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A linear basis indexed by standard bitableaux is given for quantum linear semi-
groups. As a consequence, one can easily derive a standard basis for quantum linear
groups. From a combinatorial point of view, quantum linear semigroups are identi-
cal with what results from quantization of the letterplace algebra Rota and
co-workers, Adv. Math. 27 (1978), 63-92. The standard basis theorem proved here
can be viewed as a quantum straightening formula. The present paper is written in
the language of supersymmetric algebra. In doing so, we actually have obtained a
standard basis for Manin’s quantum linear supersemigroups. € 1993 Academic Press, Inc.

Contents

Introduction

1. Supersymmetric quantum algebras.
2. Quantum letter—place algebras.
3. Left and right quantum biproducis.
4. Quantum straighiening formula.

INTRODUCTION

The theory of the letterplace algebra and its supersymmetric extensions
has been systematically developed in [DKR] and [GRS] by Rota and his
co-workers. Algebraically, the supersymmetric letterplace algebra extends
the notion of the coordinate ring of matrices. The idea of letters and places
gives the letterplace algebra a wide range of applicability, as well as a
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rich combinatorial structure. For this and other reasons, the letterplace
algebra has found many applications, and has proved to be an effective
algebraic-combinatorial tool in disparate areas, such as classical invariant
theory [GRS, KR, Hu], representation theory [ BPT, BT], resolutions of
algebras and modules [AR, BR], projective geometry [RS, Wh], rigidity
theory [WW1], etc.

In the present paper we use Manin’s approach to quantum groups and
develop a quantum analogue of the supersymmetric letterplace algebra.

Such quantized letterplace algebra coincides with Manin’s quantum
linear supersemigroup £, [Ma2] when the set of letters is the same as the
set of places. Generalizing Manin’s definition of quantum general linear
supergroups, we define the notion of supersymmetric quantum letterplace
algebra Super[L|P],. Our definition consists in requiring that the left
co-representation 7, from the quantum letter algebra Super[L], to
Super{L|P],® Super[ P], as well as the right co-representation 7, from
the quantum place algebra Super[P], to Super[L],® Super[L|P],
should be algebra homomorphisms.

The quantum letterplace algebra thus defined is significantly different
than the ordinary letterplace algebra. For example, “left” and “right”
quantum minors turn out to be different, although only by a scalar mul-
tiple; only left-sided (resp. right-sided) Laplace expansion holds for left
(resp. right) quantum minors (Proposition 4). We have found so far no
clear relation between products of (left or right) quantum minors in dif-
ferent orders. Worst of all, the exchange identity [GRS, Proposition 10],
which is one of the crucial identities in the theory of the ordinary letter-
place algebra, no longer holds in the quantum case, and has to be replaced
by a weaker identity (Lemma 10), which can be viewed as a quantum
generalization of Garnir relations (called Young symmetry relations by
Taft and Towber [TT]. Despite these difficuities, we show that the quan-
tum letterplace algebra still possesses an amazing combinatorial structure:
standard quantum left (resp. right) bitableaux form a linear basis of the
quantum letterplace algebra (Theorem 9), which reduces to the well-
known straightening formula in the classical case. However, an explicit
algorithm of expressing a quantum (left or right) bitableau as a linear
combination of standard ones becomes more mysterious in the quantum
setup, because the lack of commutativity of the algebra.

The paper is organized as follows. In Sections 1 and 2, we define
supersymmetric quantum algebra Super[ L], and supersymmetric quantum
letterplace algebra Super[L{P],. Some basic properties and explicit
relations holding in the algebra Super[L|P], are given. In Section 3, we
define left and right quantum minors and prove the corresponding Laplace
expansions. Relationships between left and right quantum minors are
studied. In Section4, we state and prove the quantum straightening
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formula for Super[L|P], by first deriving a weaker form of the exchange
identity.

We would like to thank Naihuan Jing for several enlightening conversa-
tions on the subject.

1. SUPERSYMMETRIC QUANTUM ALGEBRAS

Throughout this paper K is a fixed field with any characteristic, and
algebras are super algebras, namely, Z,-graded associative K-algebras with
identity 1. To recall the concepts, an algebra A4 is called Z,-graded if
A=A4,® A4,, where both 4, and A4, are K-subvector spaces of 4 such that
AgAdg+ A A, <A, and A4, + 4,4, A,. Any non-zero element a in 4,
has Z,-degree 0 modulo 2; we write ja| =0. Any non-zero element @ in 4,
has Z,-degree 1 modulo 2; we write |a] =1. For convenience, we omit
“modulo 2 if no confusion occurs. Any element in 4, or 4, is called
Z,-homogeneous. In the language of super algebras, we say non-zero
elements in A, are posirive and non-zero elements in A4, are negative. The
identity element 1 has Z,-degree 0 and hence it is positive. All algebra
homomorphisms are Z,-graded, namely, the homomorphisms preserve the
Z,-degrees (or the signs) of elements. Given two Z,-graded algebras R
and S, the usual tensor product of the algebras R and S is also a
Z,-graded algebra. However, the multiplication of the usual tensor
product of algebras is not used in this paper. Instead, we use the multi-
plication with sign as follows. Let R® S be the tensor product of R and
S as K-vector spaces. The muitiplication in the super tensor product R® S
is defined by

(a®@b) (c@d)=(—1)1"""Nge® bd

for all Z,-homogencous elements «, c€ R and b, de S. (The multiplication
of the usual tensor product of two algebras has the above form without the
sign (—1)!"“) The super tensor product R®S is an associative
Z,-graded algebra. For all homogeneous elements @ and b, the Z,-degree
la®b| of a®b 1s |a| +|b| modulo 2. From now on, ® means the super
tensor product.

Let L=L* UL bea Z,-graded set with a linear order <. We have
la|=0 for all ae L* and {¢| =1 for all ae L~. Elements in L* are called
positive variables and elements in L = negative variables, and sometimes we
indicate a positive variable by «* and a negative variable by a~. The
tensor algebra Tens[ L], generated by the elements of L, is a Z,-graded
algebra with |a,---a,|=|a,| + --- 4+ |a,| modulo 2; any Z,-graded algebra
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is a homomorphic image of a tensor algebra Tens[L] with a suitable
choice of L* and L~. Let g be a non-zero element in K. The supersym-
metric quantum algebra generated by L (with a linear order <), denoted by
Super[L],, is defined to be the quotient associative algebra of Tens[L ]
subject to the following relations:

(1) ba={—1)"" g 'ah whenever a <b,
(iif) a a =0
Remark. The supersymmetric quantum algebra Super[L],- coincides
with “quantum superspace” A, (with all g, = ¢) defined in [Ma2, p. 136].

