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The effect of structural damping on the dynamics of periodic and disordered nearly
periodic systems is investigated. A chain of single-degree-of-freedom oscillators coupled by
springs is used as a basic model of a mono-coupled periodic system. The dynamic response
of the system to a harmonic excitation at the leftmost oscillator is considered. For a system
with damping but no disorder (i.e., identical oscillators), an exact expression for the rate
of exponential spatial amplitude decay is retrieved. It is found that the decay rate due to
damping in a periodic system has a frequency dependence similar to that of the decay rate
due to disorder in an undamped nearly periodic system. The magnitudes of the decay rates
due to only damping or disorder are compared, and the concept of equivalent damping due
to disorder is introduced. For systems with both disorder and damping, perturbation
methods are used to find approximate expressions for the decay rate in the cases of strong
and weak coupling between oscillators. It is shown that if the coupling is strong, the decay
rates due to damping and disorder simply add up to produce the overall decay rate, and
the cffect of damping dominates. If the coupling is weak, however, the effects of damping
and disorder on the overall decay are comparable in magnitude, and they interact in a more
complicated manner.

1. INTRODUCTION

A periodic system consists of an assembly of identical elements, or subsystems, which are
coupled in some identical fashion. An example of such a system would be a turbine blade
assembly. Ideally, the individual blades are identical, and they are dynamically coupled
through the hub and through aerodynamic effects,

The dynamics of periodic systems have been studied in detail for several decades,
sparked by the work of Brillouin [1]. For harmonic éxcitations, periedic structures are
known to exhibit some notable characteristics. In specific frequency bands, energy-carrying
waves propagate unattenuated through the system, with only a change in phase from one
subsystem to the next. These ranges of frequencies are called the passbands. The number
of passbands corresponds to the number of degrees of freedom for each subsystem, and
the number of left- and right-travelling wave pairs is that of coupling co-ordinates between
subsystems.

For frequencies outside the passbands, the wave—or vibration—amplitudes decay
exponentially along the assembly. From one subsystem to the next, the amplitude
is attenuated by a factor of e~%, where y is the (positive) exponential decay constant.
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The ranges of frequencies outside of the passbands are called the stopbands. (Note that
for multi-coupled structures, complex waves may exist, which feature both attenuation
and a phase change.) This passband-stopband behavior was examined extensively by
Mead [2].

Of course, actual physical periodic systems tend to have discrepancies between the
subsystems, or bays, even though they are intended to be identical. Material tolerances,
manufacturing defects or other flaws invariably cause differences between the subsystems.
These irregularities are referred to as disorder, or mistuning. It turns out that even slight
disorder can have a drastic effect on the dynamics of the nominally periodic system,
provided that the coup]ing between the subsystems is sufficiently weak or that the
structure’s modal density is large enough.

In particular, the deviation from periodicity leads to partlal reflections of the
energy-carrying waves at cach bay. The energy therefore tends to be confined in a
region near the excitation source. This pchnomenon is known as localization, and it
was first noted by Anderson [3] in the field of solid state physics. Anderson’s work
was applied to the vibration of nearly periodic engineering structures by Hodges [4],
who showed that the degree of localization depends on the ratio of disorder strength to
coupling strength. Since then, there have been several analytical [5-10] and very few
experimental [11, 12] studies of this phenomenon in particular structural systems {for a
review of work on localization in the field of applied mechanics, the reader is referred
to [13]).

Localization leads to a spatial decay in the vibration amplitude, even at frequencies
which are within the passbands of the tuned system. This decay, when averaged over many
configurations of random disorder, is known to be exponential, and the associated
exponential decay constant is called the localization factor. Both random matrix theory [14]
and stochastic perturbation methods [15, 16] have been used to find analytical approxi-
mations for the localization factor of mistuned—undamped systems.

In this paper the effects of disorder and structural damping on the dynamics of mono-
coupled nominally periodic enginecering structures are investigated. Since all engineering
structures have some damping, it is important to understand how the effects of mistuning
and dissipation interact. To date, only two studies have attempted to consider this
interaction. Cai and Lin [17] considered damping in formulating localization factors for
a mono-coupled system, but only the formulation was presented and no results were
obtained for the damped structure. More recently, Lust ez al. [18] included damping in
finite element models of disordered multi-span beams and multi-bay trusses. Their
numerical results showed that a reasonable value of damping made the responses of
ordered and disordered structures nearly identical. Here, we find this to be true only for
strongly coupled systems.

This paper provides both an analytical and numerical examination of localization for
a simple theoretical model of a disordered and damped nearly periodic structure. It is
shown that if damping and disorder are both large compared to the internal coupling, then
they will both contribute substantially to the spatial vibration amplitude decay, although
their effects do not simply add up. However, if damping and disorder are both small
compared to the internal coupling, and they are of the same order of magnitude, then
damping effects will dominate. This means that weak localization effects are unimportant
in engineering structures.

The paper is organized as follows. In section 2, the derivation of the localization factor
for the mistuned—undamped system is reviewed, using the model of reference [16). In
section 3, the disorder is removed from this model and structural damping is added. Unlike
the mistuned system, an exact expression for the exponential decay constant of the



NEARLY PERIODIC STRUCTURE 481

tuned—damped system is retrieved. In section 4 the system contains both damping and
mistuning. Analytical expressions for the cases of strong and weak coupling are derived,
and these are compared to Monte Carlo results. Also, the dynamic behavior of the
mistuned—damped system for individual realizations of disorder is explored. Finally,
section 5 presents the conclusions drawn from this study.

2. UNDAMPED SYSTEMS
2.1. THE TUNED-UNDAMPED SYSTEM

As a simple model of a perfectly periodic—or tuned—structure, et us consider a chain
of identical, coupled oscillators with fixed—fixed boundary conditions, as shown in
Figure 1. The assembly is excited at the leftmost oscillator by a harmonic force input of
amplitude F and frequency w. This oscillator, experiencing an external excitation, will be
referred to as the first oscillator. The next oscillator to the right is the second oscillator,
and so on. Each oscillator can be vigwed as a massless beam of stiffness &;, with a mass
m concentrated at the tip. The oscillators are equally spaced and connected by springs of
uniform coupling stiffness, k.. Each oscillator undergoes a harmonic tip displacement of
amplitude u;, where i denotes the ith oscillator in the chain. The equations of steady state
motion are, therefore,

—?mu; + (ko + 2k, — ko, — ko, = F3), i=1,...,N, N

where 6} =1 for i = 1, and is zero otherwise.

The coefficients of the left side of equation (1) are made dimensionless by dividing
each side by the nominal oscillator’s stiffness. We therefore introduce the following:
@, = +/ ko /m, the natural frequency of an individual oscillator; & = w jay,, the dimension-
less excitation frequency; R =k, /k,, the dimensionless coupling; and F= F/k;, the
modified force amplitude. The equations of motion become

(1+2R —&Yu,— Ru,_, ~ Ru,,, = Fs!, i=1,...,N. @

The propagation of waves through the associated infinite periodic structure can be
examined as follows. Defining a bay of the periodic structure by an oscillator and the
coupling spring to its right, the dynamics of the ith bay can be described by the vibration
amplitude state vector [u,, ,_,]". State vectors for two adjacent bays are related by a

Faiot
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Figure 1. A schematic representation of the system of N mono-coupled one-degree-of-freedom oscillators, with
& harmonic force excitation Fe* at the first oscillator.
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transfer matrix:
1+2R —®?

