-MEMORY MULTIPROCESSORS 377

[M/r] iterations is [N/q] + [M/r] - 1. By replacing the
integer-valued functions with real-valued functions, the
maximum relative load imbalance is

which simplifies to (NV + Mq - qr)l(NM). And, since
values of N and M are typically orders of magnitude
greater than q and r, the relative load imbalance intro-
duced by ADAPT’s partitioning scheme is usually negli-
gible.

7.2. False Sharing and Consistency

In order to exploit the memory hierarchy of the BBN
TC2000, ADAPT declares the global arrays used within
the iterative parallel loops to be cacheable. Since the
cache is a private level of the TC2000 memory hierarchy,
automatic consistency of data is not provided. ADAPT
maintains the consistency of data in software through the
use of cache flush instructions. ADAPT estimates the
SREW and SRNW sets for each partition using the ac-
cess vectors obtained from the input code and Theorem
2. ADAPT then generates cache flush instructions to
flush the SREW and SRNW sets of each part. These
instructions are inserted after the code responsible for
updating matrices and are synchronized using a barrier,
so the activities enforced by ADAPT within a single cycle
are: (1) Update partition elements, reading most recently
updated copies of shared data elements from memory. (2)
Flush shared data elements into global memory. (3) Syn-
chronize at a barrier to prevent processors from begin-
ning the next cycle before the shared data is resident in
global memory.

Assuming column major storage, contiguous data
points within a column are located in contiguous memory
locations. For the Motorola 88000 processors used in the
BBN TC2000, the cache line size is 16 bytes and the
floating point data type is 4 bytes long. Therefore, assum-
ing the matrix begins on a cache line boundary, exactly
four data elements from the global matrix are contained
on a single cache line. This inclusion of four data points
on a single cache line complicates the consistency main-
tenance on the BBN TC2000. For example, consider a
cache line, the first of whose points is updated by a par-
ticular processor while the remaining three points are
updated by another processor. During the update of their
respective partitions, the two processors read data ele-
ments from the locations contained on the cache line and
a copy of the cache line is created in each processor’s
cache. The first processor updates the first element on
the cache line, and now possesses a line containing one
current value and three “stale” values. Similarly, the

second processor possesses a cache line containing one
stale value and three current values. After the partition
updates, the cache lines are flushed back into global
memory. Assume that the first processor flushes the
cache line, followed by the second processor. The flush
performed by the second processor replaces the value in
memory that was updated by the first processor with the
stale value possessed by the second processor. Indeed,
regardless of the order in which the two processors flush
their cache lines, stale data will reside in memory.

Though the partitioned loop does not contain depen-
dencies between array values within a cycle, there are
output dependencies that must be maintained on cache
lines for correctness. The key to a general and elegant
solution to this problem lies in recognizing the need to
maintain certain output dependencies on cache lines. De-
pendencies are usually maintained by inserting synchro-
nization operations. If in a particular parallel segment a
cache line is updated by at most s processors, correct
execution is in general obtainable by inserting s synchro-
nization operations so that in each phase no more than
one processor updates any cache line. Following each
phase, all processors flush all cache lines that can possi-
bly be updated in that phase. All processors except at
most one have a clean copy of the line and do not write to
memory. Only the processor having the dirty copy of the
line writes to memory.

In the context of rectangular partitioning of iterative
parallel loops, the false sharing problem has to be ad-
dressed for those cache lines in the horizonal borders of
each part. All other cache lines are exclusively updated
by one processor. The horizontal border cache lines may
be updated by two processors. Therefore, we further sub-
divide each parallel segment into two segments and insert
an additional synchronization barrier as follows: (1) Up-
date the top half of each part, reading the most recently
updated copies of shared data elements from memory. (2)
Flush shared data associated with the top half of each
part into global memory. (3) Synchronize at a barrier to
prevent simultaneous access of shared cache lines by
processors. (4) Update the bottom half of each part, read-
ing the most recently updated copies of shared data ele-
ments from memory. (5) Flush shared data associated
with the bottom half of the part into global memory. (6)
Synchronize at a barrier to prevent processors from be-
ginning the next cycle before the shared data are resident
in global memory.