Let Mon{L) be the set of words, namely, monomials on L. Given a word
ue Mon(L), let length(u) be the number of variables that occur in u, and
let |u} be the Z,-degree of u, which is the number of negative variables that
occur in ¥ modulo 2. For two words w, v € Mon(L), one can easily check
that

Jaaf J ) i(ur) + i{eu)

uw={—1) q v,
where i(u) denotes the number of inversions in the word v, namely,
if u=a,a,---a,, then i(u) is the number of pairs (qa,, a;) such that a;>a;
and /<.

The coproduct 4, which is a linear (but not algebraic) operator from
Super[L], to the vector space Super[L],® Super[L],, is defined such

that for any monomial e Mon(L),

(i) Au=20 if some negative variable occurs more than once inu;
otherwise

(i) du=3%,, . k.. v®w, where the sum ranges over the ordered par-
titions (v, w) of « as multisets and each coefficient &, satisfies

u=k,ow (1)
in Super[L],, where k. € K. For example, if ™ <b~ and ¢* <d™, then
da b " =1®a b +a @b —gb " ®a +a b @1,
Actetd  =1®c e d T+ @ctdT +qgd T ®etd”
+cr et ®AdT T+ geTd T @cT+cfeTdT@L

For convenience, we use the Sweedler notation Adu=3%  u,,®u, to
denote the sum Y, ., &k, v@w. It can be verified directly that 4 is well
defined and satisfies the coassociativity law

(id®A4)- 4 =(4®id)- 4
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as linear maps from Super[L], to Super[L]f;‘”. This map is denoted as
4. In general, we define the linear map 4 by setting

A(kl:(id®AIk H)JA’

which is a linear operator from Super[ L], to Super[L]2“*" such that

Au: Z ku|u:-<-1(k¢[“l®u'_‘® "'®uk+l

(te up cttf o)

=Y U, @u:s® - Quy,,, inSweedler notation,
3

where the first sum ranges over the ordered partitions (v, u,, ..., 4, , ;) of u as
multisets, and each coefficient &, .., , satisfies u=4Kk, . ., w21y,
in Super[L],.

Remark. The coproduct defined here cannot be made into an algebra
homomorphism, since

Matat ) =1®a a" +a"Rat +ata* ®1

instead of having 2¢* ®a™ in the middle term.

2. QUANTUM LETTER -PLACE ALGEBRAS

Let L=L" UL and P=P* uP be two linearly ordered Z,-graded
finite sets. Elements in L are called letters and elements in P places. In this
case we call Super{ L], (resp. Super[ P] ) supersymmetric quantum letter
(resp. place) algebra. Let Tens[ L) P] denote the tensor algebra generated
by all Z,-graded elements (a{x), where ae L, e P, and |(a¢|a)| = la] + |«
modulo 2. Given a monomial s = («|2)(b|f})---(c|y), the Z,-degree of m
is given by

lml = lal +|af + {6+l + -« + el + 7] (mod 2).

To keep notations simple, we usually write {(a|a)| as |ax].

Let Tens[L|P]® Super[P], and Super[L],® Tens[L|P] denote the
super tensor products. Then the multiplications of these two algebras
satisfy

(m@@u)-(m @u')=(— """ mm' @ up',
(u@m) (' @m')=(— 1" wy @ mm’,
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where m, m’, u, u’, and u, u’ are Z,-homogeneous elements in Tens[L|P],
Super[ P],, and Super[L],, respectively. Next, we define the maps

T,: L-Tens[L|P]®Super[F],,
T,:P—>Super[L], ®Tens[L|P]

by
Tia)= ), (al0)®a,
xre P
T(x)= Y a®(ala).
e L

The supersymmetric quantum letter-place algebra, denoted by Super[L|P],,
is defined to be the quotient Z,-graded associative K-algebra of
Tens[ L] P] with minimal relations such that the map 7, can be extended
to an algebra homomorphism

T, :Super[L],— Super[L|P],® Super[P],
and the map 7, can be extended to an algebra homomorphism
T, :Super[ P],— Super[ L], ® Super{L| P],.

The algebra homomorphisms T, and T, are called a left co-representation
and a right co-representation of Super[L|P], respectively. For con-
venience, we keep the same notation for an element in Tens{ L|P] and its
image in Super[L|P], under the canonical map.

PROPOSITION 1. The supersymmetric quantum letterplace algebra Super-
[L|P], is the quotient algebra of Tens[L|P] subject to the following
relations:

(R1) (a” [a®)*=0

(R2) (a*|a")’=0

(R3) (a | Bia ™ |o)=(—1)" g(a™ {a)a " |B) for all x<
(R4) (a*[BNa*[a)= (=1 g=Ya* [a)(a™ |B) for all u<f
(RS) (bla~Nala" )= (-1 glala " )bla ") for all a<b
(R6) (blat(ajat)y=(—1)*1g=Yagla* Wblat) for all a<b
(R7) (blaNalB)= (1)1 (a| B)(b|a) for all a<b, a < B

(R8) (b|)Nala) — (=1l gla)blf) = (—1)PPlarislisl
(g ' —gla|P)Ybla) for all a<b, x < p.
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One observes that the sign rules in the above relations agree with
the sign rules in the supersymmetric letterplace algebra defined in
[GRS].

Proof. The maps T, and T, are algebra homomorphisms if and only if
they satisfy the following relations:

(T Ty(b) Tha)=(— 1) g~ 1T (a) T\(b) for all a< b
(T2) T(a")T(a"}=0

(T3) T.(B) T.(a)=(—1)!A1g=1T(a) T,(P) for all a < f
(T4) T a )Tz )=0

By definition,

T(a) T\(b)

(z (ala)®rx)<2 (blﬂ)®ﬂ)

xe P Bef

]

(= 1) ala)(b| )@ af
x B

S (= 1) (qla)(b| B) + (— 1) A8 g~ Ya| B)(bla)) @ «f
<

]

4

+ Y, (ala)bla)®@a?

xe P

and

T,(2) TAP)
_ ELa@(am))(b;b@(bm))
=5 (=11 ab a1

= T ab®((= 1 (@lab1f) (1) P g bl )
a<b

+ ), @®lalx)alB).

ae L’
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One can check directly that

(T2) < (R1) + (R3),
(T4) <> (R2) + (RS),
(T1) + (T3) <> (R4) + (R6) + (R7) + (R8). 1]

We may re-write the relations (R1) to (R6) in the following way (and
keep (R7) and (R8)):

(R1-2) (ala)*=0, if |ax| =1
(R3-4) (a|BMaja)=(—1)blazl g= 14 5)(g| ) for all x < B
(R5-6) (bla)a|x)= (-1l =141 0)(b|a) for all a<b.

