Computerized generation of surfaces with optimal approximation to ideal surfaces

F.L. Litvin and N.X. Chen
The University of Illinois at Chicago, IL, USA

Y. Zhang
The University of Michigan at Dearborn, MI, USA

T.J. Krenzer
The Gleason Works, Rochester, NY, USA

R.F. Handschuh
The NASA Lewis Research Center, Cleveland, OH, USA

Received 19 March 1992
Revised manuscript received 14 November 1992

The authors propose a new method for generation (by grinding or cutting) of a surface (Σ_g) with the optimal approximation to the theoretical (ideal) surface (Σ_p). The method is based on the following ideas: (1) A region of space is swept out by the tool surface Σ_t performing certain motions with respect to Σ_p. The surface of the tool (as grinding wheel or cutter) is a surface of revolution with a circular arc in axial section, and a circular cone in particular cases. (2) The space swept out by Σ_t is considered as a family of surfaces Σ_{g_1}, and the envelope to this family is surface Σ_g (generated surface) that must be in optimal approximation to the theoretical surface Σ_p. (3) The continuous varied setting and orientation of Σ_t with respect to Σ_p are executed by a multi-degree-of-freedom machine, that is a computer numerical controlled (CNC) machine. The approach developed can be applied for grinding of face-gears, helical involute gears with modified topology, ruled undeveloped surfaces and others. An example of application is considered.

1. Introduction

The development of multi-degree-of-freedom machines, numerically controlled by computer (CNC) machines, has opened new perspectives for the generation of surfaces with new topology, and the generation of a surface (Σ_g) that must be optimal approximation to the theoretical (ideal) surface (Σ_p).

The authors propose a method for generation of Σ_g (with optimal approximation to Σ_p) based on the following ideas:
(1) A mean line L_m on the ideal surface Σ_p is chosen as shown in Fig. 1.

(2) The tool surface Σ_t is a properly designed surface of revolution (in particular cases Σ_t is a circular cone as shown in Fig. 1) that moves along L_m. Surfaces Σ_t and Σ_p are in continuous tangency along L_m; M is the current point of tangency (Fig. 1). The orientation of Σ_t with respect to Σ_p (determined with angle β) is continuously varying. Angle β at the current point M of tangency is formed by the tangents t_t and t_b to L_m and the tool generatrix, respectively (Fig. 1). Tangents t_t and t_b form a plane Π that is tangent to Σ_t and Σ_p at point M.

Correspondence to: Professor F.L. Litvin, UIC The University of Illinois at Chicago, Department of Mechanical Engineering (M/C 251), 2039 Engineering Research Facility (ERF), Chicago, IL 60680, USA.

0045-7825/93/$06.00 © 1993 Elsevier Science Publishers B.V. All rights reserved
Fig. 1. Installment and orientation of tool surface Σ_t with respect to ideal surface Σ_p.

(3) The tool surface Σ_t, in its motion with respect to Σ_p, swept out a region of space as a family of surfaces Σ. The envelope to the family of Σ_t is the surface Σ_{e} (the ground, cut surface) that is in tangency with the theoretical surface Σ_p at any point M of L_m and must be in optimal approximation to Σ_p in any direction that differs from L_m.

(4) The optimal approximation of Σ_{e} to Σ_p is obtained by variation of angle β (Fig. 1).

(5) The continuous tangency of tool surface Σ_t with Σ_p and properly varied orientation of Σ_t can be obtained by the execution of required motions of the tool by a computer controlled multi-degree-of-freedom machine. One of these degrees of freedom, rotation of the tool about its axis, provides the desired velocity of grinding (cutting) and is not related to the process for generation of Σ_{e}.

The paper covers the following topics:

(1) Determination of the equation of meshing between the tool surface Σ_t and the generated surface Σ_g. The term ‘equation of meshing’ is used in the theory of gearing [1] and is represented as $f(u, \theta_t, \theta_p) = 0$ where (u, θ_t) are the Gaussian coordinates of Σ_t and θ_p is the generalized parameter of motion. The equation of meshing provides the necessary condition of existence of the envelope to the family of surfaces.

(2) Determination of the generated surface Σ_{e} as the envelope to the family of surfaces Σ_t swept out by the tool. Surface Σ_{e} coincides with the theoretical (ideal) surface Σ_p along the mean line L_m and deviates from Σ_p out of L_m.

(3) Determination of deviations of Σ_{e} from Σ_t (in regions that differ from L_m) and minimizations of Σ_{e} deviations for optimal approximation of Σ_{e} to Σ_p.

(4) Determination of curvatures of Σ_{e} that are required when the simulation of meshing and contact of two mating surfaces are considered.

(5) Execution of required motions of Σ_t with respect to Σ_p by application of a multi-degree-freedom, computer numerically controlled machine.

The authors have developed an effective approach for the derivation of the necessary condition for the existence of the envelope Σ_{e} using the idea of motion of the Darboux–Frenet trihedron along L_m, the chosen mean line of Σ_p.

