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Metabolism of living cells converts substrates into metabolic energy, redox potential
and metabolic end products that are essential to maintain cellular function. The flux
distribution among the various biochemical pathways is determined by the kinetic
properties of enzymes which are subject to strict regulatory coatrol. Simulation of
metabolic behavior therefore requires the complete knowledge of biochemical path-
ways, enzyme kinetics as well as their regulation. Unfortunately, complete kinetic
and regulatory information is not available for microbial cells, thus preventing
accurate dynamic simulation of their metabolic behavior. However, it is possible to
define wider limits on metabolic behavior based solely on flux balances of bio-
chemical pathways. We present here comprehensive information about the catabolic
pathways of the bacterium Escherichia coli. Using this biochemical database, we
formulate a stoichiometric model of the bacterial network of fueling reactions. After
logical structural reduction, the network consists of 53 metabolic fluxes and 30
metabolites. The solution space of this uvnder-determined system of equations
presents the bounds of metabolic flux distribution that the bacterial cell can achieve.
We use specific objective functions and linear optimization to investigate the
capability of E. coli catabolism to maximally produce the 12 biosynthetic precursors
and three key cofactors within this solution space. For the three cofactors, the
maximum yields are calculated to be 18-67 ATP, 11:-6 NADH and 11 NADPH per
glucose molecule, respectively. The yields of NADH and NADPH are less than 12
owing to the energy costs of importing glucose. These constraints are made explicit
by the interpretation of shadow prices. The optimal yields of the 12 biosynthetic
precursors are computed. Four of the 12 precursors (3-phosphoglycerate, phospho-
enolpyruvate, pyruvate and oxaloacetate) can be made by E. coli with compiete
carbon conversion. Conversely, none of the sugar monophosphates can be made
with 1009, carben conversion and analysis of the shadow prices reveals that this
conversion is constrained by the energy cost of importing glucose. Three of the 12
precursors (acetyl-coA, a-ketoglutarate, and succinyl-coA) cannot be made with full
carbon conversion owing to stoichiometric constraints; there is no route to these
compounds without carrying out a decarboxylation reaction. Metabolite flux
balances and linear optimization have thus been used to determine the catabolic
capabilities of E. coli.

1. Introduction

The chemistry, stoichiometry and regulation of metabolism is perhaps the most
thoroughly studied and best known aspect of the microscopic functioning of living
t Author to whom correspondence should be addressed.
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cells. Although detailed knowledge exists about the biochemistry of individual
metabolic events, less is known about the systemic nature of metabolic function and
how it impacts the overall function of a cell. Several attempts to systematically model
metabolic dynamics have been carried out (for example, see reviews in Garfinkel et
al., 1970; Heinrich et al,, 1977; Reich & Sel'kov, 1981), but they have been hampered
by the lack of kinetic and reguiatory information on the function of all enzymes in a
particular cell. The only cell for which a comprehensive kinetic metabolic model
currently exists is the human red blood cell (Joshi & Palsson, 1989¢, b, 1990q, b; Lee
& Palsson, 1990). The red blood cell model enables several kinetic studies, but these
investigations and the conclusions derived from them, although useful, are neces-
sarily limited, given the highly differentiated state and specialized function of the red
blood cell. On the other hand, much effort has been devoted towards the develop-
ment of a theoretical framework for the analysis of metabolic regulation, mostly
through the use of logarithmic sensitivity coefficients (Savageau, 1969; Kacser &
Burns, 1973; Heinrich & Rapoport, 1974b). Extensive literature exists on this topic
and useful overviews are available (Cornish-Bowden & Cardenas, 1990; Srere et al.,
1990). The applicability and usefulness of these theories remain to be examined
within the context of realistic metabolic models, although some recent progress has
been made (Palsson & Lee, 1992).

Progress on the systemic analysis of kinetic behavior of metabolic networks is thus
constrained by the availability of comprehensive kinetic and regulatory information
on metabolic enzymes in a single cell type. Recently, it has been shown that a flux-
balance based analysis is surprisingly useful in analyzing the steady-state behavior of
metabolic networks in the absence of detailed kinetic knowledge (Savinell & Palsson,
19924, b, ¢, ). This approach relies only on the stoichiometry of the system under
investigation and the metabolic demands that are placed on it. Within this frame-
work one can answer questions that are related to the capability of networks to
perform certain functions, while constrained by stoichiometry alone. Since inter-
mediary metabolism—the chemical machine that drives the living process—is fairly
similar in all cell types, this approach is useful to define the wider limits of the
metabolic capabilities that a cell possesses. These stoichiometrically set limits are
then further narrowed by the kinetic and regulatory function of metabolic enzymes.
These two limits placed on metabolic function are illustrated in Fig, 1.

Here, we set out to examine and define the stoichiometrically determined meta-
bolic capabilities of the bacterium Escherichia coli; first with respect to the produc-
tion of biosynthetic precursors, and second with respect to making a balanced mix of
cellular constituents. The E. coli cell is well known in terms of its chemical composi-
tion and therefore the metabolic demands that are imposed by cell growth and
function can be defined. These demands have recently been thoroughly documented
(Ingraham et al., 1983). Unfortunately, no single source exists that compiles and
documents the active metabolic pathways, with their associated stoichiometry, in
E. coli. Since flux-based analysis is based upon a reliable knowledge of metabolic
stoichiometry, in the form of the stoichiometric matrix, our first step to reach the
stated goals is to compile and document our present knowledge of E. coli catabolic
reactions. We then use the catabolic network to study the ability of E. coli to make
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FI1G. 1. The stoichiometrically feasible domain of steady-state reaction fluxes within the cell describe a
wider limit of metabolic behavior. A two-dimensional region is shown to schematically illustrate the
stoichiometrically feasible values of two hypothetical metabolic fluxes. The regulated domain of fluxes
chosen by the cell forms a subset of the stoichiometrically feasible region.

the three key metabolic cofactors (NADH, NADPH and ATP) as well as the 12 basic
biosynthetic precursor molecules during acrobic growth on glucose. We seek to
determine optimal pathway utilization, and maximal yields of each metabolite and to
assess the systemic constraints that E. coli is faced with in their production. In the
subsequent part we assess E. coli’s ability to meet balanced growth demands.