Remarks. (1) 1If L= P then Super[L|L],- coincides with the “quan-
tum linear super semi-group” E, (with all ¢, = ¢) defined in [Ma2, p. 136].
As a consequence, if L=L" =P =P~ then Super[L|L], is isomorphic to
the quantum semi-group M, (gq); if L=L" =P=P*, then Super[L|L], is
isomorphic to the quantum semi-group M, (g ~').

(2) The parameter g can be replaced by q which 1s a set
{qaw=F+qlVa<bin L} {g,,= tq|Va<pin P}, where the signs of ¢,
and g¢,, are independent. Then we define the quantum letter algebra
Super[L], to be generated by elements of L subject to the following
relations:

(i) ba=(—1)"" g-tab, where a<b in L,
(1) a a =0.

Similarly the quantum place algebra Super[ P], and the quantum letter-
place algebra Super[L{P], are defined. All results which hold for
Super[L| P}, in this paper hold for Super[ L] P],.

(3) The base field K can be replaced by any commutative ring with
a sub-field containing ¢, and everything still works.

(4) Given any element xe P*, the map a— (a|2) defines a unique
injective algebra homomorphism from Super[L], to Super[L|P],. Given
any element ae L, the map o — (a{x) defines a unique injective algebra
homomorphism from Super[P], to Super[L|P],. Consequently, if
P=P* ={a}, then Super[L], =Super[L|P]; if L=L"*={a}, then
Super[ P}, = Super[L|P],.

By the definition of Super{L|P],, the relations (R1} to (R8) are
necessary to make the maps T, and 7, be algebra homomorphisms. Hence
the algebra Super[L|P]J, has a universal property in the following sense.
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Let R be a Z,-graded algebra containing a set of Z,-homogeneous
elements {x, ., |aelL, xe P} with either x,,, =0 or |x,,,|=lax|, and
suppose there are two algebra homomorphisms (similar to 7, and T,),

7| :Super[L], - R®Super[ P],
a— Z x(um)®cx

x€e P
and
7! :Super[P],— Super[L],®R

& - Z a®xtalzl'

el

As proved in Proposition 1, the relations (R1) to (R8) hold for the set of
elements {x,,, | a€ L, xe P} (by replacing (a|a) by x,,,, in the relations).
Hence there is a unique algebra homomorphism, say F, from Super[L|P],
to R defined by F{((a|a}))= x(,,,, Consequently, 7| =(F®id) T, and T; =
(id®F)T,.

Let L,, L,, L, be three linearly ordered Z,-graded finite sets. By defini-
tion, we have the following canonical algebra homomorphisms:

T\ :Super[L,],— Super{L,|L,],® Super{L,],,

T.*:Super[L,],— Super[L,],® Super[L,|L,],.

T :Super[L,],— Super{L, | L,],® Super[L,],,

T} :Super[L,],— Super[L,],®Super[L,|L;],,

T :Super[L,],—Super[L,|L,],® Super[L;],,

T!":Super[L;],— Super{L,], ®Super[L,|L;],.
Hence the map (id®T7)T,” is an algebra homomorphism from
Super[L,], to Super[L,|L,],®Super[L,|L;],®Super[L;],, and the
map (TF®id) TP is an algebra homomorphism from Super[L,],
to Super[L,],®Super[L,|L,],®Super[L,|L;],. By the universal
property of Super[L,}L;],, there is an algebra homomorphism A from

Super[L,|L,], to Super[L,|L,],®Super[L,|L;], which is uniquely
defined by

A((a laz))= Y. (a,}a,)®(aslas)

aye L;

for all a;elL, and a,elL,. By the universal property, we have
(dRTH TP = (A®id) TP and (TP®Id)TE = (id®4) T, The
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algebra homomorphism A can be regarded as a generalization of 7, and
T,.. For example, if (L,, L., Ly)=(L,P,a”), then A=T,; and if
(Ly, Ly, Ly)=(a*, L, P), then A =T,.

Suppose now that L, =L,=L,=L, namely, these sets have the same
positive and negative variables and the same linear order. We use ietters
a, b, c,... for the elements of L. The maps 7, and T, are algebra
homomorphisms from Super[L], to Super{L|L],® Super[L], and from
Super[L], to Super[L],®Super(L|L],, respectively. Hence T :=
d®T)) T, is an algebra homomorphism from Super[L], to
Super[L|L], ®Super[L{L],®Super[L],, and T :=(T,®id) T, is an
algebra homomorphism from Super[L], to Super[L], & Super[L|L], &
Super{ L{L],. By definition, we have

THa)= ), (alh)®(hlc)®c

bh.cel
and

THcl= ). a®(alb)®(blc).

ahe L

Let x ., denote the element 3 ,., (alb)® (b|c). It is clear that |x | =
lac|] and {x,,la,cel} is a set of eclements of the algebra
Super[L|L],®Super[L|L],. Hence there is a unique algebra
homomorphism A from Super{L|L],6 to Super[L|L], & Super[L|L],
defined by

Al(ale)) =X 0= (alh)® (blc).

b

PrROPOSITION 2 [Ma2, Theorem 3.2] The algebra Super[L|L], is a
super bialgebra with comultiplication A defined above and counit ¢ defined by
e(aleN=46,., where 6, =0 if a#c and 6,,=1. (A super bialgebra is a
Z.-graded algebra satisfving all axioms of bialgebra, where the super tensor
product is used instead of the usual tensor product.)

Proof. 1t is proved above that A is an algebra homomorphism, and it
1s obvious that ¢ can be extended to an algebra homomorphism. It remains
to prove

(i) coassociativity (A ®id)A=(id® A4)1;
{(i1) counit property (e®id)A=id=(ild®¢)A.

Let us check. The algebra Super[ L| L], is generated by the elements (a}b)
for all a, be L. The maps (A®id) A, (id® A)A, (¢®id) A4, and (id®e)A
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are all algebra homomorphisms. Hence we only need to look at the evalua-
tion of these maps on elements (a|b), where a,be L:

(A®id) A((a]h)) ®id)(2(ald>®(d|h)>=z(a}c)®(c‘1d)®(d|b),

od

(id®A)A((alb))=(id®A)< (ale)® clh) Y (ale)® (c| ) ® (d]):

¢ o.d

(1‘ (b_ alb

(e®id) Aalbh)=(e®id) <Z(u|c {c|b) > Zom(( Iby=(alb),

(i(/@l))/‘(d[b)Z(id@éJ)( (alc)® (c|b)

Hence (i) and (ii) hold. J

Remark. There are some studies of E_ =Super[L[L],: in [Ma2,
Sect. 4.3]. The algebra E, is not a Hopf super algebra, but the natural Hopf
super algebra associated to E, is the Hopf envelope H, of E, (see [Ma2]).

