
LETTER TO THE EDITOR 

Discussion of “Generalized beam theory applied to shear stiffness”. 
tnf. J. So/i& Structures. Vol. 27, No. 15, pp. 195.5-1967 (1991) 

Dr Renton develops his expressions for the shear contribution to beam deflections by an 
energy argument based on the reasonable premise that the reactions at a fixed support 
should do no work. This approach would certainly seem to be preferable to the largely acf 
hoc methods used by earlier authors. However. an alternative interpretation is to regard 
the theory of beams as the beginning of an asymptotic expansion of the solution of a fully 
three-dimensional elasticity problem in terms of a small parameter. E. defined as the ratio 
between a representative dimension in the beam cross-section and the beam length. In this 
context, the bending deflection term--about which there is no disagreement-woutd be the 
first term of the expansion and the shear dctlcction might be defined as the second term, 
which is gcncrally two orders higher in F. 

For the thin rectangular cantilcvcr. 0 < .Y < (I, -h < _r <: h. built-in at I = a. the 
appropriate three-dimensional problem is dclincd by the boundary conditions 

“h 

u, = II,. = 0. s = (1, -hcych: o,,=o, x=0. -h<y<h: J tT,,.dy = F. s = 0 
h 

(I-3) 

whcrc the displacement boundary conditions at the built-in end arc imposed in the “strong” 
or pointwise sense. 

The usual polynomial elasticity solution of this problem involves a distortion of initially 
plane sections due to shear and hence can only satisfy these conditions in a weak sense- 
either in terms of the displacement and/or displacement gradient at one or more discrete 
points or in terms of an average dispIacement. 

To the besr of the present author’s knowledge, the exact problem-which will involve 
a self-equilibrated “Saint-Venant” corrective stress field near the built-in end-has never 
been solved, However, some properties of this corrective field can be determined without 
completing a full solution. For example, by applying Betti’s reciprocal theorem to the 
approximate solution, using a state of simple bending as auxiliary solution, it can be shown 
that, if the distorted end section is restored to a plane by a self-equilibrated distribution of 
normal stress, u,~,, the location of the resulting plane corresponds to the ‘integral’ boundary 
condition 

I 

h 

u,(N. I’))’ d,r = 0. (4) 
.. h 

Unfortunately. the boundary condition on the component N* cannot be dealt with as 
simply, but it is interesting to note that the use of eqn (4) in the approximate solution, 
coupled with the related integral conditions 

s 

h 

~,(a, y) dy = 0. 
-6 s 

h 

N~(u, _v) dy = 0 (56) 
-6 
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gives \ery neurlq the sane result as Rrnton’s energy argument. Since Renton’s argument 

is drribed from considerations ofstrain energy in the approximate solution itself, ue should 

not be surprised to find that his result is recovered exactly if (6) is replaced by the end 

condition 

II, (u, J,)( h’ -J,‘) d!, = 0. (7) 
~‘5 

It is important to remark that. though the corrective stress field at the built-in end is 

localized in the Saint-Venant sense. the corresponding correctire displacement field is not 

necessarily localized. since the rigid body motion of the region beyond the end zone will 

generally be affected by the preciseend conditions applied. Furthermore. it seems reasonable 

to expect that the extra constraint (e.g. on the strain component cl,,) implied by the strong 

end conditions (I) above would result in ;L stiffer restraint than that predicted by the 

elementary beam theory. Some\vhnt similar efTects are obtained tvhen :I cantilever is sub- 

jccted to torsion and the end-plane is restrained from warping. in which case the rotation 

of the free end can bc significantly rcduccd (Timoshcnko and Goodicr. 1970). 

It is perhaps instructive to consider the sirnplcr problcrri in which the rectangular 

cantilcvcr bc;Im is loaded only by ;I bending moment at the free end i.c. in which the 

conditions (2. .3) at .\- = 0 ;irc rcpkcd by 

In thi\ C;I~C. the clcnicnt;lry solution predicts no distortion of plant sections and thcrc 

is 110 sliar I~orcc. hut I’oihson’s ralio cll>cts cnsurc that thcrc i5 ;I non-/cro value of o,, , 
which mu51 bc constrairicd by ;I local corrcctivc licltl at lhc built-in end. This local licld will 

itself account for somc strxin cncrgy and. as ;I result. the rotation of the applied moment, 

hl, will bc less than th;rt prctlictcd by the clcmcntary theory. Furthcrmorc, this reduction 

in rotation must l-x conccntratcd in the end zone, so that its etrcct on the beam displaccmcnt 

is seen principally as ;I rigid body rotation, which in turn will c;~use the end dctlcction to 

bc less than that predicted by the clemcntary theory by an amount which is proportional 

to the length of the beam. This term is of the same order in the supposed asymptotic 

expansion AS the shear dctlcction term, notwithstanding the fact that in the present problem 

there is no shear force to produce such ;I dctlcction. 

The purpose of this perhaps rather laboured discussion is to show that “Saint-Vcnant” 

type end effects in beam problems produce corrections to the beam dctlcctions that arc of 

the same order in an asymptotic expansion of the exact three-dimensional solution as those 

due to Icgitimatc shear dcktion etrects. even though the latter arc generally signilicantly 

larger, ;IS demonstrated by the rclativcly minor differences between previously published 

estimates list4 in Rcnton’s Introduction. Thus, the attempt to place shear dcllcctions on 

a Icgitirnatc footing by a5ymptotic expansion scans doomed lo failure. 

Shear dctlcction cstimatcs also introduce other paradoxical clyccts into the beam theory 

which dcscrvc furthsr discussion. For cxamplc, we might dclinc ;I conccntratcd moment. 

$1. applied at the point .Y on ;I bc;tm as the limit as (5.r + 0 of a pair of equal and opposite 

conccntratcd transvcrsc forccs of magnitude M/js at the points .Y and .Y + <is rcspcctivcly. 

Howcvcr. the infinitesimal region of beam bctwccn s and .r+j.v will cxpcricncc ;1 shear 

dcflcction which tends to ;I constant rather than zero as 3;.\- + 0, suggesting that a con- 

ccntratcd moment should bc associated bvith ;I step in transverse dcllcction. On the other 

hand. no such dcllcction v.~uld bc cxpcctcd if the conccntratcd moment wcrc rcgardcd as 

due to two equal and opposite horizontal forces acting (say) at the top and bottom of the 

beam. This suggests that a consistent second-order beam theory would need to encompass 
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higher order information about the method of load application (and hence about the local 
stress state in the beam), beyond a mere statement of force resultants. 
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