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In this paper a novel and effective maximum likelihood type method for the estimation
of physically meaningful continuous-time stochastic systems from analog data records is
introduced. The method utilizes the ARMAX canonical form and block-pulse function
spectral representations, through which the problem is shown to be transformed into that
of estimating an induced and special-form discrete stochastic system from spectral data.
The proposed method is based on a number of key structural and probabilistic properties
that this discrete system is shown to possess, including stationarity, invertibility, and the
bijective transformation nature of its mapping relationship with the original continuous-
time system.

Unlike previous schemes, the proposed method utilizes analog data without depending
upon estimates of signal derivatives or prefilters, avoids errors due to direct discretizations
associated with instantaneous sampling, and is characterized by a /inear transformation
relationship between the discrete and the original continuous-time system parameters. This
leads to additional important advantages, such as the elimination of sensitivity problems
associated with highly non-linear mappings, the capability of incorporating a priori system
information, and reduced computational complexity. The effectiveness of the method is
verified via numerical experiments with a number of stochastic systems.

1. INFTRODUCTION

After two decades of almost complete dominance of discrete-time system identification and
parameter estimation approaches in engineeting theory and practice, the relevance and
importance of continuous-time methods based on analog data have been increasingly
recognized [1-7]. A survey of the available literature, however, reveals that the overwhelm-
ing majority of currently available continuous-time methods are restricted to the determin-
istic case, and are inappropriate for the more general and practically important class of
stochastic systemst with which additional difficulties are associated [1, 4].

One of the main difficulties in estimating continuous-time stochastic systems from
analog data records is due to our inability accurately to compute time derivatives (of
various orders) of the observed random signals [1, 4, 5]. If that were possible, continuous-
time versions of many discrete methods could be constructed; see, for instance, the work
of Balakrishnan [8], Bagchi [9] and Pham-Dinh-Tuan [10], who developed and analyzed

t A large number of engineering and physical systems are, indeed stochastic in nature. Consider, for instance,
the ambient vibrations of a building or structure, the vibrations of a machine tool during cutting, or those
traveling ground vehicles and aircrafts.

481
0022-460X/93/240481 + 29 $08.00/0 © 1993 Academic Press Limited



482 P. NURPRASETIO AND §. D. FASSOIS

the Maximum Likelihood method for this case and proved its asymptotic optimality. Also
see Unbehauen and Rao [3] and Priestley [11], who discussed the autoregressive model
case. The use of the so-called State Varable Filters (SVF’s), that are extensively used in
the deterministic case [1-3] for alleviating this difficulty, is neither trivial nor effective, and
their proper selection is not obvious,T their incorporation affects the stochastic part of the
moedel and, unlike the deterministic case, they cannot prevent the introduction of large
errors into the obtained random signal derivatives [5].

Attempts to overcome these problems through alternative approaches based on integral
(instead of differential) operators have been also considered. Van Schuppen [12] examined
recursive forms of such estimation algorithms for continuous-time autoregressive processes
and proved their convergence. Moore [13] analyzed the convergence of the continuous-time
version of the Recursive Extended Least Squares (RELS) estimation algorithm for
AutoRegressive Moving Average with eXogenous excitation (ARMAX) systems. How-
ever, in order to avoid numerical instability problems due to the pure integration of the
observed signals, exponentially stable prefilters have to be used, the selection of which is
important for convergence and also requires some form of a prieri system information.
Another related problem in this case is that of initial conditions, the effects of which do
not decay and can cause significant estimation bias errors [1, 6).

It therefore comes as no surprise that in almost all practical cases and applications the
stochastic part of a given system is either nor estimated at all, or only a discrete-time
representation of it is obtained, based on sampled data [1, 2, §, 6, 14].

The only, and arithmetically very few, exceptions appear to be based on an approach
that postulates the estimation of continuous-time stochastic models through the estimation
of directly, and approximately, discretized representations associated with instantaneous
data sampling. However, this approach is also restricted to wunifermly sampled data
records [15-17]. Moreover, very fast sampling cannot be used due to weli-known
limitations [18]. The method developed by Pandit and Wu [19-21] is a systematic and
comprehensive such procedure that has been successfully used for the solution of a number
of production engineering, random vibration, and other types of problems. Some similar
methods have also, although independently, been developed in the fields of statistics
[22-24] and econometrics [25-27], where the assumption of sampled data is practically
reasonable.

The main advantage of all these methods is in their ability to utilize the already available
machinery for discrete-time system estimation [11, 21, 28]. Yet, they are known to be
characterized by a number of drawbacks and limitations, as follows. (a) They are restricted
to operate on uniformly sampled data records and at reasonably slow sampling rates.
{b) The estimates of the continuous-time parameters are asymptotically biased. The bias
errors are due to the approximate nature of the instantaneous discretization employed ([1];
also see the discussion in Ben Mrad and Fassois [29] and Lee and Fassois [14]), and are
also analyzed in the econometrics literature [25, 26, 30]. (¢} Additional errors are intro-
duced into the continuous-time parameter estimates due to sensitivity problems associated
with the highly non-linear discrete-to-continuous transformation [18]; with the related
question of sampling also being recognized as non-trivial [7, 18]. (d) The incorporation of
a priori system information {that is often available in engineering applications) into the
estimation procedure is very difficult, if not completely impossible, due to the highly
complicated and non-linear nature of the discrete-to-continuous transformation [4, 20].

t It is in fact known that an optimal selection requires @ priori system knowledge. To cope with that, adaptive
SVF’s have been also suggested [5].
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(¢) The required computational complexity is finally high, and further aggravated by the
aforementioned non-linear transformation.

In this paper a novel Maximum Likelihood type method that overcomes the foregoing
difficulties and limitations and estimates continuous-time stochastic systems from analog
data records is introduced. The proposed method utilizes the general Autoregressive
Moving Average with eXogenous excitation (ARMAX) stochastic model structure and
block-pulse function (BPF) spectral representations. The use of BPF signal representations
has led to a number of developments in deterministic system theory and identification in
recent years (see, for instance, Wang [31] and Jiang and Schaufelberger [32]); the present
work, however, appears to be the first that utilizes BPF expansions in solving stochastic
estimation problems.

Within the context of this paper, the validity of BPF spectral representations for
stochastic signals is formally justified first. Based upon them, as well as a set of linear
operations motivated by recent developments in deterministic identification [32], the
problem of interest is shown to be transformed into that of estimating the parameters of
an induced stochastic difference equation driven by the spectral representation of
exogenous (observable) and endogenous (unobservable) excitations; the latter essentially
being the spectral expansion of a Wiener process. The structural and probabilistic
properties of this difference ¢quation are studied, and the endogenous excitation is shown
to be amenable to a first order Integrated Moving Average (IMA) representation driven
by a stationary innovations sequence. Based on this, as well as the structural properties
of the stochastic difference equation, an induced and special-form discrete ARMAX
system with parameters that are expressed as /inear combinations of those of the original
stochastic differential equation is finally obtained.