The supersymmetric quantum letter—place algebra Super[L|P], is a
continuous deformation of the supersymmetric letterplace Super[L|P]
with the parameterq. If g=1, then Super[L|P],=Super[L]|P]. Let
Mon(L|P) be the set of words on the set of letterplace pairs
{{al2).ae L, xe P}. Order the set of letterplace pairs lexicographically:

(ala)y<(b|f)ifand only ifeithera<bora=hand a < f.

A word or monomial (a,]%,)---(a, | «,) s called ordered or non-decreasing
if (a2 < (@, o, ) foralli=1, ., n—1.

It is known that the set of all ordered monomials (including 1), in which
no letterplace pair (ala) with Z,-degree one appears more than once, in
Mon(L|P) forms a K-linear basis of Super[L|P]. This statement is also
true for Super[ L|P], for all non-zero g K.

THEOREM 3. The set of ordered monomials, in which no letterplace pair
(ala) with Z,-degree one appears more than once, in Mon(L|P) is a
K-linear basis of Super[ L|P], for all non-zero ge K.

Remark. One proof of this theorem is to use Bergman’s Diamond
Lemma [Be], which was our original proof. The proof given below relies
on Manin’s result on E,,.

Proof. 1 g=1, —1, then Super[L|P], is a supersymmetric letterplace
algebra and it is easy to verify that the theorem holds. Now we assume that
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q# 1, — 1. By using relations (R1) to (R8), any monomial in Super[L|P],
can be reduced to (and then it is equal to} a linear combination of ordered
monomials. Hence the set of non-zero ordered monomials spans
Super[L|P],. It remains to prove that non-zero ordered monomials in
Super[L|P], are linearly independent. If L= P, then Super{L|L], =
E, .. By [Ma2, Theorem3.12], all non-zero ordered monomials in
Super[L|L], are linearly independent. In general, let us take J=LuU P
with the extended order a<x for all e L and x€ P. There is a natural
embedding map f from Super[L|P], to Super[J|J], by sending (a|%) to
(@|a). Since non-zero ordered monomials in Super[J|J], are linearly inde-
pendent and f is an injection, all non-zero monomials in Super{L|P], are
linearly independent too. Therefore the set of ordered monomials is a
K-linear basis of Super[L|P],. 1|

3. LErFT AND RIGHT SUPERSYMMETRIC QUANTUM MINORS

In this section we use the left and the right co-representations T, and T}
to define left and right supersymmetric quantum minors. Given a word
u=a;a;---a,eMon(L), let Nu)=%,_,la]la]l. One can see that N(u)
depends only on the content of u, which is the multiset of the elements that
occur inu; in fact, N(u)=1{(I—1), where [ is the number of negative
variables in . Given a word p e Mon(P), N(y}) is defined in the same way.
We define bilinear maps

(}); : Super[L],- ® Super[ P], — Super[L| P],,
(+1*) :Super[L],® Super{ P],-1 — Super[L| P],

such that
Tr(/'l)zz(—I)N(")u®(u|ﬂ)rs (2)
Ty(u)=3 (=DM (ulp),®p, (3)

where the sum in (2) ranges over the words u in Mon(L) of different
contents. In other words, we take one and only one word u from each
collection of words of the same content to form the summands in (2). For
example, the sum in (2) can range over all ordered non-zero monomials
a,a,---a, in Mon(L), where a, €a,< --- €a,. The sum in (3) is similarly
defined. If no negative variabie occurs more than once in u or in y, then
(u] ), and (u]u), are determined by (2) and (3}); otherwise, we set

(sl p), = (u|u) =0 (4)
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For example, let L={a*,b*} and P={a", B*} with a* <b* and
at < f*. Then

T (af)=T.(x) T.(f)
=(a®(aloa)+b@(hla)) - (a®(a|f)+ bR (H[f))
=a’@(ala)alf)+ab® (ala)(b|f)

+ba® (bla)a|B)+b>® (h|a)(b]| )
=a*® (al|a)a|f)+ab® [(ala)(b|f)

+q bl al P+ @ (bla)b]f)
=a’®(ala)a|f)+ba® [(b|x)(a|f)

+glala)b|B)] + b (bla)b|p).

Therefore, by definition,
(aa | af). = (alx)(a|f),
(bblaf). = (bla)b|f),
(ab|af), = (ala)b|BY+q '(Bla)alp),
(balaf), = (blaMalp) + glala)(b] ).
We check next that (-{-), is well defined. This amounts to showing that
() pfav)e = (= 1) P g™ Yu) pafv), if o < B, (5)
(ubav| p), = (= 1) " g(uaby | p), if a < b. (6)
Relation (5) follows from the fact
T (upav)= (=)™ g ' T (uapv),

since 7, is a well-defined algebra homomorphism from Super(P], to
Super[ L], ® Super[ L] P],. Relation (6) is a consequence of the identity

(— 1)) ybhay @ (ubav | ), = (— 1)) yabp ® (uabv | p),,
which is actually part of the definition of the map (-|-),. Similarly, (-]-),
is also well defined. We call (u|u), and (u|u), a right and a left supersym-

metric quantum minor, respectively. Obviously,

(ujp),=(ulp)=0  iflength(u) #length(p).
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Remark. 1t is clear that T (uax~ a~ v) =0 implies (u|pux "o~ v), =0 for all
ue Mon(L). However, we are not able to derive (ua " a "v|u), =0 by using
the same idea; instead, we have to set (ua"a v|u),=0.

PROPOSITION 4.  Supersymmetric quantum  minors have the Laplace
exXpansions

(u],uv)r=z (_' 1 )“L{ fez (u(l'iﬂ)r : (u(l)lv)ra (7)

(uolph =2 (=" Gl pg ) (ol oy, (8)

n

where Au=73, u,@u,, and Ap=3, 1, ® py, are the coproducts defined
on Super[L],-1 and Super[ P}, respectively.

Remark. Laplace expansions for classical quantum groups GL,(g) are
known (see for example [ TT, PW]). The following proof is similar to the
proof in the classical quantum case.

