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We give a lattice path interpretation for totally symmetric self-complementary 
plane partitions. This is a first step in solving the long standing problem of 
enumerating such plane partitions. Another outstanding problem in enumerative 
combinatorics is the search for a bijection between alternating sign matrices and 
totally symmetric self-complementary plane partitions. From the lattice path inter- 
pretation, we discover a new statistic on totally symmetric self-complementary 
plane partitions which should correspond to the position of the 1 in the top row 
of an alternating sign matrix under such a bijection. © 1993 Academic Press, Inc. 

1. INTRODUCTORY DEFINITIONS 

This paper deals with three different classes of combinatorial objects. We 
define them in this section. The remainder of  the paper gives connections 
between these apparently unrelated things. 

DEFINITION. A plane partition ~ is an array ~=[TL.,j], i,j>~l of 
nonnegative integers ~i.~ with finite sum Irtl = ~ i , j ,  which is weakly 
decreasing in both its rows and columns. 

EXAMPLE 1. 

5 4 4  3 2 

5 4 3 1 1 
2 2 1 1 

2 1 1  
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The zero entries are not usually written down. The following definitions 
give some special classes of plane partitions. 

DEFINITION. (a) A plane partition is symmetric if rci, j = rcj, i for all i,j. 

(b) A plane partition is cyclically symmetric if the ith row of n, when 
regarded as an integer partition, is the conjugate of the ith column, for 
all i. 

(c) A plane partition is totally symmetric if it is symmetric and 
cyclically symmetric. 

(d) A plane partition is (r, s, t)-self-complementary if 7r has no more 
than r rows, no more than s columns, hi,: <~ t, and 

7[i , j 'q-  ~ r  i+  l , s _ j +  l = t 

for all l<<.i<<.r and l<<.j<~s. 

EXAMPLE 2. The following four matrices illustrate the above definitions. 

(1) 

(3) 

4 4 3  2 

4 4 1 

3 1 1 

2 

4 3 3 1 

3 3 2 

3 2 1 

1 

(2) 5 3 2 2 1  

4 3 2 

2 2 

1 1 

1 

(4) 4 3 2 2 1 

4 3 2 1 0 

3 2 2 1 0 

(1) is symmetric but does not have any of the other properties. (2) is 
cyclically symmetric but not totally symmetric. (3) is totally symmetric. 
Note that in a totally symmetric matrix, each row is in fact self-conjugate. 
(4) is (3, 5, 4)-self-conjugate but does not have any of the other properties. 
In self-complementary p lane  partitions, we write down zero entries that 
occur within the r x s rectangle. 

The first class of combinatorial objects that we are interested in is totally 
symmetric (2n, 2n, 2n)-self-complementary plane partitions. To save writing 
the 2n time and time again, we call these totally symmetric self-complemen- 
tary plane partitions of order n. 

EXAMPLE 3. There are two totally symmetric self-complementary plane 
partitions of order 2: 
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4 4  2 2  4 4  3 2 

4 4 2  2 4 3 2 1 

2 2 0 0  3 2 1 0 

2 2 0 0 2 1 0 0 

The seven totally symmetric self-complementary plane partitions of 
order 3 are listed in the Appendix. 

THEOREM 1.1. The number of totally symmetric self-complementary 
plane partitions of  order n is equal to A n, where 

-i 1 (3i+ 1)! 
An = (n + i)! 

i = 0  

This was first conjuctured by W. Mills, D. Robbins, and H. Rumsey 
[MRR2].  The proof of this required the work of three different people. The 
first portion is done in this paper. Theorem 1.2 converts counting totally 
symmetric self-complementary plane partitions into counting a certain 
class of non-intersecting lattice paths. The second step, which is due to 
J. Stembridge [Ste], converts counting the lattice paths into evaluating a 
determinant. The last step is due G. Andrews l-A], who evaluated the 
determinant. 

The second class of combinatorial objects is the above mentioned 
configuration of non-intersecting lattice paths. A lattice path is a sequence 
{(uj, vj)~Z2: l<~j<~t} such that (U~+l, Vj+l)- (uj ,  vj) equals (0,1) or 
( - 1, 0). Assigning Z 2 matrix-style coordinates, a lattice path is a sequence 
of steps down 1 or left 1. The lattice path is said to start at (u~, v~) and end 
at (ut, vt). We refer to ((uj, vj), (Uj+l, vj+l)) as a move. If the difference is 
(0, 1), it is a downward move. If the difference is ( - 1 ,  0), it is a leftward 
move. 

DEFINITION. A lattice pattern on n points is a set of n non-intersecting 
lattice paths, such that the ith path starts at (2i, i) and ends somewhere on 
the diagonal { (j,j): j ~ Z}.  