8. EXPERIMENTAL RESULTS

Experiments were run on a 45processor BBN TC2000
at Argonne National Laboratories. For the first suite of
experiments, the code presented in Fig. 1 was restruc-

378 HUDAK AND ABRAHAM

tured by hand to implement various data assignments and
varying degrees of overlap. In the second suite of experi-
ments, the SHOPF code segment from the BBN manual
was restructured using the ADAPT system.

8.1. Data Assignment Experiments

For the first set of experiments in this subsection, we
used a simple column partition to simplify the implemen-
tation of various data assignments and overlap. To fur-
ther simplify the problem, each processor communicated
across only one boundary. The relative performance of
the candidates in this experiment is unaffected by these
choices.

The data assignments for the sample code were made
by considering the placement of the ERW and SRNW
sets of each processor. The following notation is used in
this section to abbreviate the levels of the hierarchy; “c”
stands for cache, “lm” for local memory, and “rm” for
remote memory. The data assignment is specified by an
ordered pair, (hierarchy level holding the SRNW, hierar-
chy level holding the ERW). The SREW set is automati-
cally placed with the SRNW set. The location of both
sets is referred to as the SRNW location for brevity.
Execution times from the BBN TC2000 in ps are given
for various data assignments in Table I.

The largest execution time occurs, not surprisingly,
when no special attention is paid to the data assignment.
This is the case labeled (rm, rm) in Table I, and corre-
sponds to scattering the array among the memory mod-
ules executing the program, using the BBN “scatter”
command. In order to make a fair comparison, the time
obtained for the “scatter” data distribution is compared
to a data assignment with no redundant storage. Our data
partitioning scheme described in Section 5.1 places each
processor’s exclusive write set in its local memory, and is
the (rm, lm) case in Table I. The observed decrease in
execution time is a factor of 3.63, for a savings of 72.45
percent. For this application, utilization of a data assign-
ment dramatically improves the performance of the
BBN.

The experiments are based on the placement of the
ERW set and the SRNW set for each processor. In our
experiments, software redundancy and hardware redun-
dancy are both exploited. The (rm, c) case results from

TABLE I
Execution Times in ps for Various Data Assignments

ERW

s-h*,

TABLE II
Relative Performance of a Processor for Various Data

Assignments

ERW

the implementation of hardware redundancy using local
arrays which are declared to be cacheable. The local ar-
rays are used in this section to illustrate the performance
found at various levels of the memory hierarchy and in
the implementation of overlap. Software redundancy, as
described in Section 7.1, is used when the shared points
are placed in the local memory. The results presented in
Table II demonstrate the obvious observation that reduc-
ing the latencies for all data points results in the minimum
execution time. However, we can separately analyze the
effects of software redundancy and hardware redun-
dancy for this application. The experimentally observed
reduction in execution time using hardware redundancy
in 27%. The observed reduction in execution time using
software redundancy is 7%.

In order to test the effects of data assignment on a
more complex loop partition, the code in Fig. 1 was parti-
tioned using squares and executed on 16 processors of
the BBN TC2000. An analysis of the loop in Fig. 1 when
partitioned for N = 100 and ?J’ = 16 indicates that 96% of
all references are made to the ERW set, while 4% of all
references are made to shared points. When using square
partitions, the number of accesses made to the ERW set
is proportional to the area of the partition, which grows
quadratically in N. Meanwhile, the number of accesses
made to the shared points is proportional to the perimeter
of the partition, which grows linearly in N. Therefore, as
N grows, the performance of the (rm, c) assignment
should improve relative to the (rm, rm) assignment. Ex-
periments varying N from 100 to 400 were run on the
BBN TC2000. The ratio of the execution time of the (rm,
rm) to the execution time of the (rm, c) assignment ob-
tained is presented in Fig. 4. Note that, as N increases
from 100 to 240, the ratio increases. However, as N ex-
ceeds 240, the ratio drops dramatically. This is because
the Motorola 88000 processors have only 16 kilobyte of
data cache, and N = 240 is the largest value of N for
which the ERW set entirely fits in the cache.

