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We studya classof nonlinearmodel equationswhichrepresentone-dimensionalfluid systemswith longrangeforces (suchas
gravity) . We presentelementarytheoremswhich constraintheallowedtypesof stationarywaveandsolitarywavesolutionsfor
thisclassof systems.

1 . Introduction the gravitationalforcein onespatialdimensiondoes
not decreasein the asymptoticlimit x—~oo;on suf-

A wide variety of nonlinearwave structurescan ficiently largespatialscales,theinwardpull of gray-
existin fluid systemswhereself-gravityis important, ity always dominatesand such systemsare thus
but suchmotionshavenotbeenwell studied.These doomedto collapse.
wavesare most likely to occur in astrophysicalset- In this contribution,we studya generalclassof
tings,althoughmanyotherphysicalsystemswith long modelequationswhichrepresentself-gravitatingfluid
rangeforcescanmathematicallyresemblethisprob- systemsin onespatial dimension.In particular,we
lem (seebelow). In this Letter, we considera class showthatmanysystemscanbedescribedby theusual
of nonlinearequationswhich model self-gravitating equationsof hydrodynamicscoupledwith a modi-
fluid systemsin onespatialdimension.Ourgoal is fled form of the Poissonequationfor the gravita-
to find general results which show how physical tional potential.Onemotivation for usinga modi-
propertiesof such systemsdeterminethe allowed fled Poissonequationis to model two-dimensional
typesof stationarywave solutions. gravitationaleffects(e.g., a finite extentof thewave

Fluid motionswhichsimultaneouslyincludeboth profile in thetransversedirection)while retaininga
self-gravity andnonlineareffectscanexhibit inter- one-dimensionaltheory.Wepresentfourelementary
estingbehavior.In general,mostnonlinearwavesin theoremswhich constraintheallowedtypesof wave
fluidstendto steepenandshock [ 1 ,2] . On theother behavioraccessibleto thesephysicalsystems.These
hand,self-gravityleadstodispersion[3 ] whichtends results elucidatethe propertiesthat a systemmust
to spreadout wavepackets.In principle,fluids with havein order to exhibit stationarywavesandsoli-
self-gravity canreacha balancebetweennonlinear tarywaves.
steepeningand gravitational dispersion.This bal-
anceleadsto thepossibleexistenceofbothnonlinear
stationarywaves and solitary wavesin the fluid. 2. General formulation
However,previouswork in this area[4—6 1 hasshown
that the simplestpossiblesystem(i.e., eqs. ( 1 ) and In this section,we introduceaclassofmodelequa-
(2 ) below coupledwith standardone-dimensional tions for the studyof nonlinearwavesin self-gravi-
gravity) cannotexhibit solitary wavebehavior.The tatingfluid systems.Webeginwith the equationsof
physicalreasonfor this lackof solitarywavesis that motionforafluid. In onespatialdimension,thecon-
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tinuity equationandtheforceequationtaketheforms
v=u—vo, (6)

op a
— + — (pu)= 0 , ( 1 ) which is simply the speedof thefluid relativeto the
ôt 8x speedv0 of thewave.Usingthesedefinitions,we in-

t9u t9u ~~ ~ ô~= 0 , (2) tegratethe continuity equation ( 1 ) to obtain the
— +u_ +
at ox p ox ~ relation

wherep isthe massdensity,u is thevelocity, ~uis the pvA , (7)
gravitationalpotential, and p is the pressure.All wherethe constantof integrationA is the “Mach
quantitieshavebeenwritten in dimensionlessform. number”of the wave.
We takethe pressureto havea generalbarotropic We canreducethe systemof equationsdescribed
form aboveto a singlenonlineardifferentialequationfor

p=p(p) , (3) the densityp. If we differentiatethe force equation
(2) withrespectto ~andusethegeneralizedPoisson

which includesmostequationsof stateof interest. equation(4) to eliminatethe potential,we obtain
To closethe systemof equations,we must include

