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Abstract 

Ampliative inference is the choice of a probability distribution on the basis of 
incomplete information. We consider some psychological and normative questions 
that arise about this kind of reasoning. The discussion is largely tutorial although a 
substantive hypothesis is also advanced. 

1. Introduction 

Suppose that three regions of unknown size are drawn on a plane surface, as in 

Fig. 1. A dart will be thrown at random onto the surface, and all you know about 

the probability of its landing in one or another region is this: 

(1) Sentence Symbol Probability 

i. The dart lands in A or B (or both) AvB .4 

ii. The dart lands in B or C (or both) BvC .5 
iii. The dart lands in A or C (or both) AvC .6 

You are invited to purchase a lottery ticket for the outcome A, that is, that the 

dart lands in region A. To decide whether the ticket price is fair, you need to 

assign a probability to this statement. What probability do you choose? Recourse 
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A B w_ C 

Figure 1. Lkthoard with three regions A, B. C. The sizes shown are for illustration. The only 
information available is summarized in (1). 

to the probability calculus is some help, but does not resolve the problem. 

Probability calculations inform us only that h(A) E [. 1, .4]. Choice within [. 1, .4] 

is left open.’ Our example illustrates in bare form the general problem of 

ampliative inference, which may be stated as follows.’ Suppose you are given 

information I about an unknown probability distribution P. What distribution 

represents the most rational guess about P? Naturally. you ought to choose a 

distribution that does not contradict the given information I (since otherwise your 

guess is bound to be wrong). But what should you guess if it turns out that there 

are a multiplicity of distributions consistent with I? In this case the laws of 

probability do not impose a choice. Rather, some additional principle or leap of 

faith is needed to supplement I to cut the options down to one. Note the double 

uncertainty in such situations. Not only are we unsure about which events will 

occur; in addition, we do not know their probabilities of occurrence. 

The ampliative inference problem is an idealized version of a dilemma 

fundamental to thought and decision. Explicitly or implicitly, we evaluate chances 

all the time, and we rarely have sufficient information to pin down the distribution 

that governs events in our environment. A descriptive, psychological question is 

posed thereby, bearing on the mental mechanisms underlying this kind of 

reasoning. Normative questions arise as well, concerning rational choice in the 

face of such uncertainty. The present paper attempts to clarify the descriptive 

issues by contrasting them with a widely accepted normative model. The 

discussion is largely tutorial, designed to frame the problem and set the stage for 

subsequent proposals. We also advance a substantive, albeit modest, hypothesis. 

As a preliminary clarification, it is helpful to distinguish the topic of the present 

paper from usual concerns about probability judgment (as represented, for 

example, in Kahneman, Slavic, & Tversky, 1982). Much of the latter tradition 

‘That Pr(A) E [. I, .4] may bc seen as follows. Were Pr(A) > .4 then Pr(A v B) > .4. contrary to 
(1)i. On the other hand. were P,(A) < .I then Pr(C) > .S in view of (1)iii. But this implies 

I’r(U v c‘) > .S, contradicting (1)ii. That (1) places b(A) in no narrower interval than [. I. .4] follows 

from the fact that for both k(A) = .1 and Pr(A) = .4 there are distributions implying (I). Deductions 

concerning probability intervals can be carried out more efficiently via techniques due to de Finetti 

(1972). explained in Lad, Dickey, and Kahman (1990). 

‘The “ampliativc” terminology has a long history. It appears recently in Klir and Folger (1988). 
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bears on the coherence of probability attributions, on whether such attributions 

are compatible with any distribution at all. For example, in situations that lead to 

the “conjunction fallacy” (Tversky & Kahneman, 1983) human judgment is often 

incoherent since no distribution allows the probability of a conjunctive proposi- 

tion to exceed the probability of a conjunct. In contrast, it is here assumed that 

the reasoning agent starts with a coherent set of probability attributions that can 

be extended in more than one way to a complete distribution. Our question is: 

what kind of extension is typically preferred by humans? 

The discussion proceeds as follows. First, we establish some terminology and 

concepts proper to ampliative inference construed normatively. Then some 

differences are cited between the normative picture and the mental processes that 

govern reasoning. Subsequently, we examine an influential proposal about 

ampliative inference, and try to evaluate it psychologically. Next, our own model 

is described. Finally, we return to the normative level, and discuss some of the 

issues that arise in evaluating alternative strategies of ampliative inference. 

2. Ampliative inference viewed normatively 

We limit attention to situations in which only a finite number of events are 

distinguished, and we assume that some objective distribution governs their 

probabilities. This distribution may be qualified as the “target” of the problem, 

and denoted by 3.” In the example above, 5 gives the probabilities of the dart’s 

landing in the regions of Fig. 1. The smallest regions may be called “atomic” and 

listed as: 

AABAC TAABAC AATBAC TAATBAC 
AABATC lAr\Br\lC AATBATC lAr\lB/\lC 

The eight atoms are mutually exclusive and exhaustive, and the other regions 

are composed of different subsets of them. For example, A A 1B is the union of 

A A 1B A c and A A 1B A lC, and the chance of the dart’s falling into A A 1B 
is the sum of the chances associated with the latter two regions. It is thus sufficient 

to conceive of 9 as assigning probabilities to the atomic events of a problem; the 

probabilities of complex events can be obtained by addition. 

