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A stand-alone, menu-driven PC program, written in GAUSS386i. extending the analysis of one-sample 
longitudinal data sets satisfying the two-stage polynomial growth curve model (Ten Have et al., Am J 
Hum Biol, 3 (1991) 269-279) to allow missing data is described, illustrated and made available to in- 
terested readers. The method and the program are illustrated using data previously analyzed by the 
authors (Schneiderman and Kowalski, Am J Phys Anthropol, 67 (1985) 323-333) but with several random- 
ly chosen data points discarded and treated as missing. 
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Introduction 

In a recent paper [l] we provided a PC program, called 2STG, implementing 
Rao’s [2] analysis of one-sample longitudinal data sets satisfying the two-stage 
polynomial growth curve model. This program can be used to determine the lowest 
degree polynomial adequate to fit the individual and average growth curves, to test 
the goodness-of-fit of the two-stage model and to obtain confidence intervals for the 
polynomial regression coefficients and confidence bands for the average growth 
curve. It has proven to be a useful data-analytic tool for situations in which no miss- 
ing data are present, i.e. when each of the individuals in the sample is measured at 
each time point, but this is a requirement that is not always realised in practice. The 
purpose of the present paper is to outline the extension of this technique to ac- 
comodate individual-specific time design matrices due to Carter and Yang [3] and 
to provide a PC program for performing the associated computations. The technique 
and the program are illustrated using data first analyzed by Schneiderman and 
Kowalski [4], but with several randomly chosen data points discarded and treated 
as missing. 
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The model 

As previously described [l], the two-stage polynomial growth curve model 
(sometimes called a random coefficients regression model) assumes that the T obser- 
vations on the ith individual (i = 1,2,...,N) have the structure 

xi - MVN (Wr, W A W’ + a*I) 

where W, the time design matrix [S], consists either of powers of the times of mea- 
surement tl, t2,..., tT, or the values of orthogonal (where W’W is diagonal) or or- 
thonormal (W’W = I, the identity matrix) polynomials. In Eqn. (l), r is the P x 1 
vector of regression coefficients for the average growth curve (AGC), 

where the coefficients specific to individual i have the distribution 

Ti - MVN (7, A) (2) 

and a2 measures the variability of individuals about their individual growth curves 
(error variance). 

Swamy [6,7] generalized this model to allow differing measurement schedules for 
the N individuals, i.e. Wi is specific to individual i. T, however, was assumed to be 
the same for each individual. He proposed estimators for the parameters of this 
generalized two-stage model and showed that they had certain desirable properties. 
In particular, ? (defined below) is efficient for large T and consistent when both N 
and Tare large. Carter and Yang [3] noted that Swamy’s results could be extended 
to the case where T was also individual-specific, but that one needed to require that 
both N and min ( Ti) be large, again a condition that is rarely satisfied in practice. 

Swamy’s estimators for the parameters of the two-stage model when both W and 
T are allowed to be individual-specific are (all summations are from i = 1 to N): 

+i = (W/Wi)-‘W/Xi 

i=- k C +i 

C( Ti - P)Si 
~*= C(Ti- P) 

(3) 

(4) 

(5) 

and 

d=s,-; c (W/W,)_’ (6) 
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where 

1 
Si = ~ Xf[ITi - Wi (W/Wi)-‘W/l Xi 

Ti - P 

and 

s, = & C (+i - F) (ti,- +)’ 

(7) 

It will be noted that, in the above, P is fixed (a D = P-l degree polynomial is fit 
to each individual) and that S, is the covariance matrix of the ii. 

Carter and Yang [3] proposed a modification of ? that is efficient and consistent 
if either N or min ( Ti) is large, a condition which is more often satisfied in prac- 
tical applications. This estimator is given by 

(9) 

where 

Ai = [d + G2(W/WJ-‘]-’ (10) 

It can be seen that Eqn. (9) is a weighted average of the ii; and it can be shown that 
the weights are in fact equal to the inverses of the variances of the ?i, a long- 
standing statistical strategy for combining estimators with varying precisions (see 
e.g. Ref. 8, p. 444). To simplify some later notation, we let 

iI= $CAi 
[ 1 -I (11) 

so that 

;=fl 
[ 1 
i CAiii 

Carter and Yang also noted that A as given in Eqn. (6) could be non-positive 
definite (e.g. some of the variances might be negative) and so proposed a modifka- 
tion which is always positive definite and for which the large-sample properties of 
Swamy’s estimator continue to hold. This estimator requires the computation of +, 
the smallest root of the determinantal equation 

ST - X C (W/W,)-’ = 0 
I 

(12) 
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If + > 62, no modification is required. If, however, + I c2 we take 

A = s _ Fi - l/a) 
T N C (w/wi)-l 

where 

a= C Ti + tr [ c(W/Wi)-‘] 

(13) 

(14) 

In Eqn. (14), tr [ .] is the trace operator, i.e. the sum of the diagonal elements of ma- 
trix within the brackets. 