EXAMPLE 4. This is a lattice pattern on 4 points. 

o 

o 
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Since they play no role, the coordinate axes are not shown. The main 
result of this paper is the following theorem. It is proven in Sections 2-4. 

THEOREM 1.2. The number of totally symmetric self-complementary 
plane partitions of  order n equals the number of lattice patterns on n -  l 
points. 

The final combinatorial object of interest is defined next. 

DEFINITION. An n x n  alternating sign matrix is an n x n  (1 , - -1 ,0)-  
matrix such that 

(i) all the row and column sums are 1, and 

(ii) the non-zero entries in each row and column alternate in sign. 

These have been studied by several people [MRR1, MR, Stal] .  

EXAMPLE 5. The 7 3 × 3 alternating sign matrices are 

1 0 0 1 0 0 0 1 0 0 1 

0 1 0 0 0 1 1 0 0 0 0 

0 0 1 0 1 0 0 0 1 1 0 

0 0 1 0 0 1 0 1 0 

1 0 0 0 1 0 l - 1  1 

0 1 0 1 0 0 0 1 0 

Mills, Robbins, and Rumsey [MRR1 ] have made the following 

Conjecture. The number of n × n alternating sign matrices equals An. 

There is no known bijection between n x n alternating sign matrices and 
totally symmetric self-complementary plane partitions of order n or lattice 
patterns on n - 1  points. In gection 7, we give a numerical connection 
between alternating sign matrices and lattice patterns. 

2. BASIC RESULTS 

The self-complementary and totally symmetric properties, when com- 
bined, force some of the entries in the plane partition to have certain 
values. In this section, we describe these necessary conditions. 
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PROPOSITION 2.1. Let 7T, = [7r, i , j ]  be a totally symmetric self-complemen- 
tary plane partition of  order n. Then 

(i) ~i, 2 , + l _ i = n  for all i= l, 2,...,2n, and 

(ii) 7zl , j=~j , l=2n for all j =  1 ..... n, and 

(iii) 7z2,,j=Tzj, 2~=O for a l l j = n +  1 ..... 2n. 

Proof (i) Since ~ is symmetric ,  l[i, 2n+l_i=1"~2n+l i,i" Since ~ is 
(2n, 2n, 2n)-self-complementary, ni,2n + 1- i + n2n + 1 i,i= 2n. Hence ~i,2n + 1 -- i  = n. 

(ii) A special case of  (i) is nl, 2n = n. As was noted  in Example  2, the 
first row of re, i.e., (n1,1, ~1,2 ..... ~1,2n), is a self-conjugate partition• Since 
the 2nth value of the par t i t ion is n, the first n values of the par t i t ion must  
be greater  than  or equal  to 2n. Since the (2n + 1)th value of the par t i t ion 
is 0, all the parts  must  be less than  or equal to 2n. Thus,  ~r1,1= 
It~,2 . . . . .  r~l ,n=2n, By symmetry ,  ~ 1 , 1  = 7 1 2 , 1  . . . . .  re,,1 =2n .  

(iii) F r o m  self-complementariness,  rc2n, j + re1, 2n+ 1 - j  = 2n. As j ranges 
over  n + 1 to 2n, 2n + 1 - j  ranges over  n to 1. So by (ii), we get rt2,,j = 
2 n -  2n = 0. Symmet ry  gives the rest. | 

The  necessary values of a totally symmetr ic  se l f -complementary  plane 
par t i t ion are as follows: 

2n . .-  2n 

2n 

n 

n 

H 

n 

0 

" ' "  0 

DEFINITION. An allowable par t i t ion of length 2n is a self-conjugate 
par t i t ion with 2n parts  such that  the first n par ts  equal  2n and the last par t  
equals n. 

The obvious  reason for this definition is that  the first row of a totally 
symmetr ic  se l f -complementary  plane par t i t ion of order  n must  be an 
al lowable par t i t ion of length 2n. Since the last pa r t  in an al lowable 
par t i t ion is n and  it is self-conjugate, the ( n +  1)th thru ( 2 n - 1 ) t h  parts  
must  be strictly less than  2n. 

PROPOSITION 2.2• There are 2 n- 1 allowable partitions of  length 2n. 

Proof The Ferrers  d iagram of an al lowable par t i t ion looks like 
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The thick part is fixed by the definition. At point A, you have two 
choices as how to continue the diagram. You may move down one step or 
left one step. At the next point, B, you have the same two choices. 
Continue making these choices until you hit the diagonal line. By 
self-conjugacy, the rest of the partition is gotten by taking the mirror image 
across the diagonal. There are n -  1 independent choices to make. Thus 
there are 2 " -  1 allowable partitions. | 

The proof of this proposition sets up a correspondence between 
allowable partitions of length 2n and lattice paths with n - 1 steps. 

