
NON-UNIFORM EXTENSION OF A NON-LINEAR 
VISCOELASTIC SLAB 

FULISG DAI and K. R. RAJAGOPAL 

Department of 5lechanical Engineering, University of Pittsburgh, Pittsburgh. P.4 15261, U.S.A. 

and 

A. S. WINEMAN 
Department of Mechanical Engineering and Applied Mechanics, University of Michigan. 

Ann Arbor, MI 48109. U.S.A. 

( Rcct~icuti 2 I August I990 ; in rrciwtl Jimn 8 Ju1.v I99 I ) 

Abstract-The non-uniform extension of a slab of a non-linear viscoelastic solid is studied. Two 
boundary value problems are solved. one with deformation prescribed at the upper boundary and 
the other with the traction prescribed. The formulation uses the deformation in the direction of the 
slub thickness as the dopendent v;lriable. which is found by solving ;I non-linear integro-ditfcrential 
equation. The numcricul calculation is such that at exh time step. the problem is equivalent to ;I 
fourth order non-lincdr ordinary dilfcrential equation for the current coordinate in the direction of 
the slab thickness. This equation is then integr;lted by the sitme numerical proccxiurc ;IS in the 
corresponding cl;lslic prohlcm. 

I. INTRODUCTION 

Few initial-boundary value problems have been solved within the context of gcnuincly non- 

linear viscoslastic solids. Wincman (I 17 ( 2, 197X) studied the rcsponsc of non-linear axially 

symmetric viscoclastic mcmbrancs and found the possibility of multiplicity of solutions. 

However, this study which prognosticntcd intcrcsting possibilities with regard to the bifur- 

cation and stability of problems involving finite deformations of highly non-linear visco- 

elastic solids has ncvcr been followed up with the kind of scrutiny the arca deserved. In this 

work, wc provide a rather intcrcsting analysis involving the non-homogeneous cxtcnsion 

of a non-lincar viscoclastic slab. 

The problem unclcr consideration can bc considcrcd as having arisen from another 

train of thought. In recent years thcrc has been a considerable amount of interest in the 

study of non-homogeneous deformations in non-linearly elastic solids [cf. Currie and Hayes 

(1982). Rajagopal and Wineman (1985), Rajagopal et al. (l986)]. In view of Erickscn’s 

results (1954, 1955) that in an isotropic compressible elastic material “universal solutions” 

are homogcncous. not much work has been expended in studying non-homogeneous dcfor- 

mations as they arc not possible in aII isotropic compressible materials. However, since 

non-homogeneous dcformutions are the order of the day, recently, attention has turned to 

seeking an answer to the following question : given a non-homogeneous deformation, can 

we detcrminc the lurgcst (or at least a large enough) class of constitutive equations that can 

support such a non-homogcncous deformation? 

Rajagopal and Wineman (1985) showed that for a non-linear elastic slab a class of 

non-uniform uniaxial extensions (or compressions) were possible within the context of the 

Mooney-Rivlin theory. They find that the classical uniaxial solution corresponds to the 

special case which corresponds to a specific structure for the pressure field, namely it being 

a constant. In this study we investigate whether such non-homogeneous solutions are 

possible within the context of non-linear viscoelasticity. In this case the problem turns out 

to be even more interesting for there are two possible problems, one in which the dis- 

placement of the slab is specified and held fixed. and the other in which the appropriate 

traction is prescribed and held constant. While Rajagopal and Wineman (1985) were able 

to obtain exact closed form solutions in the case of a Mooney-Rivlin material, the equations 

governing the viscoelastic problems are too complicated to be amenable to such an analysis 
and have to be solved numerically. 

We consider the elongation of a slab of thickness H. its boundaries defined by the 

planes Z = 0 and Z = H. It is found that when the viscoelastic slab is subject to a step 
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elongation. an inhomogeneous deformation is possible and the stresses in the slab vary 

inhomogeneously and “relax” with time. Inhomogeneous deformations are also possible 

when tractions are prescribed on the boundaries. When tractions arc prescribed on the 

boundaries of the slab. the displacements of the material points initially chance rapidly 

with time. However. the displacements change less rapidly as time goes on. eventually 

reaching an asymptotic value. We find that the inhomoseneous deformations obtained bq 

Rajjagopal and Wineman (1985) within the context of Neo-Hookcan and Mooney -Rivlin 

theories of elasticity can be recovered as special cases of the solutions established here. 