In summary, the 7i and a2 are estimated in our program by Eqns. (3) and (5); 7 

is estimated by Eqn. (9); and A by either Eqn. (6) or Eqn. (13) depending on whether 
+ > k2 or + I i?’ respectively. 

The degree of the polynomial 

Carter and Yang did not explicitly address the question of the determination of 
D, the (common) degree of the polynomial to be lit to both the individual growth 
curves and to the AGC. In their illustrative example, they simply used D = 1, ap- 
parently guided by preliminary plots, etc. of the data. They did, however, indicate 
how hypotheses of the form H:L7 = 70, where L is a specified matrix and 7. is a vec- 
tor of known constants, could be tested using Hotelling’s T2 statistic. We have im- 
plemented these tests in our program to aid the user in determining the degree of 
the polynomial to be used in the Carter-Yang procedure. We begin by asking the 
user to specify the degrees, FD and RD, of the so-called full and reduced models, 
respectively. FD I T - 1 is a degree which the user feels should be more than ade- 
quate to model the data and RD the smallest degree which may be contemplated 
(often the user will choose RD = 1). We then, using the level of significance specified 
by the user, perform a series of step-up goodness-of-fit tests, testing first that RD 
is adequate then, if necessary, that RD + 1 is adequate, etc., up to degree FD, which 
is used if no smaller D passes the test for goodness-of-lit. These tests are similar to 
those described in Ref. 1 and are made using the test described above with appropri- 
ate choices of L and 70. For example, if FD = 4 and RD = 1 are specified, the first 
test will be based on 

00100 
L= 

[ : 

00010 

00001 

and 70’ = [0, 0, 0). This choice corresponds to the hypothesis that the coefficients 
of the quadratic, cubic and quartic terms are (simultaneously) zero, i.e. that 73 = 

74 = 75 = 0. If this hypothesis is not contradicted by the data we use D = 1. If 
rejected, we step-up and test 74 = 75 = 0, etc. 
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Should the user wish to bypass these tests and to specify the degree, D, to be used 
on other grounds, one simply takes FD = RD = D. 

Confidence intervals and bands 

We also compute confidence intervals for the elements of 7, and confidence bands 
for the AGC at the planned times of measurement tl, t2, . . . . tr. The user specifies 
the level of confidence (e.g. 0.95) to be used. Let w be a 1 x P vector. Then approxi- 
mate (for large values of N or min( Z’i)) (1 - a) x 100% confidence intervals for 
the elements of r are given by 

1 ( > ‘% 

wt* -wwaw’ 
N 

tl - d2V - 1) 

by taking, in turn, 

WI = [l,O,O )..., O,O] 

wg = [O,l,O )..., O,O] 

(15) 

wp = [O,O,O ,...) O,l] 

In Eqn. (15), t, _ a,2(N - 1) denotes the (1 - (r/2) x 100th percentile of the t- 
distribution with N - 1 degrees of freedom. 

To generate confidence bands for the AGC, identify w with the rows of W and 
let P = w?, the corresponding fitted value. Then marginal confidence bands are com- 
puted using 

t, - ai2W - 1) (16) 

Simultaneous confidence bands are of the form 

(N - l)P 

> 

‘/I 
%* 

N(N - P) 
wQw’F, _ ,(P,N - P) (17) 

where F, _ ,(P, N - P) is the (1 - a) x 100th percentile of the F-distribution with 
P and N - P degrees of freedom. The former (marginal) bands are the ones given 
in Carter and Yang [3]; the latter were given in Ref. 1. We include both to allow 
comparisons with both publications. 
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In addition, we compute prediction intervals [3]. These are of the form 

1 

% 
wfraw; + Wf Awj! + ii2 tl - o/2(N - 1) WV 

These intervals were not included in Ref. 1, but they can be useful in pedictive/diag- 
nostic contexts. They provide bands within which the growth curve of a new individ- 
ual from the population under consideration will lie with the desired level of 
confidence. 