An additional effective approach has been proposed and developed for determination of curvatures of generated surface Σ_{e}. This approach is based on the fact that the normal curvatures and surface torsions (geodesic torsions) of Σ_{e} are: (i) equal to the normal curvatures and surface torsions of Σ_p along L_m; and (ii) equal to the normal curvatures and surface torsions of tool surface Σ_t along the characteristic L_e (the instantaneous line of tangency of Σ_t and Σ_{e}).
2. Mean line on the ideal surface Σ_p

The ideal surface Σ_p is considered as a regular one and is represented as

$$ r_p(u_p, \theta_p) \in C^2, \quad \frac{\partial r_p}{\partial u_p} \times \frac{\partial r_p}{\partial \theta_p} \neq 0, \quad (u_p, \theta_p) \in E, $$

(1)

where (u_p, θ_p) are the Gaussian coordinates of Σ_p.

The unit normal to Σ_p is represented as

$$ n_p = \frac{N_p}{|N_p|}, \quad N_p = \frac{\partial r_p}{\partial u_p} \times \frac{\partial r_p}{\partial \theta_p}. $$

(2)

The determination of the mean line L_m is based on the following procedure:

(i) Initially, we determine numerically n points on the surface Σ_p that will belong approximately to the desired mean line L_m.

(ii) Then, we can derive a polynomial function

$$ u_p(\theta_p) = \sum_{j=1}^{n} a_j \theta_p^{(n-j)} $$

(3)

that will relate the surface parameters (u_p, θ_p) for the n points of the mean line on Σ_p.

The mean line L_m, tangent T_p and unit tangent t_p to the mean line are represented as follows:

$$ r_p(u_p(\theta_p), \theta_p), \quad T_p = \frac{\partial r_p}{\partial \theta_p} + \frac{\partial r_p}{\partial u_p} \frac{du_p}{d\theta_p}, \quad t_p = \frac{T_p}{|T_p|}. $$

(4)

The constraint for t_p is that it must be of the same sign and differ from zero at the same intervals of interpolation.

3. Tool surface

The tool surface Σ_t is represented in coordinate system S_t rigidly connected to the tool by the following equations:

$$ x = x_t(u_t) \cos \theta_t, \quad y = x_t(u_t) \sin \theta_t, \quad z = z_t(u_t), $$

(5)

The axial section of Σ_t obtained by taking $\theta_t = 0$ represents a circular arc, or a straight line in the case where Σ_t is a circular cone.

The surface unit normal is determined as

$$ n_t = \frac{N_t}{|N_t|}, \quad N_t = \frac{\partial r_t}{\partial \theta_t} \times \frac{\partial r_t}{\partial u_t}. $$

(6)

4. Equation of meshing between Σ_t and Σ_g

Equation of meshing represents the necessary condition of existence of envelope Σ_g to the family of surfaces Σ_t that is swept out by the tool surface Σ_t.

In the theory of gearing [1], the equation of meshing can be derived by using the equation
Here, \(i \) indicates the coordinate system where the vectors of the scalar product are represented, \(N^{(1)} \) is the normal to surface \(\Sigma_i \); and \(\mathbf{v}^{(1,g)} \) is the relative velocity in the motion of \(\Sigma_i \) with respect to \(\Sigma_g \).

Henceforth, we consider two basic coordinate systems, \(S_t \) and \(S_p \), that are rigidly connected to the tool surface \(\Sigma_t \) and the ideal surface \(\Sigma_p \). In addition to \(\Sigma_t \), we consider two trihedrons: \(S_b(t_b, d_b, n_b) \) and \(S_t(t_t, d_t, n_t) \). Trihedron \(S_b \) is rigidly connected to \(\Sigma_t \) and coordinate system \(S_t \) (Fig. 2). Here, \(O_b \) is the point of the chosen generatrix of \(\Sigma_t \) where the trihedron is located, \(t_b \) is the tangent to the generatrix at \(O_b \); \(n_b \) is the surface unit normal of \(\Sigma_t \) at \(O_b \), \(d_b = n_b \times t_b \), and vectors \(t_b \) and \(d_b \) form the tangent plane to \(\Sigma_t \) at \(O_b \). Trihedron \(S_t \) moves along the mean line \(L_m \) (Fig. 3); \(t_t \) is the tangent to the mean line \(L_m \) at current point \(M \) (Fig. 3); \(n_t \) is the surface unit normal to \(\Sigma_p \) at point \(M \); \(d_t = n_t \times t_t \); vectors \(t_t \) and \(d_t \) form the tangent plane to \(\Sigma_p \) at point \(M \).

The tool with surface \(\Sigma_t \) and trihedron \(S_t \) moves along mean line \(L_m \) of \(\Sigma_p \) and \(O_b \) coincides with current point \(M \) of mean line \(L_m \). Surfaces \(\Sigma_t \) and \(\Sigma_p \) are in tangency at any current point \(M \) of mean line \(L_m \). The orientation of \(S_b \) with respect to \(S_t \) is determined with angle \(\beta \) that is varied in the process for generation.

