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Abstract-  Classical theories of elasticity assume that the Cauchy stress in the material depends 
on the deformation gradient of particles in the current configuration. Such as assumption can 
usually be motivated by the presence of a single micromechanism. Here we consider the possi- 
bility that as the material is deformed an additional micromechanism might come into play and 
have a role in determining the Cauchy stress. We show that "inelastic" behavior of some mate- 
rials can be explained within the context of such a theory. To illustrate our ideas, we use the 
ideas of scission and reforming of networks within the context of polymeric materials. The the- 
ory is of course much more general and can be used to describe the mechanics of materials in 
which microstructural changes are induced due to deformations. 

I. INTRODUCTION 

The general  fo rm o f  the  const i tut ive equat ion  for  nonl inear  elastic sofids is based on  as- 
sumpt ions  which imply  tha t  stress arises due to  a single mate r ia l  mic romechan i sm,  and  
tha t  this  m ic romechan i sm does  not  change  as the  mate r ia l  de forms .  In  this const i tu t ive  
equat ion,  the current  value o f  the Cauchy  stress depends  only on  the gradient  o f  the cur- 
rent  con f igu ra t i on  with respect  to the  reference  conf igu ra t ion ,  and  this dependence  is 
expressed in t e rms  o f  a H e l m h o l t z  free energy dens i ty  func t ion .  Such a cons t i tu t ive  as- 
sumpt ion  can be mo t iva t ed  by  a single molecu la r  mechan i sm.  F o r  example ,  i f  one  con-  
siders the  kinet ic  t heo ry  o f  r ubbe r  elast ic i ty ,  the H e l m h o l t z  free energy is der ived  f rom 
the molecu la r  theor ies  o f  rubbe r  ne tworks ,  which cons ider  the inf luence o f  such fac tors  
as con f igu ra t i ona l  changes  in mac romolecu le s ,  cross- l inks ,  and  en tang lements .  

In  this paper ,  we consider  mater ia ls  which undergo  micros t ruc tura l  changes when de- 
fo rmed .  Tha t  is, a new m i c r o m e c h a n i s m  arises which affects  the  mechan ica l  response  
o f  these mater ia ls  and  leads to  new physical  phenomena  such as pe rmanen t  set upon  re- 
lease o f  stress. Such p h e n o m e n a  are usual ly  associa ted  with mater ia l s  tha t  a re  classif ied 
as plast ic .  Ideas  in plas t ic i ty  theo ry  owe their  genesis to  the  behav io r  o f  metal l ic  solids.  
Howeve r ,  theor ies  o f  p las t ic  response  need to  be res tud ied  due  to  the  advent  o f  m o d -  
ern po lymer i c  sol ids .  M a n y  o f  the  p h e n o m e n a  genera l ly  c lass i f ied  under  the  umbre l l a  
o f  plastic behavior  in polymer ic  solids can be interpreted,  as we shall see, within the con- 
text  o f  a d i f fe ren t  theore t ica l  f r a m e w o r k .  It is not  our  a im to press c la im to our  in- 
t e r p r e t a t i on  as being the un ique  correc t  exp lana t ion .  Howeve r ,  it seems under  cer ta in  
c i rcumstances ,  for  a class o f  mater ia ls ,  such a theoret ical  f r amework  is bo th  na tura l  and  
appea l ing .  

O u r  research  deve lops  the  semina l  ideas  o f  TOBOLSKY and  ANDREWS [1945] and  
TOBOLSKY, ANDREWS, and  HANSON [1946] who p r o p o s e d  the t w o - n e t w o r k  t heo ry  for  
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polymeric materials. In this theory, a certain number of  cross-links are present in the 
initial stress free state, and additional cross-links are introduced in a later state. The ini- 
tial system of  cross-links produces one network or micromechanism. The appearance 
of the new cross-links leads to a new micromechanism and a second network. TOBOLSt~Y, 
PRETTYMAN, and DILLON [1944] postulated another situation in which molecular cross- 
links are broken and then reformed to produce a new network with a new reference 
state. LODGE [1964] used a two-network theory to discuss permanent  set in rubbers 
caused by uniaxial and biaxial extension deformation. FONt and ZAPAS [1976] used both 
the two-network theory and the molecular network model of  TOBOLSKY, PRETTYMAN, 
and DILLON to discuss chemical stress relaxation and permanent  set in rubber. A third 
example of  material response in which a second micromechanism occurs could be that 
of  strain induced crystallization. PETERLIN (1976) suggested that this occurs when a num- 
ber of  macromolecular chain segments associate to form a bundle like cluster with fairly 
good orientation. The remaining chain segments may be in an amorphous region. Thus, 
a new constituent or micromechanism is formed which contributes to the mechanical 
response. It is easy to see that all the above-mentioned phenomena can lead to "plastic 
behavior".  