We conceive of the guess 3 to be made about Y as a distribution over the 

same atoms. The choice of % is based on the partial information available about 

9. This information often takes one of the following forms: 

‘Ampliative inference can also be discussed without assuming an objectively given target 
distribution (as in Klir, 1988). 
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(2) Three kinds of information often available about a target distribution 9: 

a. Probability of events. For example, in the dart problem, (1) provides 

the information that F(A v B) = .4, etc. 

b. Conditional probabilities. For example, we might have been informed 

that .Y(B 1 A) = .4, that is, that the probability is .4 of the dart’s 

landing in B, given that it lands in A. 
c. Expected values of random variables. Suppose that each region in Fig. 

1 is associated with a dollar payoff: $1 for A A B A C, $2 for 1A A 
B A C, etc. Then our information might be that the average payoff 

for many throws of the dart is a certain sum. 

A guess ‘3 about 9 is said to be “consistent” with given information I only if 93 

implies I. Thus, if %(A v B) = .5 then 5!3 is inconsistent with (1). 

The three forms of information mentioned in (2) have a common property. 

Suppose, for example, that our information I is .T(B 1 A) = .4, and let %,,,Y?, be 

two guesses about Y that are consistent with I. Then for any h E [l ,O], the guess 

A%,, + (1 - A)%, is also consistent with I. This latter distribution assigns to event X 

the weighted sum of the probabilities assigned to X by 3,, and 9,. In this sense, 

the class of distributions consistent with I yields a “convex” subset of the space of 

all distributions over the eight atoms of Fig. 1.” The class can also be shown to be 

“closed” in the sense of containing any distribution that is arbitrarily well 

approximated by its members. Closed, convex sets of distributions arise for any 

information of kind (2)a-c, and are central to the normative theory of ampliative 

inference (see below). We thus give the special name constraint to information I 

such that the class of guesses consistent with I is non-empty, closed and convex 

(see Shore, 1986; Shore and Johnson, 1980, for more detailed treatment). 

Finally, we define an ampliative inference method to be any means of 

transforming an arbitrary constraint into a distribution consistent with it. Such a 

method offers a guess about the target distribution in light of available informa- 

tion. For example, an ampliative inference method might convert the constraint 

recorded in (1) into the guess 9 with: 

(3) %(A A B A C) = .05 ‘S(lA A B A C) = .05 

%(A A 1B A C) = .05 %(lA A 1B A C) = .25 

%(A A B A lc) = .05 %?(lA A B A 1C) = .05 

%(A A 1B A TC) = .15 %(lA A 1B A lc) = .35 

‘In geometric terms. a region of n-dimensional space is convex just in case it contains the line 

segment connecting any two points in the region (see Luenberger. 1984. Appendix B). 
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Observe that 9 is consistent with (1). For example: %(A v B) = 

%(A A B A C) + %(lA ABA C) + ??(A A 1B A C) + 

%(;?e A B A ~c)+ S(lA A B A lc) + %(A A TB A lc) 

= .05 + .05 + .05 + .05 + .05 + .15 = .4. In the same way, we compute ??(A) = .3, 

which provides an estimate for the chance of A, our original question about the 

dartboard of Fig. 1. 

3. Normative ampliative inference versus human reasoning 

So much for the normative picture. The descriptive side of ampliative 

reasoning deviates from this picture in several respects.” For one thing, to get on 

with life it is not always necessary to compute an exact probability for an 

uncertain event. To decide to cross the street now, for example, it is sufficient 

that the assessed probability of an unpleasant outcome fall below a certain 

threshold - and such a judgment need not involve comparison of the latter with 

any particular number.6 Still, there are situations in which exact judgments are 

needed, for example, to determine the lowest price at which to offer insurance or 

the highest price at which to buy a lottery ticket. So we shall agree to frame the 

ampliative inference problem in terms of exact probability estimates. How people 

arrive at such estimates nonetheless diverges from our ideal picture in at least four 

respects. 

First, it seems unlikely that estimates of needed probabilities are calculated 

from a distribution over atomic events. There are too many such events in 

situations of even modest complexity. Suppose, for example, that our problem 

concerns which children in a class of 20 will contract chicken-pox this week. 

Atomic events look like this: 

Jimmy will A Sally won’t A . 

and there are more than a million of them. Instead of creating entire dis- 

tributions, human ampliative reasoning should rather be seen as giving rise to 

selected probability judgments that need not bear on atomic events. In our 

dartboard example, the inference goes from (1) to the probability of non-atomic 

*For a more sanguine view of the relationship between normative and descriptive considerations, 
see Jaynes (1988). 

‘Similarly, Jeffrey (1992) conceives (idealized) human judgment as represented not by any specific 
distribution but rather by a class of them, embodying a range of probability attributions. He calls such 

classes “probasitions”. 
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A, without recourse to the four atoms underlying A. This inference still counts as 

“ampliative” inasmuch as the probability of A cannot be deduced from (1) via the 

probability calculus. 

