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Abstract-We propose a new mathematical formulation for the problem of optimal traffic assign- 
ment in dynamic networks with multiple origins and destinations. This problem is motivated by 
route guidance issues that arise in an Intelligent Vehicle-Highway Systems (IVHS) environment. 
We assume that the network is subject to known time-varying demands for travel between its 
origins and destinations during a given time horizon. The objective is to assign the vehicles to 
links over time so as to minimize the total travel time experienced by all the vehicles using the 
network. We model the traffic network over the time horizon as a discrete-time dynamical system. 
The system state at each time instant is defined in a way that, without loss of optimality, avoids 
complete microscopic detail by grouping vehicles into platoons irrespective of origin node and 
time of entry to network. Moreover, the formulation contains no explicit path enumeration. The 
state transition function can model link travel times by either impedance functions, link outflow 
functions, or by a combination of both. Two versions (with different boundary conditions) of the 
problem of optimal traffic assignment are studied in the context of this model. These optimization 
problems are optimal control problems for nonlinear discrete-time dynamical systems, and thus 
they are amenable to algorithmic solutions based on dynamic programming. The computational 
challenges associated with the exact solution of these problems are discussed and some heuristics 
are proposed. 

1. INTRODUCTION 

We consider the problem of dynamic traffic assignment in networks with multiple trip 
origins and destinations. Our approach is as follows. The traffic network, which may 
include both freeway corridors and surface streets, is modeled as a directed graph. The 
sets of origins and destinations are subsets of the set of vertices of the graph. The edges 
of the graph are links in the network. Some information is available about these links, in 
the form of impedance functions, which express link travel times in terms of the number 
of vehicles on the links, or link outflow functions, which constrain the departure or exit 
rate of vehicles from a link in terms of the number of vehicles on this link. We assume 
that the network is subject to known time-varying demands from vehicles for travel 
between their origins and destinations during a given finite time horizon (e.g. a period of 
a few hours). The objective is to assign the vehicles to links over time in order to minimize 
the total travel time experienced by all the vehicles using the network. Thus the resulting 
assignment will be system-optimal. We are dealing with a dynamic, as opposed to a 
static, problem because the demand is dynamic and optimal routes assigned to vehicles 
from their origins to their destinations depend on the entire set of demands over the 
whole time horizon considered. 

Our motivation for studying this problem comes from route guidance issues that 
arise in an Intelligent Vehicle-Highway Systems (IVHS) environment (see Saxton, 1991). 
In IVHS, it is desired to perform anticipatory route guidance, i.e. to route the vehicles on 
the network on the basis of the future travel times they will experience on the links they 
will be traveling. However, these future travel times depend on the routing decisions 
made for other vehicles traveling on the network, and, thus, they have to be forecasted 
using a combination of historical and real-time information (see, e.g. Kaufman, et al., 
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1990; Kaufman and Smith, 1993; and Wunderlich, 1990). Our objective is not to address 
directly this real-time forecasting/assignment problem where the demand is not known a 
priori, and the decisions may be affected by the occurrence of incidents and other unpre- 
dictable events. By making the simplifying assumption that the demand, although dy- 
namic, is known beforehand, and by considering a fixed time horizon (with no incidents 
occurring), we obtain an optimization problem that may be solved completely, at least in 
principle. It is our thesis that the solution of the dynamic traffic assignment problem 
considered in this paper, as well as the properties of this solution, will provide consider- 
able insight into the problem of real-time anticipatory route guidance in IVHS. This 
thesis is the primary motivation of the work that follows. 

We model the traffic network over the time horizon as a discrete-time dynamical 
system. At each time instant, the system state consists of all platoons, each of which 
represents all vehicles on a certain link with the same destination and the same earliest 
possible time of departing the link. This state definition avoids complete microscopic 
detail by grouping vehicles into platoons irrespective of origin node and time of entry to 
network, yet it conforms to the requirement that the state should summarize all relevant 
past behavior so as to contain sufficient information for the determination of the future 
behavior of the system. Also, since this formulation is based on links, it contains no path 
enumeration. We provide a general form for the state transition function giving the 
possible states at time t + 1 as a function of the state at time t and of the feasible 
assignment or routing decisions for platoons that exit a link or join the network in the 
time interval (t,t + 11. Sp:cific forms of the state transition function can model link 
travel times by either impedance functions or link outflow functions. Further, the two 
can be combined in a way that represents interaction between links due to recurring 
congestion and capacity reductions, in addition to single link impedances. 

Overall, the optimization problem for traffic assignment becomes one of optimal 
control for a nonlinear integer-valued discrete-time dynamical system. The number of 
control variables (i.e. the number of routing decisions that have to be made) is bounded 
by the product of (a) the number of links, (b) the number of destinations, and (c) the 
time horizon considered. As formulated, the optimization problem is amenable to an 
algorithmic solution based on dynamic programming. Hence, Dijkstra’s algorithm can be 
employed to determine the system-optimal routing decisions in the context of a forward 
dynamic programming search over the state space. Other search techniques (optimal or 
heuristic) could also be employed. In fact, our model has been developed in the hope of 
providing a compact yet detailed mathematical representation, to which methods in areas 
such as combinatorial optimization or mixed integer programming may be applied. 

Our presentation is organized as follows. We compare our approach with related 
work on dynamic traffic assignment in Section 2. The dynamical system model is pre- 
sented in Section 3, and two versions (with different boundary conditions) of the resulting 
optimal control problem are formulated in Section 4. This section also presents forward 
and backward dynamic programming recursions for solving the problem. The forward 
dynamic programming recursion is applied in Section 5 to a simple triangle network. 
Section 6 discusses important extensions of the model of Section 3 concerning back- 
ground traffic, blocking controls, link outflow functions and the combination of imped- 
ance and link outflow functions. Issues of computational complexity and search heuristics 
are discussed in Section 7, while Section 8 concludes the paper. 