Proof. Let us prove (7). We may assume that no negative letter occurs

in u more than once. By definition,

T(w)=Y (— D)™ u® (u|pv),, and

w

Tuv)=T, (1) T,(v)
=<Z (=DM r®(vlu)r> -(Z (—1)yen n-®(w{v),)
— z Z (_ 1 )M.-H NOwdy+ ol bwl + [p) [wl WK (l’lll)(“‘ | V),

where each of the sums 3 ,, 3 and ", ranges over the words in Mon(L)
of different contents. Comparing the coefficients of u # 0, we obtain

(=D (ulv), = F (=DM N v (e v)
{row)

where the sum ranges over the ordered partitions of u as multisets and &,,,
satisfies the relation u=k, vw in Super[L],-:, which is equivalent to
u=k'vwin Super[L],. The final step follows immediately from

N@)=N(@w)+ Nw)+ o) 1wl |}
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Remark. For right or left supersymmetric quantum minors, there are
only one-sided Laplace expansions. In other words, a formula like

(v |p), X( VRO (4 | e (0] eay)e

cannot be made to work, whether du=3, u;,® p;y, is considered as a
coproduct defined on Super[P], or on Super[P],-s. For example,
{aTa® {atf*), = (alx)a|p), it equals neither (a|x)a|B)+ g(a|B)alx)
nor (alx)a|B)+q (a|B)alx).

As a corollary, we have obtained explicit formulas for quantum minors:

PROPOSITION 5. Let a;e L and o, P, i=1,2, .., n. We have

(alal"'an ] ala'_’"'cxn)r

=) (= 1)pF el Pk (g)a,, | o )(ag, | o) - (a,, | @) )

ifaya,---a,#0 in Super[L] -, and
(ayay---a, o o a,)

Z (_ 1 )ZI)J Ja \1””‘ la(q)(al I aa’;)(al I aaz) o (an I aa") (10)

f+2

ifoyay---a,#0 in Super[ P],-1, where the sums in (9) and (10) range over
the permutations of the multisets a,a, ---a, and a,a, - -- 2, respectively, and
where the coefficients k_(q) and 1 (gq) are defined so that

a\ay---a,=kAq)a,a,--a, in Super[ L], -

oy, =1(g) o, %, 2ty in Super[ P],-1.

Remark. 1If a,a,---a, and o2, ---2, have repetitions of negative
variables, we may take k_(q) and /.(g) to be zero for every g, in order to
make identities (9) and (10) still work.

ExampLes. 1. Ifa; <ay < -+ <a,, then
(ayay -a, Joyoy o),

=(=1)""02 % (—q) ", L a i a,, | 22) - (a,, | %),
ce S,
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where i(c) denotes the number of inversions in the permutation g. This is
the ordinary (right) quantum determinant.

2. Mot <a <. <af, then

(afaf -al afaf cafy=3Y g " a|aNa,la,,) - (a,ln,,).

oSy

This is the ordinary (left) quantum permanent.

3. fa}<al <.+ <a, then

(afaf --ay layag ar )= 3 g “a, [a)ag | oy)- - (ag, | @)
o0& S,

4. Ifa <b™, then
(a b lava") =(a" la* )b lat)—q (b  la* e la™)
=(l+q Ya jat )b a™).
On the other hand (b~ |aVa* = (a  la* )b~ |a™). Hence
(@ b jata*) =(1+g ?)Na b |a*Ta™).
5. We have
(ata* |atat),=(aTa jatat y=(@t [aT W at|aT).

Let L,, L, and L, be three Z,-graded linearly ordered finite sets. For
any u,€ Mon(L)), let (u, | u;); (resp. (u,| u;),) denote the corresponding left
(resp. right) quantum misor in Super[L;|{L,},. Let 4 be the map
from Super[L, | L;], to Super[L, | L,],® Super[L, | L,], defined in Sec-

tion 2. The following property can be regarded as a generalization of (2)
and (3).

PropPosiTION 6. For any u, € Mon(L,) and uye Mon(L,),
A((uy Jus)) =3 (=DM () | un), @ (w2 | uy)y,

where the sum ranges over the words u, on Mon(L,) of different contents.
The same statement is true for right quantum minors.

647 102°2-7
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Proof. By the definition of A4 (see Section 2), we have (i(d® T) T} =
(A®id) T!*. Let us apply this to a monomial u, e Mon(L,):

(d®TP) TV u,) = (id® T?) (Z(~1>N‘"“ (uy | uzn@uz)

= Z {— 1)Vt M) (v | w2y ® (12 | u3) @ us,

u,

(A®id) T}S(”1)=(A®id) (Z (— DN (uy u3),®u3)
_Z 1)'\’(143 ((uy [ ush) ®us.

Hence A((u, | us))=3,, (=DM (L uy), @ (uz L ush. B

In general a left supersymmetric quantum minor is not equal to the
corresponding right one. However, they only differ a scalar multiple. Let us
fix some notations first. For a positive integer n, let

(nl,=1+q+q¢*+ - +q" ',
[ﬂ]q'z[ﬂ]q [n~1] [l]q,

n [n],!
[inln2"'nl]q [nqu [n" q' [ni]q!,

where n, +n, + --- +n,=n. From now on we assume that [n], ?éOfor all
n>0,lie., ¢ is not a root of unity except ¢ = 1. Let S be a multiset 1’”2"’ Y 1A
By [St, Proposition 1.3.17], the following identity holds

it 3
zf,zq [”1”2"'":’]:,’ (1

where the sum ranges over all permutations of the multiset S. For example,
let §$=1%2; then 112, 121, 211 are the three permutations of S. We have

2 3
1+q+q“=[21].
q

THEOREM 7. Let a,<a,< - - <a, and o), <o, < --- <a,. Given positive
integers n, Ny, Ny, .., By andm,, My, ., m, Such thatn=73 ,n,= 3, m,, we have

n
(afay---al | o' - o)
nyny-e-n

n
= :' (allnarzig .. n‘ l amld”h ”‘arr’l,)r'
My, -, Y,
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Proof. We may assume that no negative variable occurs more than
once in ajay ---a and af'oy? - i Write a'ay ---al* as b,b,--- b, and
afta? .ot as BBy B, where by <b, < --- <b,and B < B, < - <8,
Consider the expression

E= Z Z (—1 )i(a‘)+ Hr7) + 3> |bol 182 q*i(o)\i(r)
g T

x (bal ! :Brl)(baz ﬂn)" : (ba,, , ﬁr,.)s

where o and 1 range over all permutations of the multisets b b, ---b, and
B1Bs---B,, respectively, and where i(c ) and i(t~) denote the number
of inversions involving two negative variables in b, b, ---b, and
B.B.,- B, By Proposition 5, we have

b, | BiBae Bk

E=Y (~1)" =", b,,
=z q"li(a'(hle"'bn | BBy B

n

= "y n Ny | ML P12 mey .