Second, ampliative inference methods in the normative picture return dis- 

tributions that respect the laws of probability whereas the numbers produced by 

human reasoning are known to violate even the most elementary principles of 

chance. For example, since people cannot easily compute logical implication in 

the propositional calculus, they are likely to assign different probabilities to 

logically equivalent statements. As an illustration, let I and N be as follows: 

Sentence Letter 

The icecaps will melt before 2050 I 

New York will be submerged before 2050 N 

Then l(I-, N) and I A +V may be interpreted respectively as: 

Sentence Formula 
It’s false that if the icecaps melt before 2050 1(I+N) 

then New York will be submerged before 2050 

The icecaps will melt before the year 2050 but I/\lN 

New York will not be submerged before 2050 

Due to the intensional character of natural language “if”, the latter pair of 

sentences strike most people as embodying different claims, so a person who 

starts with the attribution of Pr(l(Z + N)) = .4 might assign a different probabili- 

ty to N than someone who starts from Pr(l A TN) = .4. In fact, the two starting 

points are equivalent within propositional logic, and impose the same interval of 

[.0,.6] on Pr(iV). To bring our ideal picture more in line with actual reasoning, a 

psychological model of deductive inference is necessary, and candidates are not 

lacking (e.g., Clement and Falmagne, 1986; Evans, 1982; Johnson-Laird, 1989; 

Rips, 1988, 1990). However, even an accurate “psycho-logic” might not suffice to 

predict ampliative inferences starting from equivalent but distinct statements. 

Experimental results reported in Shafir and Tversky (1992) and Tversky and 

Shafir (1992) for example, suggest that different choices sometimes result from no 

information at all versus “information” of the form A v 1A. Yet even psycho- 

logic would be expected to recognize the vacuity of the latter statement. 

Third, the probabilities people attribute to new statements may well be 

incompatible with those included in the given information. Attributing .4 to 

A A B, for example, is incompatible with Pr(B) = .3 since the former probability 

is bounded above by the latter. For astutely chosen interpretations of A and B, 

just this kind of incoherency has been experimentally demonstrated, as is well 

known (see Sham, Smith, & Osherson, 1990; Tversky & Kahneman, 1983; Wells, 
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1985). In any case, incompatibility with the starting point of an inference is 

virtually inevitable given the inability to compute a distribution over atoms and to 

calculate logical equivalence in the propositional calculus. This is another sense in 

which human reasoning does not constitute an ampliative inference method as 

defined in section 2; the conjectures produced by such methods are invariably 

consistent with the starting information. 

Fourth, the information that triggers ampliative reasoning cannot be guaran- 

teed to form a “constraint” in the sense discussed earlier. For example, it might 

be known that a certain coin has a 9 : 1 bias, but unknown whether the bias is for 

heads or for tails. In this case, the space of distributions compatible with our 

information is not convex, since averaging a 9 : 1 distribution for heads with one 

for tails leads to a fair coin.’ Yet a person might be willing to reason ampliatively 

about such a situation, choosing, for example, the unbiased distribution as a 

representation of his uncertainty. More fundamentally, the kind of information 

supporting human reasoning is often neither clearly compatible nor clearly 

incompatible with a given distribution of probability. For example, there is 

evidence that probability judgment arises from operations over featural decompo- 

sition of objects and properties, as in the representation of tiger along the 

dimensions SIZE, FEROCITY, etc. (see Osherson, Smith, Meyers, Shafir, & Stob, in 

press; Osherson, Stern, Wilkie, Stob, 81 Smith, 1991). This kind of featural 

information does not rule in or rule out any particular distribution. 

The psychology of ampliative inference is thus likely to be considerably more 

complicated than suggested by the abstract picture of section 2. However, 

inasmuch as current understanding of ampliative reasoning is close to nil, it may 

be useful to examine an influential solution to the idealized problem; perhaps a 

suitably degraded version of the solution can serve as a rough psychological 

model. Let us therefore limit attention in what follows to situations like that of 

Fig. 1. In such cases the given information is simple and represents a constraint in 

the sense of (2)a. Let us assume as well that the outcome of ampliative inference 

is a distribution over an appropriate set of atomic events. 

4. Ampliative inference via maximum entropy 

The most widely used ampliative inference method is known as maxent. We 

first describe the method, and then explain why it is so popular (for more 

‘In this example there are two atoms: H (for heads) and T (for not heads, or tails). There are just 

two distributions P, ,P,, consistent with the stated information about bias, namely: {PI(H) = .l; 

P,(T) = .9} and {Pz(Hj = .9; P*(T) = .l}. N ow consider the distribution Q defined as {Q(H) = .5 x 
P,(H) + .5 X P,(H); Q(T) = .5 x PI(T) + .5 x P,(T)}. Then, Q(H) = Q(T) = .5, so Q is not con- 
sistent with the given information about bias. Therefore, this information does not give rise to a 
convex class of distributions. 
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complete discussion, see Klir & Folger, 1988; Rosenkrantz, 1977; Williams, 

1980). 

Each distribution Pr over a set J& of atomic events gives rise to a number, 

called the “entropy” of the distribution, defined as -CuE,d Pr(a) log,(Pr(a)). For 

example, the entropy of the distribution 9 of (3) is the negative of the sum of the 

following numbers: 

%(A A B A C) x log,(%(A A B A C)) (=.05 x log,(.O5) or -.216) 

%?(lA A B A C) x log,(%(lA A B A C)) (=.05 x log,(.O5) or -.216) 

+?(lA A 1B A 1C) X log,(??(lA A 1B A 1C)) (=.35 X log2(.35) Or -.530) 

yielding an entropy of 2.521 for 3. Recall that 9 is consistent with the 

information provided in (1). If we choose a different distribution consistent with 

(l), we get a different entropy. For example, the following distribution %’ is also 

consistent with (1) but its entropy is 2.529, slightly higher than for %. 

