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Bacteriophage ~. relies to a large extent on processes requiring interactions 
between viral- and host-encoded proteins for its lytic growth, establishment 
of lysogeny, and release from the prophage state. Both biochemical and 
genetic studies of these interactions have yielded new information about 
important host and k functions. In particular, mutations in Escherichia coil 
that compromise k DNA replication, genome packaging, transcription 
elongation, and site-specific recombination have led to the identification 
of bacterial genes whose products are chaperones, transcription factors, 

or DNA-binding proteins. 

Current Opinion in Genetics and Development 1992, 2:727-738 

Introduction 

Viruses are the quintessential exploiters, expropriating 
most classes of the host's macromolecular worMbrce for 
their own selfish interest. They accomplish this by multi- 
pie and diverse mechanisms that involve processes basic 
to the expression and replication of the host genes. Con- 
sequently, these viral-host interactions provide invaluable 
means to study virus development, to identify host func- 
tions involved in the basic processes listed above, and to 
isolate mutations in host genes encoding essential func- 
tions. 

Studies with bacteriophage k and its E. coli host pro- 
vide excellent examples of the utility of this approach. 
They have yielded significant information on the physio- 
logical processes involved in ~. development, and have 
contributed to the isolation of mutations in previously 
unidentified E. coli genes encoding products that are in- 
volved in basic cellular activities. These mutations, which 
affect interactions between phage and host proteins, can 
exert significant effects on ;V growth without noticeably 
affecting the host. Thus, selection for mutations that 
influence ~. development avoids some of the problems 
inherent to searches for mutations in genes whose prod- 
ucts are essential for host growth. What is remarkable 
about this collection of studies is the wide array of host 
functions that could be identified by genetic selections 
and screens based on interactions between the virus and 
its host [ 1]. 

Bacteriophage k, a temperate phage, has two life styles, 
lytic growth and lysogeny. Lytic growth leads to phage 
production and requires the regulated expression of 
most phage genes. Lysogeny results in stable mainte- 
nance of the quiescent phage genome by the bacterium, 

and requires the integration of the phage genome into 
the host chromosome and repression of most phage 
genes. This review focuses on recent work on the more 
prominent activities identified in studies of k-E. coli in- 
teractions. Table 1 provides a list of many of these inter- 
actions, but because of space limitations, I have had to 
limit the number of topics discussed below. For a more 
complete, but dated, review of the subject, see Friedman 
el al. [1]. 

DNA-binding proteins: site-specific 
recombination 

Integration host factor 
Integration of ~. into the E. coli chromosome (see 
Fig. 1) occurs by recombination between two unique 
sites on the phage and bacterial chromosomes (attP 
and attB, respectively), and is catalyzed by the phage 
int-encoded product (reviewed in [2-4]). Although art 
sites vary in size and may cover hundreds of nucleotides, 
recombination occurs within the 15 nucleotide common 
core that is shared by art sites. Fig. 1 represents details on 
the mechanism of k site-specific recombination. The Int 
recombinase is a Type-I topoisomerase; that is, it cuts and 
rejoins DNA strands one at a time. Although much of the 
information about the DNA sites and phage proteins in- 
volved in integrating and excising the ~ genome from the 
host chromosome was obtained from mutational analy- 
sis, two host proteins, DNA gyrase and integration host 
factor (IHF), were identified through in vitro studies of 
)v site-specific recombination. DNA gyrase, which places 
negative superhelical turns into DNA, is required for this 
recombination process because the substrate molecule 
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Table 1. ~.-Escherlchla coil interactions. 

A. E. coil genes influencing 7. development 

Map Function in Function for 
Gene position Protein E. coli 7. 

nusA min 69 NusA Trc elong; term Trc elong. 
nusB min 10 NusB Trc elong; term Trc elong. 
rpsl (nusE) min 72 Ribosomal Trn Trc elong. 

protein 510 
nusG min 90 NusG Trc elon8; term Trc term. 
rho min 85 Rho Trc term Trc term. 

c/naB min 92 DnaB Rep Rep. 
dnal min 0 DnaJ Rep-chap Rep-chap. 
dnaK rain 0 DnaK Rep-chap Rep-chap. 
grpE min 57 GrpE Rep-chap Rep-chap. 

groEL(mopA) rain 94 GroEL Chap Morph-chap. 
groE.StmopA) min 94 GroES Chap Morph-chap. 

hirnA min 38 IHF ~z-subunit DNA-binding; trc; Morph; 
rep; trs site-specific 

recomb; trc. 
himDfhip) rain 20 IHF ~-subunit See himA See himA. 