3 c9
2p\

thePoissonequationfor thegravitationalpotential. ~ (p2 ~ A 2) +p~ 2 —p2 ~ +p
In thispaper,weconsidera classof systemswith the
Poissonequationwritten in the generalizedform +p4q(p)=0 , (8)

~—,c= q(p) , (4) wherewehaveeliminatedthe velocity dependence
by usingthe solution (7) to thecontinuity equation

whereq(p) is afunctionof the densityp. Wedenote (andwheredifferentiation is now denotedby sub-
the quantityq(p) asthechargedensity.Weusethis scripts).The equationof motion (8 ) is the funda-
terminologybecause,in general,whateverappears mentalequationgoverningstationarywavesincharge
on theright handsideof a Poissonequationis often densitytheories.Fortunately,this highly nonlinear
called“the chargedensity”. Notice that the charge equationcanbe integratedto obtain
densitydefinedhereis not the electric chargeden- (p2 ~ ...A2)f(p) ~ 3~(p), (9)
sity. Notice also that the choiceq=pgives us back 2

the usualone-dimensionalPoissonequation.
Equations(1 )—(4) completelydeterminethe sys- wherewehavedefinedf(p)tobeanintegralthatde-

ternoncetheequationof statep(p) andthe form of pendson the form of the chargedensityq(p), i.e.,
thechargedensityq(p)arespecified.Wedenotethe-

q(p)(A2

ôp\
oriesof this type as “chargedensitytheories”.For f(p) = J dp ~ —~ — i—) ~ (10)
mostof this paper,wekeepthe forms forp(p) and
q(p)arbitraryandpresentgeneralresults.In section Theexistenceor nonexistenceof solitarywavesand
3, however,we show that many different physical stationarywavesfora particularphysicalsystemcan
systemscanbe describedby chargedensitytheories beunderstoodthroughthestandardmethodsof phase
andwe presentspecific forms of q(p) for several planeanalysis[7,8 ] . In this methodwe reducethe
examples. systemto a singleequationof form (9 ). Theprop-

We focus this current discussionon stationary ertiesofthefunction ~F(p)determinetheproperties
waves,which correspondto travelingwavesof per- ofthewave solutionsp(c~)ina fairly simplemanner.
manentform. For thesewaves,the fluid fields are Physicallymeaningfulsolutionsmusthave~ 0. For
functionsof the quantity the systemsconsideredhere,the field p is a mass

densityand must alwaysbe positive. Thus, physi-
c~=x—v

0t, (5)
cally relevantsolutionsexist when~F(p) is positive

wherev0 is the (dimensionless)speedof the wave. overa rangeofpositivedensities.Wavesolutionsex-
Next, we introducea new velocity variable ist when~3~(p)is positivebetweentwo zeroesofthe
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function .~, where the zeroescorrespondto maxi- In particular,we write the Poissonequationin the
mumandminimumdensitiesofthewaveprofile. The generalizedform
natureof the zeroesof ~Fdeterminesthe natureof
the wavelikesolutions.Forexample,if 3~is positive 2 = m2yJ+p. (14)
betweentwo simplezeroes,then (ordinary) nonlin- ~
ear wavesresult.However, if ~ is positivebetween This theory producesan exponentialfalloff in the
a simplezeroanda doublezero (whereboth~ and gravitationalforcebetweenpointmasses;theparam-
ô3~~/ôpvanish),thensolitarywave solutionscanbe eterm determinesthe effective rangeof the force.
found [ 7—10] . Theright handsideof eq. (14) definesan effective

chargedensityq, althoughit is notwritten explicitly
as a function of densityonly. However,we canin-