(4) +?‘(A A B A C) = .0568 %‘(lA A B A C) = .0568 

%‘(A A 1B A c) = .0568 %?‘(lA A 1B A C) = .2364 

+?‘(A A B A 1C) = .056X %?‘(lA A B A lc) = .0364 

%‘(A A 1B A 1C) = .1364 3’(lA A 1B A 1C) = .3636 

More generally, suppose that some constraint c is given, and consider the class 

of all distributions over the relevant atomic events that are consistent with c. It 

can be shown that there is a unique member of this class with maximum entropy.X 

It is this distribution that maxent chooses for purposes of ampliative inference. 

For example, if c is the constraint shown in (l), then maxent(c) turns out to be the 

guess 3’ of (4).” By adding the first column of (4) it may be seen that maxent 
assigns probability .3068 to event A. Such then is the counsel of maxent in the 

face of our original problem. If information about the dartboard is limited to (l), 

then maxent chooses a distribution that judges wagers on A to be favorable only if 

they offer odds better than roughly 7 : 3. 

Let us now address the obvious question: from among the potentially infinite 

class of distributions that agree with a constraint c, why should the distribution of 

maximum entropy be singled out to govern our bets? In response, we should not 

expect a proof that maxent optimizes the accuracy of our judgment in some 

objective sense. For, if c represents the totality of current information, then any 

‘Uniqueness follows from the strict convexity of the entropy function. See Vavasis (1991. Theorem 
1.3). 

‘We do not attempt to summarize here the manner in which maximum entropy distributions are 
calculated; see Chcescman (1983) and Goldman and Rivest (198X). 
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distribution consistent with c might be in force. Rather, arguments in favor of 

maxent take a subtler form, illustrated by the following (see Ross, 1988, for fuller 

discussion). 

In the face of constraint c, a sensible guess should be consistent with c but 

otherwise be as non-committal as possible about the chance of each atomic event. 

To be maximally non-committal, a distribution should leave us in the greatest 

doubt about which atom is the true one. The absence of doubt implies the 

absence of surprise, so we are led to seek a numerical measure of the surprise 

associated with a given atom. Within information theory, surprise is assumed to 

depend only on probability; more likely events are mapped to smaller numbers, 

and certain events are assigned 0. The measure of surprise is also assumed to be 

continuous and additive in the sense that the surprise associated with probability 

pq is the sum of the surprises associated with p and q. These assumptions lead to 

an insightful analysis of coding and information transmission (see, for example, 

McEliece, 1977). Additionally, they imply the following theorem: 

(5) Let S be any function that satisfies the preceding assumptions about 

surprise. Then S(p) = -C log,p for an arbitrary positive integer C. 

For simplicity, C is set equal to 1 (nothing hinges on this choice, which simply 

expresses surprise in units of binary digits). Hence, the surprise of an atom cx with 

probability PY((Y) is -log,Pr(a) and the expected surprise associated with 

a distribution over a set Se of atoms is C,,& - log,(Pr(a))Pr(a). Expected sur- 

prise is a measure of the extent to which a distribution is non-committal about 

which atom is true. However, C,,,. - log,(Pr(a))Pr(a) is equivalent to 

-c at.vz Pr(a) log,(Pr(a)), the entropy of Pr. Hence, the unique distribution that 

represents the information in c but is otherwise maximally non-committal is the 

one with maximum entropy that satisfies c. And this is the distribution proposed 

by maxent. 
Other arguments have been offered in support of muxent (e.g., Klir & Folger, 

1988; Mathai & Rathie, 1975; Rissanen, 1983; Shore & Johnson, 1980), but we 

agree with Hunter (1986) that the foregoing remains the most persuasive. It may 

also be pointed out that the entropy coefficient arises in a wide set of laws 

governing statistical models, information transmission, and computational com- 

plexity (see Cover & Thomas, 1991). That it should also govern ampliative 

reasoning is rendered more plausible thereby. 

Finally, we note that entropy calculations play a central role in several expert 

systems for reasoning under uncertainty (e.g., Herskovits & Cooper, 1991; Wen, 

1988). Maximum entropy distributions have also been claimed to fill an essential 

gap in Bayesian statistics by providing motivated prior distributions from which 

probability updating can begin (for discussion, see Earman, 1992; Jaynes, 1968; 

Rissanen, 1983). 
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5. Maxent as a descriptive model 

On the descriptive level, maxent can be evaluated from both a narrow and 

wide point of view. Narrowly, it may be asked whether the numbers returned by 

maxent resemble those arising in spontaneous reasoning. Widely, we may ask 

whether the justifications offered for maxent provide clues to the psychology of 

ampliative inference. 