EXAMPLE 6. The lattice path 

"QO 

9-o'Q,o o 
9 o o ~ , o  
0 0 0 0"0, 

corresponds to the partition (10, 10, 10, 10, 10, 7, 6, 5, 5, 5). 

This correspondence is used frequently in the paper. 

3. AN INTERMEDIATE RESULT 

In order to prove the bijection between totally symmetric self- 
complementary plane partitions of order n and lattice patterns on n -  1 
points, we need the following technical result. 

THEOREM 3.1. The number of ordered pairs (A, B), where A = [ai] is an 
allowable partition of length 2n and B = [bi j ]  is a totally symmetric self- 
complementary plane partition of order n - 1 such that 

bi, l + 1 ~ai+l  (*) 
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equals the number of totally symmetric self-complementary plane partitions 
of order n. 

We prove this with the use of  several lemmas. The restriction ( . )  can be 
thought  of  as saying that  the Ferrets diagram for the first row of  B must  
fit inside the Ferrers d iagram of A with all the boxes whose coordinates  
contain either a 1 or  a 2n eliminated. Consult ing the figure below, the 
Ferrers diagram for A is represented by the solid line. The Ferrers d iagram 
for the top row of B must  fit inside the dot ted line. 

. . . . . . . . . . . . . . . . . . . . . . . .  

, / | _ _  

0 | 

! i 

! . . . . . . . . . . . . . . . .  : 

I 

We now construct  a plane part i t ion C = [cos ] from the pair  (A, B). The 
construct ion proceeds in three steps. The first is to let the top row of C be 
the part i t ion A. Once this has been done, other values of C are gotten by 
symmetry  and self-complementariness: 

For  i - -  1 ..... 2n, 

Cl, i ~ ai 
CC 1 <--- a i  (Step 1 ) 
C2n, i ~-" 2n - a 2 n  _ i +  1 

CL 2n +--- 2n - a2n i+ 1. 

Since we want  each row of C to self-conjugate, some of  the values of C are 
now forced to be either 0 or  2n. This is taken care of  by step 2: 

For  i = 2 ..... n 
If ci, 2, > 1 then 

For  j =  2 .... , ci, 2, (Step 2) 
ci, s ~ 2n 
e2n i + l ,  2 n - - j + 1 ~ O "  

Step 3 fills the middle of C with the values f rom B incremented by 1. 

For  i = 2, ..., 2n - 1 
F o r j  = 2 ..... 2n - 1 

If  ci, i has not  yet been assigned a value (Step 3) 

ei ,  j ' ( - - b i  1,./ 1 +  l- 
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The reason for the restriction b,-,1 + 1 ~<ai+~ becomes clear. Without this 
restriction C would not necessarily be weakly decreasing in its columns. We 
denote this process by f :  (A, B) ~ C. 

EXAMPLE 7. If A is (10, 10, 10, 10, 

Then C = f ( A ,  B) is 

10, 9, 8, 7, 6, 5) and B is 

8 8 8 8 7 5 5 4  

8 8 8 7 5 4 4 3 

8 8 8 7 4 4 4  3 

8 7 7 6 4 4 3  1 

7 5 4 4 2  1 1 0 

5 4 4 4  1 0 0 0  

5 4 4 3 1 0 0 0  

4 3  3 1 0 0 0 0  

10 10 10 10 10 9 8 7 6 5 

10 10 10 10 9 8 6 6 5 4 

10 10 10 9 8 6 5 5 4 3 

10 10 9 9 8 5 5 5 4 2 

10 9 8 8 7 5 5 4 2 1 

9 8 6 5 5 3 2 2 1 0 

8 6 5 5 5 2  1 1 0 0  

7 6 5 5 4 2  1 0 0 0  

6 5 4 4 2 1 0 0 0 0  

5 4 3 2 1 0 0 0 0 0  

Now we define the inverse map to f 
self-complementary plane partition of 
Theorem 3.1. The partition A is simply the first row of C. 

' For  i = 1 ..... 2n 

ai~-.- C1, i 

The matrix B comes from the inner values of C decreased by 1. 

For  i = 1 ..... 2n - 2 
F o r j  = 1, ..., 2 n -  2 

If c i+  1 , j +  1 = 2n, then bi,  j ~-- 2 n  - 2 

IfCi+l,j+ 1 : 0 ,  then bi, j ~  0 
Otherwise, b~,j  ~ G +  1,j+ 1 - 1 

We denote steps 4 and 5 by g: C~-~ (A, B). 

Given C = [ci ,  j ]  a totally symmetric 
order n, we construct A and B as in 

(Step 4) 

(Step 5 ) 
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In order  to prove Theorem 3.1, we need to show t h a t f a n d  g are indeed 
the desired bijections. In particular,  we must  show that  

(a) f (A,  B) is a totally symmetric self-complementary plane part i t ion 
of order  n, and 

(b) g(C) is a pair  with the properties listed in Theorem 3.1, and 

(c) g is the inverse o f f  

These are proven in the next three lemmas. 