2. Stoichiometric Analysis

The history of stoichiometrically based metabolic analyses is relatively short.
Linear programming can be used to study the stoichiometric systemic constraints on
metabolic networks (Watson, 1986). Where the number of metabolic fluxes exceeds
the number of flux balances, this approach has been applied to adipocite metabolism
(Fell & Small, 1986). Acetate secretion from E. coli under ATP maximization
conditions (Majewski & Domach, 1990) and the metabolic behavior of hybridoma
cells (Savinell & Palsson, 19924, b) have been studied.

Our goal here is to apply this powerful and insightful, yet simple and bio-
chemically reliable, approach to analyze the metabolic capabilities of E. coli. The
reactions that lead to the synthesis of a bacterial cell can be logically divided into the
categories of fueling, biosynthetic, polymerization and assembly reactions (Ingraham
et al., 1983; Neidhardt, 1987). The input to the fueling reactions consists of a carbon
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F1G. 2. (a) The fueling reactions form the system of reactions chosen for metabolic analysis. The
products of the metabolic network are processed further and used for cell growth and maintenance.
{b) The fluxes affecting the concentration of a metabolite, X, in the cell.

source and minerals. The output from the fueling reactions consists of the meta-
bolites required for growth, maintenance and possibly secretion. The two sections of
intermediary metabolism, fueling and biosynthesis, are connected by 12 such meta-
bolites that are called the biosynthetic precursors. We can therefore logically
decompose the problem under consideration into two parts. In this paper we
investigate the capability of E. coli metabolism to produce individual biosynthetic
precursors. In the following paper we study the ability of the metabolic network to
meet a balanced set of demands that simulate the growth requirements on the
precursor pools.

FLUX BALANCE-BASED ANALYSIS

The general methods of flux balance-based analysis outlined in the literature (Fell
& Small, 1986; Watson, 1986; Majewski & Domach, 1990; Savinell & Palsson,
19924, b, ¢, d) are used. The method uses flux balances to define limits on metabolic
capabilitics. The governing stcady-state equation is written as:

S-v=5, (1}

where S is the stoichiometric matrix of the metabolic network, v is the vector of
reaction fluxes, and b is the net output from cellular metabolism. The stoichiometric
matrix used in the present analysis consists of the catabolic reactions of E. coli.
Figure 2 depicts the fluxes affecting a metabolite. Equation (1) is typically under-
determined since the number of fluxes normailly exceeds the number of metabolites.
Thus, a plurality of solutions exists and a particular solution may be found using
linear optimization by stating an objective and seeking its maximai value within the
stoichiometrically defined domain.
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FiG. 3. The fueling reaction network of E. coli metabolism. The arrows represent the reaction fluxes
with the enzyme abbreviation next to them.

QBJECTIVE

An investigation of metabolic optimality can be carried out within the stoichio-
metrically defined domain by specifying physiologically meaningful objective
functions.

For the present analysis we are interested in maximizing the production of a
particular metabolite. The objective function could be represented as maximizing a
drain flux, defined for the metabolite in the stoichiometric matrix as a flux causing
the removal of the metabolite.

Minimize Z = ¢;* ;_ypqin- (2)

The weight ¢, for the drain flux for that metabolite would have an arbitrary negative
value, while all other weights would have a zero value.

SHADOW PRICES

The mathematical dual of the linear optimization problem (Murty, 1983) is also
evaluated to determine the dual solution. Interpretation of the dual variables {y)) as
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the shadow prices, eqn (3), provides a useful intrinsic measure of the value of a
metabolic intermediate towards optimizing the objective.

VA
iy 3
v b, 3)

3. Network Formulation

The biochemical pathway information described in the Appendix can be presented
in the mathematical form of eqn (1). Several reductions of the flux balance equations
are possible without altering the mathematical nature of the problem.

STOICHIOMETRIC REDUCTION

The stoichiometric representation of metabolism can be made compact by using
simple rules, thus reducing the dimensions of S. The application of these rules does
not alter the basic structure of the catabolic network. These rules are:

(i) Intermediates of reaction pathways that have only one route for generation
and one route for consumption can be ignored and one flux may denote the
flux producing the intermediate and the flux consuming it. For example, the
set of reactions producing R5P from G6P can be represented by a single flux
converting G6P to R5P.

(ii) Metabolites that are freely interconvertible, without the involvement of a third
compound, can be represented by a single metabolite. An example may be
found in the enzymatically convertible compounds, DHAP and G3P. They
are both represented in our network as T3P.

(i) Compounds of no interest here need not be included in the reaction network.
They are then implicitly assumed to have an infinite source or sink. Thus, we
do not need to keep track of O, in the reaction network. Cofactor molecules
such as coenzyme A and NAD which are carriers for specific molecular species
have their flux balances intrinsically balanced, and can therefore be ignored in
the network. Inclusion of such metabolites only leads to the generation of a
dependent row.

(iv) Although the reactions have not been described here, the high energy phos-
phate bond of the various nucleotides can be traded among the nucleotides.
Therefore the utilization of the high energy bond associated with a non-
adenosine nucleotide, as well as the second phosphate bond of adenosine
phosphate, have been considered equivalent to the third phosphate bond of
ATP,

Further, only physiologically occurring reactions are included. Thus, although the
reaction catalyzed by pyruvate kinase is reversible in vitro, only the physiological
forward reaction producing pyruvate is included in the network.

THE E. COLI NETWORK OF FUELING REACTIONS

Applying these simple rules to the fueling reactions described above, we have
derived the basic network that describes aerobic metabolism in E. coli, Fig. 3.
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FiG. 4. The stoichiometric matrix for the fueling reactions of E. coli. The rows correspond to the flux
balance of the metabolite indicated. The columns are the specific fluxes indicated by the enzyme
abbreviation.

Reaction fluxes are denoted by letter codes which represent the enzyme involved. For
cases where more than one enzyme is required for the reaction pathway shown, any
one of the enzymes has been used to represent the entire pathway.