5.1. Narrow evaluation 

In view of the remarks in section 3 above, maxent can be evaluated narrowly 

only by idealizing human reasoning and considering simple cases like (1). In the 

case of (1) we saw that maxent proposes the distribution given in (4). In contrast, 

an informal survey of opinion suggests that (3) in section 2 is a more appealing 

conjecture. For one thing, the numbers in (3) are simpler, and appear less 

arbitrary than the highly precise probabilities in (4). For another, the prob- 

abilities in (3) are “flatter” than those in (4), inasmuch as the extremes of the 

former (namely, .05,.35) fit inside the extremes of the latter (.0364,.3636). Other 

things equal, less extreme probabilities seem preferable to more extreme ones as 

a representation of our uncertainty about the distribution in force. 

The distribution (3) arises from an alternative to maxent that may be called 

mindev (for “minimal deviation”). Ampliative reasoning according to mindev 
proceeds by “anchoring and adjustment”, a strategy that characterizes human 

reasoning in several domains (see Tversky & Kahneman, 1974; Tversky, Sattath, 

& Slavic, 1988). A plausible anchor in the present context is the uniform 

distribution, assigning the same probability to each atom, and the adjustment 

sought stays as close as possible to the anchor while retaining consistency with the 

given information. To make this idea precise, a measure of proximity to the 

uniform distribution is needed. One possibility is to calculate proximity using 

“relative entropy” (Kullback, 1968), but this leads back to maxent. In contrast, 

mindev relies on sums of squares: given a constraint c in a situation with n atoms 

(Y, mindev seeks the distribution Pr consistent with c that minimizes C, [(l/n) - 

Pr(cr)12. Just as with maxent, it can be shown that this latter distribution exists and 

is unique. 

For simple ampliative inference problems involving random variables - as in 

(2)~ - it has been shown that human judgment often favors the counsel of mindev 
over that of maxent (see Myers & Osherson, 1992). Although this result coincides 

with the putative preference for (3) over (4), it would be hasty to conclude that 

mindev is also descriptively superior to maxent for ampliative inference involving 

probability constraints of form (2)a. To see this, suppose that constraint (1) is 

altered slightly to: 
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(6) Sentence Symbol Probability 

The dart lands in A or B (or both) AvB .35 

The dart lands in B or C (or both) BvC .5 

The dart lands in A or C (or both) AvC .65 

Applied to (6), mindev yields a distribution in which the atomic event 

1A A B A 1C has zero chance. In contrast, maxent assigns this atom positive 

probability, as it tends to do whenever permitted by the given information. In this 

respect, maxent has greater psychological fidelity than mindev since the in- 

formation in (6) is unlikely to lead to the conclusion that some region of Fig. 1 

has null area. 

Another advantage for maxent is revealed by the following alternative to 

constraint (1): 

(7) Sentence Symbol Probability 

The dart lands in A A .3 

The dart lands in B B .4 

The dart lands in C C .5 

Faced with this information, it is tempting to assume the independence of A, 
B, and C, and calculate the probability of A A B A C to be Pr(A)Pr(B)Pr(C), the 

probability of 1A A B A C to be (1 - Pr(A))Pr(B)Pr(C), etc. In fact, maxent 
yields exactly this distribution, whereas mindev assigns, for example, .05 to 

A A B A C rather than the .06 derived from independence. In this respect, 

maxent’s advice is likely to seem more natural than that of mindev for many 

people. 

Is there a method descriptively superior to both maxent and mindev? Is 

anchoring and adjustment the key to ampliative reasoning? If so, is the uniform 

distribution the relevant anchor? Considerable research will no doubt be required 

to see more clearly into these matters. 

5.2. Wide evaluation 

A plausible hypothesis about ampliative reasoning is that it proceeds via the 

construction of “mental models” of the environment, in roughly the sense of 

Johnson-Laird (1983, 1989). According to this idea the reasoner enriches the 

given information about probabilities into a more complete account of the 

unknown situation, that is, into a mental model. He or she then reads off new 

probabilities by contemplating the model’s emergent properties. In the dart 

example, the first step would consist in arranging the three areas A, B, C to 

satisfy (1). The probabilities of remaining statements could then be estimated 
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from the definite figure in mind. This example suggests the use of visual imagery 

in constructing and contemplating a mental dartboard. In general, however, the 

mental model strategy need have no visual component, just as probabilistic 

“scenarios” (Kahneman & Tversky, 1982a) need not. 

For such an account of ampliative reasoning to be predictive, more needs to be 

said about which model people tend to choose as a representation of initial 

information; there are, after all, many ways to draw the eight regions of Fig. 1 

consistently with (1). and they lead to divergent inferences. The justification for 

maxent discussed in section 4 is suggestive in this connection. Just as the 

maximum entropy distribution is as non-committal as possible while agreeing with 

the given constraint, so the chosen mental model would be expected to incorpo- 

rate the weakest possible assumptions necessary to represent the information 

available at the outset.‘O Within this perspective, the problem is how to measure 

the psychological strength or weakness of assumptions. It is tempting to follow 

information theory by defining an assumption to be strong if the person in 

question finds it to be a priori unlikely. Such a definition, however, threatens to 

bring us full circle, since the estimation of such likeliness can be counted on to 

involve some form of ampliative reasoning. 

Whatever progress is made on which model people choose to represent 

available information, there remains the question of how new probabilities are 

extracted from it. Again, maxent might provide an initial clue to this process. 