WINEMAN and RAJAGOPAL [1990] discussed a constitutive theory based on such ma- 
terial response. They assumed that a microstructural change occurs at some stage of de- 
formation which results in the conversion of  a portion of the original material to a new 
network with a new reference configuration. They then used this two-network model 
to solve a number of  problems including permanent  set due to shearing and combined 
extension and torsion of circular cylinders. In this work, we extend the constitutive equa- 
tion in order to allow for continuous conversion of  the original material as deforma- 
tion proceeds. The general model is outlined in the next section. A specific example is 
presented in Section III .  Finally, we point out that the ideas presented here are related 
to those in an earlier work (cf. RAJAGOPAL & WINEMAN [1980]), in which we discussed 
a method for modeling changes f rom one manner of  response to another based on the 
ideas of  bifurcation and the selection of an appropriate  branch. 

I1. CONSTITUTIVE MODEL 

Let s denote a parameter associated with the deformed state. Let r(0) denote the con- 
figuration of  the material in its initial unstrained, unstressed state, and let r (s) denote 
its configuration corresponding to the deformed state s. The coordinates of  a material 
configuration r (s) are denoted by x(s). The deformation gradient of  particles in the con- 
figuration ~ (s) with respect to particles in the configuration ~ (g) is denoted by F(s,  g). 

We shall present the underlying ideas for a nonlinear elastic material which is incom- 
pressible and isotropic in its initial configuration. It is assumed that there is a regime 
of  deformations f rom the initial configuration in which the mechanical response is gov- 
erned by a single micromechanism. Within this regime of deformations the constitutive 
equation has the form 

a = - p l  + thlB(s,0) + ~b_l [B(s ,0)]- I  (1) 

where B(s,O) = F(s,O)F(s,O) r, 4~1 = 0 W/O II,  4~-1 = 0 W/OIz, I1 and I2 denote the prin- 
cipal invariants of  B, and W(I1 ,  I2) is the Helmholtz free energy density function. 
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At a certain stage of  deformation,  a new micromechanism is activated which leads 
to a change in the microstructure of  the material. We shall characterize this event by in- 
troducing an activation function (activation criterion) A (F (s,0)) which depends on the 
deformation gradient of  the current configuration with respect to the initial configura- 
tion. In our present work we assume that the activation function is objective and sca- 
lar valued. However,  this need not be so, and it is possible that  other theories could be 
developed where the activation function could be tensor valued. Our activation crite- 
rion is akin to the yield criterion in classical plasticity theory. We illustrate some exam- 
ples using a specific activation criterion. While our criterion is able to model some of  
the phenomena observed in polymeric solids, it is by no means the only such criterion 
which can give the desired results. It is our aim to inject a new thought process, and thus 
we are not very concerned with the precise structure of  the activation criterion. As more 
experimental and theoretical results are obtained a more rational process for choosing 
the activation function might emerge. 

The new micromechanism is activated when 

A(F(s ,0))  = 0. (2) 

Material f rame indifference, isotropy, and incompressibility imply that 

A = A (I~, Iz). (3) 

The role played by the activation criterion theory is best understood within the context 
of  the specific examples presented later. For example, the activation criterion discussed 
below determines the value of  the state parameter  at which a new micromechanism is 
brought  into play. 

For convenience of presentation, we focus on a specific micromechanism, that of  scis- 
sion or breaking of  network junctions, and their subsequent reforming into new net- 
works. The format ion of  a second network by means of  this micromechanism was 
introduced by TOBOLSK'," and ANDREWS [1945]. FOr~C and ZAPAS [1976] then allowed for 
a continuous process of  breaking and reforming of  network junctions and discussed a 
possible constitutive equation for the resulting material. The constitutive model intro- 
duced here is a modification and generalization of  that of  FONG and ZAeAS [1976]. 

