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We study a class of nonlinear model equations which represent one-dimensional fluid systems with long range forces (such as
gravity ). We present elementary theorems which constrain the allowed types of stationary wave and solitary wave solutions for

this class of systems.

1. Introduction

A wide variety of nonlinear wave structures can
exist in fluid systems where self-gravity is important,
but such motions have not been well studied. These
waves are most likely to occur in astrophysical set-
tings, although many other physical systems with long
range forces can mathematically resemble this prob-
lem (see below). In this Letter, we consider a class
of nonlinear equations which model self-gravitating
fluid systems in one spatial dimension. Our goal is
to find general results which show how physical
properties of such systems determine the allowed
types of stationary wave solutions.

Fluid motions which simultaneously include both
self-gravity and nonlinear effects can exhibit inter-
esting behavior. In general, most nonlinear waves in
fluids tend to steepen and shock [1,2]. On the other
hand, self-gravity leads to dispersion [3] which tends
to spread out wave packets. In principle, fluids with
self-gravity can reach a balance between nonlinear
steepening and gravitational dispersion. This bal-
ance leads to the possible existence of both nonlinear
stationary waves and solitary waves in the fluid.
However, previous work in this area [4-6] has shown
that the simplest possible system (i.e., eqs. (1) and
(2) below coupled with standard one-dimensional
gravity) cannot exhibit solitary wave behavior. The
physical reason for this lack of solitary waves is that

the gravitational force in one spatial dimension does
not decrease in the asymptotic limit x—co; on suf-
ficiently large spatial scales, the inward pull of grav-
ity always dominates and such systems are thus
doomed to collapse.

In this contribution, we study a general class of
model equations which represent self-gravitating fluid
systems in one spatial dimension. In particular, we
show that many systems can be described by the usual
equations of hydrodynamics coupled with a modi-
fied form of the Poisson equation for the gravita-
tional potential. One motivation for using a modi-
fied Poisson equation is to model two-dimensional
gravitational effects (e.g., a finite extent of the wave
profile in the transverse direction) while retaining a
one-dimensional theory. We present four elementary
theorems which constrain the allowed types of wave
behavior accessible to these physical systems. These
results elucidate the properties that a system must
have in order to exhibit stationary waves and soli-
tary waves.

2. General formulation

In this section, we introduce a class of model equa-
tions for the study of nonlinear waves in self-gravi-
tating fluid systems. We begin with the equations of
motion for a fluid. In one spatial dimension, the con-
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tinuity equation and the force equation take the forms

dp , 0

6t+6x(pu)—0’ (1)
du, e 1ap v _
6t+uax+pax+6x_0’ (2)

where p is the mass density, u is the velocity, y is the
gravitational potential, and p is the pressure. All
quantities have been written in dimensionless form.
We take the pressure to have a general barotropic
form

p=p(p), (3)

which includes most equations of state of interest.
To close the system of equations, we must include
the Poisson equation for the gravitational potential.
In this paper, we consider a class of systems with the
Poisson equation written in the generalized form

2

L), (4)

where g(p) is a function of the density p. We denote
the quantity g(p) as the charge density. We use this
terminology because, in general, whatever appears
on the right hand side of a Poisson equation is often
called “the charge density”. Notice that the charge
density defined here is not the electric charge den-
sity. Notice also that the choice g=p gives us back
the usual one-dimensional Poisson equation.

Equations (1)-(4) completely determine the sys-
tem once the equation of state p(p) and the form of
the charge density g(p) are specified. We denote the-
ories of this type as “charge density theories”. For
most of this paper, we keep the forms for p(p) and
q(p) arbitrary and present general results. In section
3, however, we show that many different physical
systems can be described by charge density theories
and we present specific forms of g(p) for several
examples.

We focus this current discussion on stationary
waves, which correspond to traveling waves of per-
manent form. For these waves, the fluid fields are
functions of the quantity

¢=X—1ot, (5)

where v, is the (dimensionless) speed of the wave.
Next, we introduce a new velocity variable
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v=uU—1o, (6)

which is simply the speed of the fluid relative to the
speed v, of the wave. Using these definitions, we in-
tegrate the continuity equation (1) to obtain the
relation

pv=A . (7)

where the constant of integration 4 is the “Mach
number” of the wave.