In Section 7. the constitutive equation for the non-linear viscoelastic material to be 

employed is introduced and the non-uniform extension problems corresponding to the 

relaxation and creep problems are formul~lted. The problems are reduced to solving nvn- 

linear fourth order partial differential equations. The details of the numerical method are 

given in Section 3 and the results are discussed in Section 4. 

1. FORMULATION 

Wc shall assume that the Cauchy stress (T has the form [cf. Pipkin and Rogers (1965)] 

where the term -pi is due to the constraint of iilcomprcssihility. E‘ is the tfctitrmntion 

gradient tensor and C = V’F. H[C, t] is the strain dcpcndcnt tcnsorial relaxation function 

induccd by a single step strain history and has the form 

whcrc f/t,,. (bi. Q!J: are scalar functions oft and the invariants of C. I’ipkin and Rogers (196%) 

did not, houevcr, present any spccilic forms for the strain depcndcnt relaxation functions 

(b,, i = 0, I .1. appearing in (I!). Wincman (1972) chose (b, such that 

H[C(.s), <] = R( () ([I +/II(X)]1 --/K(s);., (3) 

where 

I(s) = tr C(s), R(t) = C,, ( I - ;) ~xp [ * ’ (-z;)+;]. ~1>o,o<y<I, (4) 

where R( ;‘) is a relaxation function associated with small strains. and 7 = C, ,‘C,,, C,,denotcs 

the initial modulus and C, the residual modulus. Note that if time dcpcndcnce is suppressed 

from (I) with (3) and (4). it reduces to a Mooney-Rivlin material, in which /i represents 

the derivative of the strain energy density function with rcspcct to the second strain invariant 

divided by the dcrivativc with respect to the lirst strain invariant. As will be seen, this 

fcaturc enables a discussion of non-homogeneous deformations in the proscnt context, to 

be rclatcd to the discussion of non-homogcncous deformations for the elastic problem. 

Equation (I) with (3) and (4) can be rewritten in the form 

x :[I +~rl(s)]R(r)-llF(~)Cfs)F’(r)l ds. (5) 

Consider a viscoclastic slab which undergoes the following deformation : 
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where prime denotes the partial derivative with respect to 2. This deformation allows for 
non-homogeneous deformation along the Z-axis and uniform contraction or expansion on 
surfaces Z = constant. The deformation gradient F is given by 

F= 69 

where 

a== _ #‘) - ?“?i.“x, (Q 

B = _.~(j”‘)-“‘Q_“y, (9) 

and thus F depends on A’, Y and Z. The Left Cauchy-Green deformation tensor B = FFT 
has the following matrix represent~ltion : 

Thus, 

where 

The Right Cauchy-Grwn deformation tensor C = F”‘F is given by 

C= (13) 



+
 

I 
I 
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where 

The scalar p can bc elimin~ltcd from (I 8) and (20) to obtain 

Jf( z, I) --._-_- = _ _. 
f3Z 

;,f (Z, I). (22) 

This same result can also be obtained from (19) and (20). Integration of (22) yields 

%If = C,(f), (23) 

where C,(r) is an arbitrary function oft. It follows from (21) and (23) that 

where C(r) = C,(r)/C~. 
Equation (24) is a Volterra-intcgro differential equation for i.(Z, t) which is third order 

in the spatial derivative. It also contains the arbitrary function C(I). This implies that four 
boundary conditions arc needed. Suppose we consider the case of a viscoelastic slab which 
is originally bounded by the planes Z = Hand Z = 0. Appropriate conditions at the bottom 
and top boundaries, respectively, would be 

%(O, f) = 0. %(H, I) = h(t), m 
and 

WI t) = g(t), X(X 1) = f(f). (26) 
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Condition (25), states that the slab initially at 2 = 0 cannot move in the Z-direction. 
Condition (25), states that the slab initially at Z = H moves to z = h at time t. From (6). 
it can be seen that the boundary conditions (%), and (X), are equivalent to prescribing the 
uniform contraction or expansion of the plane surfaces at the bottom and top. respectively. It 
is also possible to specify normal tractions ~,,(0,0,0, I). (~~~(0.0. H. r) as alternate boundary 

conditions. They would then replace the appropriate conditions of (35) or (26). 
Let us turn our attention to determining the unknown scalar p, and then the stresses. 