The network of catabolic reactions shown in Fig. 3 may be represented in the
mathematical form of eqn (1). The stoichiometric matrix, 8, in eqn (1) is shown in
Fig. 4 The rows denote the flux balances, while the columns denote the fluxes.
Included are the 30 flux balances that contain 53 fluxes.

We have restricted ourselves in the formulation of the network in Fig, 3 to the
aerobic state of the cell. Aerobiosis implies that oxygen is present as the terminal
electron acceptor. Therefore, only those reactions are included that are possible
under aerobic conditions. For instance, reductive reactions requiring NADH as a
cofactor are not allowed in this scheme. However, transhydrogenation as a means of
transferring elecirons between NAD and NADP is included.

NETWOQRK FLEXIBILITY

A few observations about the flexibility of this stoichiometric model are in order.
A particular solution for steady-state pathway fluxes can result in the generation of
surplus energy or reductive power. In the network formulated above, surplus energy
can be eliminated by several metabolic loops. A well-known example of a futile cycle
may be found in the conversion of F6P into T3P and the reconversion back to F6P
which has the net effect of hydrolyzing one high-energy phosphate bond.

Similarly, surplus energy associated with the proton gradient across the membrane
can be transformed into a high-energy phosphate bond in ATP by the enzyme
ATPase, and then dumped into a futile cycle. Surplus reductive power in the aerobic
network can be transformed into the transmembrane proton gradient using oxygen
as the electron acceptor. The transmembrane proton gradient is converted into high-
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energy phosphate bonds and dissipated through the futile cycles. Of course, anerobic
conditions would not allow the transformation of surplus reductive power into
energy and some other sink for electrons is required.

The network can deal with a surplus of a particular metabolite by two mechan-
isms. Dissipation can occur through a complete oxidation to CO, and water, or by a
secretion pathway that would have to be incorporated in the network. Thus, the
basic network that we have synthesized and shown in Fig. 3 accounts for known
fueling reactions in E. coli. It has the metabolic flexibility that the bacterial celtl
possesses.

4, Optimal Production of Cofactors

The cofactors ATP, NADH and NADPH play a central role in bacterial meta-
bolism. We now use linear optimization to determine the maximal production of
these cofactors. The type of objective function used has been defined in egn (7). The
solutions for maximum ATP and NADPH production are shown in Figs 5 and 6,
respectively. These solutions represent the maximal capability of the E. cofi catabolic
network to produce metabolic energy and biosynthetic redox. These solutions thus
represent important and fundamental biological constraints. The key characteristics
of these solutions are summarized in Table 1.

We find that a maximum of 187 moles of ATP can be generated per mole of
glucose oxidized to CO, and water, see Table 1. The optimal solution does not use
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FiG. 5. Flux distribution map for maximal ATP yield. Only non-zero fluxes are depicted. The maximal
vield is 18-7 ATP/molecule glucose.
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FiG. 6. Flux distribution map for maximal NADPH production. The maximal yield of NADPH is 11
molecules/molecule glucose.

the pentose phosphate pathway. The use of the TCA cycle for optimal production of
ATP is consistent with the general belief that the pentose phosphate pathway
functions primarily to generate pentoses and NADPH and is not cycled to produce
metabolic energy in the form of ATP. The glyoxalate shunt is believed to have the
function of producing TCA cycle intermediates. Consistent with this belief, the
glyoxalate shunt is not used for the optimal production of ATP. Inactivating the
TCA cycle and forcing the flux through the glyoxalate bypass lowers the maximum
ATP yield on glucose to 16:7 mol mol ™"

TaBLE 1
Maximum energy and reductive potential generation on glucose using E. coli fueling
reactions. The PPS flux is given as the percentage of carbon flow through the oxidative
branch of the pentose phosphate pathway with a maximum of six times the glucose input

or 600%,
ATP shadow
Metabolite Yield PPS price Constraint
ATP 18:667 0% -1 —
NADH 11-573 471% —0214 Energy

NADPH 11-000 540%, -05
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The complete oxidation of glucose requires a sink for 24 electrons. Therefore, a
potential reduction of 12 redox carriers can be obtained. However, in the presence of
systemic constraints, the base network can produce a maximum of only 11-6 NADH.
The difference can be explained based on the ATP shadow price in the optimal
NADH solution:

dNADH ANADH
JATP — AATP

Thus, the additional amount of ATP needed to make the full amount of 12 NADH
from glucose is

= 0214, @

ANADH 12-11-573
0214 0214 =2 )

These two ATPs correspond to the cost of resynthesizing the PEP using PEP
synthease from the pyruvate formed during glucose phosphorylation by the
phosphotransferase system. Thus, when the whole network is considered, one finds
that it is not possible to generate 12 reduced NADH molecules from glucose due to
the cost of glucose import.

Simifarly, the theoretical maximum reducing power that can be generated in the
form of NADPH is 12 NADPH per molecule of glucose. The amount that can
actually be generated considering the whole network is lower, or 11 NADPH per
glucose molecule. As for NADH, the cost of glucose uptake prevents the basic fueling
network from generating 12 molecules of NADPH. The additionai ATPs required to
yield the 12 NADPH molecules can be calculated from the shadow price for ATP:

AATP =

ONADPH ANADPH 12-11

aATP = aAtp AP = o5 T2 ©
Again, the recovery of PEP used for glucose import requires two ATPs. The
difference in the ATP shadow price for the above two examples is due to the different
optimal pathway utilizations for the production of NADPH and NADH.

From the above discussion it is apparent that energy is the constraining factor for
maximal generation of reductive power. The action of the enzyme transhydrogenase
is to transfer reductive power between NAD and NADP. From the above optimal
solutions we note that the maximal synthesis of NADPH does not utilize trans-
hydrogenation. Biosynthesis requires reductive power in the form of NADPH, while
NADH is oxidized to produce energy under agrobic conditions (Ingraham et al,
1983). The absence of a requirement of transhydrogenase for maximal NADPH
generation in the catabolic network is experimentally indicated by the lack of a
phenotype for transhydrogenase mutants (Zahl et al., 1978).