We can reduce the system of equations described
above to a single nonlinear differential equation for
the density p. If we differentiate the force equation
(2) with respect to £ and use the generalized Poisson
equation (4) to eliminate the potential, we obtain

ap dp 62p)
2 2 2 2 2 3
pp&(p % —A )+p¢ (3A -p % +p Fre

+p%q(p) =0, (8)

where we have eliminated the velocity dependence
by using the solution (7) to the continuity equation
(and where differentiation is now denoted by sub-
scripts). The equation of motion (8) is the funda-
mental equation governing stationary waves in charge
density theories. Fortunately, this highly nonlinear
equation can be integrated to obtain

op
2__p6 27K
pé=p (p %
where we have defined f(p) to be an integral that de-
pends on the form of the charge density g(p), i.e.,

A 2
f(p)=fdp%(%—g§). (10)

The existence or nonexistence of solitary waves and
stationary waves for a particular physical system can
be understood through the standard methods of phase
plane analysis [7,8]. In this method we reduce the
system to a single equation of form (9). The prop-
erties of the function #(p) determine the properties
of the wave solutions p (&) in a fairly simple manner.
Physically meaningful solutions must have #> 0. For
the systems considered here, the field p is a mass
density and must always be positive. Thus, physi-
cally relevant solutions exist when #(p) is positive
over a range of positive densities. Wave solutions ex-
ist when Z (p) is positive between two zeroes of the

-2
—Az) f0)=Z(p), %)
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function &, where the zeroes correspond to maxi-
mum and minimum densities of the wave profile. The
nature of the zeroes of # determines the nature of
the wavelike solutions. For example, if & is positive
between two simple zeroes, then (ordinary) nonlin-
ear waves result. However, if # is positive between
a simple zero and a double zero (where both # and
0% /dp vanish), then solitary wave solutions can be
found [7-10].

3. Examples of charge density theories

As we show in this section, many physical systems
can be described by charge density theories. The
simplest example of a nontrivial charge density is
given by

q(p)=p—po , (11)

where p, is the dimensionless background density of
the fluid. We can obtain this charge density by sub-
tracting out the contribution to the gravitational po-
tential due to the background fluid; this charge
density theory thus reproduces the original approx-
imation of Jeans [3,11]. Another way to obtain a
theory with the above mathematical form is to con-
sider a physical system which rotates at a uniform
rate £2 [2]. In the direction perpendicular to the ro-
tation axis, Gauss’s law for a uniform density cyl-
inder with density p, implies

@R =2nGp, T, (12)

where @ is the radial coordinate and where all quan-
tities have their usual dimensions. Thus, the uniform
density state will be in mechanical balance provided
that

po=02/21G . (13)

For waves propagating along the axis of rotation in
this system, we obtain equations of motion with a
“charge density” of form (11) with p, given by eq.
(13).

We can also derive a charge density for theories in
which gravity is modeled by a Yukawa potential. The
motivation for this approximation is to incorporate
a decreasing gravitational field strength while re-
taining a one-dimensional treatment of the problem.
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In particular, we write the Poisson equation in the
generalized form

2

37%/ =m3y+p. (14)
This theory produces an exponential falloff in the
gravitational force between point masses; the param-
eter m determines the effective range of the force.
The right hand side of eq. (14) defines an effective
charge density g, although it is not written explicitly
as a function of density only. However, we can in-
tegrate the stationary version of the force equation
(2) to obtain

y+h(p)+iv*=E, (15)

where E is the constant of integration. The quantity
h(p) is the enthalpy and is defined by
p
dp
h(p)= j 4 (16)
P p
The speed v can be eliminated by using the solution
to the continuity equation for stationary waves, i.e.,
v=A/p. Using these results in eq. (14), we can read
off the form of the charge density, i.c.,

2
q(p)=p+m2(E— h(p)— %) (17)