From ( 1 Sf-(20) and (23). we have 

p(A-. Y. z. t) = gx” + YQ/,(Z. t)+b(Z. I) 

C,(t) 
= ~(.u’+ Y') - j*, + h(Z, t). (27) 

where 

and C:(t) is an arbitrary function obtained due to integration. Substituting (IO), f I 1 f, ( 15) 
and (37) with (2X) into (5), wc have 

rT,,(.Y, Y,%. tyc,, = a,r(.\: Y, z, t)/C’,, = c?(t)- i(j.‘)” + i( I -y) 
1 

an d 

0,:(X, Y, 2, g/c, = c?(t)-- 7j’ “‘(‘)(X2+ Y')+(ji:+p)E.'-!(I -y)(%‘)? 
_. 

[I-exp(-$)I 

Equation (24) admits the solution corresponding to a homogeneous uniaxial extension 
history, i.‘(Z. t) = i.;,(t), in which case C(r) = 0. Conversely, if C(t) = 0. the uniaxial 
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extension history need not be homogeneous. In order to show this, let t = 0 in eqn (24). 
This reduces to the same equation as for the elastic problem for a M ooney-Rivlin material 
[cf. Rajagopal et al. (1986)]. When p = 0, these equations reduce further to the case of a 
Neo-Hookean material [cf. Rajagopal and Wineman (1985)]. The results in this paper imply 
that, if C(0) = 0. then 

(32) 

where a, and a2 are constants. Thus in the case of a Neo-Hookean material, when C = 0. 
the stretch ratio 1’ need not be uniform. The classical solution i.’ = constant is a special 
subclass which corresponds to a, = 0. Similarly, non-uniform solutions for the stretch ratio 
are possible in a Mooney-Rivlin material, the classical uniform solution being a special 
subclass of the same. 

Suppose that there are no stresses in the viscoelastic slab. if there is null deformation 
history. Mathematically, this implies that e,, = 0. if A’ = i.‘(s) = I and i.” = i.“(s) = 0. When 
E” = A”(s) = 0, by virtue of (24). C(r) = 0. Then it follows from (29) or (31) that 

C2(r)= -(1+P){l-(1-?)[I-exp(-$)]I. (33) 

3. NUMERICAL METHOD 

The method dcvelopcd by Lee and Rogers (1963) to solve boundary problems of linear 
viscoelasticity was successfully extcndcd to the solution of non-linear viscoclastic problems 
by Wineman (1972). Here, this method is further improved [cJ Fcrzigcr (1981)J. For 
convcnicncc in dcvcloping this method. WC cxprcss (24) in the form 

G,[L’(s):r-s] ds 

+F2(E.‘.L”)+ 
I 

‘G,[1’:L”;E.‘(s);i”(s);r-s] ds = 0, (34) 
U 

where 

G 
Al-Y) 1’ -- 

’ - 25, m exp ’ 

-4[l+&]y}yexp(-y). (35) 

Let the interval (0, I] be partitioned into n subintervals [I, = 0. t2,. . . , I, = t]. The third 
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integral in (34) can be written as 

F. DAI t(: ~1. 

I 

I ‘” 
GJ[i.’ : 2.” ; j_‘(s) ; i”(s) ; t -s] ds = 

I 
G![L’(f,);;.“(f,);E.‘(s);i.“(S);r,-.S]ds. (36) 

0 II 

Expressing (36) as a summation of n - 1 integrals over the subintervals (rk. tt+ ,). 
(k = I.n-- 1). approximating each of these by the trapezoidal rule and denoting the finite 
sum approximation to the third integral of (34) by S,. we have 

S, = 
I 

‘G,[L’;i.” ; i.‘(s) ; i”(s) ; I -s] ds 
0 

= ! G,[i,‘(r,,).i.“(l,). i.‘(r,).i.“(1,,),O](r,-r,, ,) 
i 

+G,[i.‘(t,),d”(t,),i.‘(t,),i.“(t,).t,-t,](r,-t,) 

n-l 
+ z G,[i.‘(r,), i.“(f,), ji’(fk)_ E.“(r,). f,, - fa](r,+ , - fk ,) 