gyrA min 48 DNA gyrase A-subunit Gene expr; 
recomb; rep 

gyrB min 83 DNA gyrase B-subunit As for gyrA 
lis m!n 72 Fis DNA-binding; trs; 

site-specific recomb 
hupA rain 90 HU2 subunit DNA-binding; recomb; 

rep (?}; cell div; trs 
hupB rain 10 HU1 subunit As for hupA 

hflA min 95 HflA Unknown 

hflB min 69 HfiB Unknown 
cya min 85 Adenyl cyclase Multiple operon 

regulation; trc 

crp min 74 cAMP-binding protein As for cya 

rap min 26 Peptidyl-tRNA Trn 
hydrolase 

recA rain 58 RecA Recomb, protease 

Site-specific recomb; 
gene expr, morph. 

As for gyrA. 
Site-specific 
recomb (Xis). 

Morph. 

Morph. 

Stability of cU 
maintained. 

Same as for htlA 
Controls 

synthesis of cl. 

AS for cya. 

Mutations cause 
failed 7. growth. 

Repressor inactivation 
for induction; recomb. 

B. 7. genes influencing E. coil physiology 

Gene Function in E. coil 

rexA 
rexB 
fom 

bor 

Exclusion of other phages 
Same as rexA 

Outer membrane protein; similar to virulence protein identified 
in other enterobacterial strains 

Confers increased resistance to serum killing 

(A) The E. coil genes encoding proteins that interact with 7. proteins. Their map location (given as minutes {min) on the 90 min E. coli genetic map) and biological 
function in E. coli as well as their 7. function is detailed. Abbreviations include: trc, transcription; elong, elongation; trn, translation; term, termination; rep, replication; 
chap, chaperone; morph, morphogenesis; IHF, integration host factor; trs, transposition; recomb, recombination; expr, expression; div, division. (?) represents uncertainty. 
(B) Lists some of the 7. proteins expressed from the prophage that influence the phenotype of the host. Appropriate references for these functions can be found in the 
text or in a previous review on the subject. Functions not referenced in this way include rap [111], Iota 11121 and bor 11131. 

with attP must be supercoiled for recombination to oc- 
cur [5,6]. 
IHF is composed of two small polypetides, IHF~ (11 kD) 
and LI--IF[3 (10.5 kD) encoded by himA and hireD (hip), 
respectively [7]. It belongs to the widely distributed 
HU family of bacterial DNA-binding proteins [8]. The 
HU protein of E. coli is also a heterodimer composed 
of two 9.5 kD polypeptides encoded by the hupA and 
hupB genes. Although IHF binding is sequence-specific 
and HU binding is not [9], HU, in some cases, can 

substitute for IHF. IHF is not an essential function for 
E. coli, but it does influence a number of phage and 
bacterial processes [10]. These include the expression 
of many operons, other recombinational events, replica- 
tion, and morphogenesis. 

II--IF appears to influence this wide array of DNA interac- 
tions by facilitating contortion of the DNA duplex into 
structures compatible with the required protein-DNA 
interactions [4]. Most of the signals required for ~ in- 
tegration are contained in the substrate DNA with attP, 
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attB E. col i  

Integration Xis 
IHF 
Fis 

Excision 

attL 

Fig. 1. Structural elements of ~, site- 
specific recombination. The ~. DNA is 
shown as a solid line, while Escherichia 
coil DNA is indicated as a broken line. 
The four att site are shown with the rele- 
vant placement of the binding sites for 
the various factors: C,B, and P are Int- 
binding sites, H represents an IHg-bind- 
ing site; X shows an Xis-binding site, and 
F is a Fis-binding site. The cross-over be- 
tween the common cores is represented 
(x) and the small open circles above 
and below these points represent the 
15bp of homology in which recombi- 
nation occurs. The central arrows in- 
dicate the direction of the integration 
and excision reaction. Listed alongside 
the arrows are the k and E. coli func- 
tions required for the reaction. The coils 
shown for ~, indicate that DNA with attP 
must be supercoiled. The drawing is not 
to scale. 

including three required IHF-binding sites, called H1, H2 
and H'. Goodman and Nash [ 11] have demonstrated that, 
at least at the H2 site, the only role for IHF is to bend the 
DNA. These workers 'swapped'  the H2 IHF sequence 
for either the DNA-binding sequence for the cycli-AlVlP 
(cAMP)-binding protein, Crp, or for a naturally bend- 
ing 'A-tract' DNA. In the presence of tile usual in t,itro 
requirements, both replacements allowed site-specific re- 
combination to occur, providing that the swapped signals 
were appropriately phased and Crp protein was present 
when its cognate site was employed. When DNA without 
a bend was used in the swap, few recombinant molecules 
were observed. 