Proponents of maxent conceive it as generalizing the “principle of insufficient 

reason” usually credited to Laplace. The principle enjoins us to attribute equal 

probabilities to alternative states of nature that cannot be distinguished in terms 

of their chance of occurring (see Howson & Urbach, 1989, Ch. 3). Jaynes (1968) 

presents an argument according to which the maxent distribution can be mathe- 

matically realized in more ways than any other distribution satisfying a given 

constraint. Assuming all these distributions to be of equal likelihood, the maxent 
one is favored by insufficient reason (see Brillouin, 1962; Jaynes, 1979; Rosen- 

krantz, 1977, for fuller treatment of this argument; see Dias & Shimony, 1981; 

Neapolitan, 1990, Section 2.6, for a critique). 

People might well reason in this way when extracting probabilities from a 

mental model. In the case of Fig. 1, for example, it might be assumed that each 

point has the same chance of receiving the dart. Probabilities can then be 

computed from areas. In the general case, application of insufficient reason 

requires that the model be analyzed as a set of mutually exclusive and exhaustive 

possibilities among which the person can find no grounds for favoring one over 

another. The difficulty thus arises that there are competing analyses possible for 

any given model, as illustrated by the numerous examples to which Laplace’s 

principle gave rise.” A simple example is as follows (taken from Howson 8r 

‘“A similar idea underlies many artificial systems of reasoning (e.g., Lifschitz, 1985; McCarthy, 
1986; Reiter, 1978). 

“A famous case is “Bertrand’s paradox”, described in Ross (1988. pp. 161-162). 
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Urbach, 1989, Section 3.b.3). Suppose you are drawing balls from an urn that 

contains white, red, and blue balls in unknown proportions. What is the 

probability of drawing white (W)? If we distinguish only the cases of colored 

versus uncolored balls, then insufficient reason yields B(W) = l/2, since nothing 

in the problem gives us reason to attribute different probabilities to the two cases. 

However, if we distinguish among red, blue, and uncolored balls, then insufficient 

reason yields Pr(W) = l/3. Of course, it is non-trivial to formulate principles that 

predict which analysis a person will choose from among a class of competing 

possibilities. 

6. A descriptive hypothesis 

The present section offers a hypothesis about the psychology of ampliative 

inference. Attention is limited to situations in which there is no ambiguity about 

the set of atoms likely to be recognized by the subject (as in the dartboard of Fig. 

1). These atoms will be denoted by ~4 = {(Y, . . , a,}. Let 5 be the distribution 

over ti that is the target of ampliative inference. Let D be the class of all 

distributions over these atoms, and let U be the uniform distribution assigning l/n 

to each. We suppose that subjects reason with the help of an implicit measure of 

the separation between two distributions. This measure is embodied by a function 

that maps pairs of distributions drawn from D into the set IN of real numbers, 

where greater numbers represent greater disparity. We further assume that faced 

with given probabilistic information, subjects employ an “anchor and adjustment” 

heuristic, attempting to find the distribution that respects the constraint but is 

otherwise as close as possible to U. The form of our model is thus as follows: 

(8) Model form: For every person S there is a separation measure m: D X 

D--t 8 such that given starting information I and distributions P,Q E D 

both of which are consistent with I, S prefers P to Q as a guess about Y 

if and only if m(P, U) < m(Q, U). Moreover, m has the special prop- 

erties . . . 

Now it is clear that any method of ampliative inference can be attributed to 

subjects via a hypothesis of form (8) unless its ellipsis can be filled with non-trivial 

properties of m. So we focus on these properties by stating a genuine model of 

ampliative reasoning: 

(9) Model: For every person S, the separation measure m that satisfies (8) 

has the special properties: 

a. For all P,Q ED, m(P,Q) 2 0. Moreover, m(P,Q) = 0 if and only if 

P= Q (i.e., if and only if P and Q are the same distribution). 
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b. Suppose that P’ ED results from P E D by permuting the prob- 

abilities that P assigns to two atoms, and suppose that Q’ E D results 

from Q E D by permuting the probabilities that Q assigns to the same 

two atoms.12 Then m(P’,Q’) = m(P,Q). 
c. Let P,Q,P’,Q’ ED be such that for all atoms (Y,, IP(cq) - Q(q)1 s 

[P’(q) - Q’(q)l. Then m(P,Q) cm(P’,Q’). If, in addition, IP(a,) - 

Q(aj>I < IP'(aj) - Q'<aj>I f or some atom a;, then m(P,Q) < m(P’,Q’). 

Condition (b) claims that m is insensitive to which atoms get which prob- 

abilities; all that matters are the numbers assigned. Condition (c) may be 

paraphrased as follows. Suppose that for every atom, P and Q are as close to 

each other as are P’ and Q’. Then m assigns no greater separation to the pair P,Q 
than to the pair P’,Q’. Such would seem to be true of people’s intuitive judgment 

about the difference between two distributions. 

A variety of other conditions may be added to the list, for example, 

guaranteeing that for every constraint c there is a unique distribution consistent 

with c that minimizes m(P,U). Each condition yields predictions about subjects’ 

intuitions of distribution-separation, and thus indirectly about ampliative reason- 

ing. The list provided by (9) is minimal, but nonetheless open to challenge. We 

note that it is consistent with both maxent and mindev as descriptive models. This 

is easy to see in the case of mindev. Suppose that m(P,Q) is defined as 

&(l __?I) @‘(a;) - Qtd2. Th en according to (8), if P,Q are both consistent with 

the given information I, P is preferred to Q just in case P is closer than Q to U in 

the squared-deviation sense. 