The motivation for introducing the extra term in the
Poisson equation (14) is to allow the gravitational
force to decrease with increasing distance. As we show
in ref. [12], another way to obtain this general be-
havior is to reduce a two-dimensional theory to an
effective one-dimensional theory using rather severe
approximations. In particular, we assume that the
velocity in the transverse direction is small com-
pared to that in the direction of propagation and we
consider a simplified treatment of the wave profile
in the transverse direction. We can thus obtain yet
another charge density theory with

d
q(p)=p—2u2—§, (18)

where u is a parameter which determines the steep-
ness of the wave profile in the transverse direction.
The charge density (18) is qualitatively similar to
that obtained from a Yukawa potential (see eq.
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(17)) and the parameters u and m play a similar role
(see ref. [12] for further discussion).

The standard problem of volume density waves in
a plasma can also be written in terms of a charge
density theory. The equations of motion governing
the dynamics of the ions are the same as eqs. (1) and
(2) with the electric potential ¢ replacing the grav-
itational potential y. The Poisson equation for the
electric potential (in dimensionless form) can be
written

92
éx—? =exp(¢)—p, (19)

where p is now the ion density [13,7]. Proceeding as
we did for the Yukawa potential, we can integrate
the stationary version of the force equation to find
the potential and then use the solution to the con-
tinuity equation to eliminate the velocity. We thus
obtain a charge density theory with

q(p)=exp[E—h(p)—A*/2p*]—p, (20)

where E is the constant of integration and A (p) is the
enthalpy (the pressure is often taken to be negligible
in this problem and hence 2=0).

Another way to obtain a charge density theory is
to simulate the effects of an embedded magnetic field.
In ref. [4], we derived a model equation on this ba-
sis. We assumed that the magnetic field points in a
direction perpendicular to that of the wave motion
and that the neutral component of the fluid is cou-
pled to the magnetic field through its frictional in-
teraction with the ionized fluid component (which
is well coupled to the field). We also ignored any
chemical effects so that the ionized component of the
fluid obeys a continuity equation. The resulting
model equation can be derived from a theory with
the charge density written in the form

q(p)=p+r(£ - pi) (21)

where I represents the coupling strength between the
neutral and ionized components and where pg de-
termines the ion density (assumed to be constant in
ref. [4]). We note that the model corresponding to
the charge density (21) is idealized in two ways.
First, a dissipative term has been dropped to obtain
this form. Second, the ion density is not calculated
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self-consistently. The net result of these approxi-
mations is to make the magnetic force on the neutral
component into a long-range force that balances the
long-range force of gravity. This treatment is un-
physical in the sense that these magnetic forces, which
arise from the frictional force exerted on the neutral
components by the ions, are intrinsically local. On
the other hand, this approximation allows for some-
thing to cancel the long-range force of gravity, which
does not fall off with distance because of the one-
dimensional treatment of the problem (see refs.
[4,12] for further discussion).

4. General theorems and results

In this section we present general analytic results
that are applicable for arbitrary forms of the charge
density g(p). In particular, we present four elemen-
tary theorems which greatly constrain the allowed
types of wave behavior for this class of theories. De-
tailed proofs of these results and further discussion
will be given in ref. [12].

To begin, we present a theorem which shows that
for any theory with a charge density g(p), a strong
constraint must be met in order for stationary waves
to exist. This constraint arises from the fact that a
stationary wave must have local extrema where the
pressure and velocity gradients go to zero. There-
fore, in order for the wave to remain stationary, the
force of gravity must also vanish at these points. This
behavior can only occur if the integral of the charge
density g(p) between two extrema is zero. This ar-
gument can be put in the form of a theorem for sta-
tionary waves.

Theorem 1. If a stationary wave solution p(&) ex-
ists for the one-dimensional theory, then the integral
of the charge density over one wavelength must van-
ish, i.e.,

A/2
0= | azalp(e)1=0,

—4/2

where the wavelength of a solitary wave is taken to
be infinite. This claim is limited to the case of non-
singular solutions; for solitons we also require that
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the density does not vanish at spatial infinity.