We start the derivations with the case where \(\Sigma_t \) is a circular cone (Fig. 4). The angular velocity \(\omega_t \) of rotation of \(S_t \) with respect to \(S_p \) is represented as [2, 3]:

\[
N^{(1)} \cdot \mathbf{v}^{(1,g)} = 0.
\]
Here, t is the surface torsion (geodesic torsion), k_n and k_g are the normal and geodesic curvatures of surface Σ_ρ at the current point M of the mean line L_m, ds is the infinitesimal displacement along L_m. The definition of surface torsion is given in [3]; the concept of the equivalent term 'geodesic torsion' is also discussed in [2].

The angular velocity Ω_t of trihedron S_b is represented in S_t as

$$\Omega_t = \mathbf{w}_t + \frac{d\beta}{dt} \mathbf{n}_t = \begin{bmatrix} t & -k_n & k_g + \frac{d\beta}{ds} \end{bmatrix} \mathbf{n}_t \frac{ds}{dt}. \quad (9)$$

The orientation of cone Σ_i is determined by function $\beta(\theta_\rho)$ and

$$\frac{d\beta}{ds} \frac{d\beta}{d\theta_\rho} \frac{d\theta_\rho}{ds} = \left(\frac{d\beta}{d\theta_\rho} \right) \frac{1}{|T_\rho|}. \quad (10)$$

where T_ρ is the tangent to the mean line L_m at current point M.

The transformations of vector components in transition from S_i to S_b and S_t are represented by 3×3 matrix operators L_{bt} and L_{tb}. Here,

$$L_{tb} = \begin{bmatrix} \cos \beta & -\sin \beta & 0 \\ \sin \beta & \cos \beta & 0 \\ 0 & 0 & 1 \end{bmatrix}. \quad (11)$$
The cone surface Σ, is represented in S, as follows (Fig. 4):

$$r_t = u_t[\sin \gamma \cos \theta, \sin \gamma \sin \theta, \cos \gamma]^t.$$

(13)

where (u_t, θ_t) are the surface parameters and γ_t is the cone apex angle.

The unit normal to the cone surface is

$$n_t = u_t[\cos \gamma \cos \theta, \cos \gamma \sin \theta, -\sin \gamma]^t.$$

(14)

The required equation of meshing (necessary condition of existence of envelope Σ_e) is represented in the form

$$n_t^{(1)} \cdot v_t^{(e)} = 0,$$

where

$$n_t^{(1)} = L_t n_t.$$

(15) \hspace{1cm} (16)

The derivation of the expression $v_t^{(e)}$ is simplified while taking into account the following considerations:

(a) The relative velocity vector $v_t^{(e)}$ can be represented as

$$v_t^{(e)} = \Omega_t^{(s)} r_t^{(1)} + \frac{dx}{dt} t_t.$$

(17)

Here, $\Omega_t^{(s)}$ is the skew-symmetric matrix represented as

$$\Omega_t^{(s)} = \begin{bmatrix} 0 & -\omega_3 & \omega_2 \\ \omega_3 & 0 & -\omega_1 \\ -\omega_2 & \omega_1 & 0 \end{bmatrix}.$$

(18)

Vector Ω_t is represented by

$$\Omega_t = \omega_1 t + \omega_2 d + \omega_3 n = \left[t, -k, k + \frac{d\beta}{ds} \right]^t ds.$$

(19)

(b) Consider that point N on surface Σ, is the point of the characteristic (the line of tangency of Σ, and the generated surface Σ_e). Certainly, the equation of meshing must be satisfied for point N.

The position vector $O_t N$ can be represented as

$$O_t N = O_t N - O_t O_t.$$

(20)

Here, $O_t N$ is the position vector of point N that is drawn from the origin O_t of S, to N; vector $O_t N$ is represented as

$$O_t N = u_e e_i = u_i (\sin \gamma \cos \theta, i, + \sin \gamma \sin \theta, j, + \cos \gamma, k,),$$

where

$$e_i = \frac{\partial}{\partial u_t} (r_t)$$

(21) \hspace{1cm} (22)
is the unit vector of cone generatrix $\overline{O_iN}$.

Vector $\overline{O_iO}$ (Fig. 4) is represented in S_b as

$$\overline{O_iO} = l_i b_i,$$

(23)

where $l_i = |\overline{O_iO}|$.

Vector $\overline{O_iN}$ is represented in S_i using the matrix equation

$$r_{t_i}^{(i)} = u_i L_i e_i - l_i L_{fb} b_i.$$

(24)

(c) We now represent the equation of meshing as

$$\mathbf{n}_i^{(i)} \cdot \mathbf{v}_i^{(i)} = \{ \mathbf{n}_i^{(i)} \cdot [\Omega^{(s)}(u_i L_i e_i - l_i L_{fb} b_i)] + \mathbf{n}_i^{(i)} \cdot t_i \} \frac{ds}{dt} = 0.$$

(25)

(d) Further simplification of the equation of meshing is based on the following rule for operations with skew-symmetric matrices [4]:

$$A^t B^{(s)} A = C^{(s)},$$

(26)

where $B^{(s)}$ and $C^{(s)}$ designate skew-symmetric matrices, A^t is the transpose matrix for A.