Results of hydroxyl-radical footprinting experiments 
demonstrated that IHF contacts DNA primarily in the 
minor groove of DNA [12]. A structure for IHF, based 
on X-ray crystallography of the closely related HU pro- 
tein of Bacilh.ts stearothermophilus [13] as well as the 
DNA protection and interference experiments with IHF, 
has each subunit contributing a two-stranded [3-sheet 
with extended arms that could contact the DNA in 
the minor groove. Consistent with this model, muta- 
tions that change binding specificity were located in the 

flexible aml of IHFcx [14.o,15.-]. However, similar mu- 
tations were not found for IHF~ [14°.]. G Mengeritsky 
et al. (personal communication) have created a series of 
mutations changing 'arm' amino acids of IHF~ and have 
shown that many have little or no effect on IHF activity. 
Perhaps sequence-specificity resides in II--IDx, which initi- 
ates the binding, while IHF[3 DNA contacts are sequence 
independent. 

Mthough the arm of an IHF monomer  can cover only 
5 or 6bp,  Yang and Nash [12] found that at least 25 
nucleotides are protected by IHF binding. The obvious 
explanation that multiple copies of IHF might bind at a 
single site was ruled out by showing that one site binds 
one IHF molecule, leading the authors to propose that 
the DNA duplex may bend around the IHF molecule and 
contact it at other positions in addition to the arms. Be- 
cause it bends DNA, IHF can serve to facilitate the wrap- 
ping of the attP DNA into a higher-order structure that 
has been named the 'intasome' [16,17]. A more detailed 
and highly illuminating discussion of the roles of  IHF and 
DNA gyrase in forming the intasome can be found in the 
review by Nash [4]. Confusing this neat picture of inte- 
grative recombination is the int-h mutation (intE174K) 
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[18]. The mutant Int protein supports a low level of in- 
tegrative recombination in the absence of IHF in vitro 
[19] and in vivo, suggesting either that a higher-order 
structure can form, albeit less efficiently, without IHF, or 
that recombination can occur in the absence of such a 
structure if Int-h is present. Int-h supports recombination 
at secondary bacterial att sites more effectively than the 
wild-type protein and this relaxed specificity might be se- 
lected against. 

Nash and Granston [15"] have identified similarities 
in the DNA-binding regions of IHFc~ and the family of 
eukaryotic TFIID transcription factors. Like IHF, TFIID 
appears to bind to the minor groove [20",21"] and rec- 
ognizes a sequence [22] that is similar to part of the IHF- 
binding signal [23]. These and other results led Nash and 
Granston to suggest that "IHF and TFUD might even use 
similar DNA contacts to recognize their specific targets". 
However, t-IF makes contact with a much larger target 
site on the DNA. Lef-1, another eukaryotic transcrip- 
tion factor, was postulated to be a DNA-bending protein 
because, in part, it and its cognate DNA-recognition site 
could substitute for IHF in a 'bend-swap' similar to that 
done with Crp [24-] .  Lef-1 is a member of the HMG fam- 
ily of DNA-binding proteins that, like IHF, contact DNA 
primarily in the minor groove [25"]. 

Factor for inversion stimulation 
Excision of the ~. prophage, although ostensibly a rever- 
sal of integration, is functionally quite different [2,3]. This 
is understandable given that the two processes must be 
both efficient and directional in the sense that once com- 
mitted, ~. either integrates or excises. Integrative recombi- 
nation between the information-loaded at/P site and the 
attB site results in the formation of two new at/sites, 
attL and a t /~  which flank the integrated ~. prophage and 
divide the information originally carried by at/P. Excision 
of the prophage results from site-specific recombination 
between attL and attR and requires the ~. Xis and the E. 
coli Fis proteins, in addition to the proteins involved in 
integration (see Fig. 1). 

Fis was identified because of its role in enhancing the 
action of a recombinase that catalyzes a DNA inver- 
sion [26]. It is a homodimeric protein that binds to a 
rather degenerate consensus sequence [27], presumably 
through a region with a helix-turn-helix motif [28-30]. 
Fis, which is required for effective ~v excision [31"], 
binds to the F site found in the attR arm that overlaps 
X 2, one of the two adjacent Xis-binding sites [32,33]. Int 
binding at the P2 site of attR is facilitated by Xis binding 
cooperatively either with another molecule of Xis at the 
X 1 and X 2 sites or Fis at the X 1 and F sites [34]. Presum- 
ably, Fis is required for excisive recombination in vivo 
at least in part because the concentration of Xis is not 
sufficient to facilitate Int binding to P2. Employing an 
in vivo integrative recombination assay, Ball and John- 
son [35"] found that Fis binding at the F site stimulates 
integrative recombination in the absence of Xis, but in- 
hibits it in the presence of Xis. Indeed, because Fis levels 
vary significantly depending on the growth phase (levels 