1 
. (37) 

k-2 

Similarly. the first two integrals of (34) can also hc written in the same form as (36). For 
notntional convcniencc, we denotc the finite sum approximation to the first intcgrat of (34) 
by S,. Letting .S1 denote only the terms in the ~ipproxim~ltion to the second intcgral which 
contain j.‘(&), k < n, WC have 

‘s, = G , [i’(s) ; I - .s] ds 

z I G,[L’(t,f,O](r,-r, .,)+G‘,[i.‘(f,),r,-r,l(f:-f,) 
i 

n-1 

+ c G,[j-'(fk),f"-Ik](fk+, -[k I) , 

k-2 

and 

G?[i' ; i.‘(s) ; t-s] ds 

where 

dz[E.‘(f,), i.‘(f,), O] = iGLIE1’(f,); j.‘(l,,) : 0] (I,, -I,, ,I. 

(38) 

(39) 

(40) 

s: = i G,Ii;‘(f,).L’(f,).r.-f,l(f~-f,)‘~~~-!! 
i 

n-l 2j,“(lk) 
+ 1 G,[~'fr,).i.'ffk).f,-fk](rk+)-ft-)) x- 

k--Z 

In the finite sum approximation to the second integral of (34). it can be seen from (41) that 
the term depending on ,?‘(fk) has l-ik”(Z. ik)/?Z as a coeffkicnt. For fk -C I,, this derivative is 
approximated by a simple difference expression. 
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The method of solution will be to determine Si.“(Z. t),‘SZ at each time t, in terms of 

i.‘(Z. f) and d”(Z. [) and the solutions determined at previous time steps tL < t,. We first 

consider the method of solution for the initial response at t,, = r, = 0. Equation (34) can 

be reduced to the following system of first order ordinary differential equations. From (34). 

the initial elastic response. I, = I, = 0, satisfies the following system of equations : 

&(f ,) Sj.,(t,) ?iT(f,) ~~[j-l(~,).j.~t~l)l 
i]Z 

= %,(r,). sz= i.,(r,). -= - 
FtP.,(f,)l ’ 

(42) 

This system can be integrated by fourth order Runge-Kutta method [cf. William (1986)] 

subject to conditions (25) and (26). Starting values for the numerical integration. given 

by (25), and (26),. are A(O.t,) = 0 and i.,(O. 1,) = i.‘(O. I,) = g(f,). The starting value 

i.:(O, I,) = n”(0. t,) and C(t,) can then be determined so as to satisfy the end conditions 

required by (25)L and (26):. namely i.(H, 1,) = h(r,) and L,(H. I,) = i.‘(H, I,) =flf,). This 

requires a two-dimensional shooting method. In applying this method. a value is assumed 

for C(r,) and then i.JO, t,) is adjusted so as to satisfy (25)2. The process is repeated with 

new values of C’(f,) until (26): is satisfied. However, for the purpose of this work, a value 

of C(r,) is assumed, and the value off(r,) is found by use of (26):. 

Note that normal tractions a,,(O.O, 0, f ,) and,‘or a,,(O,O. H. I,) could be specified 

in place of (26). By (31). these conditions could be solved for the values of I.,(O,r,) 

and/or i.,(fl.I,). The traction conditions can thus bc considcrcd equivalent to (26). If 

li.(H.f,)-lr(f,)l = d > E. for some prescrihcd c. L”(O.r,) is adjusted and the process is 

rcpcatcd. %“(O, I,) is chosen and automatically adjusted as follows. Let an initial guess of 

i.“(O.f,) bc dcnotcd by h. Then i.“(O./,) is assigned the following three values -h. 

2h x 0.618 -h and h, in turn. Suppose-that 2h x 0.618-h and h arc the two values which 

result in the two smallest values or the error (5. Vi~lucs 0 and h arc picked up as the end 

points of the new range of i.“(O. I,) in the scconrl iteration. Then. 0. /I x 0.618 and h arc 

assigned to i.“(O. I,) iIs its new values in turn. Now if h x 0.618 and h arc the most rcccnt 
values which result in the new smallest villucs of d, hi2 and h are chosen ;IS the end points 

of the rang of ~.“(O, f ,) for the third iteration. This time. the values h/2. h/2 (1.0+0.61X) 

and h arc assigned to A”(0, r,). in turn. This proccdurc is continued until ;I value of E.“(O, r,) 

is found which results in li.(f/. f,)-k(f,)l = 5 < I:. It should bc pointed out that h should 

be chosen large enough so that [-h, h] will cover ;1 large enough rang of values for ,I”(& I ,). 