The mapping between this discrete ARMAX system and the original stochastic
differential equation is shown to be a bijective transformation, and the discrete system to
be stationary and invertible. These features lead to a Maximum Likelihood type estimation
scheme that is based on the estimation of the discrete ARMAX system, from which the
parameters of the stochastic differential equation are subsequently obtained through a
simple transformation. The linearity of this transformation not only results in reduced
computational complexity, but is also instrumental in circumventing sensitivity problems
and allowing for the incorporation of frequently available a priori information into the
estimation procedure. These characteristics, along with the use of analog data without
requiring estimates of signal derivatives, and the elimination of direct discretization
procedures associated with instantaneous sampling, are among the main features of the
proposed method.

The remaining portion of this paper is organized as follows: the exact problem
statement is presented in section 2, some preliminary considerations and the validity
of BPF spectral expansions for random signals are discussed in section 3, the induced
stochastic difference equation is derived in section 4, and its structural properties ana-
lyzed in section 5. The stochastic modeling of the endogenous signal spectral representation
is discussed in section 6, and the e¢stimation method formulated in section 7.
Simulation results are presented in section 8, and the conclusions are finally summarized
in section 9.

2. STATEMENT OF THE PROBLEM

Consider a continuous-time stochastic system with exogenous (observable) excitation
{u(#)}, endogenous {unobservable) excitation {w(t)} and response {y(r)}, described by
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the ARMAX stochastic differential equation:t

i d‘y(r) st df u(t) sl dfw(r)
Fe: ; b? Cp s, 1
& igl) df‘ J-Z:O fode g k dfk ( )
in which the differentiation operations are to be interpreted in the mean-square sense [33]
and a; =c, _;=1. The endogenous excitation {w(¢)} is a zero-mean continuous-time
innovations signal with autocovariance function:
Elw(siw(t)] = (a5) 8(s — 1), (2}

where &( -} denotes the Dirac delta function.
By using the mean square differential operator D, the system %, may be equivalently
written in notational form

F¢: a®(D)y(t) =b°(Du(t) + c*(D)w(1), (3)

with a°(D), b°(D) and c°(D) being the Autoregressive (AR), Exogenous (X), and
Moving-Average (MA) polynomials, respectively, which are of the following respective
forms:

a*(D)&D" +a; D" '+---+a}D +aj, (4a)
bo(DY&by (D" ~'+b? D" 4. +5D + 5§, (4b)
¢’ (DY2D™ 't ep ;D% P+ efD + ¢y (4c)

The ARMAX system %, is additionally assumed to satisfy the following standard
assumptions:

Al. The polynomials a®°(D), b°(D) and ¢°(D) are coprime (irreducibility assumption).

A2, The polynomials a®°(D) and ¢°(D) are strictly minimum phasc (stationarity and
invertibility assumptions, respectively).

A3. The signals {w(r)}, {u(2)} and {y(¢)} are Gaussian, with the latter two additionally
being continuous in probability and having almost every sample path characterized by
finite energy within the observation interval [0, T), namely

jr[x(t)]z dr <@
1]

almost surely (a.s.) [33].

As we will see, the Gaussianity assumption is not crucial for our developments,
but simply the vehicle for-casting the problem into a Maximum Likelihood framework.
If relaxed, the method may be still formally interpreted within the Prediction Error
estimation context {28].

The estimation problem of interest may be then posed as follows: “Given analog
excitation {#(¢)} and response { y(r)} data records over a period of time [0, T), generated
by the system %%, subject to assumptions Al-A3, estimate an ARMAX model of the
form

Mg aD)y(1) =bDyu(t) +c(Dw(t),  E[w(s)w(t)]=0,3(s —1), &)

that matches &, as closely as possible.”

t The superscript ° is used to indicate quantities associated with the actual system and to distinguish them from
those of corresponding candidate models.
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3. PRELIMINARY CONSIDERATIONS

The ARMAX equation (1) provides a strictly formal representation of the underlying
stochastic system, as it is well known that the continuous-time white noise signal is not
second order and its mean-square derivatives fail to exist. A more appropriate, and also
more convenient for our purposes, representation may be obtained by integrating the
differential equation (1) n, times which, assuming zero initial conditions, yields:

t

St y(t)+a, J.

¢ L]

y(t’)dt’+---+a3.[ J. y(t)dr
Jo b

n,-fold

=b§a_,J u(t’)dt’+---+b8j J u(t’)de
[¢] 0 1]
——
n,-fold
! !
+u7(t)+---+c3J' j w(de'.  (6)

0 0
- —

(n, — 1)-fold

In this expression the integration operations are to be interpreted in the mean-square
sense as well [33], while {w(s)} represents the Wiener process

M”a(t)éJ‘r w(s) ds. )
0

Due to the stated properties of {w(z)}, {W(z)} is Gaussian, continuous in probability, with

J\TW’(Lf Wdt <o (as),
[¢]

and also zero-mean, and with autocovariance function [33]
ED(s)w(r)] = (o3, ) min (s, £). ®)

For the development of the estimation method, the mth order block-pulse function
(BPF) spectral representations [34] of the signals {#(s)}, {W(¢)} and {y(¢)} are needed.
Based on them, the signals may be expressed as follows within the observation interval

[0, )t

YOETROES WANCELL (O} ©a)
NOETRO, éé Yl (1) = YY¥(), (9b)
W) = Wm(t)ékil W (1) = WTW(D), (%)

t Bold-face characters indicate vector/matrix quantities.
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where {U,}, {¥;} and { W} represent the sequences of BPF expansion coefficients of {u(¢)},
{¥(1)} and {W(r)}, respectively, U, Y and W are the corresponding vector representations,
and ¥(¢) is an m-dimensional BPF vector of the form

YL (1) ¥a(n) - ¢ (0], (10)
with . (¢) being the kth block-pulse function of the #2th order BPF function set,

bo0) = {1, for (k — 1)T/m <t <k(T|m),

) k=12,...,m, (an
0, otherwise,

and T/m being the block-pulse function duration (“width™). For a given signal, say {y(¢)},
the BPF expansion coefficients can be computed through the expression
k(Tjm)

Y8 j y(W, () dt = I y(e)de, k=1,....m. (12)

T (k= 1){(Tym)

BPF expansions are frequently used for the representation of deterministic signals, and

it is well known that in the limit, as m—o0, the set (11) is complete and the signal

representation {y,(#)} given by equation (9b) converges to {y(¢)} pointwise for any

deterministic square-integrable signal defined in the interval [0, T) [34]. Within the context

of the present work the question of validity of such expansions for the case of stochastic
signals is fundamental and, therefore, addressed first in the following theorem:

Theorem 1. The BPF spectral expansions (9a){9¢) of the stochastic signals {u(1)},
{y(1)} and {W(r)} are convergent in the following product measure sense (exemplified for
the case of {y(#)}):

hm (P x D) {(w, ) [y(1) —v.(1)| 2 e} =0,  Ve>0, (13

with 0 denoting an elementary e¢vent of the sample space, P the probability measure, and
A the Lebesgue measure on [0, 7).