LEMMA 3.2. f (A,  B) is a totally symmetric self-complementary plane 
partition of order n. 

Proof Let C=f(A ,  B). Considering the comments  made after the 
description of step 3, it is clear that  C is a plane partition. We must  show 
C has each of the properties needed to be a totally symmetric self- 
complementary  plane partition. 

(1) Symmetry.  Choose i , j~ {1, ..., 2n}. There are three cases based 
on how ci, j is defined. (a) If either i o r j  equals 1 or 2n, then ci, j is defined 
in step 1. By inspection of this procedure,  it is clear that  ci, j = ej, i- 

(b) Note  that  the values in B range from 0 to 2 n -  2. So the values 
of C defined in step 3 range from 1 to 2n - 1. Thus, if c,.,j = 0 or 2n but  is 
not  covered in case (a), then c~,j is defined in step 2. Assume ei, j = 2n. The 
argument  for ci, j = 0 is similar. This means that  j <  c~, 2, + 1. We need to 
show that  i < cj. 2n + 1. F r o m  step 1, c~, 2n = 2n - azn_ i+ 1. Combining this 
with j < e~, 2n qt_ 1 gives 

j<2n--a2n i+1, 

j - -2n- -  1 < ,azn_i+l ,  

2n-- j+ 1 > a2 , - i+1 .  

Thus the box ( 2 n - j  + 1, 2 n - i +  1) is not  inside the Ferrers diagram for 
the par t i t ionA.  Since A is self-conjugate, ( 2 n - i + l ,  2 n - j + l )  is not  
inside the Ferrers  diagram for the part i t ion A. Then 

2 n - i +  1 >a2n_j+l, 

i --2n--  1 < - -a2n- j+~,  

i<2n-a2n_i+l  + 1, 

i<c j ,  2n+ 1. 

So step 2 assigns c j, i the value 2n. 

582a/64/2-11 
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(c) If i , j  falls in neither case (a) nor  case (b), then ci, j is defined 
in step 3. Since B is symmetric, 

ci, j = b i - l , j - l  + l = b j  1, i l + l = c j ,  i. 

Therefore,  C is symmetric. 

(2) Self-Complementary.  Choose i, j E { 1  ..... 2n} and show ei, j +  
C2n-- i +  1, 2n j + 1 = 2n. Again we break the problem into three cases based on 
how ci, j is defined. (a) If either i or  j equals 1 or 2n, then ci, j and 
c2. -~+1,2 . - j+1 are defined in step l. By inspection of the procedure,  

Ci, j"~-C2n_i+l,2n j +  1 = 2/'/. 

(b) If c~,j is defined in step 2, then by inspection of that  procedure,  
C2n - -  i +  1, 2n --j + 1 i s  also defined in step 2 and c~,j + c2n_ i+ 1, 2 . - j  + 1 = 2n. 

(c) If ci, j and c2._~+ 1, 2 . - j + i  are defined in step 3, then because B 
is (2n - 2, 2n - 2, 2n - 2)-self-complementary 

ci, j + c 2 .  ; + l , 2 . _ j + l = ( b ;  1 , j _ l + l ) + ( b 2 . _ ; , 2 .  1 + 1 )  

= ( b i _ l , j _ l + b 2 n _ i ,  Zn j ) + 2  

= ( 2 n - 2 ) + 2  

= 2n. 

Therefore C is self-complementary. 

(3) Tota l  symmetry,  We have already shown that  C is symmetric. 
All we need to show is that  each row when considered as a par t i t ion is 
self-conjugate. The first row is the part i t ion A which is assumed to be 
self-conjugate. Pick i6  {2, ..., n}. Row i looks like 

2n, ..., 2n, bi_l ,  Zn_az ~ /+1 + 1 . . . . .  bi_l,  2n_2+ 1, 2n- -azn_i+ 1 
2 n  - -  a 2 n  i + 1  

times 

The Ferrers diagram for row i looks like 
-.... 

T 

F." . . . . . . . . . . . . . . . . . . . . . .  ",' 1 i ",. i 

.... ~ 2 n - a  
, , 2 n - i + 1  

r - . .  ! 
i - .  | 

= . ,  

i - , .  
i - .  f 
i . .  ! 

= " . . . ;  
] , ;.-c. 
i o ' - .  
i = - .  
i . ,  

" , . .  
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The dotted line is the Ferrers diagram for the ( i -  1)th row of B. Since B 
is totally symmetric, its ( i - 1 ) t h  row is self-conjugate. Thus the ith row of 
C is self-conjugate. The self-conjugacy of rows n + 1 thru 2n follows from 
the self-conjugacy of rows 1 to n and the self-complementariness of the 
plane partition. Therefore, C is totally symmetric. | 

LEMMA 3,3. I f  g(C) = (A, B), then A is an allowable partition o f  length 
2n, B is a totally symmetric self-complementary plane partition o f  order n, 
and ai+ x >>-bl, i + 1. 