Considering that elements of $B^{(s)}$ are represented in terms of components of the vector

$$\mathbf{b} = [b_1 \quad b_2 \quad b_3]^t,$$

(27)

we obtain that the elements of skew-symmetric matrix $C^{(s)}$ are represented in terms of the components of vector \mathbf{c}, where

$$[c_1 \quad c_2 \quad c_3]^t = -A^t [b_1 \quad b_2 \quad b_3]^t.$$

(28)

Using the above considerations and eliminating ds/dt, the final expression of the equation of meshing can be represented as

$$\mathbf{n}_i^{(i)} \cdot \mathbf{v}_i^{(i)} = f(u_i, \theta_i, \theta_p) = u_i \mathbf{n}_i^{(s)} e_i - l_i \mathbf{n}_i^{(s)} b_i + n_i^{(i)} L_i t_i = 0,$$

where

$$A^{(s)} = L_i \Omega_i^{(s)} L_i^t, \quad B^{(s)} = L_{fb} \Omega_{i}^{(s)} L_{fb}^t,$$

(29)

$$A^{(s)} = \begin{bmatrix} 0 & -a_3 & a_2 \\ a_3 & 0 & -a_1 \\ -a_2 & a_1 & 0 \end{bmatrix},$$

(30)

$$B^{(s)} = \begin{bmatrix} 0 & -b_3 & b_2 \\ b_3 & 0 & -b_1 \\ -b_2 & b_1 & 0 \end{bmatrix},$$

(31)

$$\begin{bmatrix} a_1 \\ a_2 \\ a_3 \end{bmatrix} = \begin{bmatrix} t \cos \beta \sin \gamma_i - k_n \sin \beta + \left(k_g + \frac{d\beta}{ds}\right) \cos \beta \cos \gamma_i \\ t \sin \beta \sin \gamma_i + k_n \cos \beta + \left(k_g + \frac{d\beta}{ds}\right) \sin \beta \cos \gamma_i \\ t \cos \gamma_i - \left(k_g + \frac{d\beta}{ds}\right) \sin \gamma_i \end{bmatrix},$$

(32)

$$\begin{bmatrix} b_1 \\ b_2 \\ b_3 \end{bmatrix} = \begin{bmatrix} -t \cos \beta + k_n \sin \beta \\ t \sin \beta + k_n \cos \beta \\ -(k_g + \frac{d\beta}{ds}) \end{bmatrix}. $$

(33)
The family of characteristics L_g, the instantaneous lines of tangency of Σ_i and Σ_g, is represented in S_i by the equations

$$r_i = r_i(u_i, \theta_i), \quad f(u_i, \theta_i, \theta_p) = 0,$$

(34)

where θ_p is the parameter of the family of L_g. Taking $\theta_p = \theta_p^{(i)} (i = 1, 2, \ldots, n)$, we obtain the current characteristics on the surface Σ_i.

It is easy to verify that the equation of meshing between Σ_i and Σ_g is satisfied for the current point M of the mean line L_m on the ideal surface Σ_p. This means that the characteristic L_g intersects L_m at point M, for which we can take $\theta = 0$ since Σ_i is a surface of revolution. In the case where Σ_i is a circular cone (Fig. 4), we can take for point M that $u_i = |O_iO_p| = l_i$.

The approach discussed above for the derivation of equation of meshing can be easily extended for application in the more general case where the tool surface is a general surface of revolution.

5. Determination of generated surface Σ_g

The ground surface Σ_g is generated as the envelope to the family of tool surfaces Σ_i; surface Σ_g is represented in S_p by the following equations:

$$r_i^{(p)}(u_p(\theta_p), \theta_p, u_i, \theta_i) = L_p r_i^{(t)} + r_i^{(M)}(u_p(\theta_p), \theta_p), \quad f(u_i, \theta_i, \theta_p) = 0,$$

(35)

where $f(u_i, \theta_i, \theta_p) = 0$ is the equation of meshing; $r_i^{(t)}(u_i, \theta_i)$ is the equation of the tool surface Σ_i represented in S_i; $r_i^{(M)}(u_p(\theta_p), \theta_p)$ is the vector function that represents in S_p the mean line L_m; the 3×3 matrix operator L_p which transforms vectors in transition from S_t to S_p is represented as

$$L_p = \begin{bmatrix} t_{px} & d_{px} & n_{px} \\ t_{py} & d_{py} & n_{py} \\ t_{pz} & d_{pz} & n_{pz} \end{bmatrix},$$

(36)

where

$$t_p = \frac{\partial}{\partial \theta_p} (r_i^{(M)}),$$

(37)

is the unit target to the mean line L_m;

$$n_p = \pm \frac{\partial r_p}{\partial u_p} \times \frac{\partial r_p}{\partial \theta_p},$$

(38)

$$d_p = n_p \times t_p.$$

(39)

The sign chosen in (38) must provide the direction of n_p towards the surface ‘body’.

Equations (35) represent in S_p the generated surface Σ_g in three parametric form but with related parameters. Parameter u_i is linear in the equation of meshing when Σ_i is a cone, therefore this parameter can be eliminated and the generated surface Σ_g can be represented in S_p as

$$r_i^{(p)} = r_g = r_g(\theta_p, \theta_i).$$

(40)

We recall that surfaces Σ_g and Σ_p have a common line L_m where they are in tangency. Surface Σ_g is
in tangency with \(\Sigma \), along the instantaneous line \(L \) that passes through the current point \(M \) of line \(L_m \). The tangents to \(L \) and \(L_m \) lie in the plane that passes through \(M \) and is tangent to three surfaces \((\Sigma_p, \Sigma_g, \text{ and } \Sigma_i) \) simultaneously.