From a study of optimal flux distributions we note that the oxidizing pathway of
PPS is used only for redox generation. The optimal generation of the precursors E4P
and RSP, discussed next, occurs through the non-oxidative branch. Experimentally
determined pathway utilizations (Wood, 1985) also agree with these observations of
optimal flux distributions.
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5. Optimal Production of Biosynthetic Precursors

All carbon sources are degraded into a minimum set of 12 biosynthetic precursors
(Ingraham et al., 1983). The biosynthetic reactions of the cell utitize these precursors
to produce the monomers that go into making the macromolecular constituents of
the cell. We now determine the capability of the basic E. coli catabolic network to
produce cach of these precursors individually using glucose as the sole carbon
source. The results from optimizing the production of each precursor molecule on
glucose are summarized in Table 2. Full optimal solutions are shown in Figs 7 and 8
for the maximal production of E4P and PEP from glucose as examples of what the
optimal solutions look like. The carbon conversion listed in Table 2 is the percentage
of the carbon in glucose that ends up in the precursor molecule being produced.

The three glycolytic intermediates, 3PG, PEP and Pyr, can be produced with
100%, carbon conversion. Their maximum yield from glucose has no energy-related
constraints (the shadow price for ATP is zero) and, in fact, a surplus of energy is
generated which is dissipated through a futile cycle.

The surplus ATP production is readily illustrated by an example. Consider the
generation of PEP from glucose, Fig. 8. To make two PEP from glucose, two ATP
are required for glucose uptake, one ATP is required for the PFK reaction and two
ATP are produced by PGK. Thus, direct stoichiometric coupling of ATP to PEP
production results in the consumption of one ATP. However, two NADH are also
produced which subsequently yield 2:66 ATP upon oxidation through the electron
transport system. Thus, an overall surplus of 1-66 ATP per glucose is produced. Note
that this amount is dissipated via a PEP—+0A —»Mal—Pyr—PEP cycle whose net
effect is the dissipation of two ATPs, leading to a futile cycle flux of 1-666/2 = 0-833.
The network possesses several other equivalent futile cycles which could be used to

TaBLE 2
Maximum stoichiometric yields of biosynthetic precursors on glucose for an aerobic
non-growing cell

ATP shadow

Metabolite Yield Carbon conversion price Constraint
IPG 2 100%, 0 None

PEP 2 100%, 0

Pyr 2 0%, 0

OA 2 133:3% ¢

G6P 0908 90:8%, - Q0046 Enerpy

F6P 0-908 90-8% —0-046

RSP 1-08 90%; ~0:055

E4P 1-33 88-7% —0-068

T3P 173 86-5%, —0-088

AcCoA 2 667% 0 Stoichiometry
«KG i 83-3%, 0

SuccCoA 1 66-7% 0
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Fig. 7. Flux distribution maps for maximal E4P production. The maximal yield of E4P is 1-33
molecules/molecule glucose at an 88-7) carbon conversion. Utilization of the TCA pathway or glyoxalate
shunt are shown to lead to the same maximal production of E4P.

generate the same result. We will discuss this issue further below and in the
accompanying article (Varma & Palsson, 1993).

Optimal production of oxaloacetate results in a carbon recovery in excess of 100%,.
A carbon conversion of 1339, is possible because of the CQO, fixing reaction
catalyzed by PEPC. There are no energy limitations and the TCA cycle is not used.
In the base fueling network we do allow unlimited access to CO,. Restricting the
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CO, availability reduces the carbon yield to 100%,. ATP overproduction is dissipated
through a futile cycle as just discussed for PEP.

CONSTRAINTS ON THE PRODUCTION OF BIOSYNTHETIC PRECURSORS

In attempting to maximize the production of a metabolite in the network, the cell
may be confronted with systemic constraints that prevent a 100%, carbon conversion
from substrate to metabolite. For the 12 biosynthetic precursors the cell encounters
two constraints; energy or network stoichiometry, These constraints are listed in
Table 2 for the biosynthetic precursors. Note that redox constraints do not appear in
the production of precursors. Reductive power is primarily required for the bio-
synthesis of monomers (Ingraham et al., 1983).

The constraint for a particular optimization can be determined by studying the
solution of the dual optimization problem. Energy constraints are evidenced by non-
zero shadow prices of ATP. Stoichiometric limitations are indicated by less than
100%, carbon conversion and the absence of an energy constraint.

Energy

The monophosphate sugars, G6P, F6P, R3P, E4P and T3P, cannot be produced
at a 1007, carbon conversion, Table 2. Energy is a constraint for all five cases and
some carbon must be oxidized fully to provide the required energy. As illustrated
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above for optimal cofactor production from glucose, the ATP shadow price brings
this fact out clearly. For G6P we have that dG6P/dATP = 0-046, therefore, 100%
carbon conversion requires

AG6P 1-0908
= =2 7
0-046 0:046 )

additional molecules of ATP which correspond to the cost of importing and
phosphorylating glucose. A similar calculation for T3P yields:

ATIP 2-173

AATP=—_ = =3 8

0-088 0088 @®)
Thus, not only are two ATPs required for PEP recovery, but also a third ATP
molecule is needed in the PFK reaction. E4P and R5P are produced by the non-
oxidative branch of the pentose phosphate pathway in an attempt to reduce loss of
carbon through decarboxylation in the oxidative steps. Again, the reduced carbon
conversion can be readily explained based on the ATP shadow price. For E4P, the
additional ATP required for 100%, carbon conversion is:

AATP =

AE4P 15—1-33
= =25 9
0-068 0-068 & ©)

This ATP requirement is consistent with the stoichiometry of E4P synthesis from
glucose through the non-oxidative branch.

2 Glucose - F6P +2T3P — 3E4P.

As discussed above, F6P requires two ATPs (similar to G6P) and two T3Ps require
three ATPs. Thus, five ATPs are required to synthesize three E4Ps from two glucose
molecules which is equivalent to 2-5 ATP per glucose molecule.