Proaf. The proof is a direct consequence of the completeness of the set (11} as m— o0,
the continuity in probability and finite energy for almost every sample path, that is

Jr[y(t)]z dr <o (a.s.),

properties of the random signals involved (sce assumption A3 and the earlier discussion
on {W(t)}), and Theorem 2 of Bharucha and Kadota [35]. This theorem states that the
expansion of a random process {y(1)}, with ¢ €[0, T), in terms of an arbitrary basis in
&Z,(T). the space of square-integrable functions, is always convergent in the above product
measure sense for signals satisfying the aforementioned conditions, regardless of the
orthogonality of the basis used and the boundedness of the time interval 7. a

4. AN INDUCED MAPPING AND A STOCHASTIC DIFFERENCE EQUATION
REPRESENTATION

By substituting the expansions (9) into the system expression (6) and using the
operational matrix form of the BPF spectral representation for integration (see Appendix)
we arrive at the following system representation:

n,—1

YTZ a,  F¥()=U" Z b i Frp W) + WT Z Crg—i—1 Fi (1), (14
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in which F, represents the m x m operational matrix form for k-fold integration (see
Appendix). By canceling the vector W() from both sides of this equation and performing
the algebra, we obtain (», + 1) equations Ey,..., E, of the form

n, (T/m)r i+k
Ek: =Z ((l+ I)J rr,—l Z Yfl'+k+l J)

ng—1 (T/m)"'” 3 I+k
- igﬂ (-(1—4'2)—' na_l_ijg:l L{,_f;_,_ Li+k+1—J

n =1 Tm) I+k
+ Z (((1-{{1)' na—i—f}_; Wjﬂ.nkﬂ—j), k=0,1,...,na, (15)

with / representing an arbitrary positive integer and £ ; a2 quantity defined in the Appendix
[equation (A3)]. In a manner analogous to that used by Jiang and Schaufelberger [32] for
deterministic systems, performing the linear operation

% (" ) (16)

on the set of equations {E,} leads to the following stochastic difference equation:

Z AYY,,,=Y BiU .+ 3, W, (17
i=0 i=0 i=10

which is independent of any initial conditions. Through appropriate reindexing equation

(17) may be expressed as:

L5 A°B)Y,=B°BYU,+ CBW,, k=1,2,...,m. (18)

In equation (18) {Y,}, {U,} and {W,} represent the BPF expansions of the response,
exogenous excitation, and Wiener process, respectively, and 4 °(B), B°(B) and C°(B) are
polynomials in the backshift operator B (BY,2Y,_,) and of the following respective
forms:

A°(BYRA, + A, B+ 4+ A7B" '+ 4] B™, (19a)
B°(B)2B® + B, B+ -+ B{B" '+ BjB"™, (19b)
CBac: +C; _B+---+C;B="+CyBm. (19¢)

The coefficients {47}, may be shown to be related to the coefficients of the original
stochastic differential equation {a7}/3' through the mapping expressions

o _ _ n,;,+i(T|l‘r'”)j [}
Ao—jzo( 1y N (20a)

Z((ST_{_’T;;1 n,,—JnaZ‘(—])k( )-;:r",na—k—r'+t)s i=],2,.-.,",,- (ZOb)

Similar expressions relate the rest of the coefficients in equation (19) with those of the
original equation &4. By defining the continuous and discrete parameter vectors as

] G I (R VR (21a)
bafss_, --- b BT, Im,x 1} (21b)

ey | o0 e gl [mx 1) (21c)




488 P. NURPRASETIO AND S. D. FASSOIS

and
Ad[4; o A7 AT, [+ DXL (22a)
BA[B, .-+ B} B§I, [+ 1)x 1} (22b)
Cally - & &F W+ x1) (220)

respectively, the relations between the discrete and continuous system parameters may be
compactly rewritten as

A=D,a, B=D,b, =D, (23)

with D, being a square mairix with elements determined from equation (20), and D, and
D, submatrices of D,, formed by expressing D, in terms of its column vectors as

D,=[d, ()| - 1d(,+ D]  [(n,+1) x(n,+ D]; (24a)

and defining
Dp=[d,(2 |- 1ds(n,+ V)], [m.+ Dxnl (24b)
De=M, (M-~ d,(n)), [+ 1) xn,] (24¢c)

These mapping relationships between the continuous and corresponding discrete
parameters are summarized in Table 1 for up to fourth order systems,
Equations {23) define a mapping relationship 4 between the sets

FL{(a,b,c)eB=! x % x R | with a, b, ¢ of the form (21) with a;, = Crpt = 1}

{25a)
TaBLE 1
Relationships between the coefficients of & [equation (1)) and & 5 [equation (18)]
First order system Second order system
T
= ! Yl T Ty
4 r:11-'-2nia'J A2=az+%—a,+%(—)ao
m m
T
=— 1= TV
Ao al+2ma° A1=—202+§(;) a4
T
=12 T\
B zmbo Ay=a—3 al+é(_)
T
B,=1=b, T TV
LR Bz=%;b1+%(; by
C‘l =0y , T\?
Cn=—CD Bl:i J’_n bo
T T\
=1= =
NERLATEN A
T
Ci=c+ %; 2
C‘ = -—2C1

continued
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TABLE |—continued

Third order system Fourth order system

T TV STV T STV HTY TV
Abti ety ) atuly ) o ASatiatd;,) ety ) atmg ) @
T T\? Ty T TV Yy ™
A1= —303—%;024—%(—’;) Cl]'i'%(;)ﬂo A3=t —40‘4—50'34-%(;) ﬂ2+%(;) a, +%% ; dy
T T\? Ty T YA
= Ll - ny - Ay = Y iy -
A, =3a, 2ma2 z(m al+2‘(m) a , = ba, (m) @+ 355 - a
T T\? ! T TY? Y TV
Au=—a3+§;a2-—%(;) al""ﬁ(;)ao AF‘-*“;"‘;“:*‘%(;) a— - a+g ) %

T TY? TV T TV TY YA
Bs=é;n‘bz+é(;) bH’;‘L(;) by Ao=a4—§5‘13 +é(;) ﬂz—ﬁ(;) al+$(;;) ap
T T\? TY T T\? A
LN YRS 6 D Y R O
T e ™ T Ty TV
n- Ty o) me—Tnl(D) b i B2 )
T T\ Ty TY Vi
Bo=%;bz“%(-) bl"'z“.(;n‘) b, By = _(;n-) b+ 4 ‘“) by
~ T fTY T f TV s if TV
C3=CZ+§"’;CI+E po L Bl=+;;b3+§ " h—uTbh+g ™ by
T z T f T ! 13 *
C=-3-{=c+il=} By= —3—bi+gl - ) br—uTbi+ 0 — | bo
m m
& T TY & T TY TV
1=3¢'2-5;’-'1—3 m ‘o 4=C3+5;‘-‘z+6 m a+u m o
T T\? ~ T T\? Ty
Co= “Q"‘%;f—'l“%(;) Co C= —403“E"2+%(;) cl+15_2(;) o

and
FL{A,B,C)e@nt! x A+ x B+ |A=D,a,B=D,b;C=D,c;
for all (a,b,&)e¥}. (25b)