B | _ U; N7 —1
[uf ]—[To][u'__l} Toi= R N ®

The displacement transfer matrix [T,] is uniform for all bays throughout the chain.
From the appendix, we know that the rate of exponential decay per bay (the real part
of the propagation constant) of a harmonic wave propagating through the structure is

y=In{il,  JALl=1, )

where A, is an eigenvalue of [T,]. Solving for the eigenvalues of the transfer matrix, we
retrieve the expression

y =In{(1/2R)[1 + 2R — @* + /(1 — 32 (1 + 4R — &?)]), (5

where, in order to retrieve the largest eigenvalue, the radical is either added or subtracied,
depending on the frequency. Note that for 1 < @* < 1 + 4R, the radicand is negative and
thus 4, is complex. Furthermore, when A, is complex, 14,] = 1. Therefore y = 0 and waves
travel without spatial attenuation. This range of frequencies is called the passhand.
The passband edges for this system are therefore @*=1 and @*=1+4R. The frec
vibration natural frequencies of the finite structure belong to the passband. For @* < 1 or
@*> 1+ 4R, i, is real and )A,) > 1. For these frequencies y > 0, and the system exhibits
spatial wave amplitude decay. These regions of the frequency spectrum are called the
stopbands.

2.2. THE MISTUNED—UNDAMPED SYSTEM

There is direct transmission of a wave through each bay of a tuned system. This
transmission may be complete, or it may exhibit attenuation of the wave amplitude, but
there is no scattering involved. In a mistuned system, however, there is both partial
transmission and reflection at each site. For a mistuned chain of oscillators with a wave
incident from the left, the multiple scatterings along the chain will tend to confine the
energy near the left end of the mistuned segment. This phenomenon is appropriately
referred to as localization.

Localization can also be viewed in terms of mode shapes. A tuned system is charac-
terized by extended, periodic mode shapes. However, for a mistuned system with weak
coupling, the effects of disorder can be quite remarkable, localizing the mode shape in a
small region of the system. An example of this phenomenon is shown in Figure 2. For a
local source of forced excitation, the response will tend to be confined near the source, since
mode shapes localized in regions away from the energy source generally will have small
amplitude at the source and therefore will not be greatly excited.

The forced response patiern varies for a chain of oscillators, depending on the
distribution and magnitude of the disorder. On the average, the system exhibits an
exponential spatial decay of the vibration amplitude along the chain. The averaged rate
of decay per bay, 7., is called the Jocalization factor, and is denoted here by the subscript
m because it 1s associated with a mistuned system.

Disorder is introduced to the previous model by allowing each oscillator to have a
different stiffness k;. The value of the stiffness is considered to be uniformly distributed
about the mean, k,, with standard deviation g, and half-width of the distribution, W (note
that W = \/50'). In this way, ¢ can be used as a measure of the magnitude of the disorder
present in the system. In order to account for these non-uniform values of stiffness, we
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Figure 2. (a) The fifth mode shape of a tuned 100-oscillator system, with coupling R = (- 1. (b) The fifth mode
shape of a mistuned 100-oscillator system, with coupling R = {-1, and standard deviation of uniform random

disorder ¢ = 10%. The mode shape of the tuned system is extended, while the mode shape of the mistuned system
is localized.

define the dimensionless variable Af; = (k, —~ ky)/k,, the fractional deviation from mean
stiffness. Therefore, for a disordered bay, equation (3) becomes

1+ 2R —&* + 4f;

[“"*'}{T.-]m[ " ] [T], = R - 6)
Uy L

| 0

Here, [T,),, is a random displacement transfer matrix for the ith bay.

The matrix of eigenvectors of [T,}—which we will call {P}-—can be uscd to transform
the displacement transfer matrix into a wave transfer matrix via a similarity transform-
ation. The global wave transfer matrix for an N-bay segment is

|
[WN]m = ]_:'IV [W:’]ms [”/r]m = [P]_I[T.'l]m[P] (7)

For an ordered bay the wave transfer matrix is diagonal, but for a disordered bay it is
not, which means that there is reflection of the energy-carrying waves in the disordered
system, and thus localization. The item of interest here is the (1,1) element of [#7\],,
which is the ratio of the incident to the transmitted wave amplitude for the N-bay

disordered segment. This leads to the rate of decay per bay, or the localization factor
(see Appendix):

, L
Ym = ,51_130 N I [[# y]wanl- (8)
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The problem presented by this approach is that [W),, is a random matrix, and therefore
[# y).. cannot be strictly evaluated as N goes to infinity. This obstacle can be overcome
by approximating [W,],, using perturbation techniques, and extracting the first order terms
of the product of the wave transfer matrices. We thus have a first order approximation
of [# y].i1y. We can then apply equation (8) to find the localization factor.

In order to apply perturbation techniques, two cases must be considered. The first is that
of strong coupling (small mistuning-to-coupling ratio), a/R < 1. Since {(Af;)/R is small
compared to the other terms, this can be considered a perturbation. Thus, [T}, can be
expanded as

1 +2R —@? i A_f,
(Tl.=| R +| R 0|=(1)+ W4T, ©)
1 0 0 0

This is a classical perturbation technique, since disorder is considered to be a perturbation
of the ordered system. Next, the matrices are transformed:

(W) =[P (To] + [4T))[P] = [Wo] + [P]” AT ].[P]. (10)

Taking the first order terms of the product shown in equation (7) yields
N
D wln = WY + 3 (Wl P17 (AT x o 1 PIEWLTY (11
I=1

Using equation (8), the approximate localization factor is found to be

0.2

@ =1 + 4R o)

Note that this approximation is valid only in the passband (1 < @’ < I + 4R). Further-
more, it fails near the passband edges.

The second case to be considered is that of weak coupling (large mistuning-to-coupling
ratio), ¢/R » 1. The classical perturbation technique is no longer valid. A modified
perturbation techniqgue must be used, where coupling is considered to be the disturbance.
The expansion is thus

Vo o/R < 1. (12)

1+2R — & + 4f,

—1
=] R °1+ b ol 13
0 0

Following the same methodology as for the weak mistuning case, the localization
factor is

142R—*+ W
W

pur —InR—1+ Injl+2R —&*+ W|
142R~ — W
W

The localization factors for representative strongly and weakly coupled systems are shown
in Figure 3 as a function of & (for a more complete treatment of the mistuned-undamped
system, see reference [16]).

It is important to understand, however, that these localization factors are ensemble-
averaged values for the rate of spatial amplitude decay of the chain of oscillators. A single
realization of a finite disordered system may show behavior which is quite different from
this expected decay. This idea wili be discussed further in section 4.3.

Inj1+2R—@*'~W|, o/R>1. (14)
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3. THE TUNED-DAMPED SYSTEM

3.1. THE PROPAGATION CONSTANT

We now introduce damping into the original (tuned) model by considering each beam
to have uniform structural damping. The coupling springs ar¢ still considered to be
undamped. The choice of structural damping is appropriate since the model represents an
engineering structure excited by a harmonic force input. This damping adds an imaginary
term to the equations of motion. If we express these equations in state vector form, the
displacement transfer matrix becomes

1+2R —@*+jé .
[T,= R , (15)
] 0

where j =,/ —1, 4 is the structural damping factor, and the subscript ¢ denotes a damped
system.

Note that since the damping is considered to be identical for all oscillators, so is the
associated transfer matrix. This allows us to find an exact formula for the exponential
decay constant for the tuned-damped system, which is simply the real part of the
propagation constant [17]. Recalling that y =1n|A,|, where 4, is the cigenvalue of the
transfer matrix of modulus greater than or equal to one, we find:

ye=In[(12R)[1 +2R —&*+j6 + /(1 — @+ 8)(1 + 4R — @’ +j0)].  (16)

Again, the radical is either added or subtracted in order to retrieve the largest eigenvalue.
Note that equation (16) reduces to equation (5) for § = 0. The exponential decay constant
is shown vs. ®* in Figure 4 for various values of damping.