To illustrate a prediction of the model, suppose that our dartboard is limited to 

two regions, A,B. If the starting information is Pr(B) = .6 then (8) and (9)~ imply 

a preference for the distribution 

compared to 

%(A A B) = .1 %(lA A B) = .5 9?(A A 1B) = .2 %(lA A 1B) = .2 

We suspect that this prediction is correct for almost everyone.13 

“For example, in the case of four atoms, P might assign .2. .3, .25, .2.5 to CY,, az, (Ye, LY,, whereas 

P’ assigns them .3, .2, .25, .25. 
“It has been suggested to us that the prediction might fail if the propositions A and B are highly 

meaningful for the subjeci. In this case, the uniform distribution may not turn out to be a natural 
anchor and property (9)b might also prove too strong. To stimulate discussion, we stick with our 
prediction. 
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7. Some normative questions about ampliative inference 

The preceding discussion has attempted to clarify the descriptive problem of 

ampliative inference by comparing it to a widely held normative theory based on 

maximizing entropy. We must not leave the impression, however, that the 

normative theory of ampliative inference is free of controversy and paradox. In 

this section we describe two difficulties that arise at the normative level. The first 

is relevant to muxent and other methods of a similar cast. The second is more 

general in nature. Both are inspired by discussion in Seidenfeld (1986). 

7.1. The equivocal character of maxent (and of similar methods, like mindev) 

Not all the arguments advanced in favor of maxent are convincing (as observed 

by Hunter, 1986; Skyrms, 1985), and the fundamental idea of being maximally 

non-committal raises unanswered questions. Recall from section 4 that this latter 

idea was linked to the surprise connected with an event, and that surprise was 

measured by -logg, where p is the probability of the event in question. To 

justify this measure it was assumed, among other things, that the surprise 

associated with probability pq is the sum of the surprises associated with p and q. 
The additivity of surprise, however, is not an evident truth (like the postulates of 

geometry), and to our knowledge no serious argument has been offered in its 

favor.14 

In addition to doubt about the arguments supporting maxent, questions have 

arisen about the inferences it endorses (see Dias & Shimony, 1981; Hunter, 1989; 

Seidenfeld, 1986, for extensive discussion). One troublesome feature of maxent is 

illustrated by the dartboard of Fig. 2.‘” Suppose that the information in hand is 

just: 

(IO) Sentence Symbol Probability 

The dart lands in A A .3 

The dart lands in B B .8 

Figure 2. Two regions A and B drawn on a plane surface. The regions intersect in A A B. 

“0n the descriptive, psychological level, one may even question whether surprise is a function of 

probability; see Kahneman and Tversky (1982b). 
“The present example is a simpler version of a case discussed by Seidenfeld (1986). 
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Then, maxent applied to (10) yields the following guess 99 about the target 

distribution over the four atoms: 

(11) %(A A B) = .24 C!?(lA A B) = .56 

%(A A 1B) = .06 9?(lA A 1B) = .14 

Now suppose that the very same dartboard is conceived slightly differently. In 

addition to the regions A and B, we imagine a new region R within their 

intersection. A may thus be represented as the union of R and A - R, and B as 

the union of R and B - R. Labeling A - R and B - R by P and Q, respectively, 

we arrive at the dartboard of Fig. 3. Since A is just P U R and B is just Q U R, the 

information in (10) is equivalent to: 

(12) Sentence Symbol Probability 

The dart lands in P or R PvR .3 

The dart lands in Q or R Q v R .8 

It is clear that (10) and (12) express identical information about the board. 

Indeed, the construal of A and B as unions of other events is an arbitrary 

decision, and R might well have no area (which would equate A with P and B 

with Q). Consequently, a rational estimate of the probability of the dart landing 

in A A B should match the estimate for (P v R) A (Q v R). Otherwise, our 

ampliative inference method is sensitive to inessential features of the given 

information (namely, to the manner of its expression), and is ambiguous about 

which probabilities it proposes. In fact, maxent applied to (12) yields the 

following guess 97’ about the target distribution over the eight atoms generated by 

f’,Q,R. 

(13) %‘(P A Q A R) = .0564 %‘(lP A Q A R) = .0564 

%‘(P A 1Q A R) = .0564 %‘(+’ A 1Q AR) = .0564 

%‘(P A Q A 1R) = .0564 %‘(lP A Q A 1R) = .5190 

g’(P A 1Q A 1R) = .ol%l %‘(lP A 1Q A 1R) = .18())0 

Adding the probabilities of the five relevant atoms shows that 9’((P v R) A 

(Q v R)) = .282 which is, unfortunately, different from W(A A B). Exactly the 

Figure 3. The same two regions as in Fig. 2. hut with A conceived us P v R und R as Q v R 
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same kind of difficulty arises for mindev and for many alternative doctrines of 

ampliative inference.16 

The maxent doctrine can be revised to avoid undue sensitivity to the manner in 

which information is expressed. The trick is to effect a prior partition of atoms on 

the basis of their compatibility with different subsets of the given information. For 

details of the construction we refer the reader to Nilsson (1986, Section 4), which 

discusses essentially this new version of maxent. The new version yields the same 

distribution as before when applied to (10). When applied to (12), however, it 

assigns .24 to (P v R) A (Q v I?), corresponding to the value given A A B. 