The nature of this mapping is of particular importance for our developments and is
examined in the following lemma:

Lemma 1. The mapping  :¥—% is a bijective (one-to-one and onto) transform-
ation,
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Proof & is a transformation since for any triple (a, b, ¢) ¢ ¥ expressions (23) define a
unique triple (A,B,C)ed. 7 is also onto since by construction of & every triple
(A,B,C)ed is the image of at least one triple (a,b,c)e%. That  is one-to-one
follows from the full rank property of the matrix D,; a fact that may be shown by
using expressions developed by Kraus and Schaufelberger [36] in such a way as to
rewrite D, as the product of two matrices that may be verified to be non-singular.
Therefore, the (sub)matrices D, and D, are also full rank, and the one-to-cne property
follows. O

5. STRUCTURAL PROPERTIES OF THE STOCHASTIC DIFFERENCE
EQUATION ¥

Before the induced stochastic difference equation & ; of equation (18) can be estimated,
its structural and probabilistic properties need to be determined. Specifically, issues such
as the stationarity of &, its identifiability, and the first and second order properties of
the sequence {I¥,}, are all essential for constructing a proper estimation algorithm. It is
emphasized that the study of the last issue is very important as the noise dynamics of &3
are not completely determined by the polynomial C°(B) alone, but also depend upon the
correlation structure of {W,} itself.

With these ideas in mind, we proceed to examine the structural properties of the
stochastic difference equation &5 first. The following thecorem discusses the phase
characteristics of the polynomials 4°(B) and C°(B) of (18), and therefore the latter’s
stationarity and “partial” invertibility properties:

Theorem 2. Consider the continuous-time ARMAX system subject to assumptions Al
and A2, and its corresponding stochastic difference equation &5 given by eguation (18).
Each one of the polynomials 4°(B) and C°(B) of the latter will then be: (1) strictly
minimum phase, provided that its continuous-time counterpart is strictly minimum phase;
(2) minimum phase, provided that its continuous-time counterpart is minimum phase;
(3) non-minimum phase, provided that its continuous-time counterpart is non-minimum
phase.

Proof. (a) Let us examine the 4°(B) polynomial first.

(al) Consider the system y(¢) = g°(D)u(¢) with the strictly proper [see equation (4)]
transfer function g°(D)2 b°(D)/a°(D). For a strictly minimum phase a°(D), the system
2°(D) is asymptotically stable [37], which implies that for every bounded excitation the
response will be also bounded; that is,

V {u@®} |u@lo<oe = |p0)f, <o, (26)

where || (1) |2 sup,. 4, {u()| with J, &[0, o0). Now consider the corresponding discrete
system G°(B)2 B°(B)/A°(B) induced by the BPF expansions of fixed width T'/m.
Since G°(B) is (by Lemma 1) unique, its response {¥,} to any given excitation
{U,} will be also unique. An arbitrary bounded excitation {U,} can, however, be always
constructed from a bounded {u(s)} through equation (12); for instance, select u(t) = U,
for (k — 1)(T/m) <t < k(T/m). From equation (26), the response { y(¢)} to the excitation
{u()} will be bounded and, therefore, the (uniquely determined) response {Y,} will also
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be bounded because

I ¥elo <5 j FOINTAGTAY
0

K(Tim)

=Z Iyl f dt = ()} < 0, @n
(k= 1)(TIm)
where | Y, |, 2sup,.,, | Y, with J,2[1, o0).t As a consequence an arbitrary bounded
excitation {U,} results in a bounded response {Y,}, and the system ¥, = GS(B)U, is
asymptotically stable. The polynomial 4°(B) is thus strictly minimum phase [37).
(a2) For a minimum phase a°(D), the system g°(D)£ b°(D)/a°(D) is stable in the sense
of Lyapunov, and therefore, its impulse response function {g(¢)} bounded:

lg(®) s < oo. (28)

The corresponding discrete system G °(B)£ B°(B)/A°(B) induced by the BPF expan-
sions has the impulse response function:

G=7 Lm gOW(DdL  k=1,2,... 29

By taking the norms of both sides of equation (29), and using equation (28), we have
m

16l <%

f Lg() o 19e(O)l., dt

k{Ttm)

=2 1g®l. '[ d

(% — 1)(Fim)

=g, < oo, (30)

which implies that {G, } is also bounded, and thus G°(B) is stable in the sense of Lyapunov.
As a consequence, A°(B) is minimum phase [37).

(a3) Now assume that a°(D) is non-minimum phase. Then the system g°(D)is not stable
in the sense of Lyapunov, and its impulse response function grows unbounded
(Ilg(¢) |, = c0). By using the continuity of g(r), implied by the fact that g°(D) is strictly
proper [see equations (4a) and (4b)], the unboundedness of {g(f)} implies that;

VM >0 3 atleast one interval 4 such that 4 <[(k — 1)(T'/m), k(T/m))
for some value of &, and for which lg(¢)| > M VieA. 1)

The impulse response {G,} of the discrete system G°(B) induced by the BPF expansions
will then be, for that particular value of &:

m (kT m (KTim)
Gk=—J g(t)de >~—j Mdt =M, (g(1)>0, ted) (32)
T Ja-oam T J-tim)

m [T m [T

Gk=_f g(t)dt<-——J' Mdr=-—M, (g(n)<0, 1te4) (33)
T ) v tk = 1}(Tfm)

Based on this we conclude that:

YM >0 3 atleast one k such that: |G,{ > M, (34}

T Notice that although || X, |, and || x(¢) [, designate different types of norms, the former may be interpreted
within the context of the latter by defining x'(r) = X, for (k — 1)(T/m) <t < k(T/m), so that: | Xl = I (e}

|r.n'
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which implies that {G,} grows unbounded. As a consequence, G°(B) is not stable in the
sense of Lyapunov, and 4°(8B) is non-minimum phase.

(b) The fact that the above results hoid for the polynomial C°(B) as well may be shown
as follows. Rewrite the ARMAX system expression &g [equation (6)] in terms of the
Wiener process {#(f)} and in the following notational form:

S a®(D)y(t)=b"(D)ult) + (D) (1), (35)
with
F(DYabe*(Dy=c;, ;D= +¢y ;D '+ -+ +efD*+ 5D +0. (36)
By defining:
€&y -+ cf colOT, (37)

one may readily show that the vectors & and C are related through the transformation
expression

C=D,¢, (38)

which is of exactly the same form as the first of equations (23) that relates A and a. As
a consequence, all previous results pertaining to A°(B) are fully applicable to the
polynomial C°(B) as well. O

Corollary 1. Lemma ! and Theorem 2 imply that the converse of the latter holds for
all autoregressive and moving average polynomials with coefficients in &,

Corollary 2. An immediate consequence of Theorem 2 and assumption A2 pertaining
to the strictly minimum phase nature of &°(D) is that the stochastic difference equation
& of equation (18) is stationary.