We can express equation (16) in an alternate form by introducing the variable for
passband position, &, which is defined as

@*=1+aR (17

such that the passband for the tuned-undamped system corresponds to 0o <4,
Therefore, « is a convenient variable for expressing the frequency in terms of its location
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Figure 3. (a) Strong coupling perturbation (—-) and Monte Carlo (@) results for the localization factor for
a system with R =01, ¢/R =0-1. Results are only shown within the passband, since the strong coupling
perturbation results are pot valid outside the passband. (b) Weak coupling perturbation (——) and Monte Carlo
{®) results for the localization factor for a system with 8 = 001, ¢/R = 10. The decay constant {---—-- ) for the
tuned system is also shown.
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1-08

Figure 4. The real part of the propagation constant for a tuned—damped system with R = 0-01, shown for
various values of damping: 6/R =10 (—.—.), 5 (———), 1 {——), O-1 (------ ) and 0 (—),

relative to this passband. Substituting equation (17) into equation (16), we find that

4= {2 — ) +j3/R) £ /(—x +]8/R)(4 — a) + 8 /R)}I. (18)

Hence the magnitude of the real part of the propagation constant depends on the
damping-to-coupling ratio, 6/R, just as the localization factor depends on ¢ /R.
Simplified forms of equations (16) and (18) may be found in the cases of strong and weak
coupling. For the case of strong coupling, we simplify equation (16), using the fact that
8/R is small compared to the other terms. After some algebra, it can be shown that

178/ (@'~ D1 +4R — %), S/R<; (19)

or, using passband position,

1 é
a4 — o) R
This expression is only valid inside the passband.

For the case of weak coupling, we expand equations (16) and (18) for large values of
d/R. After some algebra, this yields

P iIn[((1 +2R —@})/R¥+(8/R)], &/R> 1; (21)

e §/R < 1. (20)

or,
vam3in[2—aY+(/R¥), é/R>» 1 (22)

From the above equations, we can see that while structural damping appears in the
equations of motion as a complex stiffness whose magnitude does not depend on
frequency, the spatial decay rate in the periodic system due to structural damping is
nevertheless frequency dependent. Furthermore, from Figure 4 and equations (20} and
(22), we note that the exponential decay rate increases with damping, linearly for strong
coupling and logarithmically for weak coupling. This dependence is similar to that of the
localization factor on coupling. Finally, y, is minimum at mid-passband, and increases
away from mid-passband, similar to the localization factor.
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3.2. DYNAMIC RESPONSE OF THE TUNED-DAMPED SYSTEM

In order better to understand the behavior of the tuned-damped system, we now
examine the frequency response of individual oscillators in the system. This is done by first
writing the equations of motion in matrix form, with damping included:

Y —R 0 - 0 w /F I
~R . .. 5 0
o - . - o = b @)
to-. . . -R : :
0 - 0 —-R Y u, /F 0

where Y'=1+ 2R — @* + jé. The system matrix in equation (23) will be referred to as [4],
and the right side vector will be called b.

This system of equations can be solved by applying Cramer’s rule, which states that the
ith unknown variable, «,/F, is the determinant of [4] with the ith column replaced by b,
divided by the determinant of [4]. The determinant in the numerator of this expression
follows a recursive relationship, and can be restated to obtain

B pi det([A4] with first { rows and columns removed)‘

F det[4] 29

The determinant of these matrices can be found by diagonalizing them and taking the
product of the diagonal terms. Equation (24) becomes

&:Ri-—l Hf‘s_l'((@r)lz\’—l—ﬂjz—'-ja)
F I (@) —@*+j8) °

where (@,)y_, and (&,)y are the rth natural frequencies for the tuned-undamped chains
with N —i and N degrees of freedom, respectively. Inspection of the denominator reveals
that the resonant frequencies of the structurally damped system are the same as those of
the undamped system.

The natural frequencies of the undamped system have been shown to be [19]:

(@)y=1+2R(l —cosrn/(N+1)), r=1,..,N. (26)

(25)

Substituting this expression into equation (25), and restating the input frequency in terms
of passband position «, we obtain

#_1 ¥ 2(1 —cosrr/(N —i + 1)) —a + j6/R)
F R NV, 20 —cosrnf(N+1)—a+jé/R)

Note that «;/F depends on N, the number of oscillators in the system. It is important
to recall, however, that we are primarily interested in the dynamics of the infinite
system.

Numerically, we have found that if N is large enough, an oscillator responds as if it
were part of a semi-infinite system. In other words, increasing the size of the system
does not affect that oscillator’s response to the harmonic excitation because the right-
end boundary effects become negligible. When this occurs, we say that the oscillator
exhibits infinite behavior. The minimum number of oscillators required to achieve
infinite behavior (within some accuracy) across the entire passband for a single oscillator
depends on the damping-to-coupling ratio. If /R is large, the excitation source energy
is greatly dissipated and the boundary at the right end has little effect on the system’s
response, even for a system consisting of only a few oscillators. If é/R is small,

=1,..., N 27
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Figure 5. The vibration amplitude of the first (—), 25th (-—-) and 50th (----- ) oscillators of a 100-oscillator
tuned—damped system; R =0-01, /R =0-1.

the dissipation is more gradual along the chain, and thousands of oscillators may
be required to eliminate the boundary effects. In general, we consider a system to
be exhibiting infinite behavior if the decay rate due to damping is within 0-1% of the
real part of the theoretical propagation constant for the infinite system (equation (16)).
For undamped-mistuned systems, right-end boundary effects are negligible if N is
chosen such that it is much greater than the localization length scale 1/y (on a per bay
basis) [16].

Once we have achieved infinite behavior for the entire system, we can look at the
frequency response of any oscillator as if it were part of a semi-infinite chain. We now
examine the comparative response of various oscillators in a tuned-damped chain, as
shown in Figure 5. The first oscillator shows a somewhat squared peak, and near the
passband edges the amplitude decreases significantly, but does not become vanishingly
small. The response of the 25th oscillator, however, shows a much smailer and more
rounded peak, and a more dramatic decrease in amplitude at frequencies near the passband
edges. The response of the 50th oscillator follows the same trend: the peak is even smaller,
and the response becomes vanishingly small at frequencies just inside the passband.
This behavior follows directly from the fact that y,; is larger near the edges of the
passband, and minimum at mid-passband. Therefore, at mid-passband the energy from
the excitation source passes through the system more freely than at other frequencies.
At these other frequencies, the spatial decay is greater, and the further the frequency
is from mid-passband, the stronger the decay.

Now let us remove the left-end boundary effects. We can do this by temporarily
changing our excitation scheme so that we are exciting at the middle of the usual
tuned-damped chain of oscillators. We consider a 1000-oscillator chain excited at
the 500th oscillator, with R =001 and 8/R =0-1. The parameters were chosen so
that the oscillators respond as if they were part of an infinite (as opposed to semi-
infinite) tuned-damped chain. In Figure 6 are shown the responses of the 500th,
505th, 515th, and 525th oscillators in this system. Note that the 500th (driven)
oscillator now has a double-peaked response, with one crest occurrring at each edge of
the passband. The response of the 505th oscillator exhibits a similar double peak,
although the response is sharply attenuated outside of the passband as we would
expect. The response of the 515th oscillator, however, does not show two obvious
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Figure 6. The vibration amplitude of the 500th (—-}, 505th (— —), 515th (———-) and 525th (----) oscillators
of a 1000-oscillator tuned—damped system excited at the 500th oscillator; R =001, /R =0-1.

peaks because, as discussed for Figure 5; the spatial decay due to damping is greater
near the passband edges than at mid-passband. Finally, the 525th oscillator’s response
shows only a single peak, with the response becoming vanishingly small at the passband
edges.