2. COMPARISON WITH OTHER WORK 

Merchant and Nemhauser (1978) formulated a mathematical program for system- 
optimal dynamic traffic assignment in a network with multiple origins and a single desti- 
nation. They assumed that all links are uncapacitated and that in each time interval the 
number of vehicles departing a link is a function (nonlinear in general) only of the volume 
on that link. Therefore, congestion caused by blocking of one link by another congested 
link is not modeled. Carey (1987) reformulated this model as a convex program by 
assuming the link departure function to be a maximum outflow instead of an actual 
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outflow, hence constraining by nonlinear inequality instead of equality. Thus, vehicles 
may be held back to benefit the system-optimality criterion, but not due to congestion on 
other links since the model remains uncapacitated. Departure functions can be included 
in the dynamical system model presented in this paper (see Sections 6.3 and 6.4), and 
combination with impedance functions for link travel times will prevent unreasonably 
short link travel times that might otherwise occur with short time intervals At. 

In the last few years, there has been renewed interest in the problem of optimal 
traffic assignment; see for instance the special issue of Transportation Research: B, edited 
by Gartner and Improta (1990). We now compare our approach with some of the recent 
work. 

Papageorgiou et al. (1990) have studied the general requirements of dynamic models 
based on standard state space methods. Our approach is different from theirs in several 
respects. A major difference is that their model is macroscopic and continuous in nature, 
employing traffic volumes, traffic densities and rates of traffic volumes, whereas our 
model is microscopic in the sense that it tracks explicitly platoons of vehicles on links. 
Another difference is that the model of Papageorgiou et al. requires the specification of 
dynamical equations (that will be part of the complete state space model) to model the 
propagation of composition rates along links, where these rates represent the proportion 
of vehicles on a link flowing to a particular destination. Instead, we explicitly calculate 
and record in the state the exit time of a vehicle from its current link using a combination 
of impedance and link outflow functions. 

Friesz et al. (1989), Wie et al. (1990), and Ran et al. (1993) have also approached 
dynamic traffic assignment from an optimal control perspective. In each case traffic flow 
is modeled as a real-valued continuous-time process. The model that we present is discrete 
time and integer valued. Furthermore, in the above works, the definition of dynamic 
user-optimality requires instantaneous user-optimal travel costs for all routes that are 
being used at each instant of time to be equal. This is different from the notion of 
optimal anticipatory routing that we are interested in, in the context of a system-optimal 
criterion (recall the discussion in Section 1). It should be noted that one of the features of 
the model of Boyce et al. (1991) is the consideration of exit flows as control variables; 
our use of blocking controls in Section 6.2 is conceptually similar to that. 

Finally, Janson (1991a, 1991b) has addressed the dynamic user-equilibrium traffic 
assignment problem for networks with multiple origins and destinations and known time- 
varying travel demands. He has developed a mathematical program for dynamic user- 
equilibrium assignment and proposed an algorithm for the solution of this problem. The 
algorithm is based on a two-step decomposition of the problem that is then solved itera- 
tively. His simulations have shown that the iterative procedure exhibits good near- 
convergence properties. Our approach differs from Janson’s work in at least two respects. 
First, we are considering a system-optimal objective rather than a user-equilibrium one. 
Second, our discretization of time is fundamentally different. In Janson (1991a, 1991b), 
the discrete time interval At must be chosen large enough so that vehicles completely 
traverse any link in one time interval. Otherwise, the links need to be broken into smaller 
ones resulting in an increase of the dimensionality of the mathematical program. In our 
formulation, At must be chosen small enough so that vehicles will not traverse more than 
one link in one time interval. The number of decision variables in our optimization 
problem increases linearly in the number of time intervals. 

3. THE STATE SPACE MODEL 

We present in this section a dynamical system model of a traffic system having 
multiple origins and destinations. (The discussion in this section can also be found in 
Lafortune et al. (1991).) Each link in the network may be described by a first-order 
difference equation, and the network as a whole is represented by another first-order 
difference equation that is an aggregation of the link equations. Thus our dynamical 
equation possesses an attractive and simple modular structure. 
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3.1. Definition of the main variables 
The geographical network is viewed as a finite-vertex directed graph in which every 

edge is associated with one and only one ordered pair of vertices. Thus any origin or 
destination must necessarily be a vertex and any highway or arterial link connecting two 
points with no intervening point of interest is an edge on the directed graph. The structure 
is formalized as follows: 

1. 1 XI = number of elements of a finite set X. 
2. V = (1, . . . , ( VI } = set of vertices or nodes v of a network. 
3. E = (1, . . . ,I El } = set of directed edges or links t? of a network. 
4. D = set of destination nodes d. This is a subset of V. 

The set of origin nodes does not have to be explicitly referred to in the dynamical 
equations that follow. Therefore, without loss of generality, we assume that this set is 
equal to V. 

Because the formulation is discrete time, we define: 

1. t = discrete time index. Thus t E N. 
2. Tf = maximum possible number of sampling instants spent by a vehicle on the link P 

E E. 

Thus, it is assumed that there exists an upper bound on the time that a vehicle may spend 
on a given link. We consider such an assumption tenable if a link &’ is never loaded in 
excess of a defined capacity c,; the capacity c, does not represent the blockage capacity, 
but rather the maximum capacity that is deemed acceptable on link P. This restriction will 
be introduced when the region of admissible behavior of the model is defined. Moreover, 
it may be noted that Tp is independent of the time at which a vehicle joins the link !, i.e. 
of prevailing traffic conditions at the time of entry. The variable Tp is a function of 
highway or arterial capacity, which is also time invariant. (In Section 6, this model will 
be generalized to allow vehicles to spend more than T! units of time on link P.) 

The state of the network at any given sampling time must reflect the location of each 
vehicle on the network at that time. Accordingly we define a state variable that groups 
vehicles on a link according to their destinations and exit times from the link. Thus for 
allPEE,dEDandl I k I T,define 

xi’(t) = number of vehicles on link t’ and traveling to destination d, present on the link 
in the time interval [t, t + k). 

Note that the traffic represented by $‘(t) is assumed to be on its next link at the time 
instant t + k. Also, this variable is integer-valued since our objective is to develop a 
model that is microscopic in nature. 

The state of the network is affected by vehicles entering or leaving links, which 
suggests the use of input and output variables. In accordance with this intuition we define 
forallPEE,dEDandl I k I Tp: 

8(t) = number of vehicles traveling to destination d that are on link Pat time t + 1 but 
are not on it at time t (i.e. these vehicles entered fduring (t, t + 11). 

f’(t) = number of vehicles traveling to destination d, that are on link P at time t but are 
not on it at time t + 1 (i.e. these vehicles left Oduring (t, t + 11). 