The structure of the polynomial £°(B) is of particular importance in the development
of the estimation method and is thus further discussed in the following theorem:

Theorem 3. The polynomial C°(B) of the stochastic difference equation (18) has a
distinct root at B =1 and can be factored as

C°(B) = (1 - B)C(B), (39)
with C°(B) being minimum phase.

Proof. The fact that C°(B) has a root at B = 1 may be shown by using a known property
(32] stating that the sum of the A4{’s is proportional to ag; specifically,

i A =(T/m)eag.

i=0
Because of equation (38), this is also applicable to €°(B), and therefore

2 €= CoB)snr = (TImy=&3 =0, (40)
i=0
since é5 =0 [see equation (37)]. The fact that the root B =1 is distinct, and C°(H)
minimum phase, is a consequence of Theorem 2, which implies that C°(B) has to be
minimum phase since &°(D) is such {based on the definition (36) and assumption
A2). O
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6. STOCHASTIC MODELING OF THE DISCRETE ENDOGENOUS EXCITATION
SIGNAL {,}
For the development of an estimation method for the stochastic difference equation %5

[equation (18)], the probabilistic properties of the endogenous excitation signal {I,},
defined as

W@% Lrwmq;k(r)dz, kell, m], @)

also need to be analyzed, and a proper stochastic representation developed.

Due to the linearity of equation (41) and the Gaussianity assumption A3, { ¥} will be
also Gaussian, and thus completely characterized by its first and second order moments.
The first order moment of {W,} can immediately be verified to be zero:

E[W,}= ; LT EW()y(6)dt =0, Yk €[1, m], (42)

since the Wiener process is itself zero-mean. For the calculation of the second order
moment of {W,}, we proceed as follows:

- mz T T
EW W)= E UU W{s)Wi(s)ds j W(t)ll’:(t)dt]

0

2( 2 0NE [*kTim) HTjm)
- ) J J min (s, £) ds dr. 3)
T {k = 0(Tjm) J(t - 1(Tim)
Consider the following cases.
(a) Case k=1:
- I 2032 PA(Tim) 5 2¢ 0N PR(TIm) !
E[Wi]= hdd (02‘") j I tdeds + e (02”) J I sds dt
r G = 1){Tfm) J (k= 1)(Ttm) k= 0(Tim) J e = (Tim)
a7 41I (44)
where

(k= 1)(T{m)

mz(cr;',,)z k(Tim) Tg
I= T2 J‘ %52—%(.’{ —I)ZF ds

mioo Y it T T T T T
- [ék?—%(k — 1Pk =4k — 1P e — 1Pk — 1)

T
=[}k —%];n— (00 (45)
By symmetry,
1 1 T oy2
=3k —51_(a.), (46}

and thus

E[Wi]=(k —3/(T/m)(a3)" (47)
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(b) Case k > [:

- . 2,032 (k(TIm) H(Tjm}
E[W, ) =" (T";’) f f ¢ di ds
{ {

k= )(Tim) J = D(Tim)
2r 0% 1(Fimy k(T/m)
_r (62“’) (J tdr)(j ds)
T (= 1)(Tim) (k= 1)(Tm)
T =]
=(/ —%); (o) (48)

(c) Case k <1

20 0\ (h(Tim) H(Tim)
PR me(o
E[W . W)]= ( 2"') j j‘ s ds dt
T (k= 1)(Tfm)} (! — )(T{m)

20, 032 k(Tm) H{T}m)
m¥o
- (ZW) (.[ ’ )(.[ dt)
r (k= 1)(Tymi )

T
=k —3)_ (@) (49)

Based on equations (47)+(49) we then have the following expression for the auto-
covariance of {W, }:

T
k —3)— (o3, k=1,
m

E[W, W] = (50)

(min (k, /) —1 % 62), k#L

Evidently, this autocovariance is not a function of the relative lag ¥ — /, and the sequence
{W,} is therefore non-stationary. In order further to investigate its structure we define a
new sequence {Z,} as

ZAW, - W,_,. (51

{Z,} is obviously zero-mean, and with an autocovariance E[Z, Z;] that may be computed
as follows.

(a) Case k =1
E[Z}]= E[W}] - 2E[W, W,_ |1+ E[W}_|]

: T
3

= - @ -2k~ 1 —H @+ —1-D =} IR ()

(b)yCase k —I=1:
E[Z,,Zk_;] = E[Wk Wk—l] - E[lec—l] _E[Wk Wk—Z] + E[Wk—l Wk-zl

—k-1-p -k -1-H Ly
T T
~k=2-3)— (@ + k-2 (@)

=i @3r (53)
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() Case k —I>1:
E[Z,Z)= E[W, Wr] - E[Wk- ) W, — EIW, W,_ ]+ E[Wk- I Wl— 1]

—(-H L@ -a-h @r-U-1-D @)

+U=1=9 (@)
=0. (54)

Observe that E{Z,Z,] is not a function of k or /, but depends upon their difference
k —[. Furthermore, by using the symmetry property of the autocovariance function
we have:

%%(o;’.)z, k—1=0,

4.7
Hazl= i @on k-n=1, (55)
0, k—1]>2.

This implies that {Z,} is a stationary MA(1) process [21], and thus amenable to the
representation

Zi =N+ 8N, (56)

with {N,} being a discrete zero-mean Gaussian innovations (uncorrelated) sequence with
variance (6% ). By comparing the autocovariance of the sequence {Z,} to that of a generic
MA(1) process given as

(eL+67)],  k—1=0,
rzz(k _E)= (g;)zﬁf, [k “”= 11 (57)
0, *k - ” 2 25

we obtain the following parameters of an invertible MA(1) representation of {Z, }:
T
67 =~ 0267949,  (g5) ~0-622008 o @)~ (58a,b)

These results lead to the following important lemma:

Lemma 2. The BPF expansion series { W, } of the Wiener process {#(t)} can be modeled
as a non-stationary Integrated Moving Average IMA(1,1) process [11] of the form:

(1 —BYW,=(1 + 8¢ B)N,, (59)

with 8 given by equation (58a) and {N,} being a Gaussian zero-mean innovations
sequence with variance given by equation (58b).