3.3. EQUIVALENT DAMPING DUE TO DISORDER

It should be emphasized that the expression for y, in equation (16} is exact, since the
transfer matrix for the tuned—damped system is identical for all bays. This differs from the
mistuned-undamped system, which is characterized by random disorder at cach bay, and
therefore by random transfer matrices.

This contrast reflects the differences in the physical mechanisms of decay for the two
systems. The tuned-damped system dissipates the excitation energy. This dissipation
occurs in the same manner at cach bay, so the decay is uniform along the chain. The
mistuned—undamped system, however, scatters the excitation energy. Each oscillator
reflects some of the incident energy and transmits the rest, and because of the randomness
of the disorder, the scattering is not identical for all oscillators. However, for the typical
case, the system will show a spatial decay of vibration amplitude along the chain.
When ensemble-averaged (or, equivalently, asymptotically), this decay rate is exponential
[6].

We now attempt to determine how the magnitude of these decay rates compare; o,
alternatively, we can compare the relative magnitudes of damping and diserder, given that
the decay rates are equivalent. This leads us to the concept of equivalent damping—the
value of damping, in terms of the standard deviation of disorder, &, which would give rise
to the same decay rate in the damped system as & would in the mistuned system. Again,
we emphasize the fact that disorder leads to a spatial amplitude decay by confining—
or localizing—the excitation energy, while damping dissipates the excitation energy.
By comparing spatial amplitude decay rates we do not mean to say that a certain amount
of disorder affects a system in an identical manner as does damping, and the term
“‘equivalent damping” should not be construed as implying that the two mechanisms are
equivalent. Rather, we are interested in determining the relative magnitude of disorder
needed to produce the spaiial amplitude decay more commonly associated with damping
effects.
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We can find the equivalent damping J,, for the cases of strong and weak coupling.
First, for strong coupling the approximate decay rates, y,, and y,, are given by equations
{12) and (19). Setting these two expressions to be equivalent, we find that

2
8.0 i o/R and &/R <l; (28)

T 2@ - D1 +4R - &%)

or, in terms of passband position,

0.2

“"RSab-a)

This expression is valid only in the passband (0 < « < 4). Note that the equivalent damping
is minimum at mid-passband and increases as the frequency approaches the passband
edges.

Next, we consider the case of weak coupling. Unfortunately, for this case the calculation
of ., is not as straightforward, and we are unable to retrieve a simple form of the general
expression of equivalent damping. We therefore choose to evaluate the equivalent damping
at mid-passband only. This yields an expression which can be readily analyzed. In additicn,
there is little change in the value of the real part of the propagation constant with respect
to frequency for weak coupling (se¢ Figures 3 and 4), so the mid-passband value is a good
estimate of y, throughout the passband. Evaluating equations (14) and (21) at mid-
passband, we find the equivalent damping at mid-passband to be

&md = (\/3fe)s, o/R and S/R> L. (30)

8 o/R and §/R<I. (29)

Note that for weak coupling the equivalent damping is proportional to ¢, a first order
efiect of disorder; but for strong coupling, the equivalent damping is proportional to &2,
a second order effect. This means that for weak coupling, disorder vields relatively large
equivalent damping, and the effects of damping and mistuning on the spatial amplitude
decay rate are comparable. This could have an impact on vibration attenuation, especially
in lightly damped structures. However, for a system with strong coupling, disorder
provides little equivalent damping, and the effects of damping dominate. This suggests that
weak localization is of little interest to the structural dynamicist.

4. THE MISTUNED-DAMPED SYSTEM

4.1. THE DAMPED LOCALIZATION FACTOR

We now proceed to analyze a system which has both mistuning and structural damping.
In particular, we would like to find out how disorder and damping contribute to the overall
spatial decay in the system. In order to do this, we must find an expression for the (average)
exponential decay constant for the mistuned-damped system. We shall refer to this decay
constant as the damped localization factor.

The displacement transfer matrix for this system includes both a disorder and a damping
term:

14+2R —

[T =

&

g Afi+jd 1

—

, 3
0 (31
where the subscript md denotes the mistuned and damped system. Since the mistuning
term is a random variable, we are unable to find an exact expression for the damped
localization factor. Therefore, we must use stochastic perturbation techniques in order to
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find approximations in the cases of strong and weak coupling, just as we did for the
mistuned—-undamped system in section 2.2.

4.1.1, Strong coupling

Here, we treat both mistuning and damping as perturbations in the transfer matrix.
Accordingly, we require that bork the mistuning-to-coupling and the damping-to-coupling
ratio be small.

We first separate the transfer matrix into unperturbed and perturbation matrices:

[Tna =[To] + (AT ) + [4T ),

14 2R — &* | 4f; 0 i) o
= R Tl RO+ R L (32)
1 0 0 0} |0 0

We then perform a co-ordinate transformation in order to obtain the wave transfer matrix
[W,]. The transformation matrix [P] is the matrix of eigenvectors of [T,]. For frequencies
in the passband, it is of the form

11
P1=] e o) (3
where k is the wavenumber, defined by the dispersion relation [16] as &?=1+
4R sin? (k/2).
Next, we take a first order approximation of the overall wave transfer matrix, which is

the product from N to | of the individual wave transfer matrices. Using a modified form
of ¢quation (11), this leads to the first order approximation of the (1,1) element:

N
(¥ wlmaday = *¥ + (€¥¥/2R sin k) ;Z (6 —j4f). (34
Yy

We can now proceed to find the damped localization factor, which is (see the Appendix)
Pma = CUNY I [ 3 1nddan 1D (35)

where ( ) denotes an average or expected value. Replacing the wavenumber with the input
frequency and solving yields

é a?

Pt ﬂﬂ'}’—- D(1+4R -¢a2)+2(cb’—- D1 +4R — Y’

/R and /R <1,
(36)

which is a summation of the strong coupling approximations for the tuned-damped
and mistuned—undamped systems. For strong coupling, the two decay rates simply add
up.

If we now state the damped localization factor in terms of passband position, we find

1 d 1 2
ymzm(ﬁ)-}-m(%), /R and 3/R <. (37

As with the strong coupling approximations in previous sections, this approximation is
only valid inside the passband, and it fails near the passband edges. We should also note
that the damping-to-coupling ratio appears as a first order term, while the mistuning-to-
coupling ratio appears as a second order term. Since this approximation requires that both
ratios be small, we can easily see that localization due to disorder has little effect on the
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overall decay. For the strong coupling case, with disorder and damping of the same order
of magnitude, the damping effects dominate.