Theorem 1 greatly limits the allowed types of wave
behavior in systems with self-gravity. For the sim-
plest case of g(p) =p, theorem 1 implies that no sta-
tionary waves or solitary waves can exist because p
i1s a mass density and is positive definite (the ab-
sence of solitary waves in this context was found pre-
viously in both refs. [4] and [5]). Another impor-
tant consequence of this ‘“no-charge theorem” is that
the charge density g(p) must vanish in the asymp-
totic limit £— oo for a solitary wave or soliton. For
solitary waves, the wavelength is infinite and the mass
density p(&) approaches a constant as &—co.

Next, we consider the relationship between the ex-
istence of solitary waves and the absence of gravi-
tational instability. This relationship arises because
a solitary wave is, in some sense, an infinite wave-
length perturbation on a uniform medium. On the
other hand, the presence of gravitational instability
implies that all perturbations with sufficiently long
wavelengths will collapse [3]. Thus, the existence of
a stationary perturbation with an infinite wave-
length (a solitary wave) is inconsistent with the
presence of gravitational instability. This relation-
ship can be stated more precisely as follows.

Theorem 2. Suppose a physical system obeys a
generalized model equation of motion of form (8)
and this model equation has solitary wave solutions.
Then the system can have a uniform density state
that is gravitationally stable for arbitrarily large length
scales.

We note that the converse of theorem 2 is not true.
Physical systems of this type can be gravitationally
stable to perturbations of all wavelengths and still
not have solitary wave solutions. Thus, the require-
ment of gravitationally stable configurations repre-
sents a necessary condition (and not a sufficient
condition) for the existence of solitary waves.

The question of whether or not solitary wave and
stationary wave solutions exist is fundamental to the
study of nonlinear dynamics. For the class of charge
density theories considered in this paper, the ques-
tion becomes: What properties of the charge density
q(p) are required for the existence of solitary waves
and what properties are required for the existence of
stationary waves?
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We first find a necessary condition on the charge
density for solitary waves. When such waves exist,
the first integral # of the equation of motion must
be positive between a double zero and a ordinary zero
(see egs. (9), (10)). We restrict our discussion to
waves which avoid the singularity at the sonic point
(which occurs when the term in large parentheses in
eq. (9) vanishes). We also restrict our discussion to
waves with finite velocity; this second restriction
eliminates the point p=0 as a candidate for the dou-
ble zero (notice that for p—0, we get v=A4/p—co by
the continuity condition (7)). The required double
zero of # must thus occur at a double zero of f(p).
Furthermore, f(p) must be a local minimum at the
double zero. In order for the second (ordinary) zero
of # to exist, the function f{p) must also have a local
maximum at some other density. By definition (eq.
(10)), the derivative of f(p) is proportional to g(p).
Since we must avoid the singularity at the sonic point,
both the required minimum and the maximum of
f(p) must occur where the charge density g(p) van-
ishes. We denote the location of the minimum as p,
and the maximum as py. In order for the first critical
point to be a minimum and for the second to be a
maximum, we must have the correct signs for dg/dp
at the critical points (where the signs depend on
whether we consider subsonic or supersonic waves).
This argument can be summarized as the following
necessary condition on the charge density g(p) for
the existence of solitary waves.

Theorem 3. In order for solitary wave solutions to
exist for the class of theories considered in this pa-
per, the charge density g(p) must have (at least) two
zeroes p; and py,. For subsonic waves, g(p) must be
negative between the two zeroes; for supersonic
waves, g(p) must be positive between the zeroes.
(This result applies only to nonsingular solutions for
which the sonic point pc does not lie between p, and

Pm-)

Theorem 3 is potentially very powerful as a test to
see if solitary wave solutions exist. For example,
many possible charge density functions do not have
two zeroes and thus solitary wave behavior can be
easily ruled out. We note, however, that theorem 3
is not sufficient to guarantee the existence of solitary
waves. We must place an additional constraint on
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the charge density to make sure that the second (or-
dinary) zero of the function f(p) exists. Given that
q(p) has at least two zeroes, the function f(p) has
three possible forms. The first possibility is that f(p)
has a second ordinary zero and hence ordinary sol-
itary waves exist. The second possibility is that the
function f has another minimum at some density
p3>py and hence turns up at large densities; in this
case we can always choose the constant of integra-
tion in eq. (10) to make p; a double zero of /- We
thus obtain a depression solution or void solution. For
the remaining possibility, f(p) asymptotically ap-
proaches a constant and the system fails to have sol-
itary wave solutions. This issue of the existence of
the second zero of f(p) is discussed more fully in ref.
[12].