7. THE ESTIMATION METHOD

By substituting the IMA(1,1) representation (59) of the discrete endogenous excitation
signal and the form of C°(B) given by equation (39) into the difference equation
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lequation (18)], the following stochastic difference equation is obtained:
L. A°B)Y,=B°(B)U,+C°(BY(1+0;B)N,, N ~1id. A0, (@5)7). (60

In this expression, i.i.d. stands for independently identically distributed. Since 8} is a priori
known we may re-express &, in terms of the filtered sequences:

Ura(1+8:B)'U,, Yi£(1+67B)'Y,, (61)

and, by additionally normalizing the polynomials 4 °(B), B°(B) and C°(B) by dividing by
A, , the following normalized stochastic difference equation is obtained:

Fy: AY(B)YE=BB)YUL+ CY(B)N;, Ni~iid# (0, (c3)Y),  (62)

with
AY(B)Y214+ AYB+ -+ A5 B™, (63a)
ARl 4y - A7 TTRA/4;, (63b)
B(B)ABY + BYB + - + By B, (63¢)
B'A[BY By --- By IT'&Bj4;, (63d)
Co(B)21+CyYB+---+ Cﬁa’_lB"ﬂ", {63e)
Can ¢y - o Irecics - 2 cCy, (63f)

and
N;é%j—’mé%m. (64)

Based upon equation (64), {N;} is a zero-mean innovations sequence with variance
(65 ) =(C, /45 V(oR)- (65)

The normalized stochastic difference equation &, [equation (62)] with the stationary
zero-mean and uncorrelated endogenous excitation {N,} can be now identified as a
discrete-time ARMAX(n,, n,, n, — 1) model which is: (1) normalized by construction (the
leading coefficients of the AR and MA polynomials are equal to unity); {2) stationary, since
AY(RB) is strictly minimum phase by virtue of Corollary 2, which guarantees the strictly
minimum phase nature of A°(B); and (3} characterized by a minimum phase MA
polynomial C>(B) by virtue of assumption A2 and Theorem 3, which guarantee that
C°(B) is minimum phase. %5 is therefore identifiable.

The proposed estimation method is based upon both the identifiability of S, and the
bijective transformation nature of the mapping between the set of all systems of the form
& & and that of continuous-time ARMAX systems of the form & [see equation (1)]. This
latier property is formally given by the following theorem:

Theorem 4. The mapping 7, between the sets:

€. A {(a,b,e, (a2))e BT x B x B x R*|with a, b, ¢ of the form (21)
with a2 =cg _ =1} (66a)
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and

FA{A,B,C, (03 e Rt x ANt x B x B*| with A’, B, C’
generated through equations {23), (36) and (63),
and (¢5) by equations (58b), (65) by all (a,b, ¢, (¢5))e%,} (66b)

is a bijective transformation.

Proof. First, 7 is a transformation, as for any 4-tuple (a, b, ¢, (5)°) € €,; expressions
(23), (36), (58), (61), (63) and (65) define a unique 4-tuple (A", B, C', (65 ))€Z,. T, is
also onto since, by construction of the set &, every 4-tuple (A’,B’, C', (¢})*) € &, is the
image of at least one 4-tuple (a, b, ¢, (s°P)e%,.

The fact that &, is one-to-one may be shown as follows. Assume a 4-tuple
(A, B, C, (65)) e @.,. A corresponding 4-tuple (a, b, ¢, (63 )*) € €, may be then computed
by the following sequence of operations:

a2D;'A’, a=4g/a], {67a, b)

A=D,a, b=A;'B A4, . (68a,b)

C¥(B)=(1 —B)C¥(B), caA'Cl, c=clcs 1, (69a-c)
. m 1 AN .

C=Dce, (a0)= T > 0622008 © (‘CTO:) x (6% ), (70a, b)
where B, and C; represent arbitrary n,-dimensional subvectors of B and €, respectively,
Ap, A¢, appropriate 7, X 1, submatrices of Dg and D, respectively, and a2 [g] - ¢§]",
gé[gf,’u_, <+« ¢i]" intermediate (unnormalized) parameter vectors. Due to the nature of
these expressions and the full rank property of D, , Dy and D¢ (and thus of Ag and Ac),
the 4-tuple (a, b, ¢, (62)?) thus determined is indeed unique, a

The proposed estimation method is thus composed of two main stages. In the first stage,
a discrete-time ARMAX(n,, n,,n, — 1) model of the form [compare with &, given by
equation (62)]

My: A'(B)Yi=B(BYUi+C'(BE, (71)

with {E} } representing the model’s one-step-ahead prediction error sequence, is estimated
based on the available sequences {U§ }7_, and { ¥ }7_,. In the second stage, the parameter
estimates of the continuous-time ARMAX system %, [equation (1)] are obtained through
expressions similar to equations (67)~(70).

Due to ingvitable estimation errors, however, the model actually obtained, #,., may
not belong to the set &, (#, ¢ 27), in which case the former will have no image within
the set €, of continuous-time ARMAX systems. This problem may be dealt with by
assigning to .# 5 that continuous-time ARMAX model #; € €, the image in 2, of which
is, in some appropriate sense, ‘‘closest” to that of the estimated .#, . Within the context
of this work we have chosen to achieve that by using the Moore—Penrose pseudo-inverse,
and the parameters of the continuous-time ARMAX process may be then estimated as
follows [compare with equations (67)+(70)].

(1) For the estimation of the AR parameter vector a°

a2D'A’, i=4g/a,. (72a,b)
In these expressions, A represents the estimate of A® [the coefficients of the polynomial
A”(B)], 8214, - 4 &]" anintermediate parameter vector, and 42{4, --- & G, the
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vector of the final AR parameter estimates (the estimates of the coefficients of the
polynomial a°(D)).
(2) For the estimation of the X parameter vector b°:

A2D,i, b=(D}D,) 'D;B4,. (73a, b)

In these expressions, A is the vector of the estimated coefficients of 4°(B), B the vector
of the estimated coefficients of B°(B), and b the vector of the final X parameter estimates
(the estimates of the coefficients of the polynomial #°(D)).

(3) For the estimation of the MA parameter vector ¢

C(BY2(1 - BYT'(B), (742)
R&(DLD) DI,  e=8/6, ;- (74b, c)

In these expressmns C “(B) is the estimate of € (B)/@,l , C’ is the vector of the coefficients
of C'(B), c (B) 15 the estimate of C'(B), € is an intermediate estimate, and
e=[1¢, , --- & &) is the vector of the final MA parameter estimates (the estimates
of the coefficients of the polynomial ¢°(D)).

(4) For the estimation of the spectral height (52)

-~

2 . m 1 A,
C=Dct, ¢i= Tm( ) 6. (75a, b)

7.1. SUMMARY OF THE ESTIMATION METHOD
The proposed estimation method may be thus summarized as follows:

Strep 1: obtain the BPF spectral representations {U, }7_| and {¥,}7., of the exogenous
excitation {u(r)} and response {y(r)} signals, respectively, by using the operation (12).

Step 2. obtain the filtered representations {Uf} and {¥{} by using expressions (61).