Observe that the above definitions imply that the input at time t will affect the state at 
time t + 1. The output, as we shall see later, is simply that part of the state required to 
maintain the conservation of flow. 

The last prerequisite for formulating a state equation is a functional relationship 
between input and state. This is where we resort to the impedance function. For all P E E 
we define 
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J&Z) = impedance of link P when loaded with z vehicles; 
= travel time of a vehicle joining P when z vehicles are traveling on this link. 

455 

The impedance function is assumed to be an integer-valued staircase function (as sketched 
in Fig. 1) that is right continuous. Formally the impedance function may be defined as 

h(z) = c kX[o,,bk) (z), 
k=To 

where aTO =O,b,= a,&_, < o”andb,=a,+, for TO 5 k I T, - 1,andxisthe 
usual characteristic function. 

We adopt for all x = (x,, . . . ,x,JT E R” the notation llxll = Ix1 I + Ix, I + . . . 

+ Ixnl. 

3.2. The link dynamical equation 
We define a dynamical equation for the vehicles on link P and traveling to various 

destinations d. It is assumed that the initial conditions are stated as the state x&J, 1 I 
k I Tt - 1 where t,, is the initial time. To begin, let the link have no input (i.e. no new 
vehicles entering the link). We assume that the exit time of a vehicle from link Pis fixed at 
the time of entry by the impedance function as follows: 

xF(t + 1) = x;:,,(t) 1 I k I Tp - 1 

and 

xgt + 1) = 0. 

The first equation states that the vehicles that were on the link at time t and were supposed 
to stay until just before t + k + 1 (corresponding to xz!+, (t)) will still be on the link 
at time t + 1 and will stay on the link until just before t + 1 + k (corresponding to 
xf(t + 1)). The second equation expresses the fact that none of the vehicles present on 
the link at time t can take more than T( time instants to travel the link. This will be 
generalized in Sections 6.2-6.4 where blocking of vehicles at the end of a link and link 
outflow functions will be incorporated into the model. 

Thus we obtain a linear homogeneous first order difference equation 

xdP(t + 1) = Px”(t), 

Travel 
time 

I 

Number of vehicles on link 

Fig. 1. Impedance function. q = capacity; T( = Maximum travel time. 
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where 
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xdf(t) = [x?(t) . . . x$$tp, 

and 

A” = 

0100...00’ 

0010...00 

0001...00 
: : : : : : . . . . . . . . . 

0000...01 

oooo...oo. 

Therefore the time evolution of the homogeneor (zero-input) dynamical equation 
reflects the exit of vehicles from a link. The modeling of vehicle exit as an internal 
dynamic of the link gives us the following output equation 

ydf(t + 1) = CdYP(t), 

where 

cd’ = [l 0 . . . 01, x T,. 

Now, to incorporate the input u”‘(t), a simple extension of the state and input is 
necessary. Let 

xP(t) = [X”(t)=. . . X’D’~(f)=];~,DIx’ 

and 

u’(t) = [u”(t) . . . u’D”(t)]f&,. 

Observe that 

x’(t + 1) = AkP(t), 

where 

A’ = diag{A’!. . . A’D”)(T~I,I,.(T~I,,,. 

Remark: For given matrices it4’ j = 1, . . . ,J, we shall use the notation diag{M’ . . . 
MJ} to represent the block-diagonal matrix 
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For each link and destination we define for all k such that 1 I k I T! 

1 if &( II~‘~II + (Iu’ll) = k 

‘ex”U’) = [(I otherwise. 

The function ft computes the time spent on link 0 by vehicles joining the link at a given 
time. The function gf( *) is used to schedule events in the future based on the current 
state. Therefore the state dynamics are deterministically event-driven and the appropriate 
state variable may be incremented. Accordingly we obtain the first-order difference equa- 
tion 

xd’(t + 1) = Ad!xdP(t) + ~(X’(f),Uf(f)).UdP(f), 

where 

gdp(x’,u’) = [g;‘p(xf,d) - * *gd;(xp,uf)]T. 

Next let 

d(x’,~~) = diag (g”(x’,u’). * *gtD”(xp,up)}, 

which is of dimension ( Tpl D I x ID I ). Then it is evident that 

xP(t + 1) = A’x’(t) + d(~~(t),~~(t))~‘(t). 

The extension to link output is made as usual. Let 

and 

which is of dimension ID I x (T! I D I ). Then 

y’(t) = cd(t). 

3.3. The network dynamical equation 
The network dynamical equation is very easily written by exploiting the modular 

structure of the system. We define the following notation: 

1. x(t) = [X’(ty- * ‘x’E’(t)T]T. 

x 1 dimensional vector. 

2. U(l) = [u’(ty* * * zJE’(t)=lT. 
Thus U(t) is a ( ) D I I EJ ) x 1 dimensional vector. 

3. A = diag{A’* * -_dE’}. 

Thus A is of dimension (I$:‘, Tpl D I ) x (i$:‘, T,) D I ). 

4. G(X,U) = diag{G’(x’, u’)...G’~‘(x’~‘,u’~‘)}. 

Thus G(X,U)is of dimension 

5. C = diag{C’***C’E’}. 

x (IDI IEI). 

Thus Cis of dimension (IEI IDI) x (C!!‘,T,lD( ). 
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The required dynamical equation for the whole network is then 

X(t + 1) = AX(t) + G(X(t),U(t))U(t). 

It is assumed that the initial conditions are stated as the quantity X(&J = X0 where to is 
the initial time. The homogeneous system remains linear first order and the overall system 
is also first order. The network output equation is 

Y(t) = CA-(t). 

3.4. Definition of the feasible region for routing decisions 
The following are the input and state constraints of the dynamical system: 

1. Flow conservation equations. 
For all nodes v E V we have the following equations for each destination d E D: 

d z v * z udP(t) = ; yd’(t) + P’(t), t = o,l, . . . 
Y Y 

d = v * WE S,, u”(t) = 0, t = O,l, . . . , 

where 

S” = set of successor links of node v; 

PV = set of predecessor links of node v; 
rdv(t) = number of new vehicles entering the network at node v in the interval (t,t + I] 

and traveling to destination d E D. 
R(t) = [r1’(t)r2’(t)~ - *r’D1’(t)r’2(t). * . rlDIIYI]T is the (I V( 1 D 1 x 1) vector of travel de- 
mands for all nodes v E Vand all destinations d E D. 