It is assumed that during each increment in the deformation, a certain fraction of  net- 
work junctions of  the original material are broken. This fraction depends on the extent 
of  deformat ion of  the original material.  The newly broken network junctions then im- 
mediately reform to produce a new undistorted network. During further deformation,  
this newly formed network deforms and contributes to the total stress. It is assumed, 
for the sake of  simplicity, that there is no scission of  newly formed networks. 

The total stress at each stage of deformation is defined to be the superposition of  con- 
tributions f rom the remaining port ion of  the original material and f rom each network 
for formed during the deformat ion process. Thus, if o(s )  is the total stress at the de- 
format ion state corresponding to state parameter  s, 

o ( s )  = oR(s) + a(g)oN(s,  g) dg (4) 
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where gR(s) is the stress in the remaining original material,  Sa is the value of the state 
parameter when activation begins, a (g)dg is the volume fraction of  network formed dur- 
ing the interval of  deformation when the state parameter  increases f rom g to g + d g  and 
cN(s, g) is the stress per unit volume in the newly formed material. The latter depends 
on the deformation gradient F(s,  g), which compares the configuration of  the network 
at the current state to the configuration when it was formed at state g. 

Let b(s) denote the volume fraction of  the remaining port ion of  the original mate- 
rial at state s. Then oR(s) is assumed to have the form 

oR(s) = - p I +  b(s)[q~lB(S,0) + ~b_lB(S,0)-l]. (5) 

It is assumed that the rate of  breaking of network junctions equals the rate at which new 
junctions are formed. This assumption is not essential to the analysis that follows and 
can be relaxed. This implies that 

f 
s 

b ( s )  = 1 - a ( g )  dg .  
Sa 

(6) 

Each new network is assumed to respond like an incompressible nonlinear isotropic elas- 
tic material. Moreover,  again for the sake of  simplicity, the mechanical response is the 
same for all of  the new networks. Thus, we shall assume 

oN(s,g) = - -pI  + q~lB(s,g) + ~_ lB(s ,g )  - l  (7) 

where B(s, g) = F(s,  g)F(s, g)r, and ~1, $--1 are material property functions which de- 
pend on the invariants of  B(s, g). On combining (4), (5), and (7), the constitutive model 
during activation takes the representation 

o = - p l  + b(s)[$1B(s,0) + O_jB(s,0) -1 ] 

+ a(g)  [q~lB(S, g) + ~_lB(s ,  g)-~] dL 
Sa 

(8) ~ 

It is further assumed that at each state of  deformation there is a regime for which no 
further scission occurs and within this regime and a(g)  -- 0, and the upper limit of  the 
integral in (8) is fixed at say s -- s*. Moreover, (6) shows that b(s) is fixed at the value 
b(s*). Equation (8) then becomes 

o = - p l  + b(s*)[OiB(s,O) + ~b_lB(s,O) - l  ] 

f(" + a(g)  [61B(s, g) + ~_1B(s, g ) - l ]  dg. 
a 

(9) 

This constitutive expression can be expressed in terms of F(s,0)  and thus can be inter- 
preted as representing local elastic response. In order to show this, note that 

F(s,  g) = F(s ,0)F(g,0)  -1 (10) 

It should be noted that p in the two eqs (7) and (8) represents different functions. Though this might ap- 
pear confusing, we choose to use such a notation for the sake of brevity. 
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f rom which it follows that  

B(s,  g) = F(s ,0 )C(s )  -1F(s ,0 )  r, 
(11) 

C(g)  = F(g,O)rF(g,O). 

When  these are substi tuted into (9), the latter can be written in the fo rm 

g = - p I  + b ( s * ) [ 4 ~ l B ( S , 0 )  + 4~_ lB(S ,0 )  - t  ] 
(12) 

+ F(s ,O)AIF(s ,O)T+ F(s,O)-TAEF(s,O) - l  

where 

and 

f S* AI = a(g)q~lC -1 (g) dg (13) 
Sa 

fS s* A2 = a ( g ) ~ - l C ( g )  dg. (14) 
a 

Each  o f  the several assumptions  incorpora ted  into (8) can be generalized. This would 
lead to an exceedingly complicated model and will be introduced in a future presentation. 