Step 3: fit discrete ARMAX (n,,n,,n,— 1) models of the form (71) to the above
filtered representations for successive values of n, by using Maximum Likelihood
estimation. In each case, compute the Bayesian Information Criterion [38]:

BIC(ng) =1n (6, + ’ﬁl—{lm—m, (76)

where n, denotes the total number of estimated parameters, {6, ) is the estimated variance
of the discrete innovations {N;}, and m is the length of the BPF spectral representations
used. The model that yields the smallest BIC is selected as best.

Step 4: obtain the estimates of the continuous-time ARMAX system parameters through
expressions (72)-(75).

7.2. REMARKS
The following remarks are in order.

(a) Existence and uniqueness of the estimates &, 9, & and 6% . The existence and uniqueness
of the continuous-time ARMAX system parameter estimates is a consequence of Theorem
4 and of the full rank property of D, and D. This in turn, guarantees [39] the existence
and uniqueness of their Moore—Penrose pseudo-inverses used in equations (73b) and (74b).

(b) Consistency of the parameter estimates. As is well known, the Maximum Likelihood
or Prediction Error estimator of the parameters of a discrete ARMAX system are, under
mild assumptions, consistent [28], and such therefore is the estimator of &, [equation
(62)]. Hence, asympotically (m —co), the estimated model 5 € 2, (in probability), and
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since the parameters of the continuous-time ARMAX system are obtained as rational
functions of the former [due to normalization, see equations (72)+75)], the application of
Slutsky’s lemma [40] implies that the estimator

pe@E™ b & sl (77)
will also be consistent; that is,
0" .,0°, asm—ow, (78)

where 0° represents the true parametier vector and m is the length of the BPF spectral
representations used.

8. SIMULATION RESULTS AND DISCUSSION

The performance characteristics of the proposed method are now evaluated via
numerical simulations using a digital implementation. For a given continuous-time
ARMAX system of the form (3) and specified exogenous {«(#)} and endogenous {w(t)}
excitations, the response signal {y(7)} is calculated by integrating (using a fourth order
Runge-Kutta method} each of the following differential equations:

a* Dy () =b5(Dulr),  a*(Dy(r) = c*(Dw(1), (792,b)

and superimposing their solutions:

yt) =y, 1)+ 3, (0). (79¢)

For the faithful computation of continuous-time responses, the integration step At is
selected such that 20 < t/4¢ < 200, with t representing the smallest system period or time
constant.

In all cases examined, the selected exogenous excitation signals are composed of trains
of pulses of duration equal to the BPF width T'/m and amplitudes forming a sequence of
Gaussian independently identically distributed (i.i.d.) random variables with zero mean
and unit variance. The BPF expansions are computed from equation (12) by using
Simpson’s composite rule [41]. The estimation of discrete ARMAX models of the form
{71) is then based on the computed BPF spectral records.

The finally selected estimated model is validated by examining its predictive ability and
the characteristics of its residual (the one-step-ahead prediction error) sequence computed
from equation (71) for the estimated parameter values. For a good model, the residual
sequence must be uncorrelated, and this is judged by examining whether its normalized
sample autocorrelation lies within the 95% confidence interval of + 1-96/\/; [21].

Once an estimated discrete-time model has been successfully validated and accepted as
an accurate system representation, the continuous-time ARMAX parameters are obtained

through expressions (72)(75). Estimation accuracy is finally judged in terms of parametric
error indices of the form
|18—0°|
E =—1—— x 100%, 20
AT ; &0

with 0 representing a selected parameter vector and | - || the Euclidean norm.

8.1. ESTIMATION RESULTS
The estimation of the underdamped ARMAX(2,1,1) system (system A):

(D*+2D + 16)y(t) = (D + 10)u(t) + (D + 9w (?)
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Figure 1. The normalized sample autocorrelation of the discrete residual sequence for the estimated system
A {a) o2 =0-005; (b) ¢ =001

is considered first, based on data records that are 100s long (7 =100 s) and generated
with white noise sequences having spectral heights (a3 = 0-005 and (¢5) =0:01 (two
cases). The integration step and BPF width were selected equal to Ar =0-01s and
T/m = 1041, respectively. In both of the considered cases, discrete ARMAX(2,2,1)
models were estimated as statistically adequate, and, as the results of Figure 1 depicting the
normalized sample autocorrelation of the residuals lying within the 95% confidence
interval of i1—96/\/r; indicate, were successfully validated. From these models, the
continuous-time ARMAX system parameters that are summarized in Table 2 are obtained.
The estimated frequency response characteristics of both the #(D)/a{D) and ¢(D)/a(D)
transfer functions are also compared to their theoretical counterparts in Figure 2. As the
results demonstrate, excellent accuracy is achieved and the parametric percentage errors
are confined to reasonably small values. The discrepancy in the estimated innovations
spectral height, which is roughly constant in all cases, is attributed to the way in which
the stochastic differential equation (79b) was digitally simulated. Similar remarks may be
also made from Table 3, in which the results of a Monte Carlo analysis of the method

TaBLE 2
Estimation results for system 4 at two different noise powers

Estimated parameters
A

Process b \

parameters a? =0-005 a2 =001
a, 1 1-0000 1-0000
a, 2 2:0406 2:0256
a, 16 16-1395 16-0939
b, 1 1-0537 1-0623
b, 10 10-1251 10-1007
¢, 1 10000 1-0000
% 9 §-7383 87138
E} (%) — 08992 06026
Ef (%) — 1-3544 1-1783
ES (%) — 2-8901 31605
ol — 00112 0-0223

t For the simulation r/4: =~ 157,
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Figure 2. Frequency response curves of the estimated continuous-time system A: (a) tramsfer function
b(D)/a(D); (b) transfet function c(D)/a(D). —, Theoretical;, — ——, estimated for o2 = 0-005; — ——, estimated
for o =0-01.

TaBLE 3

Monte Carlo results for system A

Estimated parameters

System r — )
parameters Mean value  Standard deviation
a, 2 20249 0-0833
& 16 16-0771 0-2961
b, 1 1-0364 00293
by 10 10-0765 02234
o 9 84713 0-5563
EZ (%) — 0-5025 —
EZ (%) — 0-8426 —
ES (%) — 5-8746 —
¢l 0-005 0-01144 0-00066
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Figure 3. The normalized sample autocorrelation of the discrete residual sequence for the estimated system
B: (a} o2 = 0-00005; (b} o2 = 0-0001,

based on 20 data records generated by different seed numbers and (¢%) = 0-005 are

presented.