Next, we consider the simpler case of ordinary sta-
tionary waves. The required conditions on the charge
density g(p) for the existence of these waves can be
stated as follows.

Theorem 4. In order for stationary nonlinear wave
solutions to exist for the class of theories considered
in this paper, the charge density g(p) must have (at
least) one zero py. For subsonic waves, dg/dp>0 at
pum and this zero must occur at a density larger than
the sonic density pc (the density of the singularity).
Similarly, for supersonic waves, the system must have

dg/dp<0 at py<pc.

The conditions outlined in theorem 4 are both
necessary and sufficient for the existence of station-
ary waves. This result is straightforward to under-
stand. In order for such waves to exist, the function
f(p) must have a maximum and two zeroes p, <p,
such that pc<p, for subsonic waves and p->p, for
supersonic waves. The zero of g(p) is required to
provide a critical point for f(p). The sign require-
ment on dg/dp ensures that the critical point py is
a maximum. The third condition, that the critical
point py; be larger than the sonic point for subsonic
waves and smaller than the sonic point for super-
sonic waves, is required so that the singularity does
not lie in the range of densities of the wave profile.
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5. Summary and discussion

In this Letter we have developed methods to study
wave motions in self-gravitating fluids in one spatial
dimension. In particular, we have introduced the
concept of “charge density” for the study of such sys-
tems. In this formalism, the mass density is replaced
by a “charge density” ¢g(p) on the right hand side of
the Poisson equation for the gravitational potential
(the continuity equation and the force equation re-
main as usual). We have shown that many physical
systems can be modeled using charge density theo-
ries. In addition, we have shown that the standard
example of volume density waves in a plasma can
also be written as a charge density theory (where the
electric potential replaces the gravitational poten-
tial). We can thus study a wide range of physical sys-
tems and physical effects using this method, which
results in a simple semi-analytic theory.

We have presented a “no-charge theorem™ (theo-
rem 1) which shows that no solitary waves or sta-
tionary waves can exist in one-dimensional self-grav-
itating fluids unless the total charge vanishes (where
the total charge is the integral of the charge density
over one wavelength). This requirement of vanish-
ing total charge greatly constrains the types of model
equations that allow for stationary wave behavior.

We have shown that in order for a physical system
to exhibit solitary wave behavior, the system must
also be capable of a configuration which is gravita-
tionally stable to perturbations of arbitrarily large
wavelengths (see theorem 2). We have thus discov-
ered a fundamental relationship between gravita-
tional stability and the existence of solitary waves.

We have found necessary and sufficient conditions
on the form of the charge density g(p) for the ex-
istence of solitary waves and ordinary stationary
waves (see theorems 3 and 4). These conditions al-
low us to determine (or at least constrain) the pos-
sible types of wave behavior for any charge density
theory without having to solve the equations of motion.

In summary, we have introduced a new class of
“charge density theories” for the study of wave mo-
tions in self-gravitating fluids and related systems.
We have argued that many physical systems can be
modeled with charge density theories. Finally, we
have proven general results (theorems 1-4) which
provide powerful constraints on the allowed types of
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wave behavior in these systems. In a forthcoming pa-
per [12], we present proofs of the theorems and use
the results to study several examples of charge den-
sity theories.

One primary motivation of this work was to un-
derstand wave motions in self-gravitating astrophys-
ical systems, such as star forming regions in molec-
ular clouds [12,14]. However, other physical systems
can be modeled with charge density theories (see,
e.g., eq. (20) and the results of this paper should thus
be applicable to many other problems. In addition to
various direct applications of these results [12], fur-
ther work should be done on general charge density
theories. In particular, the related issues of wave sta-
bility [15] and wave excitation [16] should be
addressed.
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