6. Optimal approximation of the generated surface \(\Sigma_g \) to the ideal surface \(\Sigma_p \)

The procedure of optimal approximation of \(\Sigma_g \) to \(\Sigma_p \) is divided into the following stages: (i) design of grid on \(\Sigma_p \), the net of points, where the deviations of \(\Sigma_g \) from \(\Sigma_p \) will be determined; (ii) determination of the initial function \(\beta^{(1)}(\theta_p) \) for the first iteration; angle \(\beta \) determines the orientation of the tool surface \(\Sigma_t \) with respect to \(\Sigma_p \) (Figs. 1 and 3); (iii) determination of deviations of \(\Sigma_g \) from \(\Sigma_p \) with the initial function \(\beta^{(1)}(\theta_p) \); (iv) optimal minimization of deviations.

6.1. Grid on surface \(\Sigma_p \)

Figure 5(a) shows the grid on the surface \(\Sigma_p \), the net of \((n, m)\) points, where the deviations of \(\Sigma_g \) from \(\Sigma_p \) are considered. The position vector is \(O_p Q_{i,j} = r_p^{(i,j)} \) (Fig. 5(b)). The computation is based on the following procedure:

(i) The desired components \(L_{i,j} \) and \(R_{i,j} \) of the position vector \(r_p^{(i,j)} \) are considered as known.

(ii) Taking into account that

\[
L_{i,j} = z_p^{(i,j)} \quad \text{and} \quad R_{i,j}^2 = [x_p^{(i,j)}(u_p, \theta_p)]^2 + [y_p^{(i,j)}(u_p, \theta_p)]^2, \tag{41}
\]

we will obtain the surface \(\Sigma_p \) parameters \((u_p^{(i,j)}, \theta_p^{(i,j)}) \) for each grid point.

![Diagram](attachment:grid_on_surface.png)

Fig. 5. Grid on surface \(\Sigma_p \).

![Diagram](attachment:deviations_line.png)

Fig. 6. Determination of maximal deviations along line \(L_{ik} \).
6.2. Determination of initial function $\beta^{(1)}(\theta_p)$

The determination of $\beta^{(1)}(\theta_p)$ is based on the following idea: the instantaneous direction of t_b (the tool generatrix) with respect to tangent t_t to the mean line L_m (Fig. 3) must provide the minimal value $|k_n^{(o)}|$. Here, $k_n^{(o)}$ is the relative normal curvature determined as

$$k_n^{(o)} = k_n^{(t)} - k_n^{(p)},$$

where $k_n^{(t)}$ and $k_n^{(p)}$ are the normal curvatures of surfaces Σ_t and Σ_p along t_b. In the case of a nondevelopable ruled surface Σ_p, vector t_b can be directed along the asymptote of Σ_p.

The requirement that $|k_n^{(o)}|$ is minimal, enables us to determine the function $\beta^{(1)}(\theta_p)$ numerically. Since we need the derivative $d\beta/d\theta_p$, for further computations the function $\beta^{(1)}(\theta_p)$ is represented analytically as a polynomial function that must satisfy the numerical data obtained for the chosen points of mean line L_m.

6.3. Determination of deviations of Σ_g from Σ_p

We are able at this stage of the investigation to determine the equation of meshing between surfaces Σ_t and Σ_g, and surface Σ_g as discussed in Sections 4 and 5. The computation of deviations of Σ_g from Σ_p at the grid points is based on the following considerations:

(i) Surfaces Σ_p and Σ_g are represented in the same coordinate system (S_p) by the following vector functions:

$$r_p(u_p, \theta_p), \quad r_g(\theta_g, \theta_t).$$

(ii) The position vector $r_p^{(i,j)}$ and surface coordinates $(u_p^{(i,j)}, \theta_p^{(i,j)})$ are known for each point $Q_p^{(i,j)}$ of the grid on surface Σ_p.

(iii) Point $Q_g^{(i,j)}$ on surface Σ_g corresponds to point $Q_p^{(i,j)}$ on surface Σ_p. The surface Σ_g parameters $(\theta_g^{(i,j)}, \theta_t^{(i,j)})$ can be determined by using the following two equations:

$$y_g^{(i,j)}(\theta_g^{(i,j)}, \theta_t^{(i,j)}) = y_p(u_p^{(i,j)}, \theta_p^{(i,j)}), \quad z_g^{(i,j)}(\theta_g^{(i,j)}, \theta_t^{(i,j)}) = z_p(u_p^{(i,j)}, \theta_p^{(i,j)}).$$

(iv) Due to deviations of Σ_g from Σ_p, we have that $x_g^{(i,j)} \neq x_p^{(i,j)}$. The deviation of Σ_g from Σ_p at the grid point $Q_p^{(i,j)}$ is determined by the equation

$$\delta_{i,j} = n_p^{(i,j)} \cdot (r_g^{(i,j)} - r_p^{(i,j)}),$$

where $n_p^{(i,j)}$ is the unit normal to surface Σ_p at the grid point $Q_p^{(i,j)}$.