are high during exponential growth) [32], it has been 
postulated that Fis levels could influence the direction 
of the site-specific recombination reaction; in station- 
ary phase where there are low levels of Fis, integration 
would be favored. In contrast, Ball and Johnson [35 °" ] 
report that production of ~. from a lysogen growing in 
late exponential phase (where Fis levels are low) is not 
significantly affected by high levels of Fis expressed from 
a plasmid. However, phage production may not be a suf- 
ficiently sensitive assay to assess the effects of excision 
on the ultimate fate of the lysogen and the prophage. 

For an informative discussion of excisive recombination 
see Kim and Landy [36"].  They present evidence con- 
sistent with a model of excisive recombination in which 
the IHF, Xis and Fis proteins wrap the two at/sites into 
a structure that is aligned for recombination. This would 
allow Int molecules bound on the arm of one at/site to 
bind to the core on the other at/site. 

DNA-binding proteins: transcriptional control 

Transcription from the pL promoter (see Fig. 2), which 
is regulated by repressor and directs synthesis of the im- 
portant N regulatory protein (see below), is enhanced 
both by IHF and supercoiling [37,38"]. There are two 
IHF-binding sites 86 and 180 bp upstream of pL, and 
I H  enhancement of transcription requires proper phas- 
ing between the promoter and the IHF sites [38"]. This 
suggests an interaction between IHF and RNA polymerase 
(pol) at pL and, as pL and the IHF sites do not overlap, 
this interaction probably requires some localized defor- 
mation of file DNA. A second promoter (the function of 
which has yet to be defined) that is repressed both by 
IHF and repressor has been identified 42 bp upstream of 
pL [38"]. 

Initial transcription of the d repressor gene of ~. from 
the pRE promoter requires the product of the clI gene 
[39]. Expression of cll is regulated, in part, by IHF [40]. 
However, this regulation appears to be post-transcrip- 
tional [41]. The clI-encoded protein also activates two 
other k promoters, Pint [42] and Paq [28], by binding 
to a unique sequence located in each of their -35 re- 
gions. Transcription from these promoters helps direct 
k toward lysogeny. Thus, by regulating clI expression, 
IHF indirectly influences expression from a number of 
~. promoters. 

DNA-binding proteins: genome packaging 

In light of its multifarious roles supporting lysogeny, it 
is tempting to conclude that IHF serves as a physiologi- 
cal sensor of the physiological state of the cell, at higher 
concentrations directing the phage toward lysogeny. Nev- 
ertheless, this model fails to explain why IHF participates 
in an event occurring late in the lytic pathway - -  the ter- 
minase reaction, which cleaves the concatameric ~. DNA 
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Fig. 2. The early regulatory region of ~. (a) The ~. genetic map, which is not drawn to scale. Listed above the line are relevant genes 
and below the line are the relevant signals: the termination signals tL1 and tR1, and the nin region of multiple terminators (tR2-tR4); 
the nut sites (see text for details); and the origin of replication (ori). The positions of the relevant promoters (p) are indicated below the 
map (see text for details). (b) The direction of transcription is indicated by the arrows. The thickness of the arrows indicates the relative 
level of transcription. The nature of transcripts from pL and pR with (+)  and without ( - )  N modification, in the presence of the group 
of host factors, Nus, is also indicated. 

into the unit-length genomes required for packaging (re- 
viewed in [43-45] ). 

Here, too, it has been postulated that IHF functions in the 
formation of a higher-order DNA-protein structure. Ge- 
netic and physical studies suggest that this structure con- 
tains, in addition to IHF, the products of the ~. n u l  and A 
genes as well as 200 bp of DNA surrounding and includ- 
ing the cleavage site. The DNA surrounding the cleavage 
site contains binding sites for four Nul and three IHF 
molecules. Becker and Murialdo [46] postulate a DNA 
structure wrapped around two molecules each of A pro- 
tein and IHF, and four molecules of Nul protein. This 
would orient A proteins in tile appropriate positions to 
cleave the DNA at unique sites and generate the 12 bp 5' 
overhangs that form the single-stranded cohesive ends of 
the linear DNA molecule of file mature phage. 