7.2. Ampliative inference versus conditionalization 

We turn now to an argument against the acceptibility of any form of ampliative 

reasoning. Consider again the dartboard of Fig. 2 and the initial information in 

(10). We apply our favorite method M of ampliative inference to (10) and arrive 

at some particular distribution 3. To be a sensible guess, 9 must be consistent 

with the information in (lo), so we have the following requirement on M: 

(14) First condition of adequacy on M: The result of applying M to (10) must 

be a distribution 3 such that ??(A) = .3 and 3(B) = .8. 

Now suppose that we receive new information. compatible with (10) but not 

implied by it, namely: 

(15) Sentence Symbol Probability 
The dart lands in A or in B AvB 1.0 

How do we revise our initial guess ?? in light of (15)? There are two 

possibilities: 

We start over again, and apply M to the total information now available, 

namely, to (15) conjoined with (10). The result will be some new distribution 

3,. 
We conditionalize 9 on the information in (15). The result will be the new 

distribution %$, v LI defined by the stipulation that for all events, X,+$,,,(X) = 

%(X/A v B). 

The second strategy is justified by theorems that underline the risks of updating 

a distribution by any other means than conditionalization, when new information 

IhThe root of the problem already appears in the attempt to represent total ignorance via the 

uniform distribution. Equivocation over the atoms in play leads to difficulties similar to those outlined 

above. See Shafer (1976, Ch. 1) for discussion. 
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like (15) becomes available (for discussion, see Jeffrey, 1992, Ch. 5; Skyrms, 

1987). If we are to have confidence in M, we should therefore expect that 

3, = %“B. Otherwise, M is irrational either in selecting 3 in the face of (lo), or 

in selecting 3, in the face of (10) and (15); for, if both guesses were rational but 

31 f %“B, then it would be rational to update % by some other means than 

conditionalization. Of course, it is also expected that Y1 remain consistent with 

(lo), since (10) is still part of the available information. We thus have the 

following requirement on M. 

(16) Second condition of adequacy on M: The result of applying M to the 

conjunction of (10) and (15) must be a distribution 3, with the following 

properties: 

a. 3, is the conditionalization of 9 with respect to A v B, where ‘$3 is the 

result of applying M to (10). 

b. %,(A) = .3 and 9,(B) = .8. 

Now suppose that instead of receiving (15) as a supplement to (lo), we received: 

(17) Sentence Symbol Probability 

The dart lands outside A or inside B 1AvB 1 .o 

In such a case we must also revise our initial guess 9, this time to take account 

of (17). The same alternatives arise as before, namely, applying M to (17) plus 

(10) or conditionalizing 3 on 1A v B. And, as before, the correctness of our 

method requires that the two strategies yield the same answer. We thus have the 

following additional requirement on M: 

(18) Third condition of adequacy on M: The result of applying M to the 

conjunction of (10) and (17) must be a distribution ‘$ with the following 

properties: 

a. YZ is the conditionalization of % with respect to 1A v B, where 9 is 

the result of applying M to (10). 

b. $(A) = .3 and g2(B) = .8. 

The difficulty is that no method whatsoever of ampliative inference respects all 

three conditions (14), (16), and (18). The Appendix provides a simple proof of 

this fact. It seems therefore to follow that ampliative reasoning must either 

contradict probabilistic information already in hand or else respond to new 
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information by offering successive distributions that are not related by condition- 

ing; and both alternatives are unappealing.” 

8. Concluding remarks 

The goal of the present paper has been to clarify some of the issues 

surrounding ampliative reasoning. We have seen that complex questions arise on 

both the descriptive and normative levels. As in other areas of cognitive science 

involving reasoning, judgment, and choice, we suspect that joint investigation 

from both perspectives has the greatest chance of yielding insights of value to 

psychologists and epistemologists alike. 
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Appendix 

Let M be any ampliative inference method, and suppose that M satisfies (14) 

and (16). We will show that M does not satisfy (18). Faced with the information 

in (lo), let xAR, xAR, xAB? XAB be the probabilities that M assigns to A A B, 

1A A B, A A 1B and 1A A lB, respectively. By (14), we have: 

(19) a. xAB +xAR = .3 

b. x,, + xae = .8 

By (16)a, M applied to (10) and (15) is the conditionalization of the previous 

distribution on the fact that xA B = 0.0. By (16)b, it thus follows that: 

(20) a. x,~x~x:~~Bx = .3 
AR 

b. 
‘AH + ‘AL3 

XAB+XAB+XAB =” 

It is easy to verify that (19) and (20) imply: 

(21) a. xAB=, 1 

b. xAB = .7 

c. x*B=. 2 

d. x AB =. 0 
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We now produce a contradiction from the assumption that M also satisfies 

(18). By (18)a, A4 applied to (10) and (17) is the conditionalization of the initial 

distribution on the fact that xAB = 0.0. By (18)b, it thus follows that: 

b. 
‘A, +‘AL7 

xAL7 +‘AB +XAB 

= .8 

However, both equalities in (22) are contradicted by (21) 