The optimal production of the monophosphate sugars is therefore clearly
constrained by encrgy. A sample flux distribution is displayed in Fig. 7(a) for E4P
production. The solution shows the conversion of Pyr to PEP by the enzyme
PEP-synthase. The energy required for the reaction is optimally produced by the
TCA cycle coupled with the ETS. As shown earlier, the TCA cycle is the optimal
pathway for the generation of ATP. However, there is an alternative pathway to
convert Pyr to PEP, which is energetically equivalent. If we restrict the complete
TCA cycle, the same yields for sugar monophosphates are obtained by the use of the
glyoxalate shunt. A sample solution displaying the use of the glyoxalate shunt for
E4P production is shown in Fig. 7(b). The flexibility of the fueling network is such
that it has more than one equivalent way to make the ATPs necessary for making
sugar phosphates.

This situation is one of multiple optimal solutions and the linear optimization
program arbitrarily selects any one of the optimal solutions. The glyoxalate shunt
provides an alternate route for the flux from Pyr to PEP using the enzyme PEP
carboxykinase. Thus, the diversion of flux from the reaction catalyzed by PEP
synthase results in a saving of energy which makes the net use of the glyoxalate

AATP =
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shunt, energetically comparable to the TCA cycle for these special cases. However,
simply for the production of energy, the TCA cycle maintains an edge over the
glyoxalate shunt as discussed earlier.

Stoichiometry

Acetyl CoA can only be produced with a 66:7% carbon conversion and the
optimal solution is not constrained by energy. The catabolic network possesses only
one route for generation of acetyl CoA and it is by the decarboxylation of pyruvate.
Therefore, maximally a two-third carbon recovery is possible, simply due to stoichio-
metric limitations.

The maximal production of the TCA intermediates a-ketoglutarate and succinyl
CoA is not limited by energy requirements. Yet the yield is less than 100%,. Again, the
stoichiometric structure of the catabolic network forces the loss of carbons in
essential reactions needed for the production of a-ketoglutarate and Succ-CoA. The
production of a-ketoglutarate is associated with decarboxylation in the reactions
catalyzed by pyruvate dehydrogenase and isocitrate dehydrogenase. The loss of
carbons is mitigated to some extent by the use of the CO,-fixing anaplerotic reaction
catalyzed by PEP-carboxylase. The production of succinyl CoA is associated with a
further loss of carbon by decarboxylation in the reaction catalyzed by a-ketoglu-
tarate dehydrogenase.

6. Discussion

Stoichiometric analysis of metabolic networks is expected to yield rich dividends
in terms of systematizing knowledge of metabolic systems, presenting us with the
opportunity to explore the complex biochemical process that underlies the function
of living cells. In this paper we have formulated the stoichiometric matrix for the
catabolic reaction pathways of E. coli that enables the use of linear programing to
explore the boundaries of achievable metabolic performance.

Linear optimization thus allows the identification of the optimal reaction pathway
utilization to fulfill specific metabolic needs of the cell, such as the production of
energy, reductive potential, or biosynthetic requirements. The relative value of
various metabolites and substrates in achieving an objective can be determined using
the shadow prices. The objective may be cell growth or production of a particular
metabolic intermediate. The optimum flux distribution for a desired goal (such as the
commercial production of a metabolite) can be determined. We can thereby identify
the important reactions which are subject to genetic engineering to achieve the stated
goal.

A flux-based approach for the analysis of metabolic networks has several advan-
tages. First, the information required, the stoichiometry of the cellular reactions is
fairly well known for most organisms. Although rates of reactions are not considered,
limited thermodynamic information is included in the form of physiological reversi-
bility or irreversibility of the reactions. Linkage to energy in the form of the high-
energy phosphate bond of ATP provides some additional thermodynamic informa-
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tion. In addition, the problem formulation allows the incorporation of cxperimental
knowledge of maximal activities of specific metabolic reactions.

There are, however, some limitations of this approach to metabolic modeling. We
do not consider the regulation of enzymes catalyzing the cellular reactions. The
solution obtained may therefore not be acceptable to the regulatory mechanisms of
the cells. Of course, genetic engineering can be used to obtain organisms with
modified metabolic regulation. The second limitation is the absence of the explicit
accounting of metabolic concentrations. We are therefore unable to predict the
concentrations of the metabolites within the cell. Lastly, we have not incorporated
any thermodynamic information in the form of rate expressions. Time as a variable is
therefore absent and we are unable to make any predictions as to the time constants
of the cellular processes.

The network formulated in Fig. 3 with the stoichiometry listed in Fig. 4 displays
the central catabolic pathways of E. coli. The possible input substrates to the
network are glucose, lactate, acetate and any intermediate in the network. Any other
substrate would require an extension of the network to include pathways for its
degradation into one of the intermediates of the network shown. Also, the discovery-
of new pathways (Draths & Frost, 1991) and stoichiometries or a modification of the
existing pathways may require further modifications to the network formulated here.

The set of catabolic pathways within the cell serve to degrade all substrates into a
common set of biosynthetic precursors and cofactors. We have determined the
capability of the bacterial catabolic network to produce these precursors and
cofactors aerobically from glucose. All cellular synthesis utilizes the carbon skeletons
provided by this pool of precursors, while the cofactors provide energy and redox
power to the cell. The maximal achicvable yields of biosynthetic precursors and
cofactors, therefore, represents fundamental determinants of metabolic performance.

Formulation of the flux balance-based model of E. coli catabolism has enabled the
determination of the capabilities of E. coli to make three key cofactors and the 12
biosynthetic precursors. The results from these computations thus represent funda-
mental systemic constraints on E. coli metabolism and therefore important quanti-
ties in bacterial physiology. Confirmation of optimal pathway utilization by
experimental literature demonstrates the correctness of the metabolic network
formulated and demonstrates the applicability of the flux balance-based method for
metabolic analysis.

More complex metabolic functions, such as support for growth, can be represented
as balanced sets of demands on the cofactor and biosynthetic precursor pools, which
is the subject of the following paper.
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APPENDIX A

Al. Fueling Reactions of E. coli

The fueling reactions of E. coli have been divided into sets of standard metabolic
pathways. These include the glycolytic pathway, the pentose phosphate pathway and
the tricarboxylic acid (TCA) cycle with the glyoxalate shunt. Some of the inter-
mediates of these pathways are drained off for biosynthesis. In order to replenish the
metabolite pools, there exist a set of anaplerotic reactions which connect glycolytic
and TCA intermediates. Finally, energy in the form of ATP, reducing power in the
form of NADH and NADPH, as well as the proton gradient across the cytoplasmic
membrane, are interlinked through specific reactions of the electron transfer system.