The requirement for II-IF in the ~. terminase reaction is 
not absolute because HU protein partly compensates for 
the missing IHF. Mendelson and colleagues [47] found 
that while the burst of ~. from either an IHF- or an HU 
host is reduced fivefold, in the double I H F : H U  host it 
is reduced 100-fold. This defect was ascribed to a failure 
in terminase activity, because a mutation in N u l  [48,49] 
allows growth in an IHF-: HU" double mutant. HU bind- 
ing in the cos region apparendy does not have sequence 
specificity because, unlike IHF, it failed to provide specific 
DNase-I protection. HU and IHF are also interchangeable 
for both in vitro replication [50] and transposition [51] 
systems. This is not surprising considering the structural 
similarity between IHF and HU; however, it is surprising 
considering that IHF, but not HU, has sequence speci- 
ficity. 

RNA-binding proteins: transcription elongation 
factors 

In large measure, ~. development is regulated by systems 
of transcription termination and antitermination. For fur- 
ther discussion and more complete reference lists, see 

the reviews [52-54] on this subject. Earl), transcription 
initiating at the pL and pR promoters (see Fig. 2) par- 
dally terminates at two terminators, tL1 and tR1, which 
are activated by the E. coli Rho temlination protein. Ap- 
proximately 50% of the transcription from pR proceeds 
past tR1 through the c l I -O-P-ren  genes to terminate in a 
region composed of both Rho-dependent and Rho-inde- 
pendent terminators called nin [55"]. Early transcription 
from pL results in expression of the product of file N 
gene. In the presence of N and a group of  host factors, 
Nus, transcription from pL and pR overrides downstreanl 
termination signals. In the case of pR, transcription ex- 
tends through the nin region of multiple terminators 
into tile Q gene. Q, whose in vitro action is stimulated by 
NusA, is a second antitermination function that maximally 
stimulates late gene expression (reviewed in [52] ). Other 
Nus proteins do not appear to be necessary for Q action 
[56]. 
The Nus factors were identified by analysis of muta- 
tions in E. coil that result in failure of the mutant host 
to support N-mediated antitermination [57] and were 
subsequently shown to be required for the in vitro 
antitermination reaction [58,59]. The NusA and NusB 
proteins are essential bacterial functions (NusB, only at 
lower temperatures) [60-62], that at least in part serve 
as host transcription factors [63]. The NusE protein is 
ribosomal protein Sl0 [64]. In vitro studies indicate that 
$10 is bound to NusB in file N transcription complex 
[65"]. 
The 23 000 M r NusG t:i coli protein participates in the 
in vitro N-antitemlination reaction [66",67"], but by 
one measure, does not appear to be necessary for in 
vivo N-mediated antitermination. Sullivan and Gottes- 
man [68°°], using a plasmid that fails to replicate at 
high temperature as file sole source of NusG, demon- 
strated that bacteria grown at high temperature, and 
thus substantially depleted of NusG, still supported N- 
mediated read-through of the Rho-independent termina- 
tor, tI. Although Rho-independent termination appeared 
normal, NusG-depleted bacteria exhibited a severe reduc- 
tion in Rho-dependent termination. A missense mutation 
in ntcsG allows hosts with mutations in nusA or nuaE to 
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support N-mediated antitermination [69o,]. Because this 
mutation does not result in a bypass of Nus proteins, it 
was suggested that NusG is a participant in the N reac- 
tion. It is possible that different concentrations of NusG 
are required for termination and antitermination, and that 
the depleted cell has a residual level of NusG sufficient 
to support antitermination or that another factor substi- 
tutes for NusG. Alternatively, Sullivan et al. [69 oo] have 
suggested that NusG may stabilize antitermination com- 
plexes and thus may not be essential for their in vivo 
assay. Not surprisingly, mutations in rpoB [70-72] en- 
coding the [3-subunit of RNA pol, enhance or suppress 
the inhibitory action of nus mutations. 

The loading of N and Nus factors onto RNA pol is sig- 
nalled by nu t  sites located downstream of pL and pR 
[58,59,66"°,73]. The n u t  signals, recognized at the le- 
vel of RNA [74-76,77°], have two components, boxA 
and boxB. The 9 bp boxA signal, conserved with only 
slight variations amongst lambdoid phage nu t  sites [78], 
is also found in the leader-region antiterminator of the 
E. coli rrn operons [79], and is probably a signal for 
a host Nus factor (D Court, personal communication) 
[59,78,80]. The hairpin structure comprising boxB has 
been implicated as the recognition site for N [81,82]. 
Although this sequence is not conserved amongst lamb- 
doid phages, the structure is conserved. Whalen and Das 
[83], employing an abbreviated in vitro N-antitermina- 
tion system, showed that N and NusA can be loaded 
onto RNA pol even if the pol has traversed 176 bp 3' to 
the nu t  site. These authors propose that boxB anchors 
N and brings it to the pol. The pol modified only by N 
and NusA will overide a terminator, but only ff it is close 
to the nu t  site [84]. Presumably addition of the other 
Nus factors produces a more processive antitermination 
complex. 