4.1.2. Weak coupling

For this case, the coupling is considered to be a perturbation. From a simple inspection
of the displacement transfer matrix, we can see that this is appropriate if coupling is small
compared to either mistuning or damping. Therefore, for the weak coupling case, we
require only that /R » | or /R 3 1. The transfer matrix is accordingly separated into
unperturbed and perturbation matrices:

14+2R—@*+ Af; +6 0 0 1
(Tl =Tl + [4T] = R +[1 0]' (38)
0 0

The unperturbed matrix is diagonal, so no co-ordinate transformation is necessary to
obtain the local wave transfer matrices. The first order approximation of the global wave
transfer matrix is therefore:

1 N T+1 1
W s T [Tl + [(n [Tm]md)[ATJ( 1 [n.,lmd)]. 39)

i=N I=1 =N i={—1

Noting that the (1,1) element of the sum in equation (39) is zero, we obtain
! (1 +2R —ca’~’+Aﬂ+ja)

{# wloadon = n R

i=N
As before, we need to take the ensemble-average of the natural logarithm of the modulus of
this element in order to retrieve the damped localization factor. After some manipulations,
we obtain

(40)

W
Yma® —In R +(1/4W)-[ n[(1+2R — @+ x)* + 6% dx, @n
—-W

where W (=\/§a) is the half-width of the uniform distribution. Finally, evaluation of
the integral yields the general expression for the damped localization factor for weak
coupling:

N l+1+21~‘t—(bz+lfVln 1+2R—561+W2+ 532
Vma aW R R

*1+2R_“—’2_W1n 1+2R—-@2—W2+ 1] 2
4W R R

+—5— arctan 1+2R -0+ W
2W é
8 1+2R—* - W o d

—_ — —»I. 42
2Warctan( 5 ), R or R > 1 (42)

Putting equation (42) in terms of passband position «, we obtain simply
P =1+ H(R/WQ2 =)+ DIn((2 ~a + W/R)? + (6/R))
~{(RIWY2~a)~1)In(2—a ~ W/RY +(8/R)")
+(6/2W) arctan ((R/8)(2 — a) + W/5)
—(6/2W) arctan (R/6)(2 — a) — W/8), 6/R or &/Ry 1, 43)
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We observe that these approximations are in part a function of the mistuning-to-coupling
ratio o /R, and the damping-to-coupling ratio 3/R. The effect of these parameters on ¥,
is discussed in section 4.2,

4.2. PERTURBATION METHOD AND MONTE CARLO RESULTS

Here, we compare the analytical expressions for the damped localization factor—
equations (36) and (42)—with the values obtained by Monte Carlo simulations. The
Monte Carlo results consist of the ensemble-averaged numerical solution to the
problem [4(®?)]u = b, where [4((?)] is the system matrix of equation (23) with disorder
added, u is the vector of non-dimensionalized vibration amplitudes, and b is the non-
dimensionalized forcing vector. [4(&?)] contains a random mistuning term which was
assigned by a random number generator for each of many realizations. This problem was
sclved in each realization by numerically inverting the complex matrix [4{(®?)], and
pre-multiplying b by this inverse. The numerical accuracy of this procedure was examined
by solving several tuned—damped systems, for which exact solutions exist. The numerical
precision was found to be of an order of magnitude which is well within that needed for
graphical comparison with the analytical results. Once the response of the system was
solved, the logarithms of the moduli of the amplitudes were taken. A least-squares
technique was used to find the slope of these log distributions. The damped localization
factor was then calculated as the negative of the slope. This result was ensemble-averaged
over many realizations of disordered systems, in order to determine an estimate of the
damped localization factor.

The number of bays for the system was chosen to be close to the maximum number
which would yield numerically stable results for the given parameters. This number ranged
from 30 for systems with weak coupling to 8500 for systems with strong coupling. In all
cases, the chain length was sufficient to ensure that the right-end boundary effects were
negligible. The number of realizations for each data point were then chosen so as to allow
the averaged damped localization factor to converge to a value which did not significantly
change with further iterations. Typically, 5000 iterations were needed for systems with
large or moderate disorder-to-coupling ratio.

Perturbation and Monte Carlo results for the strong coupling case of the mistuned—
damped system are displayed in Figure 7. Results are shown for the frequency range
located within the passband of the tuned—undamped system, because—as noted earlier—
the perturbation approximation fails at the passband edges. Consequently, we see good
agreement between the two resuits for most of the passband, but the perturbation results
diverge from the Monte Carlo results near the passband edges. The perturbation
approximations for the localization factor of the mistuned-undamped system (y,,) and for
the real part of the propagation constant of the tuned—damped system (7,) are also shown.
Recall that for strong coupling, the approximation for the damped localization factor was
found to be the sum of these two results. It is easy to see that when the mistuning-to-
coupling and the damping-to-coupling ratio are of similar magnitude, the effects of
mistuning are very small compared to those of damping. This is predicted by equation (28),
which shows that the equivalent damping for strong coupling is proportional to the square
of the mistuning.

Perturbation and Monte Carlo results for the damped localization factor for the case
of weak coupling are shown in Figure 8. Here, 7,,, is not the sum of y,, and y,. The effects
of damping and disorder exhibit a more complicated interaction for weak coupling,
Note that the disorder makes a substantial contribution to the overall decay, as predicted
by equation (30). In addition, the approximation for the damped localization factor
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Figure 7. Strong coupling perturbation ( ) and Monte Carlo (@) resuits for the damped localization
factor of a system with R =0-1, §/R =01, ¢/R =0-1. Also shown are y; (----- ) for the system if /R =0
(tuned—damped), and y,, (————- ) for the system if /R = {mistuned—undamped).

remains valid outside of the passband, and shows good agreement with the Monte Carlo
resuits.

Next, we consider the possibility that either the damping-to-coupling ratio or the
mistuning-to-coupling ratio is large, and the other ratio is small. The approximate damped
localization factor for ¢/R = 10 and &/R of various values is shown in Figure 9. The top
curve is y,, for 6/R =10. As /R is decreased to 1, y,,; exhibits a significant decrease in
magnitude, but the approximation still shows good agreement with the Monte Carlo
results. The approximation also holds for §/R =0-1 but, for this drop in damping,
the decrease in magnitude of y,,; is not as great. Furthermore, y,,, for these parameters is
almost the same as 7, for the undamped system, shown by the solid line. Decreasing the
damping further does not significantly change the value of y,,;, although it does approach

Ym. Lhis shows that in the limit, as §/R -0, the perturbation results for v, and v, are
equivalent.
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Figure 8. Weak coupling perturbation (—) and Monte Carlo (@) results for the damped localization factor
of a system with R =001, 8/R =10, o/R = 10. Also shown are y, (———— ) for the system if ¢/R =0, y,, (----- )
for the system if /R =0, and y (—.— ) for the system if ¢/R =0 and 6/R =0.
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Figure 9. The effect of damping on the damped localization factor for a system with large disorder-to-coupling
ratio, R = 0-01, o/R = 10. The following are shown: weak coupling perturbation (~—-— ) and Monte Carlo (@)
results for 5/R = 10; perturbation (— - — ) and Monte Carlo {+) results for /R = I, and perturbation (----- )
and Monte Carlo ((J) results for §/R = 0-1. Also shown are the weak coupling approximation for y,, (—) for
the system if /R =0, and y (-- --) for the system if ¢/R =0 and /R = 0. Note that y,,,; for §/R =0-1 is almost
equal to y,, for /R =0.

The results for the case in which § /R = 10 and ¢ /R is decreased are shown in Figure 10.
The top curve is again the damped localization factor for 6/R = 10 and ¢/R = 10. As we
decrease the mistuning so that ¢/R =1, we note that there is a noticeable decrease in
the magnitude of y,,. However, the Monte Carlo results then seem to be coincident
with y, for the tuned-damped system, shown as a solid line. Decreasing the value of o/R
further does not significantly affect y,,. This leads to two conclusions. First, for the weak
coupling case the effects of disorder vanish more quickly as ¢/R is decreased than do the
effects of damping as §/R is decreased. Second, when mistuning approaches zero, 7,
approaches y, for the tuned—damped system. Also, both Figures 9 and 10 show that the
approximations for the weak coupling remain valid as long as either the damping-to-
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Figure 10. The effect of disorder on the damped localization factor for a system with large damping-to-
coupling ratio, R =001, §/R = 10. The following are shown: weak coupling perturbation (—-—- ) and Monte
Carlo (@) results for ¢/R = 10; and Monte Carlo (4 ) results for ¢/R = 1. Also shown are y,( ) for the system
if /R =0, and y (— - — ) for the system if ¢/R =0 and §/R = 0. The perturbation results for y,,for o/R =1

are not included because they are coincident with 7, shown.
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Figure 11. Strong coupling (——) and weak coupling (-———- } perturbation results and Monte Carlo (@)
results for the damped localization factor at the mid-passband frequency. The damped localization factor is
shown for a range of values of /R, with ¢/R held equal to 4/R.