An example 

The structure of the program is completely analogous to 2STG [I], except that the 
user is also asked to supply a code for missing data and so no detailed description 
is provided here. Information concerning obtaining a copy of the program, hardware 
requirements, etc., is provided in the Appendix. The program is invoked by issuing 
the single command 

gsruni cy 

Our example is based on the data set consisting of mandibular ramus height 
measurements for N = 12 young male rhesus monkeys at T = 5 (equally spaced) time 
points, first considered in Ref. 4. Here, however, we have randomly discarded 10% 
of the data (6 measurements), basing the analysis on the data set 

x= 

25.2 29.0 33.6 9999 35.8 
21.3 32.1 37.0 41.8 43.5 
26.3 9999 36.1 38.0 38.9 
26.0 34.5 39.0 42.3 44.4. 
9999 29.5 34.4 38.3 37.9 
28.2 32.5 36.3 42.3 43.8 
25.4 33.4 38.0 9999 43.1 
27.2 34.8 9999 44.0 44.0 
26.0 34.5 38.0 43.5 43.8 
28.5 33.8 38.0 39.2 42.0 
27.0 9999 36.0 41.7 43.8 
26.0 33.0 40.2 42.5 43.8 

where the 9999s represent missing data. For these data with D = 3, the estimate of 
A was not positive definite and the Carter-Yang modification (Eqn. (13)) was re- 
quired. The program CY prints both the estimator and, when necessary, the moditi- 
cation. The estimated error variance was 1.02 1. The estimated polynomial regression 
coefficients and their corresponding 95% confidence intervals are given in Table I. 



Program for polynomial growth curve 293 

TABLE 1 

95% CONFIDENCE INTERVALS FOR THE REGRESSION COEFFICIENTS WHEN MISSING 
DATA ARE PRESENT AND CY IS USED 

Degree Coeff Std error Confidence interval Half interval 

0 20.921 2.224 16.033 25.822 4.895 
1 5.456 3.065 -1.291 12.202 6.747 
2 0.391 1.089 -2.006 2.788 2.397 
3 -0.127 0.116 -0.382 0.128 0.255 

TABLE II 

95% MARGINAL CONFIDENCE BANDS FOR THE AGC WHEN MISSING DATA ARE PRE- 
SENT AND CY IS USED 

Time point Fitted value Std error Confidence interval Half interval 

1 26.647 0.335 25.909 27.385 0.738 
2 32.386 0.631 30.997 33.775 1.389 
3 37.382 0.644 35.965 38.799 1.417 
4 40.873 0.703 39.326 42.42 I 1.547 
5 42.098 0.878 40.165 44.03 I 1.933 

TABLE III 

95% SIMULTANEOUS CONFIDENCE BANDS FOR AGC WHEN MISSING DATA ARE PRE- 
SENT AND CY IS USED 

Time point Fitted value Std error Confidence interval Half interval 

I 26.641 0.786 25.106 27.385 1.541 
2 32.386 1.480 29.486 35.285 2.900 
3 37.382 1.510 34.425 40.399 2.957 
4 40.873 1.649 37.643 44.104 3.230 
5 42.098 2.060 38.062 46.133 4.036 

The 95% marginal and simultaneous confidence bands for the AGC are shown in 
Tables II and III, respectively. The 95% prediction intervals are shown in Table IV. 

The level of confidence used (e.g. 0.95) is specified by the user. Finally, the AGC 
and its confidence bands are plotted. Publication-quality graphs may be printed. 
More details concerning the output and program operation are given in Ref. 1. As 
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TABLE IV 

95‘!‘0 PREDICTION INTERVALS WHEN MISSING DATA ARE PRESENT AND CY IS USED 

Time point Fitted value Std error Prediction interval Half interval 

I 26.647 1.171 24.068 29.225 2.578 
2 32.386 2.267 27.396 37.375 4.990 
3 37.382 2.408 32.082 42.682 5.300 
4 40.873 2.534 35.296 46.451 5.578 
5 42.098 3.169 35.124 49.072 6.974 

is indicated there, the screen output is automatically saved in a file, called CY.OUT, 
which can be edited and/or annotated using a word processor. 

Discussion 

It is of interest to compare the above output from CY with that of 2STG when 
there are no missing data. For the complete data set, using 2STG, the estimated error 
variance was 1.228. The estimate of A was not positive definite and the Carter-Yang 
modification (Eqn. (13)) was again required. The estimated polynomial regression 
coefficients and 95% confidence intervals are shown in Table V; the 95% simulta- 
neous confidence bands for the AGC in Table VI (marginal confidence bands for 
the AGC and prediction intervals were not included in 2STG.) 

In the example considered, the presence of missing data did not change the 
estimates of the parameters of the two-stage model to any great extent. The widths 
of the confidence intervals and bands are somewhat wider, but comparable. This is 
despite the fact that neither N nor min ( T;) is ‘large’. The reader is reminded, how- 
ever, that the desirable properties of the Carter-Yang procedure cited above can only 
be ensured when one or the other of these quantities is in fact large. 