Proof  By step 4, A is the first row of C and thus A is an allowable 
partition of length 2n. To show that B is a totally symmetric self- 
complementary plane partition of order n -  1, we go through the properties 
one at a time. 

(1) Symmetry. Choose i, j E { 1 , . . . , 2 n - 2 } .  If C~+l,j+l=2n, then 
bi, j = 2n - 2. Since C is symmetric, cs+ 1, ~+ 1 = 2n and bj, ~ gets assigned the 
value 2n - 2. A similar argument works in the case ci+ 1,j+ 1 = 0. If c~+ 1,j+ 1 
equals neither 0 nor 2n, then because C is symmetric, bi, j = ce+ ~,j+ 1 - 1 = 

C j + l , i + l -  l = b j ,  i. 

(2) Self-complementariness. Choose i, j e { 1, ..., 2n - 2 }. If ci+ ~,j + 1 = 
2n, then c2,_i, 2, j = 0  due to the fact that C is self-complementary. 
In this case, b ~ , j = 2 n - 2  and b2n_2_~+l ,2 ,_2_j+l=0.  HenceB is self- 
complementary for this choice of i,j. A similar result occurs if c~+ ~,j+l = 0. 

If c~+ 1,j+ ~ equals neither 2n nor 0, then 

bi, j+b2n-2 i+l,2n-2-j+l=bi, j+b2n-1 i, 2n--l--j 

= (ei+ 1,j+ 1 -  1 ) +  (e2._i, 2 . _ j -  1) 

= (ci+l,j+l + c2,_i, 2 , _ j ) -  2 

= 2 n - 2 .  

Hence, B is self-complementary. 

(3) Total symmetry. We have to show that each row of B is self-con- 
jugate. This follows directly from that fact each row of C is self-conjugate. 
By inspection of step 5, the Ferrers diagram for the ith row of B is the 
Ferrer diagram for the ( i+  1)th row of C with all the squares with either 
coordinate being 1 or 2n removed. Since the Ferrers diagram for each row 
of C is symmetric about the diagonal and the removal process is 
symmetric, the Ferrer diagram for each row of B is symmetric. Thus, B is 
totally symmetric. Therefore, B is a totally symmetric self-complementary 
plane partition of order n -  1. 
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The last item to show is that A and B satisfy ai+ 1 ~ bl,  i'k- 1. By step 4, 
ai+l=Cl, i+l. By step5, b~,~<~c2, i + 1 - 1 .  Since C is a plane partition, 
Cl, i+ 1 ~ c2, i+ 1- Putting all of this together, 

ai+l=Cl,  i+t~c2 ,  i+l>/bl,  i+l. II 

LEMMA 3.4. g( f (A ,  B ) ) =  (A, B). 

Proof  Let A =  [ai] and B =  [bi, j] be of the proper type. Let 
C =  [c~,j] = f ( A ,  B). Let (A', B ' ) =  ([a~], [bl, j ] )=g (C) .  We need to show 
that A = A' and B = B'. 

Examination of steps 1 and 4 shows that A = A'. The B's are a little more 
interesting. If c i + ~ j + l = 2 n  where i, j e  {1 ..... 2 n - 2 ) ,  then C;+l j+l  was 
defined in step 2. By step 5, bl.j= 2 n - 2 .  So we must show that b~,j= 
2 n -  2. This is done in the following. 

1. Ci+l,j+l=2H 
2. j+l<<,c2n, i+l 

3. j <  c2n, i+l 

4. C2n, i+ 1 = 2n -- a2n i 
5. j < 2 n - - a 2 ,  i 

6. 2 n - - j > a 2 ,  i 

7. a 2 n _ j ~ b l ,  zn i 1 +  1 

8. 2 n - j > b l ,  2 , _ i _ l + l  

9. 2 n - 2 = b l ,  2 ,_ i_1+b2,  2,i 
10. 2 n - j > 2 n - 2 - b 2 , _ 2 ,  i + l  

11. j<b2 ,_2 ,  i+ 1 

12. j<~b2n_2, i 

13. b i j = 2 n - 2  

assumption 

from 1 and step 2 

from 2 and since all the values 

are integers 

from step 2 

from 3 and 4 

rewrite of 5 

assumption made about A and B 

from 6 and 7 

since B is self-complementary 

from 8 and 9 

rewrite of 10 
from 11 and since all the values 

are integers 

since each row of B is self-conjugate 

If c,-+,,j+l =0 ,  then by a similar argument, bi, j = 0  = b~.j. If 1 ~ C i + l , j +  1 
2 n - l ,  then from steps3 and 5, b i j=Ci+l , j+ l - l=b '~ , j .  Therefore, 
B = B ' .  | 

Since the sets involved are finite, f ( g ( C ) ) =  C. Thus, f and g give the 
bijections needed t o  prove Theorem 3.1. 
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4. TOTALLY SYMMETRIC SELF-COMPLEMENTARY 

PLANE PARTITIONS AND LATTICE PATTERNS 

In this section, we prove the main theorem of the paper. In fact, we 
prove an even stronger result than the one stated in Theorem 1.2. 