coupling ratio or the mistuning-to-coupling ratio is large, as we reasoned in section 4.1.2.
Furthermore, for the range of frequencies shown, the damped localization factor varies
little in magnitude. '

Finally, in Figure 11 is shown the relationship between the Monte Carlo results and
the strong and weak coupling approximations at mid-passband. The decay constants are
shown ps. the damping-to-coupling ratio (for /R = ¢/R). For strong coupling (small /R
and ¢/R), the Monte Carlo results are coincident with the weak decay approximation.
As coupling decreases (these ratio approach a value of 1), the Monte Carlo resulis diverge
from this approximation and smoothly approach the strong decay approximation. As /R
and ¢/R become large, the Monte Carlo and perturbation results coincide, and the
variation of the damped localization factor becomes roughly logarithmic.

4.3. SINGLE REALIZATIONS OF MISTUNED-DAMPED SYSTEMS

So far we have investigated the interaction of damping and mistuning by formulating
expressions for the damped localization factor which show quantitatively the role that each
mechanism plays in the overall spatial amplitude decay of the system. This was verified
by Monte Carlo simulations, in which the resuits of many realizations are averaged. Now
let us look at some single realizations of the dynamic response of a mistuned—damped
system, excited at its left end, so that we may gain a qualitative understanding of its
behavior.

4.3.1. Response of the chain of oscillators

In Figure 12 is shown the forced response, to a left-end excitation, for one realization
of a system with ¢/R =01 and various values of damping. The input frequency was
chosen so that it is approximately mid-way between two resonant frequencies. The
response is shown on a natural log scale, so that exponential spatial amplitude decay will
appear to be linear in these plots.

In plot (a), the system has § /R = 0-001. The decay is therefore due largely to localization.
The theoretical (Monte Carlo ensemble average) slope for spatial amplitude decay is shown
as a dashed line (note that we are only interested in the slope of this line—the intercepts
were arbitrarily chosen). The oscillator amplitudes follow a trend which roughly approxi-
mates this decay, but the individual responses are substantially scattered about the general
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Figure 12. Vibration amplitudes (shown on a natural log scale to illustrate the rate of exponential decay) for
a 100-oscillator mistuned-damped system: R =01, ¢/R =01, ?= 1021, and various values of §/R. (a)
§/R =0:001; (b) 6/R =0-01; (¢) 6/R =0-1; (d) /R = 1. In each case, the Monte Carlo averaged decay rate is
portrayed by the slope of the line (----- ) superimposed on the plot. Note that as damping is increased, the spatial
decay becomes more uniform, approaching the averaged exponential decay rate.

trend. This agrees with the results of Hodges and Woodhouse [6]. In particular, there
are a few oscillators which show a much smaller response than they would if the spatial
amplitude decay were purely exponential. In plot (b), the damping is increased so that
&/R = (0-01. The response seems 1o follow the exponential trend more closely, and there
are fewer radical deviations from this trend. In plot (c), damping is again increased to
d/R =0-1, so now we have the condition 8/R = ¢ /R. The response has been effectively
smoothed out, and closely follows an exponential trend, although the rate of decay seems
to differ slightly from the averaged rate. In plot (d), we increase damping to é/R = 1.
Note that the spatial amplitude decay is now almost perfectly exponential, and corresponds
to the averaged rate of decay. This illustrates that the decay caused by mistuning is only
exponential asymptotically, and that individual realizations may feature large deviations
from this average localization factor. On the other hand, damping yields an exactly
exponential decay at each site.

4.3.2. Right-end localization

Since mode shapes can be localized about any oscillator, it is possible to see a response
which shows large amplitudes at oscilltators other than the driven oscillator. However,
localized mode shapes have a small amplitude away from the localized region, so the
further the localized part of the mode shape is from the excitation source, the less likely
we are to excite that mode. Modes localized about the first few oscillators are easily excited
by driving the first oscillator, and modes localized elsewhere are much more difficult
to excite. Thus, when we ensemble-average the decay rate over many realizations of a
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system, the atypical responses do not play a large role, and we retrieve the expected spatial
decay rate—the localization factor {20].

The single realizations that we have examined so far for the mistuned—damped chain
have shown localization near the driven oscillator, with a decay of spatial amplitude which
is at least approximately exponential away from the driving source. We therefore have
looked at what we might call typical responses. Although we have argued that lecalization
far from the excitation source is rare, its striking nature dictates that we also examine such
an atypical repsonse. We therefore consider the case of a mistuned—damped chain which
exhibits localization at the right end of the chain, while the oscillators at the left (driven)
end show little response. We will refer to this as righi-end localization. In order to
determine when and why this occurs, we must introduce the concept of modal amplitudes
for the mistuned—damped system.

We begin by adding mistuning to the matrix [4] of equation (23) so that
Y=1+2R —@* + Af; + jé. If [V'] is the matrix of eigenvectors of this new [4] matrix, then
the vector of modal amplitudes (or normal co-ordinates), 1, is introduced by the following
transformation:

u=[Vn. (44)
Substituting this expression into equation (23), and pre-multiplying by [V]", leads to
|
I =01 | ¢ . (45)
0

The matrix multiplication on the right side of this equation results in a column vector
which is the first column of the matrix [V]". Since the columns of [V] are the eigenvectors
v,. the first column of its transpose consists of the first element of cach eigenvector.
Equation (45) becomes

0

0‘ Gl-a*+js . Im= (v;)I , r=1,..,N. (46)
Thus, the modulus of the rth modal amplitude is simply obtained as

"Ir|=i("r)1|/ (@3_@2)2-!-52! r=];"'sN9 (47)

where @, is the rth natural frequency for the mistuned—undamped chain. This is the
contribution of the rth mode shape to the amplitude of the total response of the system.
Although we derived this equation for the mistuned—damped system, it is completely
general,

For undamped systems, setting & equal to zero in equation (47) would produce the
correct expression for the rth modal amplitude. If we can excite the system at a frequency
which is arbitrarily close to the rth resonant frequency, we can produce a response which
is almost entirely in the rth mode (unless (v,), = 0, in which case the rth mode is orthogonal
to the excitation and therefore does not contribute to the forced response). For a damped
system, the situation is different. From equation (47), we can see that the rth mode shape
will dominate the response if

[(¥: )] 5 |(vi)i |
J@I=0+6 JGI-a? )V +6°

i=1,...N, i#r (48)
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Figure 13. The 53rd mode shape of & 100-oscillator mistuned system; R =001, ¢/R = 1.

The minimum value of the denominator on the left side is . This means that if damping
is large enough, we will not be able to obtain a response which closely resembles the rth
mode shape, unless its first component is large compared to the first components of the
other mode shapes.

Now, let us examine an example of right-end localization. We consider a disordered
system excited at the 53rd resonant frequency. The 53rd mode shape for this system is
shown in Figure 13. It is clearly localized in a region near the right end of the system.
The vibration amplitudes and modal amplitudes for various values of damping are shown
in Figure 4. For sufficiently small damping, the response greatly resembles that mode
shape. Thus, we see large amplitudes at the right end and small amplitudes toward the left
end, despite the fact that this system is damped and disordered and is excited at the leftmost
oscillator. As damping is increased, the requirement of equation (48) is no longer satisfied,
and the response amplitude patterns are altered to resemble more closely the exponential
spatial decay pattern which we would normally expect. For each response, the correspond-
ing set of modal amplitudes is shown. Notice that the 53rd modal amplitude dominates
for small damping, but it becomes small as damping increases, in which case the modes
localized near the left end dominate.