11I. EXAMPLE 

We now provide a specific example o f  the general constitutive model presented in Sec- 
t ion II.  Let the material  response before  act ivat ion be neo -Hookean .  Then (1) has the 
fo rm 

a ( s )  = - p l  + #B(s ,0)  (15) 

where/~ is a constant .  The de format ion  state parameter  is defined to be the radius in 
11 - 12 space th rough  

s = [(Ii - 3) 2 + (12 - 3) 2] 1/2. (16) 

Thus,  when the material is in its initial state, 11 = 12 = 3 and s = 0. The activation con- 
di t ion is defined to be 

A(I1 , I2 )  = [(II - 3) 2 + (/2 - 3)2] 1/2 --Sa = O. (17) 

When activation begins, each newly formed network is assumed to act as a neo-Hookean  
elastic material.  Then  (8) reduces to 

a(s)  = - p l  + b(s)#B(s ,O)  

+ ~a(g)B(s ,  g) dg. 
(18) 
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For the purposes of  this example, a(g)  is chosen to be quadratic on a finite domain,  

a( s )  = a ( s  - s a ) ( s -  sc), s ~ ( s a , s ~ )  

= 0 s E  (sc,oo) 
(19) 

where s¢ denotes the value of  the state parameter  at the completion of conversion. It 
should be noted that, for the specific form of  a( s )  chosen sc is bounded. However  for 
other choices it could be unbounded.  Let the total volume fraction of  converted mate- 
rial be denoted by C, where C < 1. Then, recalling (6) 

~s Sc C = a(g)  dg. (20) 
a 

It then follows f rom (19) and (20) that 

6 C  (21) 
= s ~ ( s .  - 3so) + sZ(3s.  - Sc) 

According to (17), there are many different deformation states at which activation can 
begin. Suppose activation has been initiated and the material has been deformed to a 
state at which s = s*. According to (17) and (18), the material can be deformed to 
many other states for which s = s* without further scission of network junctions. If  the 
material is deformed further so that s < s* then the deformation of  the original mate- 
rial can be regarded as having decreased. Then, if the material is deformed so that s < 
s*, there is no further conversion of  material and the stress is given by 

a = - p l  + b(s*) lxB(s ,O)  

f:" + i~a(g)B(s,  ,~) d~. 
Sa 

(22) 

We now illustrate the predictions of  the model for two homogeneous deformations,  
uniaxial and unequal biaxial extension. 

III .  1. Uniaxial extension 

Let the material be subjected to uniaxial extension along the x~-axis of  a cartesian co- 
ordinate system. The deformation gradient is F = DIAG(A, 1/,fX, 1 / ~ )  where A is the 
stretch ratio. The invariants of  the tensor B are 

2 1 
I1 ~. /~2 ..{._ ~ '  12 = 2A + AT (23) 

and the deformation state parameter,  by (16), is 

[( 2 ) 2 (  1 )2]J2 
s ( A ) =  A z + ~ - 3  + 2 A + ~ 5 - 3  (24) 
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which can be shown to be a monotonically increasing function of A. This can be inverted 
to give A = A (s). Before activation, when s < s~ 

- -  , 0"22 = 0"33 = 0 .  (25) 

During network conversion, s > s~, and the stress is given by (18)-(21). 
Note that the deformat ion gradient at state s for the network formed at state g is 

given by 

F(s,  g) = F(s,O)F(g,O) -1 

=DIAG[A(s),(A(s)]'/z,(A(g)) 1/2] 
L,X(~) \ ,X ( s ) ] \ - ~ ( ~  " 

(26) 

Thus, when A = A (s) is increasing, 0"22 = 0"33 -m- 0 and 

( 1) rs ~[- ~ 2 ;~(g)]d~. 
(27) 

A plot of  01~ versus A is shown in Fig. 1. The solid line shows the response for a neo- 
Hookean  material. The other lines show the relation for various amounts of  conversion. 
Conversion is assumed to begin when sa = 10, corresponding to A = 3.4, and terminate 
when sc = 30, corresponding to A = 5.5. These points are indicated by heavy dots. Just 
after initial conversion, the all - A graph becomes less steep than in the neo-Hookean 
case (C = 0), which is usually described as softening of  the material.  There is then an 
increase in slope, or a stiffening of  the material,  just before the end of  the conversion 
process. For conversions of  30% and 40%, the graphs are monotonic.  At 50%, the 
graph has a local max imum followed by a local minimum. These features correspond 
to a loss of  stiffness of  the original material due to network scission, followed by an in- 
crease in stiffness as the newly formed networks become deformed. For the graphs cor- 
responding to 30% and 40% conversion, we conclude that the rate of  loss of  stress 
carrying capacity of  the original material is small compared to the rate of  increase of  
stress carrying capacity as new networks are being formed and stretched. At 50% con- 
version, the loss of  the stress carrying capacity occurs faster than the new networks are 
being formed and stressed. At s = sc no further conversion occurs, and the deforma-  
tion in all networks increases, leading to further increase in the stress. It should be 
pointed out that if a(sa) ~ 0 (or a(s~) ~: 0), there would be a discontinuity in the slope 
of  the oll versus A graph at s = s~ (or s = s¢). This is avoided in the present example by 
the particular choice of  a(g)  in (19). 