THEOREM 4.1. There & bijection between totally symmetric self- 
complementary plane partitions of  order n and lattice patterns on n -  1 
points. Moreover, the bijection sends a totally symmetric self-complementary 
plane partition to a lattice pattern such that the top row of  the plane partition 
corresponds, as in Proposition 2.2, to the longest lattice path in the lattice 
pattern. 

Proof  By induction on n. When n = 2, the bOection is 

4 4 2 2 0 - - Q  

4 4 2 2  O 
2 2 0 0  

2 2 0 0  

4 4 3 2 0 ~  
4 3 2 1 

3 2 1 0 

2 1 0 0 

Suppose we have a bijection between totally symmetric self-complemen- 
tary plane partitions of order n - 1 and lattice patterns on n - 2 points such 
that the top row of the plane partition corresponds to the longest lattice 
path. Given a totally symmetric self-complementary plane partition, C, of 
order n, let (A, B)=g(C) .  Use the bijection to obtain a lattice pattern on 
n -  2 points which corresponds to B. Add on the outside of this pattern the 
lattice path which corresponds to A. 

The lattice pattern which gets " '~  to B (obtained by induction) 

\ , < / , , \  

~ ~  The path which 
corresponds to A 
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We claim that this is the desired bijection. The only unclear point is 
whether the outer two lattice paths intersect or not. By the induction 
hypothesis, the second to last lattice path corresponds to the top row of B. 
Suppose they do intersect. 

m - - - - -  V - 

i moves 
l 

l--j moves- I 
We need to determine bounds on an + i - i  and bn + 1.1 in order to draw a 

contradiction. The Ferrets diagrams for A and the top row of B look like 

I - 2n-2 ,~ 
L .I I- 2n 

point of intersection] T 

J 
n 

"--'bn+i, 1 ~ i+ 1 
__t_ 

point of intersection 

From the pictures we can read off that a,  + i -  1 ~< 2n - j -  1 and b, + 1, 1/> 
2n-j-1.  Thus, b ,+ i , l>~a ,+ i_ l  which contradicts condition ( , )  in 
Theorem 3.1. | 

We could have started the induction at n = 1 if we defined there to be 
one lattice pattern on 0 points, namely the empty lattice pattern. This proof 
of Theorem 1.2 is quite long and tedious. J. Stembridge gives a much 
shorter proof in [Ste].  The reason for the long proof is that in Section 6, 
we give a "lattice path" interpretation 
complementary plane partitions, the proof 
of this proof. The other proofs do not give 

EXAMPLE 8. For  the case n = 3, see the 

for cyclically symmetric self- 
of which is an easy adaptation 
the results in Section 6. 

Appendix. 

5. COUNTING LATTICE PATTERNS 

Counting totally symmetric self-complementary plane partitions directly 
has proven fruitless. However, the lattice pattern form of the problem has 
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been solved. It is interesting that it required several people to do this, each 
working independently on a different part of the puzzle. 

THEOREM 5.1. 

where 

The number of lattice patterns on n - 1 points equals 

det[ai, j]o<~i,j<~n ~ ifn iseven 

det[ai, j]o~i,j<<., 1 if  n is odd, 

t ~2j--i (i+j] ~r=2i j+l~ r p, if  i < j  
~2j--i (i+j'~ 

ai.j= - -~r=2i- j+l~ r J, if  i > j  

O, if  i=j .  

Proof 1 (J. Stembridge). In [Ste], Stembridge developed a general 
method for counting the number of non-intersecting lattices paths with 
certain starting and ending regions. As a application of the method, he 
obtains the above result. | 

Proof 2. It is a routine application of the Gessel-Viennot theorem 
[Sta3] on enumerating non-intersecting lattice paths with fixed starting 
and ending points that the number of lattice patterns on n - 1  points 
equals the sum of all ( n -  1) x (n - 1) minors of the matrix 

- i  l<~i<~n--l,l<~j<~2n 1 

D. Robbins noted [R1 ] that the methods of S. Okada [O]  can be applied 
to this sum of minors to obtain the above result. | 

The proof of Theorem 1.1 was completed by G. Andrews [A] who 
evaluated the determinants in Theorem 5.1. 