The first equation is the usual nodal flow conservation equation. The inflows and out- 
flows to a node are balanced. The rd’(t) term and the second equation arise because each 
node is a possible source or sink for traffic. It may be noted that the flow at each node is 
conserved by destination and not only as total nodal flow. 
2. Headway constraints. 

We define for each &Y E E the quantity K! as 

At 
Kp = - x number of lanes on ! 

t headway 

where At is the real-time value of the sampling interval and thead,,,ay is the specified mini- 
mum separation time between two vehicles. The constraint equation is 

2X:(t) 5 K,, 1 I k I TP, t = O,l, . . , 

3. Capacity constraints. 
For all P E Ewe require 

,c, IIxdP( t) 11 I cp, t = 0,l . . . 

where c, is the capacity of link P. 
We remind the reader of our remark made at the beginning of Section 3, about the 

existence of Tp. Since the impedance function is bounded on the interval [0, cJ the capacity 
constraint ensures that the range of the impedance function is confined to the mapping 
of the interval [0, cJ. Thus we may assume that T, = fP(cJ. 
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The three sets of equations in l-3 together with a given state X(t) and demand R(t) 
define a feasible region for the input U(t). We refer to this set of admissible controls by 
the function 62(X(&R(t)). Formally, 

II&’ + Ge(~,up)ueII I c, I)11 . 
The matrix Mk extracts all the xif components from xf and may be defined as follows. Let 

where the 1 is in the kth position, and 

Remark: For simplicity of notation, we have omitted possible time 
tain variables in the above presentation. In general, Kp,cp, and even 
tionf,(*) could be time-varying. 

dependencies of cer- 
the impedance func- 

4. MATHEMATICAL STATEMENT OF THE OPTIMAL CONTROL PROBLEM 

From Sections 3.3 and 3.4 we obtain the equation of motion of the system and the 
control constraint set function, i.e. the set of feasible inflows. These are 

X(t + 1) = AX(t) + G(X(t),U(r))U(t) 

(For simplicity of notation, we will abbreviate G(X(t),U(f))U(t) as GU(l) in this section.) 
The problems are modeled as decision networks in which the decision nodes are 

pairs (t, X(t)) such that X(t) is a system state reachable at time t. The decision arcs 
represent the control variables (link inputs) U(t), with arc U(t) present and connecting (t, 
X(t)) with (t + 1, X(t + 1)) if and only if U(t) E n(X(t), R(t)) and X(t + 1) = AX(t) 
+ GU(t). By imposing a cost structure and boundary conditions on the decision network 
we formulate two problems, one fixed-endtime free-endpoint problem and the other 
free-endtime fixed-endpoint. 

4.1. Fixed-endtime free-endpoint problem 
Let the study horizon be a fixed integer terminal time denoted by TP The boundary 

conditions are then 

X(hJ) = x0 

X( T/) E N E/f\ T,lDl. 
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Having obtained our two point boundary value problem we proceed to define the cost. 
For each state trajectory in the interval [t,,, T’], denoted X(t;t,,, T,) the associated cost J is 
defined as 

J(X(chl,T,) ) = c Ip3.a 11 + F(X( T,) ). 
j=r, 

The rationale for our definition is as follows. The norm of the state represents the number 
of vehicles on the network during one sampling interval. Thus, if the sampling time is 
one hour, then the first term of the cost function gives us the total number of vehicle- 
hours incurred within the time horizon. The second term represents a penalty for not 
clearing the network within the allotted time T,, since all nonzero terms in X(T,) represent 
vehicles that have not yet reached their destinations. 

The optimal cost as a function of the initial state may be defined as 

f(X,) = min J(X(t;t,,T,) ) : X( 6,) = X,,,X(j + 1) = AXU) + GUti), 

and VU) E Q(XW,R(j)), to I j < T,. 
1 

Pick points tl, . . . ,tp such that f,, < t, < - * - < tp -c TP From the definition of J 
it is evident that 

JW(t;t,,T,)) = J(X(t;t,,t,)) + .*a + J(X(W,-&)) + J(X(t;t,,T,) ), 

where if tk < T,, then J(X(t;t&)) = E&,,, 11X(j) 11. Thus by the above additivity J obeys 

the principle of optimality. Furthermore the costs associated with trajectories from a 
state and those to the state are independent of each other. Consequently we develop 
recursive dynamic programming equations to solve the optimization problem. 

4.2. Dynamic programming recursion equation for the fixed-endtime free-endpoint 
problem 

4.2.1. Forward recursion equation. For a given initial state X,, we define the cost JF 
to reach state X at time t along trajectory X(i;&,,t) to be 

J~(X,Xti;fo,f) ,t) = 
~~=t, IIXW II if t < T, 

E&, IlX(j)II + F(X) if t = T,’ 

where X~;t,,,t) must satisfy X(&J = X,, and X(t) = X. Then 

JW(Cb,T,)) = JAX(T,),X(.Mo,T,),Tf). 

For each feasible X, at a time instant t we define the following forward value function 
v,: 

VdX,,t) = min JF(&X(j;fO,f),f) : X(h) = &,X(t) = X,,X(.j + 1) 

= AX(j) + GUW, and c/W E n(XW,RCj)), to 5 j < t . 
I 

Thus V,(X,,t) represents the lowest cost to reach state X, at time t among all admissible 
state trajectories between X,, and X,. It is evident that 
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f (XI) = min { VAX,, T,) : XT, E XT,), 
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XT, = : X( t,,) = X,,,X( T,) = X,X(j + 1) = AXCI’) + GUO’), 

and U(j) E Q(X(j),R(&), to I j < T, 
I 

is the set of all feasible terminal states for this fixed endtime problem. 
The initial condition on V,(X,t) is 

By the principle of optimality the recursion equation is as follows. 
Case t,, < t < T,: 

WW) = IKII + min V,(X, _ ,,t - l), 
x,-ML1 

where 

X,_, = {X:X, = AX + GU, U~fl(X,l?(t - 1))). 
Case t = T,: 

vA&,T_) = WG,) + Il+ll + min 
XT,- I+- I 

W+, - ,,Tf - 11, 

where X,, _ , is defined as above. 
4.2.2. Backward recursion equation. Analogous to the prior case we define the cost 

to complete from a given state X at a given time t along a trajectory X(i;t, T,) as 

JdX,XO’;f,Tf),t) = c IIXWII + &VT,)), 
j=t 

where X(i;t, T,) must satisfy X(t) = X. Then 

J(X(W,,Tf)) = JB(X(to),X(j;fo,T,),fo). 