In our experiments, the node construct overlapped one
load of a shared point (in local or remote memory) with a
number of iterations from the compute bound set. Due to
the limited number of registers, any attempted overlap of
more than three iterations resulted in partially computed

OPTIMIZATION OF COMMUNICATION FOR SHARED-MEMORY MULTIPROCESSORS 379

6.0

5.6
.I:
2 $4

y 5.6

42

a

j 5.4

5.2

I

100 150 200 250 300 350 4

N

FIG. 4. The ratio of (rm, rm) to (rm, c) as N increases.

results being spilled back to memory. The execution
times (in microseconds) are given for the (lm, c) data
assignment and the (rm, c) data assignment in Fig. 5 as
the number of overlapped iterations increases. For an
overlap of three, the improvement in execution time is
8.65% for the (rm, c) case and 10.21% for the (lm, c) case.

8.2. ADAPT

The previous experiments have compared one data as-
signment with another, using the same partitioning
method for each program. It is important to compare the
result of our partitioning with more traditional methods
of scheduling parallel programs. The SHOPF routine [3]
is a code segment extracted from a fluid flow application.
It involves the update of a global matrix using the stencil
{CL 01, (1, 11, (1, O), (1, -11, (0, 3, (0, I), (0, co, (0, -l),
(0, -2),(-l, l), (-l,O), (-1, -l), (-2,O)). Twoversions
of the code were used in experiments. The first version
used chunk scheduling. The second version was restruc-
tured code generated by ADAPT.

Three experiments were conducted on the code gen-

TABLE III
Execution Time of SHOPF with N = 200, 9 = 16

Processors Processors
dividing dividing

Aspect ratio columns rows Time(sec.)

0.0625 16 1 32.12

0.25 6 2 26.51

1 4 4 29.16

4 2 6 32.53

16 1 16 45.05

-56000

~.4...

B
-4
L,
:52000
a
Y

50000

48000
0

I I
1 2

Overlap

FIG. 5. Execution time in ~LS vs degree of overlap. (13) Im, c; (a)
rm, c.

erated by ADAPT. ADAPT was used to generate code
with varying aspect ratios to determine the impact of
altering the aspect ratio on performance. The possible
aspect ratios for 16 processors, along with their column
and row assignments, are given in Table III. Using the
max-min construction, &, = 4 and ny = 4, so the Optimal
aspect ratio is 1. However, since a cache line in the BBN
TC2000 system contains more than one data point, the
effects of cache lines on communication must be consid-
ered as detailed in [l]. From this treatment, the optimal
aspect ratio is 0.25, as is demonstrated experimentally in
Table III. Facilities within ADAPT to compensate for
cache line effects have been added. In order to observe
the effects of matrix size on performance, both versions
of the code were run on 16 processors for varying matrix
sizes. The exploitation of the BBN memory hierarchy
improved performance of the ADAPT-generated code
relative to the code using chunk scheduling from a factor

c) 60
Y

5% 60

E F 40

20

FIG. 6. Execution time of SHOPF with 8 = 16, aspect ratio of 0.25.

HUDAK AND ABRAHAM

which provides for maximum reuse of registers. Also,
our analysis can be extended to other memory hierar-
chies. Additionally, our approach must be generalized to
a wider range of numerical applications. These are major
areas for future work.

ACKNOWLEDGMENTS

The authors thank Bill Appelbe, Kurt Stirewalt, and particularly
Kevin Smith for their assistance in using the PAT system. Argonne
National Laboratory provided access to the BBN TC2000 computer.

o-
4 8 12 16 20

Processors
1.

FIG. 7. Execution time of SHOPF with N = 200, aspect ratio of
0.25. (b) Chunk scheduling, (+) ADAPT output.

2.

of 3.27 when N = 100 to 3.69 when N = 200, as shown in 3.
Fig. 6. Finally, the code was compared for various num-
bers of processors in Fig. 7.