6. CYCLICALLY SYMMETRIC SELF-COMPLEMENTARY PLANE PARTITIONS 

In this section, we give a lattice path interpretation for cyclically sym- 
metric self-complementary plane partitions of order n. We do not include 
most of the details, as this is a straight-forward generalization of the 
methods in Sections 2-4. Here is the result. 

THEOREM 6.1. The number of cyclically symmetric self-complementary 
plane partitions of order n equals the number of lattice path configurations 
with the following conditions. 
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(i) There are n lattice paths. The ith path starts at (2i, 0) and ends 
at (0, 2i). 

(ii) Let s~ be the number of downward moves made by the ith path 
before its first leftward move. Let ti be the number of leftward moves made 
after its last downward move. Then for all i, si + ti = 2i. 

(iii) The lattice paths do not intersect. 

Proof (Sketch). If C =  [ci, j ]  is a cyclically symmetric self-complemen- 
tary plane partition of order n, then e2,, 1 equals the number of 2n's in the 
top row, since the first column is the conjugate of the first column. By self- 
complementariness, c2,, 1 + cl, 2n = 2n. Hence an "allowable" partition for 
the top row of a cyclically symmetric self-complementary plane partition is 
one in which the largest part is 2n and the number of 2n's in the partition 
plus the value of the smallest part equals 2n. This is why we have the 
strange restriction in (ii). 

Next we need an result analogous to Theorem 3.1. 

LEMMA 6.2. The number of ordered pairs (A, B), where A = [ai] is 
an allowable (in just defined sense) partition, B =  [bi, j]  is a cyclically 
symmetric self-complementary plane partition of order n - 1, and 

bi, 1 + 1 <~ai+ 1 (**)  

equals the number of  cyclically symmetric self-complementary plane 
partitions of order n, C = [-ciJ.  

The construction of C proceeds as expected. Step 1: Let the top row C 
be the partition A, the first column of C be the conjugate of A, and fill in 
the bottom row and last column using self-complementary. Step 2: Since 
the ith of C row is the conjugate of the ith column, certain values of C 
must be either 2n or 0. Fill these in. Step 3: Fill in the all the missing values 
of C by c,.,j = bi_ 1,j- 1 + 1. 

Finally, we complete the bijection between lattice path configurations 
and cyclically symmetric self-complementary plane partitions by recursively 
applying Lemma 6.2, just as was done in the proof of Theorem 4.1. The 
condition (**) forces the lattice paths to be non-intersecting. | 

EXAMPLE 9. For the case n = 2, the bijection is 

4 4 2 2  0 0 9 0 9  
4 4 2 2  ~ . ~  
2 2 0 0 00900  
2 2 0 0  ( > - o - o o o  
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4 4 3 2 
00909 

4 3 2 1  ~ - ~ o t O ~  
3 2 1 0 

0 0 ~)-0 0 
2 1 0 0  o-o-ooo 

4 4 4 1 o 0 9 0 9  

3 3 1 1 

3 0 0 0 o - o o 0 o  

4 3 3 3 

4 3 3 0 ~ - ~  

i 1 1 1 0 

You should note that symmetric cyclically symmetric self-complementary 
plane partitions are in fact totally symmetric self-complementary plane 
partitions, and lattice configurations of the above type which are symmetric 
about the diagonal {(i, i ) : i eZ}  correspond to lattice patterns. In the 
symmetric case, si = ti = i and we do not draw the forced moves. So, this is 
a very natural generalization of the work done in the previous sections. 

Using very different techniques, G. Kuperberg has enumerated cyclically 
symmetric self-complementary plane partitions [K]. 

THEOREM 6.2 (Kuperberg). The number o f  cyclically symmetric self- 
complementary plane partitions o f  order n equals A~. 

His method involves converting the plane partition problem into 
counting 1-factors in certain graphs. This leaves open the problem of 
finding a direct bijection between ordered pairs of totally symmetric 
self-complementary plane partitions and cyclically symmetric self- 
complementary plane partitions. 

7. A CONNECTION BETWEEN ALTERNATING SIGN MATRICES 
AND LATTICE PATTERNS 

Given Conjecture 1, the number of lattice patterns on n - 1  points 
should be equal to the number of n x n alternating sign matrixs. This has 
been checked for n ~< 20. As a refinement of this conjecture, we define a 
statistic on lattice patterns which seems to correspond to the position of 
the 1 in the top row an alternating sign matrix. 
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DEFINITION. Let A(n, k) denote the number of n×n alternating sign 
matrixs with a 1 in position (1, k). 

Two basic properties of A(n, k) are given in the following proposition. 

PROPOSITION 7.1. (i) A(n, k)=A(n,  n+ l - k ) .  

(ii) A(n, 1)= the number of ( n -  1)× ( n -  1) alternating sign matrices. 

A proof of this can be found in [MRR1 ]. The statistic on lattice patterns 
is defined next. 