For each feasible X, at time instant t we define 

VdX,,t) = min JdX,,Xti;t,T,),t) : X(t) = X,,X(j + 1) = AX(j) + Gu(j) 

and U(j) E ~(X(.j),R~)), t I j < T, 
I 

as the backward value function at state X, at time t. Accordingly, 

J’(X,) = J’,(X,,XW,,T,),t,). 

For each X E Xr, (as defined in Section 4.2.1) the boundary condition is 

v,CX,T,) = IIXII + F(X). 
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By the principle of optimality, for all t such that to I t < T,, the backward recursion 
equation is 

V,(X,t) = llXl[ + min V,(AX + GU,t + 1). 
U&(X,R(t)) 

While the backward recursion equation appears more elegant in its formulation, we 
consider the forward recursion equation to be more useful. In the absence of a definite 
endpoint the set of feasible terminal states is too large to allow computation. The well 
defined initial condition, on the other hand, allows forward chaining through the solu- 
tion space in a well defined recursive manner. An example illustrating the pruning of for- 
ward search using Dijkstra’s implementation of dynamic programming is presented in 
Section 5. 

4.3. Free-endtime fixed-endpoint problem 
Here the control objective is to clear the network in as short a time as possible. Thus 

the target state is the zero vector. The dynamical equation and control constraint set 
fl(X, R(t)) are as usual. 

We define the cost associated with a state trajectory to be 

J(X(t;t,,T)) = c 11X(j) I( where T E N. 
j=r, 

The optimal cost J* as a function of the initial state X0 at time to is 

J*(X&) = min J(X(t;t,,T)) : X(t,) = X0,X(T) = 0, X(j + 1) 

= AXti) + GUCI’), and U(j) E n(X(j),R(i)), to I j < T,T E N 
I 
. 

However, if this problem is viewed as an infinite horizon one, i.e. all state trajectories 
are assumed defined on [to, m), then the problem may be viewed as free-endpoint free- 
endtime. We define 

J(X(wd 1 = i IIXWII 
j=t, 

and 

J*(&,t,) = min J(X(t;t,)) : X(t,) = X,,,X(j + 1) = AXU) + GU(J’), 

and U(j) E Q(X(j),Ru)), t,, I j 
I 
. 

Thus if J*(X,,,t,,) exists then limj _ _llX~)ll = 0, which implies that the target is implicitly 
achieved and the exogenous demand R terminates in finite time. Moreover, the require- 
ments of integrality force X0) = 0 in finite time. 

5. AN EXAMPLE ILLUSTRATING THE FORWARD DP RECURSION 

The triangle network of Fig. 2 is used. A and B are valid origin nodes and B and C 
are valid destination nodes. Accordingly, 

V = {A,B,C} 
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Fig. 2. Triangle network. 

E = (1 = (A$),2 = (B,C),3 = (A$)} 

D = {B,C}. 

The impedance functions are presented in tabular form in Table 1. 
We wish to find a system-optimal routing for the following simple demand pattern: 

PA(O) = 1 

rCA(0) = 1 

rCA(lO) = 3. 

Our objective is to clear the network, as in Section 4.3. To better illustrate the working 
of the DP algorithm, an equivalent but different formulation of the cost function is used. 
We define: 

Thus the total cost of traveling a link is incurred as soon as the vehicle is routed to a link. 
The flow of the algorithm is presented as a tree in Fig. 3 and the important computa- 

tions are shown in Table 2. (By “Terminal” we mean a node that will reach the terminal 
state without any further inputs. The “not expanded” nodes are ones that are not ex- 
panded further since they cannot yield optimal solutions.) 

Let 

n(t) = (nAB(t),neC(t),nAC(t)). 

Then 

Table 1. Impedance functions 

Number of Vehicles Travel Time-AC Travel Time-AB and EC 

1 20 15 
2 20 17 
3 30 22 
4 40 33 
5 60 45 
6 100 70 

Capacity = 6; Maximum travel time = 100 (AC’); 70 (A/3, EC). 
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011: J=169; (5,0,0) Not expanded 
012: J=124; (2,0,3) 0121: J=139; Terminal 

01; J=34; (2,0,0) 
013: J=120; (4,0,1) 0131: J=135; Not Expanded 

014: J=116; (3,0,2) 0141: J=131; Not Expanded 
0: J=O; (O,O,O) 

021: J=134; (4,0,1) Not expanded 

022: J=170; (1,0,4) Terminal 
02; J=35; (l,O,l) 

023: J=104; (3,0,2) 0231: J=138; Terminal 

024: J=112; (2,0,3) 0241: J=127; Terminal 

and 

OPTIMAL 

Fig. 3. DP tree (n,,, nsc, nAc) = (number of vehicles on (A,&, number of veh. on (E,C’), number of veh. on 
(A.0 

Table 2. Computational dam for nodes of DP tree 

Node # Time State Demand Inputs g cost 

0 
01 

02 

011 

012 

013 

014 

021 

022 

023 

024 

0111 

0121 

0131 

0141 

0211 

0221 

0231 
0241 

0 
0 
1 
0 
1 

10 
11 

10 
11 

10 
11 

10 
11 

10 
11 

10 
11 

10 
11 

10 
11 

Not expanaea 
by algorithm 

17 

17 

17 

Not expanded 
by algorithm 

Terminal 
state 

32 ti’=2,$= 1 
27 ti’=l,fi=2 

p = 1,p = 1 p’ = l,uC’ = 1 dj=l,gZ=l 34 

p-4 = 1,p = 1 ti’ = 1 ,u”=l dj=l,gZ=l 35 

#A = 3 UC’ - - 3 g: = 1 169 

rcA - - 3 r.la = 3 gz = 1 124 

r=A - - 3 na = 2, UC) = 1 g4;’ = l,gE = 1 120 

rcA - - 3 na = UC3 = 2 1, g&! = l,gE = 1 116 

rCA - - 3 ua - - 3 gF: = 1 134 

rcA = 3 UCJ = 3 gz = 1 170 

rcA = 3 UC’ = 2,u” = 1 g2”: = l,gE: = 1 104 

rcA - - 3 &-I = 1,u” = 2 gf: = 1,gm = 1 112 

ua = 1 g:: = 1 139 

P = 1 g:: = 1 135 

ua = 1 gz = 1 131 

P = 2 gF: = 1 138 
ua = 1 gE = 1 127 

All data not stated in the table is zero 
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n(O) = (ww) 

n(l) = (l,O,l) 

n(l1) = (2,0,3) 

n(41) = (O,O,O). 