The deviation $\delta_{i,j}$ can be positive or negative. We designate as positive such a deviation when $\delta_{i,j} > 0$ considering that $n_p^{(i,j)}$ is directed into the 'body' of surface Σ_p. Positive deviations of Σ_g with respect to Σ_p provide that Σ_g is inside of Σ_p and surface Σ_g is 'crowned'.

It is not excluded that initially the inequality $\delta_{i,j} > 0$ is not yet observed for all points of the grid. Positive deviations $\delta_{i,j}$ can be provided choosing the following options:

1. choosing a surface of revolution with a circular arc in the axial section instead of a circular cone; a proper radius of the circular arc must be determined.
2. changing parameter $l_t = \overline{O_1O_2}$ (Figs. 3 and 4); this means that the grinding cone will be displaced along t_b with respect to the mean line L_m.
3. varying the initially chosen function $\beta^{(1)}(\theta_p)$.

6.4. Minimization of deviation $\delta_{i,j}$

Consider that deviations $\delta_{i,j}$ ($i = 1, \ldots, n; \ j = 1, \ldots, m$) of Σ_g with respect to Σ_p have been determined at the (n, m) grid points. The minimization of deviations can be obtained by corrections of
the previously obtained function $\beta^{(1)}(\theta_k)$. The correction of angle β is equivalent to the correction of the angle that is formed by the principal directions on surfaces Σ_i and Σ_g. The correction of angle β can be achieved by turning of the tool about the common normal to surfaces Σ_i and Σ_p at their instantaneous point of tangency M_k.

The minimization of deviations $\delta_{i,j}$ is based on the following procedure:

Step 1. Consider the characteristic L_{gk}, the line of contact between surfaces Σ_i and Σ_g, that passes through current point M_k of mean line L_m on surface Σ_p (Fig. 6). Determine the deviations δ_k between Σ_i and Σ_p along line L_{gk} and find the maximal deviations designated as $\delta^{(1)}_{\text{max}}$ and $\delta^{(2)}_{\text{max}}$. Points of L_{gk} where the deviations are maximal are designated as $N^{(1)}_k$ and $N^{(2)}_k$. These points are determined in regions I and II of surface Σ_g with line L_m as the border. The simultaneous consideration of maximal deviations in both regions enables us to minimize the deviations for the whole surface Σ_g.

Note 1. The deviations of Σ_i from Σ_p along L_{gk} are simultaneously the deviations of Σ_g from Σ_p along L_{gk} since L_{gk} is the line of tangency of Σ_i and Σ_g.

Step 2. The minimization of deviations is accomplished by correction of angle β_k that is determined at point M_k (Fig. 6). The minimization of deviations is performed locally, for a piece k of surface Σ_g with the characteristic L_{gk}. The process of minimization is a computerized iterative process based on the following considerations:

(i) The objective function is represented as

$$F_k = \min(\delta^{(1)}_{k,\text{max}}, \delta^{(2)}_{k,\text{max}})$$

with the constraint $\delta_{i,j} \geq 0$.

(ii) The variable of the objective function is $\Delta \beta_k$. Then, considering the angle $\beta_k^{(2)} = \beta_k^{(1)} + \Delta \beta_k$

and using the equation of meshing with β_k, we can determine the new characteristic, the piece of envelope $\Sigma^{(k)}$ and the new deviations. The applied iterations provide the required objective function. The final correction of angle β_k, we designate as $\beta^{(\text{opt})}_k$.

Note 2. The new contact line $L_{gk}^{(k)}$ (determined with $\beta^{(2)}_k$) differs slightly from the real contact line since the derivative $d\beta^{(1)}_k/ds$ but not $d\beta^{(2)}_k/ds$ is used for determining $L_{gk}^{(2)}$. However, $L_{gk}^{(2)}$ is very close to the real contact line.

Step 3. The discussed procedure must be performed for the set of pieces of surfaces Σ_g with the characteristic L_{gk} for each surface piece.

We recall that the deviations for the whole surface must satisfy the inequality $\delta_{i,j} \geq 0$. The procedure of optimization is illustrated with a flowchart (Fig. 7).

7. Curvatures of the ground surface Σ_g

The direct determination of curvatures of Σ_g by using surface Σ_g equations is a complicated problem. The solution to this problem can be substantially simplified using the following approach proposed by the authors: (i) the normal curvatures and surface torsions (geodesic torsions) of surfaces Σ_p and Σ_g are equal along line L_m, respectively; (ii) the normal curvatures and surface torsions of surfaces Σ_i and Σ_g are equal along line L_g in terms of curvatures of Σ_p and Σ_i. However, only three of these equations are independent (see below).

The term 'surface torsion' instead of 'geodesic torsion' has been proposed by Nutborne and Martin [3].