3. Examplesof chargedensitytheories tegratethe stationaryversionof the force equation
(2) to obtain

As weshowin thissection,manyphysicalsystems
yi+h(p)+~v2=E, (15)can be describedby charge density theories. The

simplestexampleof a nontrivial chargedensity is whereE is theconstantof integration.Thequantity
givenby h(p) is the enthalpyandis definedby

p

q(p)=p—p
0, (11) h(p)=$

4~. (16)
wherePo is the dimensionlessbackgrounddensityof
the fluid. Wecanobtainthis chargedensityby sub- The speedv canbe eliminatedby usingthe solution
tractingoutthe contributionto the gravitationalpo- to the continuity equationfor stationarywaves,i.e.,
tential due to the backgroundfluid; this charge

V= A/p. Usingtheseresultsin eq. ( 1 4 ), wecanread
densitytheorythusreproducesthe original approx- off the form of the chargedensity,i.e.,
imation of Jeans [ 3,1 1 ] . Anotherway to obtain a
theorywith the abovemathematicalform is to con-
sidera physical systemwhich rotatesat a uniform q(p)=~ + 2 (E_ h(p) — ~). ( 17)
rateQ [2 ] . In the directionperpendicularto the ro-
tation axis, Gauss’slaw for a uniform density cyl- Themotivationfor introducingthe extratermin the
inderwith densityPo implies Poissonequation(14) is to allow the gravitational

forceto decreasewith increasingdistance.As weshow
aiQ2= 2icGp

0w , ( 1 2 ) in ref. [ 12 ] , anotherway to obtainthis generalbe-

whereW is theradialcoordinateandwhereall quan- havior is to reducea two-dimensionaltheoryto an
titieshavetheirusualdimensions.Thus,theuniform effectiveone-dimensionaltheoryusingrathersevere
densitystatewill be in mechanicalbalanceprovided approximations.In particular,we assumethat the
that velocity in the transversedirection is small com-

paredto that in thedirectionof propagationandwe
Po Q

2/21tG. ( 1 3 ) considera simplified treatmentof the wave profile
in the transversedirection.We canthus obtain yetFor wavespropagatingalongthe axis of rotation in
anotherchargedensitytheorywith

this system,we obtain equationsof motion with a
“chargedensity” of form ( 1 1 ) withPo givenby eq. ~9p 18)
(13). q(p)=p—2~2

Wecanalsoderivea chargedensityfor theoriesin
whichgravity is modeledby a Yukawapotential.The where~ is a parameterwhich determinesthe steep-
motivationfor this approximationis to incorporate nessof the wave profile in the transversedirection.
a decreasinggravitational field strengthwhile re- The chargedensity ( 1 8 ) is qualitatively similar to
taminga one-dimensionaltreatmentof theproblem. that obtained from a Yukawa potential (see eq.
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( 17) ) andtheparameters1u andm playa similarrole self-consistently.The net result of theseapproxi-
(seeref. [ 1 2 1 for further discussion) . mationsis to makethemagneticforceontheneutral

Thestandardproblemofvolumedensitywavesin componentinto a long-rangeforcethatbalancesthe
a plasmacanalso be written in terms of a charge long-rangeforce of gravity. This treatmentis un-
densitytheory.Theequationsof motion governing physicalin thesensethatthesemagneticforces,which
thedynamicsoftheionsarethesameaseqs.( 1 ) and arisefromthe frictional forceexertedon theneutral
(2) with the electricpotential0 replacingthe graY- componentsby the ions, are intrinsically local. On
itational potential yi. ThePoissonequationfor the theotherhand,this approximationallows forsome-
electric potential (in dimensionlessform) canbe thingto cancelthe long-rangeforceofgravity,which
written doesnot fall off with distancebecauseof the one-

2 dimensional treatmentof the problem (see refs.