Suppose that A increases to a max imum value at s = s*, and then A varies so that 
s < s*. According to (22), the relation between 0~1 and A is given by 

( I l l  = b ( s * )  A 2 -  + a(g) A ) dg 

= b(s*)  A 2 -  + A  2 dg- a(g)A(g)dg. 
aS S 2 

(28) 
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Fig. 1. Uniaxial stress-stretch graphs during elongation, for various amounts of conversion. 

Figure 2 shows the o~s versus A graph corresponding to this equation as A increases to 
5, and then A decreases (unloads). When at~ = 0 there is permanent  set. In this state, 
the total stress equals zero, but the original network is in a state of  tension and the newly 
formed networks are in states of  compression. 

111.2. Unequal bi-axial extension 

Consider a homogeneous deformation in which the material is subjected to unequal 
stretches along the xl and x2 axes of  a cartesian coordinate system and 033 = 0. The de- 
format ion gradient is F = DIAG(A1, A2, (A IA2) -1 ), and the strain invariants are 

Ii = A 2 + A~ + ( ,~1~2)  -2  

1 1 
(29) 
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Fig. 2. Uniaxial stress-stretch graphs showing the effect of reversing the stretching when A = 5. Results are 
shown for 0% and 40% conversion. 

It is seen f rom (16) that s = S (Al , ,~2 ) .  When s < Sa 

o ~  = #(A 2 - A2), o~ = 1,2 (30) 

where A3 = (AIA2) - l .  
Now consider an unequal bi-axial stretch history for which 

A 2 - 1 =  2 (,~1- 1). (31) 

Then s(Al,  A2) = g(Al).  This relation can be shown to increase monotonically with A l, 
so that there is an inverse relation A1 = A1 (s).  When s > so, the constitutive relation is 
given by (18). The deformat ion gradient F(s,  g) is 

F(s ,g )  = D I A G ( ~ ,  A2(s)'A2(s) A3(s)A3(s)) (32) 
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and the stress is given by 

I s 
o ~  = b ( s ) l z ( A  2 - A~) + a ( g ) l x  . . 

Js , ,  \ a ~ s )  
A~(g) dg. (33) 

The predictions of  this case are shown in Fig. 3, in which sa = 10, sc = 80, and C = 
0.5. The upper pair of  lines corresponds to oil and the lower pair corresponds to oz2. 
The upper line of  each pair shows neo-Hookean response in which there is no conver- 
sion and the lower line shows the effect of  conversion. Notice that both all and a22 de- 
crease due to conversion, and both appear  to have local maxima. 

IV. CONCLUSION 

The intent of  this work was to show that inelastic behavior in materials can be ex- 
plained within the context of  deformation induced microstructural changes in an initially 
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Fig. 3. Stress-stretch graphs during unequal bi-axial stretching according to eq. (31). Results are shown for 
0°7o and 50070 conversion. 
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elastic solid wherein the newly induced micromechanism also leads to an elastic response. 
In any further deformation,  both the micromechanisms come into play thereby deter- 
mining the response of  the solid body. We have shown that phenomena like permanent  
set on the release of  stresses, behavior that is usually associated with inelastic materi- 
als, are possible within this theoretical f ramework.  The creation of  the second micro- 
mechanism is given by an activation criterion similar to a yield condition in plasticity, 
but is different in the sense that it is fixed once and forever and there is no evolution 
of  a yield surface. The conversion from one micromechanism to another could be either 
discretized or continuous. Here, we have studied the problems of uni-axial and bi-axial 
extension of  an initially isotropic elastic solid, within the context of  a specific activation 
criterion, allowing for continuous conversion. The results clearly indicate inelastic phe- 
nomena  of  permanent  set and hysterisis. 
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