Further derivations are based on the following equations:
k_n = k_1 \cos^2 q + k_{11} \sin^2 q = \frac{1}{2}(k_1 + k_{11}) + \frac{1}{2}(k_1 - k_{11}) \cos 2q , \hspace{1cm} (48)

t = 0.5(k_{11} - k_1) \sin 2q , \hspace{1cm} (49)

where k_1 and k_{11} are the surface principal curvatures, angle q is formed by unit vectors e_1 and e measured counterclockwise from e_1 and e; e_1 is the principal direction with principal curvature k_1; e is the unit vector for the direction where the normal curvature is considered; t is the surface torsion for the direction represented by e.

Equation (48) is known as the Euler equation. Equation (49) is known in differential geometry as the Bonnet equation [2] and the Sophia Germain equation [3].

The determination of the principal curvatures and principal directions for Σ_g is based on the following computational procedure:

Step 1. Determination of $k_n^{(1)}$ and $t^{(1)}$ for surface Σ_g at the direction determined by the tangent to L_m. The determination is based on (48) and (49) applied for surface Σ_p. Recall that Σ_p and Σ_g have the same values of k_n and t along the abovementioned direction.

Step 2. Determination of $k_n^{(2)}$ and $t^{(2)}$. The designations $k_n^{(2)}$ and $t^{(2)}$ indicate the normal curvature of Σ_g and the surface torsion along the tangent to L_g. Recall that $k_n^{(2)}$ and $t^{(2)}$ are the same for Σ_g and Σ_g along L_g. We determine $k_n^{(2)}$ and $t^{(2)}$ for surface Σ_g using (48) and (49), respectively.

Step 3. We consider at this stage of the computation that for surface Σ_g are known $k_n^{(1)}$ and $t^{(1)}$, $k_n^{(2)}$ and $t^{(2)}$, for two directions with tangents τ_1 and τ_2 that form the known angle μ (Fig. 8). Our
Fig. 8. To determination of principal directions of generated surface Σ_g.

goal is to determine angle q_1 (or q_2) for the principal direction $e_i^{(g)}$ and the principal curvatures $k_i^{(g)}$ and $k_\Pi^{(g)}$ (Fig. 8). Using (48) and (49), we can prove that $k_1^{(i)}$ and $t^{(i)}$ ($i = 1, 2$) given for two directions represented by τ_1 and τ_2 are related by

$$\frac{t_1 + t_2}{k_{n2} - k_{n1}} = \cot \mu.$$ \hspace{1cm} (50)

Step 4. Using (48) and (49), we can derive the following three equations for determination of q_i, $k_1^{(g)}$ and $k_\Pi^{(g)}$.

$$\tan 2q_1 = \frac{t_1 \sin 2\mu}{t_2 - t_1 \cos 2\mu},$$ \hspace{1cm} (51)

$$k_1^{(g)} = k_n^{(1)} - t_1 \tan q_1,$$ \hspace{1cm} (52)

$$k_\Pi^{(g)} = k_n^{(1)} + t_1 \cot q_1.$$ \hspace{1cm} (53)

Equation (51) provides two solutions for q_1 ($q_1^{(2)} = q_1^{(1)} + 90^\circ$) and both are correct. We choose the solution with the smaller value of q_1.

8. Execution of motions on computer numerically controlled (CNC) machine: the ‘Phoenix’ machine

The process discussed above for generation of Σ_g can be accomplished on a multi-degree-of-freedom CNC machine. In the following discussions, we consider as an example of the CNC machine, the ‘Phoenix’ machine, designed by the Gleason Works (Fig. 9). This machine is provided with six degrees of freedom for three rotational motions, and three translational motions. The translational motions are performed in three mutually perpendicular directions. Two of the rotational motions are provided as the rotation of the workpiece with surface Σ_w and the rotation that enables us to change the angle between the axes of the workpiece with the to-be generated surface Σ_g and the tool with surface Σ_t. The sixth rotational motion is provided as the rotation of the tool about its axis, and generally is not related to the process for generation.

The ‘workpiece’ is the piece of metal that must be provided with the desired surface Σ_g.

8.1. Coordinate systems applied for CNC

Coordinate systems $S_i(x_i, y_i, z_i)$ and $S_p(x_p, y_p, z_p)$ are rigidly connected to the tool and the workpiece, respectively (Fig. 10). Coordinate system S_m performs translational motion along axis z_t with respect to the frame of ‘Phoenix’.

Coordinate system S_n performs translational motions with respect to S_m. Coordinate system S_i performs rotational motion with respect to S_n about the z_k-axis. Coordinate system S_e performs rotational motion with respect to S_m about the y_m-axis. Axes of the coordinate system S_d are parallel to
the respective axes of S_e; the location of origin O_d with respect to O_e is determined with the parameter $x_e^{(O_d)} = \text{const}$. Coordinate system S_p performs rotational motion with respect to S_d about the x_d-axis.