Remarkably, the ~. nuts i tes  can also serve as transcription- 
termination signals. The lambdoid phage HK022 pro- 
phage expresses Nun, which acts specifically at k nu t  
sites to terminate transcription from the pL and pR pro- 
moters [85]. The n u n  gene is located at a position on 
the HK022 genome analogous to that occupied by N 
genes of other lambdoid phages, and it shares some 
significant amino-acid homologies with the products of 
those genes. Nevertheless, the n u n  gene product is not 
required by HK022 for phage growth [86]. In fact, even 
though HK022 has an early transcription antitermination 
system similar to the various N systems, there is appar- 
ently no requirement for a phage-encoded product (J 
Oberto et al., personal communication). The only iden- 
tiffed role for Nun is termination of X transcription. Even 
more astounding, Nun-mediated termination uses ~. n u t  
sites and the same host Nus proteins that ~. N requires 
for antitermination [87..]. However, mutational analysis 
reveals that whereas Nun and N require the same boxA se- 
quences, there are differences for boxB [88.]. Moreover, 
mutations in nus genes have been isolated that reduce 
Nun action without affecting N action [87 °'] and some 
nus, as well as nutR mutations convert Nun to a sup- 
pressor of termination at the adjacent tR1 terminator 
[80]. However, this apparent reversal of  roles, unlike 

N antitermination, does not extend to downstream ter- 
minators 

These studies suggest that although Nun and N both rec- 
ognize boxB and act with the same complex of host Nus 
proteins (in part, acting through boxA), they promote op- 
posite reactions. Nus proteins themselves, therefore, may 
not determine transcription elongation, but rather modify 
pol to accept signals from other effector molecules. 

Protein-protein binding: chaperone proteins 

One of the most rewarding lines of research with k has 
been the characterization of interactions between phage 
functions and E. ¢oli stress proteins, many of which were 
identified through their roles in ~. replication or packag- 
ing. 

Replication 
The following discussion of X. replication is based pri- 
marily on the group of excellent reviews [89-91]. Most 
of the proteins involved in ~. replication are supplied by 
the E. coli host [92], but two ~. proteins, products of the 
adjacent O and P genes (see Fig. 2), are required. The 
origin of replication, consisting of four adjacent 19 bp di- 
rect repeats, is located within the O gene. Host proteins 
involved in the initiation of ~. replication include DnaJ, 
DnaK, and GrpE - -  functions first identified through the 
analysis of E. coli mutants defective for ~. replication. All 
three are members of the 'heat-shock' family of proteins, 
identified in E. coli as proteins that are induced following 
a shift to a higher temperature (reviewed in [93]). 

The early events in initiation align the host DnaB protein 
at ori (Fig. 3). DnaB is a helicase that forms the struc- 
ture recognized by the host primase, a role DnaB also 
plays in host replication. The initial step is thought to be 
the binding of O protein to or( resulting in an opening 
of the DNA duplex. DnaB is then delivered to the ori- 
bound O protein by P protein. P binds tightly enough 
with DnaB to allow it to compete favorably with DnaC, 
the protein that fulfills the analogous role in host replica- 
tion. However, DnaB is inactive when complexed with P. 
The DnaK, DnaJ, and GrpE heat-shock proteins (hsps), in 
an ATP-dependent reaction, release DnaB from the fight 
complex formed with O and P at ori. Thus freed, DnaB 
can unwind the duplex to prepare the way for primase. 
Central to this reaction is the ATPase activity of DnaK. 

DnaK is related to the eukaryotic hsp70 family of chap- 
erone proteins (50% homologous at the amino-acid le- 
vel) [94]. It releases P from the ~. replication complex, 
but does so efficiently only in the presence of DnaJ 
and GrpE. Liberek et al. [95] demonstrated that Dna_K 
ATPase activity is effectively stimulated only in the pres- 
ence of both DnaJ and GrpE. Moreover, each of these 
latter two proteins were shown to have unique roles: 
DnaJ accelerates hydrolysis of ATP; while GrpE stimu- 
lates release of ATP or ADP bound to DnaK. As DnaJ 
and GrpE catalyze these reactions independently of each 
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Fig. 3. Schematic representation of early events at the ~. origin of replication (on). 0 protein binds to ori, opening the DNA helix. P 
protein then delivers the host DnaB helicase to the complex. In an ATP-independent reaction the host heat-shock proteins DnaK, DnaJ 
and GrpE release DnaB. Thus released, and in an ATP-dependent reaction, DnaB unwinds the duplex in preparation for primase and 
subsequently replication. See text for further details. 

other, it was suggested that an intracellular complex of 
the three proteins need not form. 