= (al’azz...ax (;x]laz "-O(,")],
n‘nz"‘ns (I‘Z

the last step above follows from (11). Similarly,

n
Ez[ } (ataf---af | aftafs - al),
mlmz"'m, q—?.

and the result follows. |

COROLLARY 8. Ifa,<a,< ---<a,and o, <a,< --- <ua,, then
(ayay---a, a2y, =(a,a,-a, o o5---a,). |
To simplify the notations, we define
()= [n,1,-2! [nad,2t - [n,],-2!

for any word u in Mon(L) of content a{'a%?---a’. Then Theorem 6 can be
stated as

1 1
1 r 12
—-(u)(ulu) (“)(uiu) (12)

for all non-decreasing words ue Mon(L) and u e Mon(P). This is the form
to be used in the next section.
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4. QUANTUM STRAIGHTENING FORMULA

In this section we prove the straightening formula for the super-
symmetric quantum letterplace algebra Super[L|P],. First recall some
basic concepts. A shape i=(2,, 4,, .., 4;) is a finite sequence of positive
integers A, 2 4,> --- = ,. We usually visualize a shape by an array of
squares. For example,

L

(31, D=1 |
L

A tableau of shape 4 on L (resp. P) is obtained by filling the squares of 4
with letters of L (resp. places of P). The content of a tableau T, denoted by
cont(T), is the multiset of the elements appeared in 7. The row sequence of
a tableau is the word obtained by lining up its rows one after another from
top to bottom. A tableau on L or on P is called standard if

(1) all the rows and columns are non-decreasing,
(ii) no negative letter or place occurs more than once in any row,

(iii) no positive letter or place occurs more than once in any column.

Let
Uy Hy
Uy !
T=""- and T'= }_2
Uy Hi

be tableaux on L and on P of the same shape, where u; and y; are words
in Mon(L) and Mon(P), respectively. We define the left quantum bitableau
(T|T"), and the right quantum bitableau (T|T"),,

U |

(71T = 2 | P2 ] o= (= D=0 g gy G o (] ity
w | d,
Uy |

TITh, = 152 | = S (), e | o), (| )
Uy #.A» r
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In these notations, the Laplace expansions simply become

u
v r

(uiuv)r=Z<Z“’

(2)

and

(uvlu)l=Z(z

i

/-‘(n)
H2) 1’
where the signs in the original formuias (7) and (8) are hidden.

Given a quantum bitableau (T{7"), or (T|T"),, its shape is the com-
mon shape of T and T'; its content, denoted by cont(T|T"), is the union
of cont{T) and cont(TT), it is called standard if both T and T' are
standard tableaux. We are now ready to state the main theorem of this
paper, which is called the quantum straightening formula or the standard
basis theorem for Super{[L|P],. Again we assume that [n],#0 for all
n>0.

THEOREM 9 (Quantum Straightening Formula). Both standard right
bitableaux and standard left bitableaux form a linear basis of Super[L|P],.
Moreover, if

(T| T h=3 asgs(SIS"h,  age#0,

where each (S5, is standard, then (i) cont(S|S*), = cont(T| T"),, (ii) the
shape of (S|S"), is greater than or equal to the shape of (T\T"), in
lexicographic order, (iil) §f (S|S") and (T| T") have the same shape, then the
row sequence of S followed by the row sequence of ST is less than the row
sequence of T followed by the row sequence of T in lexicographic order. The
same statement is true for right bitableaux.

We prove the theorem for left bitableaux. The proof consists of two
parts:

(I} The set of left standard bitableaux spans Super[L|P], as a
vector space.

(IT) Left standard bitableaux are linearly independent.
Part (I) needs four lemmas below.

The first one serves a similar role to the exchange identity in [GRS,
Proposition 10], although it is in a weaker form.
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LemMa 10 (Exchange ldentity). Let u, v, w and u, v, @ be non-decreas-
ing words. Then
)
v/

1 uvy,
; () (v Ho ) (w) (l’mw

1 u My
= UV (13)
“Z_‘:' (o)) ove) (j) o
{(2) r
and
Z—————————l <” “"m)
Syl el\e | v e/,
1 Uy H
= U b v (14)
o ) Moy o) 2
V2 w/,

where Au=73 u\®@uga, and Ap=3 , u,,® uq, denote the coproducts
defined on Super{L], and Super{P] -, respectively, such that the
COMPORENLS Uy, Uz, [y Hy are non-decreasing words (with suitable
coefficients).

Remarks. (1) The exchange identity in [GRS, Proposition 10] for the
supersymmetric letterplace algebra (where ¢ =1) has the form

v <uv“, /“'m)
v \NPW Vi2)

This is a stronger identity than formula (13), and it is not true in general
for the quantum case. This is the reason that in the quantum straightening
formula stated in Theorem 9 one cannot use the dominance order for
shapes; instead, its linear extension, the lexicographic order for shapes, has
to be used.

DUy,

Vv

l‘) =(— 1)l il Z (—1 )leng[h(u(g,) (

U)W

(2) We have to require in this lemma that u.,, u,,, ctc. be non-
decreasing words; otherwise, the expressions in (13) and (14) are not well
defined.
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Proof. We prove (13) here. Its left-hand side equals

u Ky
y 1 Uiy | Bz
v gy (“)(Uu))(v(z))(“') Uiy | Vi
w v/
u By
- 1 Uiy | My
. () v\ vy | va)
w v/ o
u Ha
Z 1 (1)
= KoV
iy e () () ) 2)
Vi2) r

Remarks. (1) If L=L" and P=P, then we may assume that all
words in the exchange identity have no repetitions of negative variables.
In this case, formulas (13) and (14) become

uy U ! Ha
(1) _
) =312 | #ayva
Dy W | ¥
v (2) v N ,
i V2
and
u v Ho H
Z Y zz Ut v
vl v @¥ay
¥ 2) v .
L‘lz) w

(2) The identities in the definition of quantum flag scheme, namely,
quantum shape-algebra (see [TT, Sect. 3]) can be verified immediately for
Sy, i) =(1---s|i, ---i,) by using the above two identities. For
example, Young symmetry relations (the identity (3.2¢) [(TT, p. 207} is
equivalent to

illi )
i J/)

where | <r<s<y, i=i,.--i,,,and j=j,---j,_, are increasing words; and
the commutation relation (the identity (3.2d) [TT, p. 20]) is equivalent to

Veeer [N —ris=r) (1"'5 ﬁm)
(1---5 i>_( 9 Z 1 i)

R

o-x(,.,

.
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where 1<r<s, i=i;---i, and j=j,---j, are increasing words. Both
displayed identities are special cases of the quantum exchange identity.