8.2. Execution of motions

Execution of motions of the 'Phoenix' machine for the generation of conventional spiral bevel gears and hypoid gears has been discussed by Goldrich [5]. The execution of motions for the method for generation proposed in this paper is based on the following matrix equations (Figs. 2, 3, 4, 10):

$$L_{pt}^{(C)}(\mu, \psi, \phi) = L_{pt}^{(G)}(\theta_p),$$

$$M_{pt}^{(C)}(\mu, \psi, \phi, x_{m}^{(O_h)}, y_{m}^{(O_h)}, z_{m}^{(O_h)})[0 \ 0 \ 0 \ 1]^T = M_{pt}^{(G)}(\theta_p)[0 \ 0 \ 0 \ 1]^T,$$

where

$$L_{pt}^{(C)} = L_{co}(\psi)L_{dc}L_{em}(\phi)L_{mn}L_{nh}(\mu)$$

$$\text{Eq. (54)}$$

$$\text{Eq. (55)}$$

$$\text{Eq. (56)}$$
and L_{de} and L_{mh} are unitary matrices.

$$L^{(G)}_{pt} = L_{pt}(\theta_p) L_{th}(\beta(\theta_p)) L_{bt}(\theta^*_t).$$ \hspace{1cm} (57)

The superscript C indicates that the coordinate transformation is performed for the CNC machine. The superscript G indicates the coordinate transformation when the generation of Σ_g by the method proposed in this paper is considered. Parameter θ^*_t is constant and designates the chosen generatrix of the tool surface with the unit vector t_t (Figs. 2 and 4).

Using matrix equation (54), we obtain the functions $\psi(\theta_p)$ and $\phi(\theta_p)$ that are required for execution of rotational motions. Angle μ represents the rotation angle of the tool and it can be chosen deliberately since the tool surface Σ_t is a surface of revolution.

Matrix equation (55) provides that the position vector $\overrightarrow{O_tO'}$ will be the same for both cases of coordinate transformation. Using this equation, we can determine the functions $x_{m}^{(G)}(\theta_p), y_{m}^{(G)}(\theta_p)$ and $z_{m}^{(G)}(\theta_p)$ for the execution of translational motions.

9. Numerical example: grinding of Archimedes' worm surface

The worm surface shown in Fig. 11 is a ruled undeveloped surface formed by the screw motion of the straight line $KN(|KN| = u_p)$. The screw motion is performed in coordinate system S_p (Fig. 11(b)). The to-be ground surface Σ_p is represented in S_p as

$$r_p = u_p \cos \alpha \cos \theta_p i_p + u_p \cos \alpha \sin \theta_p j_p + (p \theta_p - u_p \sin \alpha) k_p,$$ \hspace{1cm} (58)

where u_p and θ_p are the surface parameters.

The surface unit normal is

$$n_p = \frac{N_p}{|N_p|}, \quad N_p = \frac{\partial r_p}{\partial u_p} \times \frac{\partial r_p}{\partial \theta_p}.$$ \hspace{1cm} (59)

Thus,

Fig. 11. Surface of Archimedes' worm.
The design data are: number of threads $N_1 = 2$; axial diametral pitch $P_{ax} = 8$ in$^{-1}$; $\alpha = 20^\circ$; the radius of the pitch cylinder is 1.125 in. The remaining design parameters are determined from the following equations:

(i) The screw parameter is

$$p = \frac{N_1}{2P_{ax}} = 0.125 \text{ in.}$$

(ii) The lead angle is

$$\tan \lambda_p = \frac{p}{r_p} = \frac{0.25}{1.125}, \quad \lambda_p = 12.5288^\circ.$$

The mean line is determined as

$$r_p(u_m, \theta_p), \quad u_m = \frac{\left(\frac{1}{r_p} + \frac{1}{P_{ax}}\right) + \left(\frac{1.25}{P_{ax}}\right)}{2 \cos \alpha} = \frac{r_p - \frac{0.5}{P_{ax}}}{\cos \alpha} = 1.1263 \text{ in}.$$

where $1/P_{ax}$ and $1.25/P_{ax}$ determine the addendum and dedendum of the worm.

The worm is ground by a cone with the apex angle $\gamma = 30^\circ$, and an outside diameter of 8 in.

The initial angle $\beta^{(1)} = -88.0121^\circ$ provides the coincidence of both generatrix of the cone and the Archimedes' worm. The maximal deviation of the ground surface Σ_g from the ideal surface Σ_p with the above value of $\beta^{(1)}$ is 3 μm.

The optimal angle $\beta^{(opt)} = -94.6788^\circ$ has been determined by the developed optimization method. The deviations of the ground surface Σ_g from Σ_p with the optimal $\beta^{(opt)}$ are positive and the maximal deviation has been reduced to 0.35 μm (Fig. 12).

Fig. 12. Deviations of the ground surface Σ_g from ideal surface Σ_p of Archimedes' worm.
10. Conclusion

(1) A computerized method for generation (by grinding or cutting) of a surface Σ_g with optimal approximation to the ideal surface Σ_p has been developed. The tool used for generation is provided by a surface of a circular cone or a surface of revolution. The required motions of the tool with respect to the to-be-generated surface are executed on a computerized multi-degree-of-freedom machine.

(2) The theory of the proposed method for generation, the algorithm for execution of motions in the process for generation, and the procedure for optimal approximation of Σ_g to Σ_p have been developed.

(3) An effective approach for the determination of curvatures of the generated surface Σ_g has been developed.

(4) A numerical example of generation of an Archimedes' worm has been presented.

Acknowledgment

This work has received financial support from the NASA Lewis Research Center and the Gleason Memorial Fund.

References