~ = exp(çb) —p , ( 1 9 ) [4,1 2 ] for further discussion).

wherep is now theion density[ 1 3,7 ] . Proceedingas
we did for the Yukawapotential,we canintegrate 4, General theorems and results
the stationaryversionof the force equationto find
the potential andthenuse the solution to the con- In this sectionwe presentgeneralanalyticresults
tinuity equationto eliminatethe velocity. We thus thatare applicablefor arbitraryformsof the charge
obtain a chargedensitytheorywith densityq(p). In particular,we presentfour elemen-

2 2 tary theoremswhich greatly constrainthe allowedq(p)=exp[E—h(p)—A /2p ]—p (20) . .
typesof wavebehaviorfor thisclassof theones.De-

whereE istheconstantofintegrationandh(p) isthe tailed proofsof theseresultsandfurther discussion
enthalpy(thepressureis oftentakento benegligible will be givenin ref. [ 12].
in this problemandhenceh= 0). To begin,we presenta theoremwhich showsthat

Anotherway to obtain a chargedensitytheory is for any theorywith a chargedensityq(p), a strong
tosimulatetheeffectsofanembeddedmagneticfield. constraintmustbe met inorderforstationarywaves
In ref. [4], wederiveda model equationon thisba- to exist. This constraintarisesfrom the fact that a
sis. We assumedthat the magneticfield points in a stationarywave musthavelocal extremawherethe
directionperpendicularto that of the wave motion pressureandvelocity gradientsgo to zero. There-
andthat the neutralcomponentof the fluid is cou- fore, in orderfor thewave to remainstationary,the
pledto the magneticfield throughits frictional in- forceofgravitymustalsovanishat thesepoints.This
teractionwith the ionized fluid component(which behaviorcanonly occurif the integralof the charge
is well coupledto the field). We also ignored any densityq(p) betweentwo extremais zero.This ar-
chemicaleffectssothat the ionizedcomponentofthe gumentcanbeput in the formof a theoremforsta-
fluid obeys a continuity equation. The resulting tionary waves.
model equationcanbe derivedfrom a theorywith
the chargedensitywritten in the form Theorem1 . If a stationarywavesolutionp(c~)cx-

I \ istsfor the one-dimensionaltheory,thentheintegral

q(p)=p+r’( ~— ~i.~I (21 ) ofthechargedensityoveronewavelengthmustvan-

\Jo PFJ ish, i.e.,
whereI’ representsthe couplingstrengthbetweenthe
neutraland ionizedcomponentsandwherePF de- Q~ J d~q[p(c~)] = 0,
terminestheion density (assumedtobe constantin
ref. [4] ). Wenote that the model correspondingto
the chargedensity (21 ) is idealized in two ways. wherethe wavelengthof a solitarywave is takento
First, a dissipativetermhasbeendroppedto obtain be infinite. This claim is limited to the caseof non-
this form. Second,the ion density is not calculated singularsolutions;for solitonswe also requirethat
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the densitydoesnot vanishat spatial infinity. We first find a necessaryconditionon the charge

Theorem1 greatlylimits theallowedtypesofwave densityfor solitary waves.When suchwavesexist,
behaviorin systemswith self-gravity. For the sim- the first integral .~ of the equationof motion must
plestcaseof q(p)=p, theorem1 impliesthatno sta- bepositivebetweena doublezero anda ordinaryzero
tionary wavesor solitary wavescanexist becausep ~seeeqs. (9 ) , ( 10 ) ) . We restrictour discussionto
is a massdensityandis positivedefinite (the ab- waveswhich avoidthe singularityat the sonicpoint
senceof solitarywavesin thiscontextwasfoundpre- (whichoccurswhenthetermin largeparenthesesin
viously in bothrefs. [4 ] and [ 5 ] ). Anotherimpor- eq. (9 ) vanishes).Wealso restrictour discussionto
tantconsequenceofthis “no-chargetheorem”is that waveswith finite velocity; this secondrestriction
the chargedensityq(p) mustvanishin the asymp- eliminatesthepointp= 0 asa candidatefor thedou-
totic limit ~—~oofor a solitary wave or soliton. For ble zero (noticethat for~o—÷O~weget v=A/p—~ooby
solitarywaves,thewavelengthis infiniteandthemass the continuity condition(7 ) ) . Therequireddouble
densityp(t~)approachesa constantas ~—~oo. zeroof ~ mustthusoccurat a doublezero off(p).