Finally, we note that the localization factor describes the expected spatial decay rate for
the oscillator amplitudes of a localized mode shape. As stated earlier, we can think of the
spatial decay of the vibration amplitudes of the forced response as the result of an
excitation of such localized modes. Without damping, we have seen that it is possible to
excite any localized mode aribtrarily much. With damping, however, localization far from
the excitation source is virtually eliminated.

4.3.3. Frequency response of individual oscillators

Now that we have observed the response of an entire chain, let us look at the frequency
response of individual oscillators for a single realization of a mistuned—damped chain.
We choose a system which has §/R =0-5, ¢/R =1 and consists of 100 oscillators. The
frequency responses of the first and 25th oscillators are shown in Figure 15. The first
oscillator features a response which is greater at lower frequencies in the passband, and
has several peaks. This occurs because at certain frequencies, modes which are localized
near this first oscillator are excited, and the response at the first oscillator is consequently
greater near those frequencies. From our equations for the modal amplitudes of a
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Figure 14. Vibration amplitudes and modal amplitudes for the mistuned system of Figure 13, excited at the
53rd natural frequency, with various values of §/R: (a) vibration amplitudes for §/R = 10-% (b) modal
amplitudes for 3/R = 10-%; (¢) vibration amplitudes for 5/R = 10~3; (d) modal amplitudes for §/R =10 (e)
vibration amplitudes for 6/R = 10~%; (f) modal amplitudes for §/R = 10~% For §/R = 10%, the system responds
almost entirely in the 53rd mode, which is localized far from the excitation source. This is an example of right-end
localization. As damping is increased, the expected spatial amplitude decay is observed. Note that even though
the system is excited at the 53rd natural frequency, the damping must be extremely weak in order for right-end
localization to occur.

Mode number

mistuned-damped system, we know that if damping were increased, these peaks would be
diminished, since the modal amplitudes would become less sensitive to the location of
the input frequency. The frequency response for the first oscillator of a tuned chain with the
same amount of damping is shown by a dashed line in Figure 15.

In addition to the fact that the response of the first oscillator of the mistuned chain
features several peaks while the tuned response shows just one, there are two other
differences. The first is that the maximum amplitude of the mistuned response does not
occur at mid-passband. In fact, for this particular mistuning pattern, the peak response
occurs near the edge of the passband, which most likely corresponds to a mode localized
at the left end. Secondly, the mistuned oscillator shows a larger response than the tuned
oscillator for much of the frequency range shown, but features a smaller response at other
frequencies. These differences can be attributed to the nature of the spatial amplitude decay
for the mistuned system. Disorder leads to a spatial amplitude decay because it causes the
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Figure 15. Vibration amplitudes for (a) the first oscillator and (b) the 25th oscillator of a 100-oscillator
mistuned—damped system with R = 0-01, §/R = 0-5 and ¢/R = | (—), shown vs. the vibration amplitudes for
the same oscillators if 5/R =0 (----- ).

excitation energy to be partially reflected at each bay. Therefore, the energy tends to be
confined near the excitation source of a mistuned system, and the first oscillator shows a
greater response for most frequencies that it would in a tuned system. Furthermore, this
reflection becomes more prevalent for frequencies away from mid-passband, as evidenced
by the fact that the localization factor and damped localization factor are both minimum
at mid-passband, Therefore, the mistuned system is likely to have a maximum response
away from mid-passband. However, the random nature of mistuning dictates that for any
given frequency, the excitation energy may be confined in a region away from the first
oscillator. Therefore, for these frequencies, the first oscillator will show a smaller response
than it would in a tuned system.

The response of the 25th oscillator in the mistuned—damped chain is remarkably
different than that of the first. The shape of the frequency response now resembles that
of a tuned system. However, if we compare the magnitude of this response to that of the
tuned system, we see that the mistuned system’s response is much smaller. We therefore
observe the fundamental nature of spatial amplitude decay due to mistuning. The energy
transmitted to the 25th oscillator has been attenuated, particularly near and outside the
passband edges. Furthermore, this attenuation—although caused by a random scattering
at each bay of the system—results in a smooth frequency response distribution, because
the random effects of disorder have been spatially “averaged” by the influence of many
bays. This supports the idea that the localization factor (damped or undamped) may be
found either by taking the average of the decay rate of many finite systems, or by finding
the amplitude decay of a system in an asymptotic sense, as the number of bays tends to

infinity.

5. CONCLUSIONS

The effect of disorder and structural damping on the dynamics of a chain of coupled
oscillators was examined. The disorder was considered to be a uniformly distributed
random variable with a zero mean and standard deviation ¢. The structural damping factor
J was taken to be the same for all oscillators. For a system with damping but no disorder,
an exact expression was found for the exponential spatial decay constant y,. It was found
to have a frequency dependence similar to that of the localization factor y,, for a system
with disorder but no damping. Thus, the vibration attenuation is minimal at the
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mid-passband frequency, and increases as the frequency increases or decreases from this
value.

The cnsemble-averaged exponential decay constant for a mistuned—damped system
is called the damped localization factor y,,. This factor was found to depend on the
damping-to-coupling ratio &/R, the mistuning-to-coupling ratio ¢/R, and the input
frequency. Approximate expressions for v,,, were found for two cases: weak coupling, in
which either 3/R or a/R is large; and strong coupling, in which both ratio are smalil. For
strong coupling, 7., was shown to be a sum of the decay factors of the mistuned—undamped
and the tuned—damped systems. Furthermore, when disorder and damping are of the same
order of magnitude, disorder has little effect on the overall decay, and damping effects
dominate. This means that localization effects are of little importance in strongly coupled
systems. In the case of weak coupling, however, damping and disorder make comparable
contributions to the damped localization factor. However, this factor is substantially less
than the sum of the two individual decay rates.

Monte Carlo methods were used to obtain numerical approximations of the damped
localization factor that supported the analytical expressions. In addition, the vibration
amplitudes of the entire chain were found numerically for individual realizations of a
mistuned-damped system with random disorder. It was observed that for a typical case,
the spatial amplitude decay of the chain is only approximately exponential if o/R is
substantially larger than é/R. However, if the magnitude of §/R approaches or exceeds
that of /R, then the chain will exhibit nearly uniform exponential decay. It was also
shown that for certain atypical cases, it is possible to strongly excite a mode that is localized
about an oscillator which is located far from the energy source, but this effect is virtually
eliminated by even a small amount of damping,

ACKNOWLEDGMENTS

The work of the first author is supported by a National Science Foundation Graduate
Research Fellowship. The work of the second author is supported by National Science
Foundation Grant No. MSS-8913196. Dr FElbert L. Marsh is the grant monitor. The
authors would also like to thank one of the referees for the very valuable comments
regarding the double-peak response found when exciting the system at an intermediate
oscillator.

REFERENCES

. L. BriLLouN 1953 Wave Propagation in Periodic Structures. New York: Dover, second edition.
. D J. MEaD 1975 Journal of Sound and Vibration 40, 1-18. Wave propagation and natural modes
in periodic systems, I: mono-coupled systems.

3. P. W. ANDERSON 1958 Physical Review 109, 1492-1505. Absence of diffusion in certain random
lattices.

4. C. H. HopGES 1982 Journal of Sound and Vibration 82, 411—424, Confinement of vibration by
structural irregularity.

5. Q. O. BENDIKSEN 1987 American Institute of Aeronautics and Astronautics Journal 25, 1241-1248.
Mode localization phenomena in large space structures.