465 

We use n(t) as a simplified representation of the state trajectory of this example. The 
detailed description of the state trajectory using the notation developed in prior sections 
may be found in Table 2. 

6. IMPORTANT EXTENSIONS OF THE BASIC MODEL 

6. I. Background traffic 
The model of Section 3 assumes that all vehicles are to be routed during their travel 

in the network. We now discuss how to include background traffic into the model. By 
background traffic we mean vehicles whose routing is not part of the optimization but 
rather is a known deterministic function of time. This function could for instance be 
based on historical data, on shortest path calculations, or on some traffic equilibrium 
solution. 

We need to distinguish between guided and background vehicles. Let X,( -) denote 
the state vector (as defined in Section 3.2) for guided vehicles and X,( *) that for back- 
ground vehicles. Similarly for U,( *) & U,( *), Y,(a) & Y,(e) and R,( *) & Rb( e). Finally, 
define 

X,,(t) = -q(t) + X,(t) 

u,,(t) = u,(t) + Ub(f) 

&f(t) = R,(t) + R*(f) 

for all t, where tt stands for “total.” 
For the background traffic, by assumption, 

4%) = f*(fr&Af),r~(t)), 

where fb is a known function and where v is the origin node of P. In order to obtain a 
meaningful problem formulation, we assume that 

i.e. the routing of the background traffic should satisfy the flow conservation equations 
and the headway and capacity constraints in the absence of guided vehicles (X,(*) = 0 
and&(-) = 0). 

The network dynamical equation now consists of two parts: 

x,ct + 1) = AXJO + Gwtt(tLLI,,uH~g(t) 

x,tt + 1) = Ax,(t) + G(x,(t),v,,(o)~*(t) 

y,(t) = q(t) 

y,(t) = C&(0, 

with appropriate initial conditions X&J and X&J. The feasible region for routing deci- 
sions U,< *) is defined by the flow conservation equations 

,c e(t) = g g(t) + r:(t) [d # v] 
Y Y 
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VPES,, uf(t) = 0 W = VI, 

and by the headway and capacity constraints (A.& below is as defined in Section 3.4) 

c Mkx$(t) I K,, 1 s k I Tp, t = O,l, . . . 

In other words, the headway and capacity constraints are in terms of the total traffic, 
while the flow conservation equations are in terms of the guided traffic, since by assump- 
tion the routing of the background traffic satisfies its own set of flow conservation 
equations. 

Finally, the cost of a state trajectory 

could in general depend on both types of traffic: 

J(X(W,,T,)) = c ~Y,lIXgcj)lI + P,llX,WII + d’Wg(T_)) + PPW~(T,)), j=f, 

where CY,, CY~, &, and & are weighting factors. 

6.2. Blocking controls 
We have assumed that link travel time is strictly determined by an impedance func- 

tion of the number of vehicles on the link. In reality, the travel time on one link may be 
affected by loadings on nearby links. For instance, suppose that a vehicle assigned to 
depart a link at time (t + l)- cannot enter any of the links immediately downstream due 
to capacity constraints. With the current model as formulated in Section 3.4, this would 
imply infeasibility of the state X(t) under consideration. However, an actual vehicle 
blocked in this way would simply remain on its current link until downstream capacity 
becomes available, affecting the vehicles on its link and in some cases vehicles on up- 
stream links. Link interactions may be an essential part of congestion modeling, particu- 
larly with respect to real-time traffic management in the presence of unforeseen incidents. 

In order to address the above limitation, we enlarge the set of admissible controls by 
(a) interpreting the impedance functionf, not as an actual but as a minimum link travel 
time; and (b) including into the model routing decisions that actually “block” or “stall” a 
vehicle at the end of a link instead of immediately routing this vehicle on a successor link 
(if feasible). We will refer to these decisions as blocking controls and use the notation 

to differentiate them from the normal routing decisions U(t). More precisely, 

~&~(t) = number of vehicles traveling to destination d that are on link P at time t and 
are due to exit that link at time (t + l)-, but will be rescheduled to exit Pat 
time (t + 2) instead (i.e. they are blocked at the end of P for one time 
period). 

The new dynamical equation for this “two-input” system is of the form 
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X(t + 1) = AX(t) + GW(t),U(O)U(t) + G,oc,Jh,ct(f). 

The new term represents the effect of the blocking controls. When U(t) = 0, we have 

xfP(t + 1) = x;e(t) + u::&(t), 

which can be written more compactly as 

xde( t + 1) = /ldeti’( t) + G;,Oc,&,,:,,,J t), 

where Gtiock = [l 0 a** O]Fe, ,. 

Similar to the structure of G(X,U), Gblock 

and is of the form 

G block = 

G’ block 

G’ block 

G&k 1 , 
where the block-diagonal form contains ID I copies of each %lock vector. 

Capacity and headway constraints are unchanged. However, the flow conservation 
equations become 

; &ml,(t) + ; u”(t) = 5 f’(t) + rd’(t) [d + v] 
Y Y Y 

VP E s,, u”(t) = 0 [d = v] 

vl E pv, u&k(t) 5 4’(t) [d + VI 

ifPEP,, t&,&(t) = 0 [d = v]. 

Observe that no modification of the cost J is necessary since the extra travel time 
incurred by the blocked vehicles is automatically summed up in IlX(t)II . 

Without any further constraints, the increase in the dimensionality of the decision 
space due to the consideration of all feasible blocking controls is likely to render the 
problem intractable even for small networks. A reasonable heuristic would be to allow 
blocking controls only when the feasible region Q(X(t)) (as defined in Section 3) is empty, 
i.e. when there is no routing decision U(t) that satisfies (a) the flow conservation equa- 
tions, (b) the headway constraints, and (c) the capacity constraints. 