Next,weconsidertherelationshipbetweentheex- Furthermore,f(p ) mustbe a localminimum at the
istenceof solitary wavesand the absenceof gravi- doublezero.In orderfor thesecond(ordinary) zero
tational instability. This relationshiparisesbecause of ~Ftoexist,thefunctionf(p) mustalsohavealocal
a solitary wave is, in somesense,an infinite wave- maximumat someotherdensity.By definition (eq.
length perturbationon a uniform medium. On the ~10) )‘ thederivativeoff(p) is proportionalto q(p).
otherhand,the presenceof gravitationalinstability Sincewe mustavoidthesingularityat thesonicpoint,
implies that all perturbationswith sufficiently long both the requiredminimum andthe maximumof
wavelengthswill collapse[ 3 ] . Thus,the existenceof .flP) mustoccurwherethe chargedensityq(p) van-
a stationaryperturbationwith an infinite wave- ishes.We denotethe locationof the minimumas1c”
length (a solitary wave) is inconsistentwith the andthemaximumasPM. In orderfor thefirst critical
presenceof gravitational instability. This relation- point to be a minimum andfor the secondto be a
shipcanbe statedmorepreciselyas follows. maximum,wemusthavethecorrectsignsfor dq/dp

at the critical points (where the signsdependon
Theorem2. Supposea physical systemobeysa whetherwe considersubsonicor supersonicwaves).

generalizedmodel equationof motion of form ( 8 ) Thisargumentcanbe summarizedas the following
andthis model equationhassolitarywavesolutions. necessaryconditionon the chargedensityq(p) for
Thenthe systemcanhavea uniform densitystate the existenceof solitarywaves.
thatisgravitationallystableforarbitrarilylargelength
scales. Theorem3. In orderfor solitary wavesolutionsto

exist for the classof theoriesconsideredin this pa-
Wenotethattheconverseoftheorem2 is nottrue. per, thechargedensityq(p)musthave(atleast)two

Physicalsystemsof this type canbe gravitationally zeroesp~andPM. For subsonicwaves,q(p)mustbe
stable to perturbationsof all wavelengthsandstill negative betweenthe two zeroes; for supersonic
not havesolitary wave solutions.Thus,the require- waves, q(p) mustbe positivebetweenthe zeroes.
mentof gravitationally stableconfigurationsrepre- (Thisresultappliesonly to nonsingularsolutionsfor
sentsa necessarycondition (and not a sufficient which the sonicpointPcdoesnot lie betweenPi and
condition) for the existenceof solitary waves. PM

The questionof whetheror not solitarywave and
stationarywave solutionsexistisfundamentalto the Theorem3 is potentiallyverypowerfulasa testto
studyof nonlineardynamics.For the classof charge seeif solitary wave solutionsexist. For example,
density theoriesconsideredin this paper,the ques- manypossiblechargedensityfunctionsdo nothave
tion becomes:What propertiesof the chargedensity two zeroesandthus solitary wavebehaviorcanbe
q(p) are requiredfor the existenceof solitary waves easily ruledout. We note, however,that theorem3
andwhatpropertiesarerequiredfor theexistenceof is notsufficienttoguaranteetheexistenceofsolitary
stationarywaves? waves.We mustplacean additional constrainton
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the chargedensityto makesurethatthe second(or- 5. Summaryand discussion
dinary) zero of the functionf(p) exists. Giventhat
q(p) hasat leasttwo zeroes,the functionf(p) has In thisLetterwe havedevelopedmethodsto study
threepossibleforms.Thefirst possibilityis thatf(p) wavemotionsin self-gravitatingfluids inonespatial
hasa secondordinaryzero andhenceordinarysol- dimension. In particular,we have introducedthe
itary wavesexist. The secondpossibilityis that the conceptof”chargedensity”for thestudyofsuchsys-
function f has anotherminimum at some density tems.In this formalism,themassdensityis replaced