We now describe important features of the fueling reactions occurring in E. coli.
Abbreviations used for metabolites are listed in Table Al and abbreviations used for
enzymes are listed in Tables A2 and A3, The reactions themselves are listed in Tables
Ad-A6. Some of the more interesting aspects of the reaction pathways in E. coli that
are not compiled in standard literature sources are now discussed.

All MAJOR PATHWAYS
Glycolysis

The Embden—Meyerhof-Parnas pathway active in E. coli is responsible for the
degradation of sugars into pyruvate. In the process it also produces precursor
metabolites, 3PG, PEP and Pyr that are used for the biosynthetic reactions. Net
metabolic energy is also generated by these reactions.

TaBLE Al

Abbreviations used for the fueling metabolites
Full name Abbrev. Full name Abbrev.
Acetate Ac Isocitrate ICit
Acetyl coenzyme A AcCoA Malate Mal
Acetyl phosphate AcetP Nicotinamide adenine NADH
Adenosine triphosphate ATP dinucleotide
a-Ketoglutarate «KG Nicotinamide adenine NADPH
Citrate Cit dinucleotide phosphate
Dihydroxy acetone phosphate =~ DHAP Oxaloacetate OA
Erythrose 4-phosphate F4P Phosphoenolpyruvate PEP
Flavin adenine dinucleotide FADH 3-Phosphoglycerate IPG
Fructose 6-phosphate F6P Protons exported Hexp
Fructose diphosphate FDP Pyruvate Pyr
Fumarate Fum Ribose 5-phosphate RSP
Gluconate 6-phosphate GubP Ribulose 5-phosphate Ru5P
Gluconolactone &-phosphate GL6P Succinate Succ
Glucose Gle Succinyl CoA SuccCoA
Glucose 6-phosphate G6P Triose 3-phosphate T3P
Glyceraldehyde 3-phosphate G3ip Quinone hydrogenated QH2
Glyoxalate Glx Xylulose S-phosphate Xs5p

Guanosine triphosphate GTP
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TABLE A2
Abbreviations used for the fueling enzymes

Full name Abbrev.
Acetate kinase AcK
Acetyl CoA synthetase AcCoAsyn
Aconitase Aco
Alcohol dehydrogenase AlcDH
Adenosine triphosphatase ATPase
Citrate synthase CitSyn
Cytochrome oxidase complex Cyt
Enclase Eno
Fructose 1,6-diphosphate aldolase Ald
Fructose 1,6-diphosphatase FDPase
Formate dehydrogenase ForDH
Fumarase Fumase
Fumarate reductase FumRed
Glucose 6-phosphatase G6Pase
Glucose 6-phosphate dehydrogenase G6PDH
Glycerate 3-phosphate dehydrogenase G3PDH
Hexokinase HK
Isocitrate dehydrogenase (NADH) IsoDH
Isocitrate dehydrogenase (NADPH) IsoDHP
Isocitrate lyase IsoLys
a-Ketoghutarate dehydrogenase AKGDH

Pentose phosphate shunt

The primary function of the pentose phosphate shunt (PPS) is to provide the
biosynthetic precursors, R5P and E4P, which are required for the synthesis of
macromolecules essential to growth. These precursors can either be produced via the
decarboxylating, oxidative pathway or through the non-oxidative pathways. The
non-oxidative rearrangement of the glycolytic sugar monophosphates to the PPS
sugar monophosphates represents the simplest possible mechanism (Melendez-Hevia
& Isidoro, 1985).

A cyclical operation of the pentose phosphate pathway couid lead to the complete
degradation of sugar. Some cyclic use of the shunt has been postulated for a wild-
type strain (Katz & Rognstad, 1967). However, phosphofructokinase mutants are
almost completely unable to grow on glucose (Daldal ez al., 1982), lcading onc to
conclude that the PPS does not function cyclically. Another important function of
the PPS is the production of reducing power in the form of NADPH with a
concomitant decarboxylation. However, the PPS is not the only source of NADPH
(Csonka & Fraenkel, 1977} and the reactions catalyzed by transhydrogenase, iso-
citrate dehydrogenase and malic enzyme can also supply E. coli with NADPH.

Tricarboxylic acid (TCA) cycle

The TCA cycle is a well-known mechanism for the generation of energy under
aerobic conditions. There are several reviews of the cycle (Krebs & Johnson, 1937,
Kornberg, 1959; Lowenstein, 1967) and all the enzymes and reactions are well
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TABLE A3
Abbreviations used for the fueling enzymes

Full name Abbrev.
Lactate dehydrogenase LacDH
Malate dehydrogenase MalDH
Malate synthase Malsyn
Malic enzyme (NADH) MalEnz
Malic enzyme (NADPH) MalEnzP
NADH dehydrogenase (2H* exported} NDH]1
NADH dehydrogenase NDH2
Phosphoenol pyruvate carboxylase PEPC
Phosphoenol pyruvate carboxykinase PEPCK
Phosphoenol pyruvate synthase PEPsyn
Phosphofructokinase PFK
Phosphoglucokinase PGK
6-Phosphogluconate dehydrogenase GL6PDH
6-Phosphogluconolactonase PGLase
Phosphoglucose isomerase PGI
Phosphogluco mutase PGluM
Phosphoglycerate mutase PGM
Phosphotransacetylase PTAcet
Phosphotransferase system PTS
Pyruvate dehydrogenase PyrDH
Pyrivate formate lyase PFlase
Pyruvate kinase PyK
Ribose phosphate epimerase RPE
Ribose 5-phosphate isomerase RPI
Succinate dehydrogenase SuccDH
Suceinyl CoA synthase SCoAsn
Transaldolase TrAld
Transhydrogenase TransH2
Transketolase TrKet
Triose phosphate isomerase TPI

known. Under anercbic conditions the TCA cycle is found to be repressed in E. coli
(Gray et al., 1966), and functions only to the extent required to produce precursors.