TABLE V 

95% CONFIDENCE INTERVALS FOR THE REGRESSION COEFFICIENTS WHEN NO MISS- 
ING DATA ARE PRESENT AND 2STG IS USED 

Degree Coeff Std error Confidence interval Half interval 

0 21.062 1.358 18.070 24.053 2.991 
1 5.209 1.788 1.272 9.145 3.936 
2 0.453 0.592 -0.850 1.756 1.303 
3 -0.131 0.060 -0.263 0.002 0.132 
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TABLE VI 

95% SIMULTANEOUS CONFIDENCE BANDS FOR THE AGC WHEN NO MISSING DATA ARE 
PRESENT AND 2STG IS USED 

Time point Fitted value Std error Confidence interval Half interval 

I 26.593 0.752 25.120 . 28.065 I .472 
2 32.246 1.188 29.920 34.573 2.327 
3 37.239 1.386 34.524 39.954 2.715 
4 40.788 1.583 37.687 43.888 3.101 
5 42.109 1.993 38.205 46.014 3.905 

It will be noted that the program is structured for the analysis of data from studies 
designed in such a way that common times of measurement were planned, but some 
data were inadvertently missing. It is theoretically possible to remove the restriction 
of common times of measurement, i.e. to allow completely different measurement 
schedules for each individual. This, however, raises a number of thorny practical 
problems and has not been implemented at this time. The main cause for concern 
is a by-product of the fact, as can be seen from Eqns. (9) and (lo), that a single value 
of D must be selected which is adequate to model each individual’s growth profile. 
When individuals present with widely separated, non-overlapping times of measure- 
ment, extrapolation can be a problem - a polynomial of a given degree may fit an 
individual growth profile quite well over the range of observations for that individu- 
al, but may extrapolate poorly, especially when higher degree polynomials are in- 
volved. While this problem can arise even in the restricted context of planned times 
of measurement, it will generally be less severe and the program described here 
should be useful in many situations where incidentally missing data points are pre- 
sent. We suggest that use of the current version of this program be limited to data 
sets where the times of measurement for individuals show at least a reasonable 
amount of overlap and where high degree polynomials are not required to achieve 
an adequate fit to the data. 

We should also note that Carter and Yang, while developing the modified 
estimator, Eqn. (13), which will always be positive semi-definite, warned that when 
modification is in fact necessary, “one should question the validity of the model 
specification”. Thus this may be used as an informal test of the goodness-of-fit of 
the two-stage model. For a more detailed description of how one might expect the 
two-stage model to arise in practice, see Ref. 1. 

Finally, we mention that there are other approaches to the analysis of incomplete 
longitudinal data sets. These, however, either depend on an iterative computational 
algorithm (the so-called EM algorithm) for estimating the overall regression parame- 
ters or are concerned only with the estimation of the individual regression parame- 
ters [9]. The EM algorithm [lO,l l] can be used in situations like the one described 
in this paper, but Carter and Yang noted that the EM algorithm can be slow to con- 
verge, sensitive to the starting values and may converge to local rather than global 
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maxima. In any event, the Carter-Yang procedure produces closed-form expressions 
for the estimators of the parameters of the two-stage model and should prove useful 
in situations in which incidentally missing data points exist. 
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Appendix: computer implementation 

A full set of PC programs for longitudinal data analysis, including this program, 
can be obtained on 5.25” or 3.5” diskettes (please request type) by sending $25 to 
defray the cost of handling and licensing fees. These progams require an 80386 or 
80486 based personal computer (PC) running the MS-DOS operating system (ver- 
sion 5.0 or higher is recommended, although versions as low as 3.3 will suffice). 
80386 computers must also be equipped with a 80387-math coprocessor. At least 4 
mb of memory is required and must be available to GAUSS386i, i.e. not in use by 
memory resident programs such as Windows. EGA or VGA graphic capabilities are 
required to display the color graphics; VGA or SVGA is suggested to optimally 
display the graphic results. Runtime modules are supplied with the programs so that 
no additional software (i.e. compiler or interpreter) is required to run these progams. 
One can create and edit ASCII data sets for use by these programs using the full 
screen editor supplied with MS-DOS version 5.0. The programs are written and com- 
piled using GAUSS386i, version 3.0, require no additional installation or modifica- 
tion and are run with a single command. When requesting the programs, address 
inquiries to the corresponding author and make checks payable to Baylor College 
of Dentistry. 
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