p3>PM andhenceturnsup at largedensities;in this by a “chargedensity”q(p) on theright handsideof
casewe canalwayschoosethe constantof integra- the Poissonequationfor the gravitationalpotential
tion in eq. ( 10) to makep3 a double zerooff We (the continuityequationandthe forceequationre-
thusobtaina depressionsolution or voidsolution.For main asusual).We haveshownthatmanyphysical
the remainingpossibility, f(p) asymptoticallyap- systemscanbe modeledusingchargedensitytheo-
proachesa constantandthesystemfails to havesol- ries. In addition, we haveshownthat the standard
itary wave solutions.This issueof the existenceof exampleof volume densitywavesin a plasmacan
the secondzerooff(p) is discussedmorefully in ref. alsobewritten asa chargedensitytheory(wherethe
[ 12 ] . electric potential replacesthe gravitationalpoten-

Next,weconsiderthe simplercaseofordinarysta- tial). We canthusstudya wide rangeofphysicalsys-
tionarywaves.Therequiredconditionsonthecharge temsandphysicaleffectsusingthis method,which
densityq(p) for the existenceof thesewavescanbe resultsin a simplesemi-analytictheory.
statedasfollows. Wehavepresenteda “no-chargetheorem”(theo-

rem 1 ) which showsthat no solitary wavesor sta-
Theorem4. In orderforstationarynonlinearwave tionarywavescanexistin one-dimensionalself-gray-

solutionsto existfor theclassof theoriesconsidered itating fluids unlessthe totalchargevanishes(where
in thispaper,the chargedensityq(p)musthave(at the total chargeis the integralof the chargedensity
least)onezeroPM. Forsubsonicwaves,dq/dp> 0 at overonewavelength).This requirementof vanish-

PM andthiszero mustoccurat a densitylargerthan ing totalchargegreatlyconstrainsthetypesof model
the sonicdensityPc (the densityof the singularity). equationsthatallow for stationarywave behavior.
Similarly, for supersonicwaves,thesystemmusthave Wehaveshownthat in orderfora physicalsystem
dq/dp< 0 at PM<Pc• to exhibit solitary wave behavior,the systemmust

alsobe capableof a configurationwhich is gravita-
The conditionsoutlined in theorem4 are both tionally stable to perturbationsof arbitrarily large

necessaryandsufficientfor the existenceof station- wavelengths(seetheorem2). We havethusdiscov-
ary waves.This result is straightforwardto under- ered a fundamentalrelationshipbetweengravita-
stand.In orderfor suchwavesto exist, the function tional stability andthe existenceof solitary waves.
f(P) musthavea maximumandtwo zeroesp’ <P2 Wehavefoundnecessaryandsufficientconditions
suchthatPc<Pi for subsonicwavesandPc>P2for on the form of the chargedensityq(p) for the cx-
supersonicwaves.The zero of q(p) is requiredto istenceof solitary waves and ordinary stationary
provide a critical point for f(p) . The sign require- waves(seetheorems3 and4 ) . Theseconditionsal-
ment on dq/dpensuresthat the critical point PM is low usto determine(or at leastconstrain)thepos-
a maximum. The third condition, that the critical sible typesof wave behaviorfor any chargedensity
pointPM be largerthan the sonicpoint for subsonic theorywithouthavingto solvetheequqtionsofmotion.
wavesand smallerthan the sonic point for super- In summary,we haveintroduceda new classof
sonic waves,is requiredsothat the singularitydoes “chargedensitytheories”for the studyof wavemo-
not lie in the rangeof densitiesof the wave profile. tions in self-gravitatingfluids andrelatedsystems.

Wehavearguedthat many physicalsystemscanbe
modeledwith chargedensity theories.Finally, we
haveprovengeneralresults (theorems1—4 ) which
providepowerfulconstraintson theallowedtypesof
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