DEFINITION. The descent value of a lattice pattern is the number lattice 
paths in the pattern which make an odd number of downward moves. 

EXAMPLE 10. 

O 0  
0 

0 

The two shortest paths make an odd number of downward moves. So 
they contribute to the descent value. The other three paths make an even 
number of downward moves. So they do not contribute. Hence, the value 
of this lattice pattern is 2. 

DEFINITION. Let L(n, k) be the number of lattice patterns on n -  1 
points with descent value k -  1. 

The connection between lattice patterns and alternating sign matrices is 
stated. 

Conjecture. For all n and k, 

A(n, k) = L(n, k) 

This has been checked for n ~< 10. Adding more strength to this conjec- 
ture is that L(n, k) also obeys the two conditions in Proposition 7.1. This 
is shown in the following the next two lemmas. 

LEMMA 7.2. L(n, 1) = the number of lattice paths on n - 2 points. 
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Proof. Given any lattice pattern on n -  2 points, we need to "extend" 
it to a lattice pattern on n -  1 points in such a way that each path makes 
an even number of downward moves. To do this, we add one more move 
onto the end of each of the lattice paths. If a certain lattice path makes an 
odd number of downward moves, then add a downward move at the end. 
If a lattice path makes an even number of downward moves, then add a 
leftward move at the end: 

o2o 

o 

After these additions are made, each lattice path makes an even number 
of downward moves. Finally, to make this a lattice pattern, add a lattice 
path with one leftward move at the upper left. 

Does this extending process introduce any intersections? Suppose path j 
and j + 1 intersect after the additions are made: 

" " ' . , ~  i+1 

For this to be possible the paths must end in the original lattice pattern 
next to one another along the diagonal { (i, i): i E Z}. Since path j starts one 
step higher than the (j  + 1)th path and end one step higher, the number of 
downward moves is the same in both. Thus the additional move must be 
in the same direction for both path, and an intersection is not possible. ] 

LEMMA 7.3. L(n, k)  = L(n, n + 1 -- k). 

Proof. Take a lattice path on n -  1 points. Group together the paths 
whose second to last positions form a sequence ( i+  1, i), ( i+2 ,  i +  1), ..., 
( i + k +  1, i + k ) :  

"%Z.,, 
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What we want to do is switch the parity of downward moves in each path 
by changing the direction of its last move. The problem that can arise is 
that this might create an intersection. Note that the only possible inter- 
sections that could arise come from two paths of the same group. 

Suppose a group has s members with an even number of downward 
moves and t with an odd number. Then make the switch as demonstrated 
in 

~> ,, 

$ 

You leave everything above the dotted line alone. Now this group has 
t members with an even number of downward moves and s with an odd 
number. Do this for every group in the lattice pattern. This is an involution 
which takes lattice patterns with descent value k to a lattice pattern with 
descent value n + 1 - k. | 

The proof of Proposition 7.1(i) essentially comes down to seeing that the 
vertical flip of an alternating sign matrix is also an alternating sign matrix. 
The switching described in the above proof does not correspond exactly to 
a vertical flip. The easiest way to see this is to compare the number of 
figures invariant under each operation. The number 5 x 5 alternating sign 
matrices fixed by a vertical flip is 3, but there are 8 lattice patterns on 
4 points which are fixed by the above switching. So the process which 
corresponds to a vertical flip in alternating sign matrices must alter more 
than just the last move of the lattice paths. 

It is known that A(n, 2) = (n/2) A(n, 1) [MRR1].  It is unknown whether 
L(n, 2) = (n/2) L(n, 1). 

Finally, Mills, Robbins, and Rumsey have two other statistics on totally 
symmetric self-complementary plane partitions which have the same 
properties as the descent value [MRR2].  For the case n = 3 they are given 
in the Appendix. D. Robbins has noted [R2] that if you take any two of 
the three statistics, the number of totally symmetric self-complementary 
plane partitions with statistic 1 being i and statistic 2 being j equals the 
number of alternating sign matrices with the one of the top row in column 
i +  1 and the one on the bottom row in column j + 1. This means that not 
only should there be one bijection between totally symmetric self- 
complementary plane partitions and alternating sign matrices, but there 
should be three of them, one bijection for each of the three choices of 
statistics to maintain. 
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6 6 6  5 5 3 
6 5 5 3 3 1 
6 5 5 3 3 1 
5 3 3 1 1 
5 3 3 1 1 
3 1 1 

6 6 6 5 5 3 
6 5 5 4 3 1 
6 5 4 3 2 1 
5 4 3 2 1 
5 3 2 1 1 
3 1 1 

WILLIAM F. DORAN IV 

0 

0 

° ~ o  

1 1 

0 0 

Note. DV: descent value. MRR # i  and #2 :  Mills, Robbins, Rumsey 
statistics. 
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