Glyoxalate shunt

The tricarboxylic acid cycle operating cyclically can completely oxidize acetate to
carbon dioxide without the consumption or production of the intermediates.
Intermediates of the TCA cycle such as oxaloacetate and «-ketoglutarate are
consumed in the production of macromolecules. Replenishment of the intermediate
C,-acids is the function of the glyoxalate shunt (Kornberg & Krebs, 1957). The
glyoxalate shunt is activated during growth on acetate.

Anaplerotic reactions

Bacterial growth requires pathways for the replenishment of TCA cycle inter-
mediates drained off for biosynthesis and there exist pathways that accomplish the
generation of TCA cycle intermediates during growth on glucose. Similarly, there are
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TaBLE A4
Glycolytic, anaplerotic reactions and the electron transport system

Enzyme Reaction catalyzed Source

PTS Glc+PEP - G6P + Pyr Kundig er al. {1964)

PGI G6P=F6P Fraenke| & Levisohn (1967)

PFK F6P + ATP — FDP + ADP Blangy et al. (1968)

ALD FDP=GIP+DHAP Doelle et al. (1974)

FDPase FDP - F6P+Pi Fraenkel & Horecker (1965)

TPI DHAP=GIP Cooper & Anderson (1970)

G3PDH T3P+ NAD=1,3DPG + NADH Hillman & Fraenkel, (1975); Irani &
Maitra (1977)

PGK 1,3DPG+ADP=3PG+ATP

PGM IPG=2PG Hillman & Fraenkel (1975); Irani &
Maitra (1977)

Enc 2PG=PEP Hillman & Fraenkel (1975); Irani &
Maitra (1977)

PyK PEP +ADP— Pyr+ATP Pertierra & Cooper (1977)

PyrDH Pyr+NAD —+AcCoA + NADH+CO,

AcCoAsn Ac+ATP+ CoA —+ AcCcA + AMP 4+ PPi Brown et al. {(1977)

AcK Ac+ATP=AcetP+ADP Rose et al. (1954)

PTAcet AcetP+CoA—=AcCoA +Pi Shimizu et al. (1969); Suzuki (1969)

PEPC PEP+CO, - 0A+Pi

PEPCK OA+ATP—PEP+CO,+ADP Kornberg (1965, 1970}

MalEnzP Mal+ NADP - Pys+ NADPH +CO, Kormberg (1965, 1970)

MalEnz Mal+ NAD -+ Pyr + NADH +CO, Komberg (1965, 1970)

PEPsyn Pyr+ ATP=PEP+AMP+Pi Cooper & Kornberg (1965)

ATPase ATP=ADP + 3Hexp +Pi Kashket (1982, 1983); Maloney (1987)

Cyt QH,+40,-Q+H,0+2Hexp Lawford & Haddock {1973);
Matsushita et al. (1984)

TransH2 NADPH +NAD -+ NADP+ NADH Bragg et al. (1972); Cox & Gibson
(1974); Skulachev (1970}, Voordouw
er al. (1983); Zahl et al. (1978)

TransH2R NADH+NADP + 2Hexp -+ NADPH + NAD Bragg et al. {1972); Cox & Gibson
(1974); Skulachev (1970); Voordouw
et al. (1983); Zahl (1978)

NDHI1 NADH +Q —» NAD + QH2 4 2Hexp

NDH2 NADH + Q-NAD+QH2 Poole & Haddock {1974)

TABLE A3
Pentose phosphate pathway reactions

Enzyme Reaction catalyzed Source

G6PDH G6P+NADP —+GL6P+NADPH Fraenkel & Vinopal (1973)

PGLase GL6P — Gué6P Fraenkel & Vinopal (1973)

GL6PDH Gué6P + NADP - Ru5P + NADPH + CO, Fraenkel & Vinopal (1973)

RPE X5P=RusP

RP1 RuSP=R5P

TrAid 2RS5P=F6P + E4P

TrKet R5P + E4P=F6P+ T3P Josephson & Fraenkel (1969)
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TABLE A6
Tricarboxylic acid cycle reactions

Enzyme Reaction catalyzed Source

CitSyn OA+AcCoA -~ Cit Sanwal (1970}

Aco Cit=ICit

IsoDHP ICit + NADP=«KG + NADPH + CO, LaPorte & Koshland (1982);
Nimmo (1984)

AKGDH aKG+ NAD = SuccCoA + NADH +CQ, Amarsingham & Davis (1965)

ScoAsn SuccCoA + GDP + Pi=Succ+ GTP

SuccDH Succ+ FAD=Fum+ FADH Hirsch et al. (1963)

Fumase Fum=Mal

MalDH Mal+NAD=0A + NADH

{soLys ICit - Suce + Glx

Malsyn Glx + AcCoA — Mal Dixon et al. (1960)

pathways for the conversion of TCA iniermediates into glycolytic intermediates
which are active during growth on TCA intermediates. These are the anaplerotic
reactions and they are summarized in Table A4. During growth on acetate, the
glyoxalate shunt gencrates the necessary TCA intermediates. '

TCA intermediate generation from the glycolytic metabolites is accomplished by
the irreversible carbon dioxide-fixing conversion of PEP to OA catalyzed by the
enzyme phosphoenolpyruvate carboxylase (PEPC). A different enzyme phospho-
enolpyruvate carboxykinase (PEPCK) catalyzes the reverse reaction with the con-
comitant consumption of a high-energy phosphate bond.

Another TCA cycle intermediate, malate, can be converted to pyruvate through
the action of malic enzyme. This reaction reduces one molecule of NADP to
NADPH. A second malic enzyme exists that can use NAD as a cofactor.

Although the reactions catalyzed by the enzymes PEPCK and malic enzyme are
reversible, physiologically they are found to operate only unidirectionally. Evidence
for the unidirectional operation, PEPCK producing PEP and malic enzyme
producing pyruvate, comes from the observation that mutants of enterobacteriaceae
deficient in PEPC are able to grow on C,-compounds but not on C,-compounds
(Kornberg, 1965, 1970). Furthermore, mutants deficient in PEPCK are able to grow
on C;-compounds but not on C,-compounds.