4,

9. CONCLUSION
5.

The nonuniformity of memory access times found on
large-scale, shared-memory multiprocessors is a direct
result of scaling the systems to large numbers of proces- 6.
sors. However, this is not an unfortunate result that must
be hidden from the compiler. If exposed, the compiler 7

’ can exploit the nonuniformity to extract even greater per-
formance. In this paper, we examined automatic methods _

REFERENCES

Abraham, S. G., and Hudak, D. E. Compile-time partitioning of
iterative parallel loops to reduce cache coherence traffic. IEEE
Trans. on Par. andDist. Sys. 2, 3 (July 1991), 318-328.
BBN Advanced Computers, Inc. Znside the TC2000 Computer.
BBN Advanced Computers, Inc., Cambridge, MA, 1990.
BBN Advanced Computers, Inc., TC2000 Fortran Reference, BBN
Advanced Computers, Inc., Cambridge, MA, 1990.
Bromley, M., Heller, S., McNerney, T., and Steele, G., Jr. Fortran
at ten gigatlops: The Connection Machine convolution compiler. In
Proc. ACM SZGPLAN Conference on Programming Language De-
sign and Implementation, 1988, pp. 58-62.
Callahan, D., Cocke, J., and Kennedy, K. Estimating interlock and
improving balance for pipelined architectures. In International
Conference on Parallel Processing, 1987, pp. 295-304.
Callahan, D., Kennedy, K., and Porterfield, A. Software pre-
fetching. In Arch. Support for Programming Languages and Oper-
ating Systems--IV, 1991, pp. 40-52.
Carr, S., and Kennedy, K. Blocking linear algebra codes for mem-
ory hierarchies. In Proc. SIAM Conference on Parallel Processing
for Scientijic Computing, Chicago, IL, December 1989.

for reducing the impact of communication time on the
execution time of a parallel loop. We identify and focus
on iterative data parallel loops. For the optimal loop par-
titions generated by ADP, we develop an optimal data
partition that minimizes communication time.

The ADAPT (automatic data allocation and partition-
ing tool) system was developed in order to automatically
partition programs. The use of ADAPT on a fluid flow
code segment improved performance by over a factor of
3 over the partitioning method suggested by BBN. In
order to reduce communication overhead even further,
we consider the overlapping of compute-bound iterations
with memory-bound iterations. Certain machine fea-
tures, e.g., the size of the register file and the single mem-
ory access pipe on the Motorola 88000, limit the maxi-
mum achievable overlap.

Many opportunities exist for future work in this area.
We are currently working on extending this analysis to
multiple loops with potentially different access patterns.
A classification of loops to determine the optimal amount
of software redundancy may lead to improved perfor-
mance. Improvement of maximum overlap can be
achieved through a two-level loop blocking scheme

8. Carr, S., and Kennedy, K. Compiling scientific code for complex
memory hierarchies. In Proc. Hawaii International Conference on
System Sciences, 1991, pp. 536-544.

9. Cheong, H., and Veidenbaum, A. Compiler-directed cache man-
agement in multiprocessors. IEEE Computer 23,6 (June 1990), 39-
47.

10. Cytron, R., Karlovsky, S., and McAuliffe, K. Automatic manage-
ment of programmable caches. In International Conference on Par-
allel Processing, 1988, pp. 229-238.

11. Farhat, C. A simple and efficient automatic FEM domain decom-
poser. Computers and Structures 28(S) 579402, 1988.

12. Fox, G., Hiranandani, S., Kennedy, K., Koelbel, C., Kremere, U.,
Tseng, C., and Wu, M. Fortran D language specification. Tech.
Rep. TR90-141, Department of Computer Science, Rice University,
Dec. 1990.

13. Gallivan, K., Jalby, W., and Cannon, D. On the problem of opti-
mizing data transfers for complex memory systems. In ACM Znter-
national Conference on Supercomputing. St. Malo, France, 1988,
pp. 238-253.

14. Gannon, D., Jalby, W., and Gallivan, K. Strategies for cache and
local memory management by global program transformation. J.
Parallel Distrib. Compur. 5, 5 (Oct. 1988), 587-616.

15. Gornish, E. H., Granston, E. D., and Veidenbaum, A. V. Com-
piler-directed data prefetching in multiprocessors with memory hi-
erarchies. In ACM International Conference on Supercomputing.
1990, pp. 354-368.