The dnaK756 mutation, isolated because it prevented ~. 
replication [96], has proven to be a remarkable tool for 
characterizing DnaK activity. It has 50-fold higher ATPase 
activity than the wild-type DnaK protein. Liberek et al. 
[95] offer the interesting hypothesis that DnaK756, which 
does not function in the in vitro ). replication assay, 
forms a complex with P, but the complex prematurely 
dissociates because of the high intrinsic ATPase activity 
of the DnaK756 protein. 

These studies suggested that DnaK and associated pro- 
teins might normally serve to disassemble inappropriate 
protein aggregates, as proposed for other related hsp70 
proteins. DnaK, in the presence of ATP, not only protects 
E. coli RNA pol from heat inactivation, but disaggregates 
and reactivates RNA pol when it is heat inactivated [97]. 

bacterial growth (reviewed in [98]). The active protein is 
made of 14 identical 57 259 M r subunits arranged into a 
structure with a sevenfold axis of symmetry. The GroES 
protein is composed of seven identical 10 368 .ai r sub- 
units also arranged into structure with a sevenfold axis of 
symmetry. Like DnaK, GroEL has a weak ATPase activity 
that is modulated by another protein, in this case GroES. 
Martin et aZ [101.], using the intrinsic flourescence prop- 
erties of tryptophan in bound proteins, directly studied 
the structure of proteins bound by the GroE structure. 
This was possible because neither GroE protein contains 
tryptophan. These studies indicated that GroEL 'stabilizes 
unfolded substrate proteins in a conformation devoid of 
ordered structure (globular)' and releases them in the 
presence of ATP. GroES accelerates the conversion to 
the fully folded native form. One, or at most two, dena- 
tured protein molecules are bound by one GroEL 14-mer, 
which interacts with one GroES 7-mer. 

Morphogenesis 
Assembly of the ~. capsid and the associated packaging 
of DNA is a complicated process involving a multitude of 
proteins, making even a summary beyond the scope of 
this article. Instead, the reader is referred to a number of 
superb reviews [45,98-100]. Here, discussion will be lim- 
ited to the products of the groEL and groES genes, which 
were identified by mutations that block ~. morphogenesis. 

The GroEL protein is homologous to proteins in the 
hsp60 family of heat-shock proteins and is essential for 

This GroEL (presumably with GroES) structure functions 
early in the assembly of the of ~. head. These proteins 
are required for the assembly of the phage-encoded B 
protein into the 12-fold symmetrical head-tail connector 
structure. A relationship between the 12 subunits of this 
structure and the 14 subunits of GroEL during assembly 
need not necessarily be postulated. Georgopoulos et al. 
[91] suggest that the GroE proteins facilitate formation 
of B dimers, which then spontaneously associate into the 
head-tail appendage. Accordingly, GroE proteins would 
serve to facilitate proper folding of B into a form that can 
dimerize. 
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Although both DnaK and GroEL aid in the proper fold- 
ing of proteins, they apparently do so in different ways. 
Landry et aL [102"] presented evidence from nuclear 
magnetic resonance studies indicating that peptide bind- 
ing to the two proteins is quite different: binding to 
DnaK is mediated by hydrogen bonds, hydrophobic 
contacts, and side-chain salt bridges; while binding to 
GroEL is mediated primarily by the hydrophobicity of 
side chains. Indeed, Langer et aL. [103"] postulate that 
the DnaK-DnaJ-GrpE and GroEL-GroES groups can co- 
operate to form a pathway for folding certain proteins. 
They studied the refolding of the Rhodanese protein 
from bovine mitochondria, a protein that when diluted in 
the denatured state is quite recalcitrant to refolding. Effec- 
tive refolding requires successive interactions with DnaK, 
DnaJ, GrpE, GroEL and GroES in the presence of ATP. 
Reaction first with DnaK and DnaJ yields a partially folded 
protein that contains an "as yet undetem~ined amount of 
secondary structure but lacks ordered tertiary structure". 
In the presence of GrpE, this partially folded protein is 
transferred to the GroEL complex, where in the presence 
of GroES, it becomes properly folded. The isolation of 
conditional lethal mutations in these genes suggests that 
this pathway is required for folding proteins essential for 
E. coli viability. 