The next three lemmas deal with the commutativity of quantum minors.
In general, it is far from true that (u«]u)(v]v)= (v]v)(u|u), where (u|p) and
{v|v) are either left or right quantum minors. One of the major difficulty
of the whole subject is that quantum minors, left or right, have very little
commutative relation which can be witnessed in the following lemmas.

LEMMA 11. Let ae L and « € P. Suppose that u and y are words on L and
P such that length(u) — length(u) = s = 0 and that every place that occurs in
u is less than a. Then the element (ala)(u|pue’), in Super[L|P], is a linear
combination of elements of the forms (v|v), (b|B) or (vb|vB), with the same
content as (a|o)(u|us’),, where be L, f€ P, and v and v are words on L and
P with the same length as u.

Proof. Assume u and y are non-decreasing words.

Case (i). s=0. Then length(x)=Ilength(x). We have
a a)
H/1

d
Hay ) +(__1)l@t“}4|qlengzh(“)<
M/ u

(aul/m)1=2<

_ (u) (a oz)
%(ﬂ(z)fx) u w)y

Since « does not occur in g, (u,%) = (i3,). By formula (14), the first term
above equals

)

af)

Case (ii). s=1 and |a|=1. By (13), we have
U [aug, ufx‘)
z’:‘(u“,)(um xT
1 a o
—g(#m\a‘)(“ u-a’)r'

Note that each term in the first sum above vanishes. Hence the result
follows from Theorem 7.

Hey > 4 (= 1)l It - tength) (a
H®/y u

u

,, (u(”)

(1) (aum

Uz

which proves case (i).

Hay )_i_(“l)'“]qle"gm(”)(a
Hayx™ o/ (1) u
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Case (iii). s21 and || =0. We have

My 4 g tensthin) a, «a
TS u | opx’/y

Mgy fength(u) a %
+ gihis . 15
ﬂ12)1\+1)r q (Ll ' uu,)] ( )

(aulua”');=z<a

M

_ (u) (a
% (iy'* ) \u

On the other hand, by (13),
¥y I (aum ;w“')
7 () \ ug, x /i

_ 1 (a
= (o) \u

u

- length{u}
Ky q a o
: T . . (16
#‘2':x5,1>r (‘UCXS '~]) (u ' ﬂa_s‘] ‘1), ( )

Ry )
,UQ,CX‘Y'CZ r

from (15) and (16), the element (a|x)(u|ua®), can be written as a linear
combination of elements of the desired forms. J

By eliminating the element

1 a
%(#(z)a“) (u

LemMa 12. Let ae L and o€ P. Suppose that u and u are words on L and
P of the same length. Then the element (a|x)(u|p), in Super[L| P], can be
written as a linear combination of elements of the forms (v|v), (b|B) or
(vh[vf) with the same content as (a{x)u|u),, where be L, € P, and v and
v are words on L and P with the same length as u.

Proof. Assume that u and u are non-decreasing words. Write u = va‘o,
520, where each place in v is less than 2 and each place in w is greater
than a. We prove the statement by using induction on length(w). The case
when length(w) =0 is settled in Lemma 11. If length(w) > 0, we have three
cases.

Case (i). s=0. Then y=vw and « does not appear in u. We have

o a v
(1
+2
v/ T Au | vpam/

@ ) (17)
1

Vo 3,

(au|vaw), = (— 1)/ 1 g~ tengthtv) (a

u

+ q\length(v)ml Z (_ 1 )lu)”,} Jvar! (a

«w

u
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By induction, the third term on the right-hand side above is a linear
combination of the desired elements. On the other hand, by (13),

5y 1 <aum vw)
g Ny |2/

1 a
il

+ qlenglhiv)

Vi
VW),

(__ 1 )rvr lewopnl (a

~ (v u

@ ) (18)

V(U(z) 1

By induction, each term on the second sum of the right-hand side above is
a linear combination of elements of the desired forms. Furthermore, by

eliminating the sum
Vi =Z (u) a Yo
vo,aw /)y T (vgaw)\u | vpom )/,

(.

from {17) and (18), case (i) 1s settled.
The discussions for case (i), s=1 and |x| =1, and case (iii), s> 1 and
ja| =0, are similar to their counterparts in the proof of Lemma 11. |

Applying Lemma 12, we obtain

LemMa 13. Let u, v be words on L and u,v be words on P such
that length(u)=length{u) and length(v)=length(v). Then the element
{ae) ey, (v]v), in Super[L|P], can be written as a linear combination of
elements of the forms (w|w), m, where length(w)=length(w) = length(r) =
length(v) and m is a monomial in Super[L{P],.

We now go back to prove Theorem 9.

Proof of Part {I). Given two tableaux S and T of the same content, we
say that S is less than 7, denoted by § < 7, if the shape of S is larger than
or equal to the shape of T in lexicographic order, and in the latter case the
row sequence of S is smaller than the row sequence of T in lexicographic
order. For example,

211>121>2113
321 321 2

Given bitableaux (7| 7T"), and (S|S"), of the same content, we say that
(T|T"), is less than (S|S"),, denoted (T|T"),<(S|S"),,if T<S, or T=S§
and 7" < S". The smallest bitableau of a given content is of the form (u|u),
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where u and u are non-decreasing words. Given an arbitrary bitableau
(T T"),, suppose any bitableau (E|E"),<(T|T"), is a linear combination
of the standard ones satisfving the conditions (i), (ii), (ii1) in Theorem 9.
We claim that so is (7| T"). The proof proceeds as follows. First we may
assume that the rows of T and T' are non-decreasing and no negative
letter or place appears more than once in a row. Suppose that T is not
standard. (Similar discussions will work if T7 is not standard.) Consider a

violation pair b,>a;, or b,=a,, |b]=|a,|=0, between two consecutive
rows of T:

biby---b;---b,

a\d,---a;---4a,, sZ= 1
Let

blhz"‘b;“'b,y

alaz...ai...a'