OPTIMIZATION OF COMMUNICATION FOR SHARED-MEMORY MULTIPROCESSORS 381

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

Hudak, D. E., and Abraham, S. G. Compiler techniques for data
partitioning of sequentially iterated parallel loops. In ACM Znterna-
tional Conference on Supercomputing. 1990, pp. 187-200.
Hudak, D. E., and Abraham, S. G. Multidimension extensions to
adaptive data partitioning. Tech. Rep. CSE-TR-85-91, The Univer-
sity of Michigan, 1991.
Knobe, K., Lukas, J., and Steele, G., Jr. Data optimization: Allo-
cation of arrays to reduce communication on SIMD machines. J.
Parallel Distrib. Comput. 8 (1990), 102-118.
Koelbel, C., and Mehrotra, P. Compiling global name-space paral-
lel loops for distributed execution. IEEE Trans. Parallel Distrib.
Systems. 2, 4 (Oct. 1991), 440-451.
Lenoski, D., Laudon, J., Gharachorloo, K., Gupta, A., and Hen-
nessy, J. The directory-based cache coherence protocol for the
DASH multiprocessor. In Z7th Znternational Symposium on Com-
puter Architecture. 1990, 148-159.
Mangione-Smith, W., Abraham, S., and Davidson, E. The effects
of memory latency and fine-grain parallelism on Astronautics ZS-1
performance. In Proc. Hawaii International Conference on System
Sciences. 1990, 288-296.
Melear, C. The design of the 88000 RISC family. IEEE Micro (Apr.
1989) 26-38.
Pingali, K., and Rogers, A. Compiling for locality. In Znternational
Conference on Parallel Processing. 1990, 142-146.
Polychronopoulos, C. On Program Restructuring, Scheduling, and
Communication for Parallel Processor Systems. Ph.D. thesis, Uni-
versity of Illinois at Urbana-Champaign, Aug. 1986. CSRD Report
595.

Ramanujam, J., and Sadayappan, P. Compile-time techniques for
data distribution in distributed memory machines. ZEEE Trans.
Parallel Distrib. Sys. 2, 4 (1991), 472-482.
Reed, D. A., Adams, L. M., and Patrick, M. L. Stencils and prob-
lem partitionings: Their influence on the performance of multiple

processor systems. IEEE Trans. Comput. C36, 7 (July 1987) 845-
858.

27. Smith, K., and Appelbe, W. PAT-An interactive Fortran parallel-
izing assistant tool. In International Conference on Parallel Pro-
cessing. 1988, 58-62.

28. Tseng, P.-S. A Parallelizing Compiler for Distributed Memory Par-
allel Computers. Ph.D. thesis, Carnegie-Mellon University, Pitts-
burgh, PA, May 1989.

29. Wolf, M., and Lam, M. A data locality optimizing algorithm. In
Proc. ACM SZGPLAN 1991 Conference on Programming Lan-
guage Design and Implementation, June 1991, pp. 30-44.

30. Zima, H., Bast, H., and Gerndt, M. Superb: A tool for semi-auto-
matic MIMDiSIMD parallelization. Parallel Comput. 6, (1988) l-
18.

DAVID E. HUDAK is a Ph.D. student in the Electrical Engineering
and Computer Science Department at the University of Michigan, Ann
Arbor, and a research assistant in the Advanced Computer Architecture
Laboratory. His research interests focus on hardware and software
methods for improving the performance of multiprocessors. David Hu-
dak has the B.S. in mathematics from Bowling Green State University,
and the M.S. in computer science from the University of Michigan.

SANTOSH G. ABRAHAM is currently an Assistant Professor in the
Department of Electrical Engineering and Computer Science at the
University of Michigan, Ann Arbor. From 1984 to 1987, he was a re-
search assistant in the Center for Supercomputing Research and Devel-
opment at the University of Illinois. His research interests are in the
areas of parallel processing, compilation for parallel systems, and com-
puter architecture. Santosh Abraham received the B. Tech. degree from
the Indian Institute of Technology, Bombay, in 1982, the MS. degree
from the State University of New York, Stony Brook, in 1983, and the
Ph. D. degree from the University of Illinois, Urbana, in 1988-all in
electrical engineering.

Received September 1, 1991; revised February 28, 1992; accepted April
17. 1992