For fI > 2. eqn (34) is written in terms of the notations dofincd in (37)-(41) as 

~~~~~~l;,(r.(/,.)]+s,)+ ~~~~~‘)~~~~.‘(f,,),*:.(f,,).O]+S~+F~[i.(r.).j.”(f.)]+S1 =O. (43) 

Furthermore, eqn (43) is rewritten in the form : 

D%(r,) di.,(f,) --_ 
i?Z 

= %,(I,), 3z- = ju2(f,), 
S%,(r,,) F,[j.,(f,).j.~(f,)]+S1+S? 
-. ~ _. = _ _.,_ _____ __.. --_~__~ 

az ~~[~.~t~,)l+Sl+G,[i.,(~,).%,(r,).O]’ 

(44) 

In the third of equations (44). F,. Fz and 6: depend only on i’(f,) and i”(!,). while S,, 
S? and S, depend on i.‘(f,). i.“(f,). i.‘(ft). i.“(f,) and ,?il”(rJGZ, k < N. Because the last three 

have been found by solving (44) for times I~ < I,. S,, S: and SJ may now bc considered 
functions of the independent variable Z. i.‘(l,,) and i.“(r,). Thus. for each time I,, i.(r,,), 
A’([,). i.“(r,,) and ?A”(r,)/aZ arc found by solving a coupled system of non-linear ordinary 
differential equations (44). These results are then stored for use at t,, ,. The solution of 

(44). subject to appropriate boundary conditions at i. = 0 and i. = It. is obtained by the 
same procedure as was outlined for the initial elastic response. 

Once the functions E.(Z, I) and i.‘(Z. I) have been determined. the current coordinates 
.\-(Z. [) and y(Z. I) are obtained directly from (6). while stresses are calculated from (29)- 

(31). in which the integrals are approximated by the same procedure as was used in (37). 
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4. DISCUSSION 

All calculations are carried out for a slab in terms of the following non-dimensional 

quantities : 

and 

The parrtmeter jr is chosen to be 0. I. the ratio of long time to initial moduli ;’ = C,/C, is 

picked to be 0.25. and the relaxation time is assumed to be 1 .O. The initial cond#on (26), 

/,‘(O. t) (= i,,(O. t)) is set ;1s I. I. which is equivalent to saying .r(O. t) = X,.,/i. I = 0.95,t 

and ~(0, I) = Y/m = 0.95 Y. For the problem where traction is prescribed, calcuta- 

tions are carried out for ci,,(O.O. I. 1) = 0.2. and for the problem where displucement is 
prescribed, h(t) = I .2. At each time step, the value of i”(O, t,) [ = i,(O, &,)I is accepted ;IS 

the finrtl value when ]i( I, ,)- IL!] < t: for the problem where dispktcomcnt is prescribed or 

]6z,(0.0. I. f)-0.21 < c for the pr(~bler?~ where traction is prescribed. whcrc F: = 5.0 x f0 ‘. 

In gcnsral. for this choice of 8, about 10 itcmtions ;uc rcquircd rtt each time step to arrive 

at :tn acccptablc value for l”(t), t). Time steps I~ :rrc chosen to vary logarithmically 11s did 

Wincman (1972). This permits small time incrcmonts for early times when quantities ;rrc 

undergoing large vuriutions ;ind larger time incromcnts for kiter times when the Vitriations 

;trc smaller. The time steps used XC given by the rckttion tt + L = I& x IO.‘, whet-c rt = 0.2 for 

k = 2,3, * . . . IO, ;I = 0.05 for ii > I I, with I, = 0.01. 

The response of the slab :tt I = I! = 0 to ;x stop cfongation, ;( I, t) = 1.3, for diffcrcnt 

J.‘( I. r,) [or ditfercnt C(r,)] is shown in f?gs 1 and 2. f;or cxamplc, given i( I. 0) = 1.2, while 

C(0) is ussumcd to be 0.0, 0. I UIJ 0.3, the values of i.‘( I, 0) ;trc I.31 5, I .27 and 1.90, 
rcspcctivcly. It should be pointed out th:rt thcrc is no clear physical meaning for C(f), 

though it is related to the boundary condition E.‘( I, i). flowcvcr, it is more convenient to 

1.25 

a 
‘N, 
‘4 1.20 

s! i 
d 
2 1.15 

i?l 

1.001 
0.0 0.2 0.4 0.6 p.8 1 .o 

~ondimeffs~onal Coordinate i! 

Fig. I. Varirttion of the stretch ratm t.’ at initial time 