6. C. H. Hopges and J. WoopHouse 1989 Jouwrnal of Sound and Vibration 130, 237-251.
Confinement of vibration by one-dimensional disorder, I: theory of ensemble averaging.

7. P. J. CorRNWELL and Q. O. BENDIKSEN 1989 American Institute of Aeronautics and Astronautics
Journal 27, 188-198. Forced vibrations in large space reflectors with localized modes.

8. S. D. LusT, P. P. FRIEDMANN and O. O. BENDIKSEN 1990 American Institute of Aeronautics and

Astronautics Journal 28, 225-235. Mode localization in multi-span beams.

(S



NEARLY PERIODIC STRUCTURE 503

9. C. Pierre and E. H. DoweLL 1987 Journal of Sound and Vibration 114, 543-564. Localization
of vibrations by structural irregularity.

10. 8. T. Wrr and C. PIERRE 1988 Journal of Vibration, Acoustics, Stress, and Reliability in Design
110, 439-449. Localization phenomena in mistuned assemblies with cyclic symmetry, part II
forced vibrations.

I1. C. Prre, D. M. TanG and E. H. DowWEeLL 1987 American Institute of Aeronautics and
Astronautics Journal 25, 1249-1257. Localized vibrations of disordered multi-span beams: theory
and experiment.

12. C. H. Hobaes and J. WoopHOUSE 1983 Journal of the Acoustical Society of America 74, 894-905.
Vibration isolation from irregularity in a nearly periodic structure: Theory and measurements.

13. R. A. IBrRaAHIM 1987 Applied Mechanics Reviews 40, 309-328. Structural dynamics with parameter
uncertainties.

14. G. J. KisseL 1988 Ph.D. Dissertation, Massachusetts Institute of Technology. Localization in
disordered periodic structures.

15. P. D. Cua and C. PERRE 1991 Journal of Applied Mechanics 58, 1072-1081. Vibration
localization by disorder in assemblies of monocoupled, multimode component systems.

16. C. PERRE 1990 Journal of Sound and Vibration 139, 111-132. Weak and strong vibration
localization in disordered structures: a statistical investigation.

17. G. Q. Carand Y. K. LN 1991 dmerican Institute of Aeronautics and Astronautics Journal 29,
450456, Localization of wave propagation in disordered periodic structures.

18. 8. D. Lust, P. P. FRIEDMANN and O. O. BENDIKSEN 1991 Proceedings of the 32nd
AIAA[ASME[ASCE|AHS [ASC Structures, Structural Dynamics, and Materials Conference,
2831-2842. Free and forced response of nearly periodic multi-span beams and multi-bay trusses.

19. F. Y. CuHeNn 1971 Journal of Sound and Vibration 14, 57-79. On modeling and direct solution
of certain free vibration systems.

20. C. H. Hopces and J. WoODHOUSE 1989 Journal of Sound and Vibration 130, 253-268.
Confinement of vibration by one-dimensional disorder, II: a numerical experiment on different
ensemble averages.

APPENDIX: EXPONENTIAL DECAY CONSTANT

We define the ith bay of the oscillator chain as made of the ith oscillator and the
coupling spring to its right. The bays are numbered such that bay i + 1 is located to the
right of bay /. Let us say that L, and R, are the complex amplitudes of the emergent
left-travelling and incident right-travelling waves, respectively, at the ith bay. Let us also
say that the transmission and reflection of waves at bay i is described by a transmission
coefficient 1;, and a reflection coefficient r,, which are independent of the direction of wave
travel.

Using these conventions, we obtain the following relations

L=l +1R, Ry =t;R+rL;,,, (Al)

L _ L {Lon
el ]

where [S] is called the scattering matrix.
With a little algebra, we can retrieve the following:

L |_ L Yy =nfn
[R,-H]‘[W"][R,»]’ {W‘]‘[r.-/t,- r,-—r%/t,]‘ A3

where [I¥,] is the wave transfer matrix for bay i. Note that det [W,] = 1.

Now we consider N disordered oscillators in an otherwise infinite and ordered chain,
with energy incident from the left of the first oscillator such that the amplitude of the
right-travelling wave at oscillator 1 is R,. The right-travelling wave which emerges from

or, in matrix form,
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the N-bay segment has amplitude R, ,. Since there is no energy incident from the right
of the system—that is, Ly, = 0—we find the following relationship

0 L,
[ le}: L4 N}|: R, ] (Ad)

where [# ] is the global wave transfer matrix for the N-bay segment. From equation (A3),
it is clear that

[# v = I_L Wil (AS5)

Furthermore, the form of the global wave transfer matrix will be similar to that of the wave
transfer matrix for site i: that is,

l/ty ~PulTn
= [ R A6
A= ovien tv—pisin (A9
where 1, and p,, are the transmission and reflection coefficients, respectively, of the N-bay
segment.
By extracting and reducing the two algebraic equations of equation (Ad), we can find
that

[WN](Z 1) [WN](I 2))
Ry =¥ ———=_ "= |R,. A7
N ([ vey % wlon ! (A7)
Therefore, the ratio of emergent to incident wave amplitudes is
Ry /R = det [W 3 # vl (A8)

Since [#7,] is the product of matrices the determinants of which are equal to 1, we know
that det[# y}= 1. Thus

1

RN+I/R1 = —“‘“——[WN](“)-

(A9)
Furthermore, let us assume that the spatial amplitude decay is asymptotically exponential.
Therefore

Ry, /R —e", as N-ow, (A1D)

where y is the exponential decay constant (the decay constant is simply the real part of
the propagation constant, the imaginary part of which describes the phase change between
bays). Using equations (A9) and {A10), we obtain

o1
Y= i}_’i N In{[# xlayls (All)
or, assuming ergodicity,
1
¥ = <JTF In |[WN}(1.I)|>5 (Al2)

where { > denotes an expected value,
Noting the form of [#7,] as shown in equation (A6), we can also express the decay
constant in terms of the global transmission coefficient

y = tim — (1/N) In|z,|. (A13)
Now
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Equations (A11)+(A13) are valid for all tuned and mistuned periodic systems coupled
through one co-ordinate.

Now let us consider a system which has no disorder. In this case, there is no reflection
of the energy-carrying waves, so r; = 0, and the transmission coefficient is identical for all
bays. Therefore, 1, = ¢, for all i, and the wave transfer matrix is

=] ?] A14)
Using equation (AS5), the global wave transfer matrix for a tuned N-bay segment is
wi=["" (l]- (A15)
0 1
Finally, equations (A11) and (Al5) lead to the relation
y = —In|gl, (A16)

which is valid for any tuned system.
Now we extend equation (Al6) to the transfer matrix [T,], which relates the displace-
ments of successive pairs of oscillators for a tuned system: that is,

[""“]:[TO][ ”" ] (A17)
u; LB

It is known that [P], the matrix of eigenvectors of [T,], transforms the wave amplitudes
to displacement amplitudes, such that

| L,
[u,-_l:| = [P]I:Ri]. (Al18)

Therefore, the displacement and wave transfer matrices are related by a similarity
transformation

[To] = [PI[W,][P]". (A19)

Since [W,] and [T}] are similar matrices, they have the same cigenvalues. The eigen-
values of [W,} are obviously 1/, and ¢, which we now refer to as 4, and 4,, respectively.
We therefore rewrite equation (A16) as

y =In|4i,l. {A20)

Since | 4| € 1, we know that 4, is the eigenvalue of [7;] the modulus of which is greater
than or equal to one.

Finally, we note that i, = 1/1,. This reciprocal pair of eigenvalues is characteristic of
a periodic system.