6.3. Link out’ow functions 
So far we have modeled link travel times as being fixed by an impedance function 

applied at the time of link entry, possibly subject to a link exit delay through the use of 
blocking controls. In this section we demonstrate that the model is easily altered to 
incorporate another widely used form of vehicle dynamics, and in the next section we 
generalize the model to include both dynamical forms. 

The models of Merchant and Nemhauser (1978) and Friesz et al. (1989) use link 
outflow functions h, which give link output as a function of total link volume, without 
reference to impedance functions. In the single destination case without blocking, we can 
change our model to be similarly free of impedance functions by replacing y!(t) = C’x’(t) 
(cf. Section 3.2) by 

f(t) = A,( (12(t) II) I E E. 
TR(6) 27:6-E 
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The link outflow u’(t) depends solely on the total link volume at time t, hence, in contrast 
to what was done in Section 3.2, we need not divide the link volume into classes x&) by 
time k until link departure (the superscript d is omitted since there is a single destination). 
To complete the alternate model, we rewrite the dynamical equation of Section 3.3 and 
the constraints of Section 3.4 with this reduction in state space. 

Carey (1987) considers the outflow function as an upper bound on outflow rather 
than actual outflow, writing y&) = C’x’(t) in order to obtain a convex mathematical 
program; this is equivalent to the outflow function version of our model with the addition 
of blocking controls. The remark concluding the previous section applies here as well. 

The multidestination case presents the issue of how to balance link outflows across 
destination classes. In this case we constrain total outflows over all destination classes by 

In some cases it may be desirable to prevent the system optimality criterion from delaying 
one destination class in favor of another. Carey suggests balancing outflows through 
constraints of the form 

y”(t) xde( t) 
- = -deD, 
rlP(t) xlP( t) 

but the integral solutions we explore in the dynamic programming solution procedure 
would in general fail to satisfy this constraint. We can attempt to satisfy this criterion by 
placing a penalty on violation of the balancing constraints into the objective function. 
Another alternative for balancing would be to define two-argument outflow functions h’ 
that take as inputs both the total traffic volume on the link and volume associated with 
the particular destination. Then 

y”(t) = h; ( Ilx’( t) II,xdp( t) ) P E E. 

We remark that link outflow functions seem to model nonrecurring congestion, i.e. 
capacity reductions due to traffic incidents, more closely than impedance functions or 
changes in link capacity constraints. It is not the physical capacity of the link to hold 
vehicles that is reduced, but the maximum rate at which the end of the link can release 
vehicles. 

6.4. Modeling impedance functions and link outflow functions together 
We will now show that by combining impedance functions and link outflow func- 

tions into one model, we can overcome weaknesses associated with each idea taken alone. 
The combined model is easily interpreted as a generalization both of the link outflow 
function model of the previous section and of the impedance function model with block- 
ing controls. 

When traffic dynamics are modeled solely by outflow function constraints in the 
inequality sense, vehicles are allowed to exit lightly loaded links only one period after 
entering, regardless of link length. This would tend to imply vehicle speeds in excess of 
the maximum freeflow speed. This defect can be remedied by applying an impedance 
function at the time of link entry to compute a link travel time d(t) = fi(llx’(t)ll) for the 
vehicles entering link e at time t, and to enforce this as the minimum link travel time by 
setting 

t+P(r)-2 

m0 = c udp(P) = number of vehicles departing link 0 while vehicles reaching 
P=f the link at time period t must remain 
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(the -2 term in the above upper bound is due to the fact that, by definition, the output 
at time t is reflected in the state at time t + l), and constraining the link outflows by 

D”(t) I xde(t) - ude(t - 1) P E E,d E D. 

Then only the vehicles that had entered the link before time t can exit within the minimum 
impedance time d(t) and vehicles that enter at time t occur on a different link no earlier 
than t + d(t). Note that this constraint also has the beneficial effect of contributing to 
balance of outflows across destinations by preventing very short link travel times for 
destination classes that might otherwise be favored by the system-optimality criterion. 
Furthermore, it enforces a first-in, first-out condition under which no vehicle can de- 
crease its total travel time by delaying its departure at an intermediate node. Kaufman 
and Smith (1990) argue that this condition tends to be satisfied by traffic flows. 

To see how this generalizes not only the outflow function model but the impedance 
function model with blocking as well, note that we can track satisfaction of the new 
constraints by assigning each group of entering vehicles to a data storage area according 
to its earliest possible link exit time. We originally tracked vehicles by variables d’(f) 
according to actual link exit time t + k, and the addition of blocking controls transforms 
this to earliest link exit time, subject to feasibility considerations. Then the headway 
constraints (Section 3.4) can be interpreted as a special case of the generalized model, 
with a constant outflow function. 

Modeling link travel times as being given with equality by impedance functions 
ignores the interaction between links that is a necessary component of congestion model- 
ing. The situation was improved by the addition of blocking controls, allowing vehicles 
to be delayed by downstream congestion. The addition of link outflow functions suggests 
a mechanism for modeling more complicated link interactions. For example, consider 
several links with the same exit node at which a traffic signal is located. The outflow 
function with the addition of a time index can model a preprogrammed variable signal 
timing plan, and if the link outflow functions on these links are given the flows on each 
link into the node as arguments, we can model a signal that responds in real time to 
traffic detectors. 

7. COMPUTATIONAL ISSUES 

We present herein a discussion of the computational complexity of solving the opti- 
mal control problems posed in Section 4. As was shown in that section, we are essentially 
dealing with shortest-path problems in the decision network, whose nodes are pairs, (1, 
X(t)) (recall that the decision network is not the same as the geographical road network). 
It is well known that an algorithm such as Dijkstra and based upon the dynamic program- 
ming equation developed in Section 4.2 will be O(n*) in the worst case, where n is the 
number of nodes in the decision network. (The subsequent analysis is all worst-case.) 

Let there be N nodes in the geographical roadway network, i.e. 1 VI = N. Thus all 
roadways terminate or originate within this set of N nodes. Furthermore, all traffic on 
links flowing into a node may be routed to any of the links flowing out of the node. 
Accordingly, the following worst-case upper bounds are obtained: number of links = 
N2, number of destinations = N. 