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0.42 I- 

0.2 0.4 0.6 0.8 ;lO 

Nondimensional Coordinate 2 

Fig. 2. Distribution of the stress 0.-z at initial time. 

deal with C(l) instead of A.‘( I. I) for co-mputational convenience. Figure 2 shows how the 

stress in the slab (il,(O, 0.i. 0) varies with C(0) [or A’( I, 0)) at I = 0. It can be seen from the 

figures that a symmetric deformation of the slab about the mid-plant is obtained by setting 

C(0) = 0.57, which corresponds to A’( 1.0) = I. I. it is interesting to note that if WC still 

ilSSumC ;1 constunt vitluc for C(r) for I > 0, for instance C(f) = 0.57, though thcrc is a 

symmetric distribution of the stretch ratio and stresses initially, as time progresses they 

bccomc asymmetric ils shown in Figs 3 and 4. This implies that assigning a constant C(r) 

0.00 I 
0.0 0.2 0.4 0.6 $6 I 

Nondimensional Coordinate Z 
I 

Fig. 3. Distribution of the stress 0,: for a constant value of C(r) for the problem where displacement 
is spccificd. 
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0.00 
0.0 

1-a 

0.2 0.4 0.6 0.8 

Nondimensional Coordinate ? 

corresponds to proscribing a time depcndcnt d’( I, I) [or s(r). j.(t)] iit the top plant of the 

viscoclastic slab as shown in Fig. 5. 

Geocrally, C(r) is it function of f;1s it appcats in the governing cqurrtion (24). Motivated 

by the exponential decaying characteristic of the strcsscs with time, WC ;~ssumc that 

1.40 I 

C(l) - 0.00 
1.30 

=: 
5 
‘x 

2 1.20 

i 

C(r) * 0.M 

C(f) - is 0.57 

1.10 

1.00 +- 
0.0 1.5 3.0 4.5 6.0 

Time t 

Fig. 5. Variation of the stretch ratio ;.‘(I, f) with t~mc. 

(47) 
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1.4/ 

1.2 

1.0 

0.4 

0.0 v 
0.0 0.2 0.4 0.6 0.6 1.0 

923 

Nondimensional Coordinate 2 

Fig. 6. Variation of the motion and slrains when displacement is specified. 

whcrc K, and Kz arc constants. When-A’, = 0.57 and K2 = 0.30. the stretch ratio J.‘(i?,f) 

and corresponding strcsscs ci,,(O, 0.2. t) and ci,,(O. 0.2, I) relax symmetrically at all times 

as shown in Figs 6--8. It is also seen from thcsc figures that there is very little deformation 

with time (see Fig. 6). which corresponds to the cast whcrc a constant A’(O.0) = R’( I,O) 

(note x = A’/&‘) is assigned both at the bottom and top of the viscoclastic slab, respec- 

tively, and 8,,(0.0,0. I) = S,,,(O, 0. I, I) (d,, = ci,, from the original equations) for all time 
(set Figs 7 and 8). 

0.3: 5 

T 
0.30 

f 0.20 

z 
UJ 
7 
.i 0.15 

5 
E 
a 
g 0.10 
2 

0.05 

0.2 0.4 0.6 0.6 

Nondimensional Coordinate 2 

Fig. 7. Symmetric distribution of the stress n;; at various times, when C(r) is non-constant. 
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0.35 

<K 0.30 
d 
d 

<z 0.25 

D 

; 0.20 

i?i 

.g 
c” z 0.15 

e 

P 0.10 

0.05 

0.00 1 In 0 1 
0.0 0.2 0.4 0.6 .0.8 1.0 

~ondimens~~al Coordinate Z 

Fig. R. Symmetric distribution of the stress ci,, at wriour times. when C(t) is non-constant. 

Having a clear idea about the rclrttionship bctwccn A’( I, 1) and C(t), WC now turn our 
attention to the non-uniform extension problem. Let us consider the case C(t) = 0.1% > 0, 
which corresponds to pi time dcpcndcnt dcformution of the upper surface with A’(i.0) = 
I. I2 as shown in Fig. 5. The numcri4 solutions for the cuc where L( I, I) = I .2, 
I 3 0. arc represented in Figs 9-l I. The distributions of the kinematical quantities dx/dX 
(= J_@Y = l.O/fi). :’ c and 1 are shown in Fig. 9 for I = 0 and f -+ m. From the figure, 