Next, the estimation of the overdamped ARMAX(2,1,1) system (system B), described

by the equation

(D2 + 3D + y(1) = u(t) + (D + 10)w(2),

(a)
50 T T T T 1 T b
o} i
—50 4
-100 _.
-150’- .
& 100 . . A %-200 - . N
@
3 3
E‘L = (b
o 20 T T T T _% 20 T T T T T
E 4
ALl ]
10
-20
0 1 —40}
-10 E ~60
| -80
-20 E 8
1 -100
-30 7 -120
-40l—— . ' - -140 s T
20 40 60 B0 100 0 20 40 60 80 100
Freguency (rad/s)
Figure 4. Frequency response curves of the estimated continuous-time system B: (a) transfer function
b(D)a(D); (b) transfer function c(D)/a(P). ——, Theoretical; ———, estimated for &2 =0-00005; —-—,

estimated for o2 =0:0001.
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TABLE 4

Estimation results for system B at two different noise powers

Estimated parameterst

System p A \
parameters a2 = 0-00005 a? = 00001
a, 1 1:0000 1-0000
a, 3 3.0570 3-0618
ag 2 20181 2-0194
b, 0 00014 0-0021
by 1 1-0203 1-0217
c; 1 1-0000 1-00G0
o 10 9-6879 9-7009
Ef (%) — 1-5995 1-7324
Ef (%) — 2-0381% 2:1774
ES (%) — 3:1054 2:9757
ol —_ 1-1084 x 107* 22154 x 10-*

1 For the simulation z/4¢ = 50.

is considered based on data records that are 100s long and generated with white
noise sequences having spectral heights (¢2)? = 0-00005 and (62)* = 0-0001 (two cases).
The integration step and BPF width were selected as in the previous example, that is
At =001s and T/m = 104¢. In both of the considered cases, discrete ARMAX(2,2,1)
models were estimated and successfully validated (Figure 3), from which the final

TABLE 5
Monte Carlo results for system B

Estimated parameterst

System —~ A 5
parameters Mean value Standard deviation

a 3 294573 012459
a, 2 2:00387 0-09451
b, 0 0-00029 0-00312
&y 1 1-00906 0-01792
[ 10 9-24614 062962
E4 (%) — 150911 —

E? (%) — 0-90632 —

ES (%) — 7-53856 -

al 5% 107° 1-14245 x 10~* 692103 x 10°%
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TABLE 6
Order determination results for system C
(o2 =0-005)
System order, n, BIC

2 —3-16820
3 -~ 877149
4 --8-77039

estimation results presented in Table 4 were obtained. The achievable accuracy is
very good, and the estimated frequency response characteristics nicely match those of
the corresponding theoretical curves (Figure 4). A Monte Carlo analysis based on 20
data records and (o3)* = 0-00005 (Table 5) further confirms the method’s performance
characteristics.

In this final case, the ARMAX(3,2,2) system (system C):

(D’ +11D%+ 424D + 1200)y(r) = 2D + 60D + 800)u () + (D> + 12D + 225)w(t)

is considered based on data records that are 37-5s long and generated with white
noise sequences having spectral heights (a2) = 0-005 and (62)* =001 (two cases). The
integration step and BPF width were selected as A7 =3-125x 10735 and T/m =841,
respectively. Discrete ARMAX(3,3,2) models were estimated as adequate (Table 6) and
successfully validated (Figure 5). The final estimation results, corresponding frequency
response characteristics and Monte Carlo analysis of the method {(¢2)? = 0-005], are
presented in Table 7, Figure 6 and Table 8, respectively.

TABLE 7
Estimation results for system C at two different noise powers

Estimated parameterst
System p —

parameters al =0005 ¢l =001
& 1 1-0000 10000
a, 1 117901 11-9525
a 424 433-4398 4349380
a, 1200 1268-5162 1304-6710
by 2 20402 20266
b 60 64-3514 65-2344
by 800 822-3662 827-7895
¢ 1 1-0000 1-0000
¢ 12 12:7478 12-8618
[ 225 2231065 224-7139
EX (%) — 5-4345 82691
E* (%) — 28402 3-5249
ES (%) — 0-9035 0-4030
al — 00103 00205

t For the simulation t/4t = 100.
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TaBLE 8
Monte Carlo results for system C
Estimated parameters
System — = ~
parameters Mean value Standard deviation
a, 11 11-3989 0-2347
a 424 4317177 4-7444
a, 1200 1225-5114 67-7825
b, 2 20780 0-0281
b, 60 62-0788 1-5323
by 800 824-2760 23-5585
o 12 12-6146 1-1445
& 225 2324035 13-7799
E} (%) — 2-0944 —
Ef (%) — 30371 —
ES (%) - 3-2970 —
ol 0-005 0-01023 0-00045

w

9. CONCLUSICNS

In this paper, a novel and cffective Maximum Likelihood type method for the estimation
of continuous-time stochastic ARMAX systems from analog data records was introduced.
The method is based on block-pulse function spectral representations, through which the
problem is transformed into that of estimating the parameters of an induced stochastic
difference equation subject to endogencus and exogenous excitations. The study of the
structural and probabilistic properties of this equation was shown to further reduce the
problem into that of estimating a special-form discrete ARMAX systern from spectrai
data. The method was then based on a number of key properties that this discrete ARMAX
system was shown to possess, including stationarity, invertibility and the bijective
transformation nature of its mapping relationship with the original continuous-time
system.
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Figure 5. The normalized sample autocorrelation of the discrete residual sequence for the estimated system
C: (a) 02 =0-005; (b) 02 =001
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Figure 6. Frequency response curves of the estimated continuous-time system C: (a) transfer function
b{D)/a(D); (b) transfer function c{D)}a(D). ——, Theoretical; ———, estimated for o2 = 0-005; — ——, estimated
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Among the unique features and advantages of the proposed estimation method that
make it especially attractive for applications are the following. (a} The fact that neither
estimates of signal derivatives, nor direct discretizations associated with instantaneous
sampling that lead to asymptotic bias errors are used. (b) No prefilters or a priori
information regarding the system dynamics is required. (c) The data are not restricted to
be uniformly (and reasonably slowly) sampled, but may in fact by in analeg form or in
very frequently sampled digital form. The choice is with the user and the available type
of signal processing hardware. Apart from its obvious significance, this fact also implies
that non-uniformly sampled and/or missing data can be accommodated if necessary. (d)
The mapping relationship between the discrete and the original continuous-time system
parameters is linear, so that sensitivity problems associated with highly non-linear
transformations are eliminated, the computational complexity is reduced, and frequently
available a priori system information can be readily incorporated into the estimation
procedure.

The effectiveness and good performance characteristics of the proposed method were
finally demonstrated via a number of numerical simulations using a digital
implementation.
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APPENDIX: THE OPERATIONAL MATRIX FOR INTEGRATION OF SIGNALS IN

THE BPF REPRESENTATION

Consider the mth order BPF expansion of the signal {y(#)}, as given by expresston (9b).
The k-fold integral of {y(z)} may be then expressed as

where

j‘. .. J.‘y(:’) dr’ ~X"F, ¥(1), (AD)
] o
k-fald
I'j;.l fk.z f;:,J ﬁ‘-’" ]
0 fa fix 0 fimo
S T “ ) |
R
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and
fa=1, ¥k,
Fei= =2 — D (=2, i=23,....m. (A3)

The matrix F, is called the kth order operational matrix for integration [31]. Finally,
note that the approximation in equation (A1) is due to the truncation error associated with
the mth order BPF signal representation, which, due to Theorem 1, converges to zero as
m—o0.