(1T = (11 T ) @i
1

Applying the exchange identity (13), by letting w=bb,---b,_,,
v=a,a,---ab;--b,w=a,, ,a,,, -a, we get

t bl"'bi ld(b,»)d(b,-+,)~~-0(})\) H) t
e AN O R NESE o3
1
=+(T,| T
| l)l,,z_;.(,“u))(H(zy)("m)("(zp)
byby---b; Ky
x{ay---ab;-- b, Hinyviy | (T2 T;)Iv (19)

dipq0d, Vi2) r

where each k,(g) is a suitable coeflicient and the sum of the left-hand side
ranges over permutations ¢ of the multiset {a,, .., a;, b, .., b;} such that
both a(a,)---o{a;) and o(b;,,) --o(b,) are non-decreasing words. Note
that (T| T") appears (with the coefficient k,4(g)) on the left-hand side once
and ony once when o=id. Since a,< - <a;<bh,< --- <b,, all other
terms on the left-hand side have smaller row sequence in lexicographic
order. Therefore, they can be expressed as linear combinations of standard
bitableaux satisfying the conditions in Theorem9. Now applying
Lemma 13 to the terms on the right-hand side of (19), by letting
u=hhb,---b,_ and v=a,---ab;---b,, they can be written as a linear

combination of elements of the form

(T, 1 T, (wlo), m,
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where length(w)=length(w)>length(v)=s5+1 and m is a monomial in
Super[L| P],. Therefore, by induction the right-hand side of (19) can be
written as a linear combination of standard bitableaux satisfying the condi-
tions in Theorem 9, since the shape of (7, | T1), (w|w), m (when put in a
bitableau form) is longer than the shape of (7| T"),. In conclusion, (T} T"),
is a linear combination of the standard bitableaux satisfying the conditions
(1), (11), (i11) in Theorem 9.

Proof of Part (I1). By Theorem 3 in Section2, Super[L|P], =
@D sr e Ve and Vi, is a K-subvector space spanned by the ordered
monomials

(ay o)ay] o) (ap ] o) (20)

of letter content M and place content M’'(M and M’ are multisets on L and
P of the same size), where (i) ¢, <a, < --- <aq,, (ii) if a,=a,, , for some i,
then o, <a,,,, and (iit) if a,=a,,, and a,=a,,, for somei then
[(a[x)| =0. On the other hand, it was just proved that standard left (resp.
right) quantum bitableaux (S|S"), (resp. (S|S"),) with cont(S)=M and
cont(S') = M’ form a spanning set of V,,,,. So in order to prove the linear
independence, it is sufficient to know that the cardinality of the set of
monomials in (20) is the same as the cardinality of the set of the pairs
(S, S'), where S, St are standard tableaux on L, P, respectively, with
cont{S)=M and cont(STy=M’'. This combinatorial result is proved
directly in [ BSV], where a supersymmetric Schensted correspondence was
constructed. |

REFERENCES

[AR] D. Anick anDp G.-C. Rora, Higher-order syzygies for the bracket algebra and for
the ring of coordinates of the Grassmannian, Proc. Nat. Acad. Sci. U.S.4 88 (1991).

[Be] G. BerGMaN, The Diamond Lemma for ring theory, Adv. Math. 29 (1978), 178-218.

[BPT] A. Brivi, A, PALARETI, AND A. TeoLis, Gordan—Capelli series in superalgebras, Proc.
Nat. Acad. Sci. U.S.4. 85 (1988), 1330-1333.

[BR] D. A. BucHBauM AND G.-C. RoTA, Projective resolutions of Weyl modules, Proc.
Nat. Acad. Sci. U.S.A., to appear.

[BSV] F. Bonerti, D. SENATO, AND A. VENEZIA, La corrispondenza di Robinson-Schensted
per la fourfold algebra, Boll. Un. Mat. ftal. B (7 2 (1988), 541-554.

[BT] A. Brint anDp A. Teowis, Capelli bitableaux and Z-forms of general linear Lie super-
algebras, Proc. Nat. Acad. Sci. U.S.A. 87 (1990), 56-60.

[DKR] J. DisarMENIEN, J. P. 8. KuNG, anD G.-C. Rora, Invariant theory, young
bitableaux, and combinatorics, Adv. Math. 27 (1978), 63-92.

{DRS] P. Dusier, G.-C. Rota, anNp J. A, STEIN, On the foundations of combinatorial
theory. [X. Combinatorial method in invariant theory, Stud. Appl. Math. 53 (1976),
185-216.



[GRS]

[HRS]

[Hu]
[KR]
{Mal]

[Ma2]

QUANTUM LINEAR GROUPS 229

F. D. Grossdans, G.-C. Rota, anp J. A. STEIN, “Invariant Theory and Super-
algebras,” Regional Conference Series in Mathematics, No. 69, 1985.

R. Huang, G.-C. RoTa, anp J. AL STEIN, “Supersymmetric algebra. supersymmetric
space, and invariant theory, Ann. Scuola Norm. Sup. (volume dedicated to L.
Radicati) (1989).

R. Huang, Invariants of sets of linear varieties, Proc. Nat. Acad. Sci. U.S.4. 88
(1990), 4557-4560.

J. P. S. KunG anND G.-C. Rota, The invariant theory of binary forms, Bull. Amer.
Math. Soc. 10 (1984), 27-85.

Yu. ManiN, “Quantum Groups and Non-commutative geometry,” Les publications
du Centre de Recherches Mathematiques, Université de Montreal, 1988.

Yu. ManiN, “Topics in Noncommutative Geometry,” Princeton Univ. Press,
Princeton, NJ, 1991

[NYM] M. Noumt, H. Yamapa, anp K. MimacHi, Finite dimensional representations of the

[PW]

[RS]

(5]

{TT]
{Wh]
[Wo]

[Ww]

quantum group GL,(#;C) and the zonal spherical functions on U, (n—1). U, (n),
Japanese J. of Math. 19 {1993), 31-80.

B. PARSHALL, AxD J. P. WaNG, “Quantum general linear groups,” Memoirs of the
Amer. Math, Soc., Nomber 439, 1991,

G.-C. Rota axp J. A. StEIN, Applications of Cayley algebras, in “Colioquio Inter-
nazionale sulle Teorie Comninatorice,” Tomo H, pp. 71-97, Accad. Naz. Lincei,
Rome, (1976). )

R. StaxLEY, “Enumerative Combinatorics,” Vol. 1, Wadsworth and Brooks;/Cole
Mathematics Series, 1986.

E. TAFr anp J. Towser, Quantum deformation of flag schemes and Grassmann
schemes. I. A g-deformation of the shape-algebra for GL(n), J. Algebra 142, 1-36
(1991).

N. L. WHITE, Multilinear Cayley factorization, J. Symbolic. Comput., to appear.

S. L. Woronowicz, Tannaka-Krein duality for compact matrix pseudogroups,
Twisted SU(N) groups, Invent. Math. 93 (1988), 35-76.

N. L. WHITE aAND W. WHITELY, The algebraic geometry of stresses in frameworks,
SIAM J. Algebraic Discrete Methods 4 (1983), 481-511.