0.0 0.2 0.4 0.6 0.6 1.0 

~ondimens~n~l Coordinate 2 

Fig. 9. Vxiation of the motion and strains when C(f) = 0.5. 
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. 

0.0 0.2 0.4 0.6 p.6 1.0 
Nondimensional Coordinate Z 

Fig. IO. Variation of the stress 6;; wth time when C(r) = 0.5. 

92s 

it is clear that d_r/dX and A’ arc non-uniform and 1 varies only slightly from its initial values 

but the variations in d.r/dXand A’arc relatively large, and are timedcpcndent. The relaxation 

of the stresses BI,(O, 0.2. I) and ci,V,(O, 0.2% !) ( = d,.,(O. 0, 2. I)) are evident from Figs IO and 
I I. The stress d,_(O, 0. i?, I) of the lower boundary is smaller than that on the upper boundary, 

as i.‘(O. I) is smaller than A’( I, I). The same reason results in ti,,,(O, O,O, 1) being larger than 

d,,(O, 0, I * 0. 
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Fig. I I. Variation of the stress d,, with time when C(f) = 0.5. 
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Figures 12 and 13 show the p;lths of particlcs originally at X = I rend Y = 0 for the 

problems in which the disp~~~~~rn~nt and traction xt’ prcscribcd, rcspuctivcly. In Figs 12 

and 13. the response at I = 0 is the inst:intilncous cf;~ic rcsponsc. Also shown is the 

asymptotic viscoelastic rcsponsc (Is f + z. Thus. ;II any intcrmcdiatc time the viscoelastic 

&ponsc is bctwccn the two limits shown in the figures. 
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Fig. 13. P;~rklc paths for the problem III which traction is prcscribcd. 



Non-uniform extension of a non-linear slab 
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Fig. 1-I. Displacement histories for the problem in which traction is prescribed 

The rcsponsc of the slab under ;L constant normol stress d,,(O, 0, I, I) = d, = 0.2 arc 

shown in Figs 14-16. The deformation history of the slab for the problem is shown in Fig. 

14. The displxemcnt of the upper surface of the slab increases rapidly until I = 4.0 and 

then slowly reaches a ceiling vnluc ;LS time incrcascs. The displacement of the planes near 

the lower boundary. suy 2 = 0.2. however, increases slowly with time. The distributions of 

O-40: 
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Variation of the stress d,, with time when traction is prescribed. 
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Fig. 16. V:lrution ol’thc stress ci,, with time when traction is prcscribcd 

strcsscs ci,,(O. 0. S?. I) and ri,,(O. 0.2. I) through the slab arc shown in Figs I5 and 16. 
rcspcctivcly. The stress ci,,(O, 0. I. 1) [ = &(O, 0. I, f)] changes with time. The distributions 

of the strcsscs 6z2(0, O,& f) and c?,,(O, 0,2, I) through the slab for the problems whcrc 

displaccmcnt and traction arc prcscribcd for the GISC whcrc C(f) = 0.0 (which corresponds 

to ;I time dcpcndcnt i.‘( I, f) with A’( 1.0) = I .315 as shown in Fig. 5) are shown in Figs l7-- 

20. The stresses vary through the slab approximately linearly for both problems for the 

spccilic C;ISC under considtmtion. 
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Fig. 17. Variation of the stress tii;, with time for C(r) = 0. when displxcment is prescribed 
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Fig. IX. Vari;ttion ofthc SIKSS ci,, with time for C’(C) = 0. when diuplaccmcnt is prcscribcd. 
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Fig. 19. Variation of the stress d,: with time for C(r) = 0. when traction is prcscribcd. 
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