It should be noted that some of the reactions result in the fixation of carbon
dioxide in the bacterial cell. In fact, carbon dioxide has been found to be essential to
the growth of the cell (Valley & Rettger, 1927; Repaske & Clayton, 1978). Normally,
cells pick up the necessary carbon dioxide from the carbonate buffer in the media.

The growth of E. coli on pyruvate or lactate requires the production of PEP from
pyruvate. An enzyme responsible for the conversion of Pyr to PEP, PEP synthase
(PEPSYN) has been isolated and the reaction stoichiometry determined (Cooper &
Kornberg, 1965). The reaction consumes two high-energy phosphate bonds.

Growth on C,-dicarboxylic acids such as malate requires that the cell be able to
produce PEP for gluconcogenesis as well as to produce pentoses and certain amino
acids. There are two pathways existing to fulfill these PEP demands (Hansen & Juni,
1974, 1975). One pathway involves the conversion of malate to pyruvate by malic
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enzyme followed by the synthesis of PEP from pyruvate by PEPSYN. The other
pathway is the conversion of OA to PEP by the action of PEPCK. Although malic
enzyme can use either NAD and NADP as a cofactor, it is observed that in the
growth on C,-dicarboxylic acids only the malic enzyme with NAD as a cofactor can
be used, The reason is probably because any surplus NADPH produced cannot
easily give up electrons via the electron transfer system (Hansen & Juni, 1974). It
appears that NADPH is produced only to the extent required for biosynthesis.

A2. ELECTRON TRANSFER SYSTEM (ETS) AND DEHYDROGENASES

The ETS in E. coli produces the bulk of the cell's ATP under aerobic conditions.

Here, we summarize what is known about the stoichiometry of the key enzymes in
the ETS.

Adenosine triphosphatase ( ATPase)

FOF1-type ATPases can be found in the membranes of bacteria as well as
chloroplasts and mitochondria. The structure and mechanism of ATPase has been
well described in some recent review articles (Mitchell, 1985; Senior, 19990; Penefsky
& Cross, 1991), ATPase causes the reversible translocation of protons across a

membrane against a proton gradient at the cost of dephosphorylating an ATP to
ADP. The net reaction is:

ATP=ADP+ P,+nH" exported.

A number of studies have been reported in literature on the stoichiometry of this
reaction to determine the parameter m; E. coli during anerobic growth (Kashket,
1983), E. coli during aerobic growth (Kashket, 1982), submitochondrial particles
(Berry & Hinkle, 1983), spinach chloroplast thylakoids (McCarty & Portis, 1976;
Portis & McCarty, 1976). Most authors have found the value of n to be close to
3H*/ATP. Therefore, the integral value of 3H*/ATP will be used here as the
experimental methods used do not allow the accurate {ractional determination of the
stoichiometry (Maloney, 1987).

Cytochrome oxidase system

Of the four to five major classes of cytochrome oxidases, cytochrome-o is the most
widespread (Poole, 1983). It is a tightly membrane-bound complex and has been
purified from a cytochrome-d deficient mutant of E. coli (Matsushita et al., 1984).
Cytochrome oxidase complexes catalyze the transfer of electrons to electron accep-
tors (usually O,), while at the same time translocating protons across the cyto-
plasmic membrane against a proton gradient, The overall reaction may be
represented as:

QH,+1/20,-Q+H,0+2H" exported.
Studies of succinate oxidation (Lawford & Haddock, 1973} and the use of

reconstituted vesicles (Matsushita et al., 1984) have determined some ranges for the
stoichiometry of proton translocation. Based on these ranges we have used an
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integral stoichiometry of 2H*/O for the overall reaction of the cytochrome oxidase
complex.

Transhydrogenase

Transhydrogenase found in the inner membrane of mitochondria, the cytoplasmic
membrane of some bacteria and the cytoplasm of some heterotrophic bacteria
catalyzes the reversible transfer of a hydride ion between NADP and NAD. The
cytoplasmic transhydrogenase is non-energy linked, while the membrane-bound
enzyme is energy linked and causes the simultaneous flow of protons across the
membrane:

NADPH + NAD —» NADP + NADH
NADP+NADH +2H* exported - NADPH + NAD.

Some mechanisms for the energy linkage have been reviewed (Skulachev, 1970).
Based on studies of the degree of reduction of the NADH and NADPH pools, it has
been suggested that the non-energy linked transhydrogenase catalyzes the transfer of
the hydride from NADPH to NAD, while the energy-linked enzyme transfers the
hydride from NADH to NADP (Cox & Gibson, 1974; Voordouw et al., 1983). The
repression of E. coli transhydrogenase activity by mixture of amino acids also
suggests that the role of the enzyme in E. coli is to produce NADPH for biosynthesis
(Bragg et al, 1972). Transhydrogenase from E. coli has been cloned, partially
characterized and reconstituted (Clarke & Bragg, 19854, b). The enzyme was thought
to have an energy linked as well as nan-energy linked activity. It has been observed
that a single mutation leads to a loss of transhydrogenase activity in E. coli (Zahl,
1978). Therefore, it is likely that there is only one transhydrogenase enzyme in E. coli
and that the enzyme activity is energy linked. However, there are some reversible
dehydrogenases in the bacterium which are not very specific about the cofactor
(NAD or NADP). Activity of these enzymes can result in a net non-energy linked
transhydrogenation from NADPH to NAD.

NADH dehydrogenase

NADH dehydrogenase is located in the cytoplasmic membrane of E. coli. It
petforms the important function of transferring reducing equivalents generated by
the central catabolic reactions to the membrane-bound energy-generating system.
NADH dehydrogenase from E. coli has been synthesized in vitro and the nucleotide
sequence and, hence, the amine acid sequence, have been determined (Poulis et al,
1981). The enzyme has been found to occur with or without a proton translocating
capability.

The evidence for the loss of proton translocating capability comes from measure-
ments of the H* /O stoichiometries. Under sulfate limitation, the bacterium has been
found to synthesize NDH2, the non-proton translocating enzyme (Poole &
Haddock, 1974). Therefore, it has been suggested that E. coli contains only one
NADH dehydrogenase and that the loss of the proton translocation capability
represents the loss of associated iron-sulfur containing compounds.