A membrane-binding protein 

Rex exclusion 
"A riddle wrapped in a mystery inside an enigma", as 
Winston Churchill described the Russia of 1939, aptly 
applies to one of the classical puzzles of molecular bi- 
ology: the mechanism of exclusion of T4 rlI mutants 
(and other phages) by the rex  gene product expressed 
from ~. prophages. For that now elderly generation that 
learned its molecular biology in the 1950's and 60's, there 
was no more perplexing question. Many of the seminal 
findings of molecular genetics relied on Seymour Ben- 
zer's discovery of the ability of a ~. lysogen to exclude all 
rlI mutants of T4, while supporting growth of wild-type 
T4. These findings unlocked many secrets of recombi- 
nation, the basis of nonsense suppression, the nature 
of the genetic code, the definition of the cistron, and 
the molecular basis of the action of many mutagens 
[104,105]. Later, it was shown that the basis of the ex- 
clusion depended on the expression by the ~. prophage 
of the rex  gene, which is located adjacent to the d re- 
pressor gene [ 106 ]. Although scores of graduate students 
and postdoctorates spent their youthful energies attempt- 
ing to unravel the mystery of exclusion, the problem, 
like the legendary sword Excalibur, resisted the pull of 
many. Recently, however, Parma and coArthurs [107"] 
have come closer to prying it loose. 

Three earlier observations are crucial in understand- 
ing the arguments of Parma et aL First, physiologically, 
rex-mediated exclusion is characterized by loss of mem- 
brane potential, failures of macromolecular synthesis and 
hydrolysis of ATP, and cell death (reviewed in [104]). 
Second, there are not one, but two rex  genes (see 

Fig. 2), rexA and rexB [108]. Third, events mimicking 
this exclusion can occur in the absence of T4 infection if 
there is expression of rexB and over-expression of rexA 
[109]. 

Using a series of rexB-phoA fusions, Rex.B was shown 
to be a membrane protein with multiple cytoplasmic 
and membrane domains. A model was proposed based 
on the following observed characteristics of the exclu- 
sion process and property of the protein: first, depo- 
larization of the cytoplasmic membrane; second, altered 
RexA/RexB ratio; and third, the gap junction-like struc- 
ture of RexB. It was proposed that RexB forms mem- 
brane depolarizing ion channels and that these channels 
are activated by RexA. The critical factor is a high ratio 
of RexA to RexB. If and how T4rlI mutants change the 
RexA:RexB ratio remains unknown. 

Interestingly, when over-expressed, the Rex proteins 
block growth of wild-type T4 and all other phages tested 
with the exception of ;V [109]. It is conceivable that, like 
restriction, colicin production, and perhaps the termina- 
tion activity of the HK022 Nun protein, Rex exclusion is 
also a mechanism for a selfish parasite, in this case ~., to 
exclude the growth of other similar parasites. As the in- 
fected ~. lysogen is killed by the exclusion process, a sac- 
rifice of the individual lysogen for the good of the whole 
is postulated (i.e. the sacrificed bacterium is a dead-end 
for the infecting DNA) [107°']. 

How does ~. escape its own exclusion? Parma et al. 
[107 "°] look to the ancient ~. literature for an answer. 
Hayes and Szybalski [110] identified a transcript, lit, 
that covered the rexB gene and apparently initiates at 
an unidentified promoter in re~v4, Ptit (Fig. 2). Parma 
and colleagues propose that the lytically growing ~. over- 
comes Rex exclusion by activating transcription from PLit 
and decreasing the ratio of RexA to RexB. Obviously, the 
cognoscenti await the construction of a ~. derivative miss- 
ing Put before assessing the validity of this model. 

Concluding remarks 

The expropriation of host functions can be considered 
advantageous to the virus in three ways. First, the ex- 
propriated machinery is obviously functional in that host. 
Second, to the extent that host products are used, much 
can be accomplished with a small amount of viral genetic 
material. Third, limited essential functions can be com- 
petitively removed from the host. For temperate phage, 
such as ~., host products might take part in the decision 
between lysis and lysogeny by indicating the physiologi- 
cal state of the host. Depending on the concentration of 
such products, the phage would be directed toward one 
or the other developmental pathways. Although tinkering 
with one host factor has failed to confirm this idea [35"],  
it is conceivable that a number of host factors, some of 
them as yet unidentified, with overlapping activities could 
contribute to this decision. 

For the investigator, study of these interactions has not 
only yielded a wealth of information about ~., but identi- 
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fled previously unrecognized functions and nucleic-acid 
signals important to the host. 
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