We assume next that the maximum number of time periods required to travel a link 
is denoted by T,,, i.e. T,, = max,T,. It is immediate that the quantity Tm,N3 is an 
upper bound on the dimension of the state. We next estimate the size of our decision 
network. Each node in this decision network is a state X(t) for some time instant t. Each 
X(t) is a parent of many X(t + 1). Every X(t + 1) is derived from the parent X(t) by 
some input U(t), which may be viewed as a label for the link connecting parent and child. 
The input U(t) gives the increase in cost from parent to child. This cost is the travel time 
experienced by the vehicles routed in U(t) (cf. example in Section 5). 

No exact way of estimating the fanout of a state X(t) is as yet known to us. It is 
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obviously dependent on the initial conditions and the demand pattern. The clarification 
of this relationship is the core of the optimization problem and our understanding of the 
same is embodied in the input space represented by Q(X(t), R(t)). Thus let us denote by 
wd’(t) the total number of vehicles (both inflow and external) arriving at a particular 
node v of the geographical network at time t and traveling to destination d. It can be 
shown that the maximum possible number of integral solutions to the flow conservation 
equations is given by 

( Wd’(f) + N - 1 

) Wd’(f) * 

Thus the total number of possible inputs for the entire state X(t) is bounded above by 

Wd”(f) + N - 1 n;I( Wd’(f) v=l d=l I9 (1) 

since routing decisions must be made for each destination at each node. Consequently 
the maximum fanout for any state X(t) of the decision network is given by eqn (1). It 
may be noted that the depth of the tree is the time horizon of optimization. 

We suspect that the actual computation in most networks would fall far short of the 
aforementioned bounds. In lightly loaded networks, wd’(t) is small. In the case that wd’ 
= 1, we observe that eqn (1) evaluates to N3. If the network is heavily loaded, it will be 
congested and much of the search space will be pruned by active capacity and outflow 
rate constraints. 

Further avenues of improvement lie in the use of heuristics to yield near-optimal 
solutions. It is easy to see that for all vehicles constituting a particular u@“(t), their travel 
time from v to d must exceed the minimum freeflow travel time from v to d. This freeflow 
time is a conservative estimate of the cost to complete from a given state, and thus it 
could be used to develop an A’ optimization algorithm (see, e.g. Pearl, 1984) to find a 
shortest path in the decision network. 

For heavily congested networks it is also possible to restrict the resolution to obtain 
near-optimal solutions. The estimate in eqn (1) is based on the premise that any one 
vehicle in the group wd’(t) can be routed to any link flowing out of the node v. We could 
decrease the resolution by assuming that vehicles may only be routed in packets of size p. 
Then our fanout estimate would come down to, 

Wd’(f)/p(modp) + 1 + N - 1 

Wd’(f)/p(modp) + 1 

Wd’(f)/p(modp) + N 

= i! i (&“(t),p(modp) + 1 1’ 

Finally, observe that the necessary computations will be greatly reduced if the optimi- 
zation is performed over a small time horizon. The optimization problem for the complete 
time horizon could then be tackled by employing a rolling-horizon strategy; the “optimal” 
control at a given node of the decision network would be determined on the basis of a 
forward search over a reduced horizon (or limited window into the future). This limited 
horizon could be as small as one step ahead. In this case the objective of optimization 
would be to minimize the travel time within the reduced horizon rather than to clear the 
network of all traffic. The cost function would be as stated at the end of Section 6.1 with 
CQ, P2 being chosen to prevent trivial solutions from being accepted as optimal. The 
control action so determined would then be used and the procedure repeated at the 
corresponding successor node in the decision network, until construction of a complete 
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path in the decision network. Such rolling-horizon strategies have been frequently em- 
ployed in a variety of dynamic optimization problems; see, e.g. Gartner (1982) for their 
use in dynamic traffic signal control, a problem related to ours. 

8. CONCLUSION 

We have approached the problem of dynamic traffic assignment in networks from 
the viewpoint of dynamical systems and have proposed a new model for this problem. 
This model is more detailed than typical macroscopic models, yet it avoids complete 
microscopic detail by grouping vehicles into platoons irrespective of origin node and time 
of entry to the network. It has been observed in the literature that traffic models based 
on impedance functions alone or on link outflow functions alone suffer from certain 
deficiencies. By using impedance functions to first determine a minimum travel time for 
a vehicle on a link and then by using blocking controls (Section 6.2) and/or outflow 
functions (Sections 6.3-6.4) to limit the outflow from a link, our model effectively com- 
bines both of these approaches. We believe that this feature of the model is interesting 
because it closely resembles what happens in a microscopic simulation of traffic (e.g. the 
INTEGRATION traffic simulator of Van Aerde and Yagar, 1988). 

In the context of this dynamical system model, two versions of the problem of 
optimal traffic assignment were formulated and studied. These problems can be solved 
by using dynamic programming over the state space. Due to the large size of the state 
space, the computational complexity is high even for very simple networks. However, the 
approach employed permits easy introduction of search heuristics, even as the A’ algo- 
rithm or rolling-horizon strategies. 

The work that we have presented opens several avenues for future investigations. 
Among these, we wish to mention the following. 

1. Refinement of the impedance function. The link impedance function has been assumed 
to be a function of z, which represents the number of vehicles on the link. But this 
number is a highly aggregated version of the detailed information contained in the 
state X(t). In fact, the state X(t) is capable of supporting far richer arguments than z 
for the impedance function. Thus the experienced traffic designer may study the behav- 
ior of the model using more complex and generalized impedance functions (see, e.g. 
Branston, 1976, for a review of impedance functions). 

2. Determination of structural properties of optimal routing policies. Such properties 
could then be used to accelerate the forward search. 

3. Investigation of various methodologies, either exact or heuristic, for the reduction of 
computation. Two such approaches (that in fact could be combined) are the A’ algo- 
rithm and rolling-horizon strategies. 

4. Coordination with real-time traffic control. Real-time traffic control (signalization, 
ramp metering, etc.) and anticipatory route guidance are coupled issues. On the one 
hand, routing decisions should account for real-time traffic control. On the other 
hand, real-time traffic control should adapt to routing decisions, e.g. when an incident 
triggers a rapid surge of vehicles off the corridors and onto the surface street network. 
Ways of modeling these interactions have to be developed. 
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