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B r i e f  P a p e r  

The Least Squares Algorithm, Parametric 
System Identification and Bounded Noise* 

HOSEYIN AKt~AYt and PRAMOD P. KHARGONEKAR¢ 

Key Wools--Error  analysis; identification; least squares estimation. 

Al~t rad--The least squares parametric system identification 
algorithm is analyzed assuming that the noise is a bounded 
signal. A bound on the worst-case parameter estimation 
error is derived. This bound shows that the worst-case 
parameter estimation error decreases to zero as the bound on 
the noise is decreased to zero. 

1. Introduction 
THE LEAST SQUARES ALGORITHM, due to Gauss, is one of the 
most widely used algorithms in science. It has been 
extensively studied and used for parametric system 
identification---see, for example, the book by Ljung (1987). 
It is very well known that the least squares algorithm enjoys 
certain optimality properties under suitable stochastic 
assumptions about exogeneous noise. In contrast, some 
recent papers have taken a worst-case deterministic approach 
to identification. See the recent paper by Khargonekar 
(1993) for a discussion of this general area and an extensive 
list of references. In particular, our work is most closely 
related to the work on time-domain worst-case identification 
problems (Chen et al., 1992; Dahleh et al., 1992; Kacewicz 
and Milanese, 1992; M/ikil~i, 1991; Poolla and Tikku, 1992; 
Tse et al., 1991; and the references cited in these papers). 

Our work has grown out of a need to make connections 
between the classical identification theory and the more 
recent work in the area of robust identification. Towards this 
goal, in this paper we have investigated the performance of 
the least squares algorithm in the presence of worst-case 
bounded noise. In the result of this paper, we derive a bound 
on the worst-case parameter estimation error using the least 
squares algorithm in the presence of arbitrary bounded 
noise. This error bound shows that if the input is chosen to 
be a pseudorandom binary sequence, the worst-case param- 
eter estimation error decreases to zero as the noise bound 
decreases to zero. In the terminology introduced by Helmicki 
et al. (1991), the least squares algorithm is robustly 
convergent. [We note that there is an important technical 
difference between the notion of robust convergence used in 
this paper and that in Heimicki et al. (1991).] While the 
problem formulation is motivated from the deterministic 
worst-case identification theory, the techniques employed in 
this paper draw upon the results in classical identification 
theory (Ljung, 1987). These results are similar in spirit to 
those in Wahlberg and Ljung (1992). 
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1.1. Notation. We end this introduction with some 
remarks on notation. Let ~ .  denote the Hardy space of 
bounded analytic functions in the open unit disk D of the 
complex plane C. Let G ( z )  denote the transfer function of a 
single-input/single-output (SISO), finite-dimensional linear 
time-invariant (FDLTI), discrete-time system. A transfer 
function G is called stable if all its poles have magnitude 
strictly greater than one. Thus the transfer function of a 
stable LTI system belongs to ~®. For any stable FDLTI 
discrete-time transfer function G, its ~ norm is defined as 

IIGII.:= max IG(e#°)l. (1.1) 

Let Dp := (z :lzl < P}, and let ~ ( D p ,  M) denote a subset of 
~'~0, defined as 

~®(D o, M) := { G : G  analytic in D o, fG(z)l -< M, Vz • Do}. 

(1.2) 

Thus if p > 1, the systems in ~®(Dp, M) are exponentially 
stable with a decay rate greater than p, and a gain bounded 
by M. Let ~ ® ( n )  denote the set of nth order proper, 
stable, real-rational transfer functions. Define the class of the 
systems 

~'®(n, m, p, M) := (G : G(z) 

bkz k 
k=l  

- , G • ~®(D,,,  M) N ~ ® ( n ) } ,  (1.3) 
1 + ~ a , z  k 

k= l  

where m-< n. Let g be the impulse response of G. Then 
1,, I 2, I® norms for g are defined as 

Ilgllt: = ~ Ig(k)l, Ilgl12:-- Ig(k)l 2 , 
I,=o - J (1.4) 

,g,l~:: o~Ug ig(k),. 

Given an r by s matrix R, its I1"11, norm is defined as 

s 

IIRIll := max ~ IRktl. (1.5) 
[<~k<--rl~ I 

For vectors, 11"112 will denote the Euclidean norm. Finally, 
q - '  will denote the delay operator, i.e. 

(q 'u)( t )  := , ( t  - 1). (1.6) 

2. Parametric system identification 
We will consider the identification of an SISO, LTI, 

discrete-time system represented by the ARX model 

A ( q - ' ) y ( t )  = B ( q  J)u(t) + v( t ) ,  (2.1) 

where 

A ( q - I ) = l + a l q  ~ + • • - + a,,q-"; 
(2.2) 

B ( q  - I )  = b lq  - l  + • •.  + b , q - ' .  



1536 Brief Paper 

Let 
O r = (a I , a 2 . . . . .  a n, b I . . . . .  b,,) (2.3) 

denote the vector of unknown parameters. Let 

opt(t) = ( - y ( t  - 1), - y ( t  - 2) . . . . .  

- y ( t  - n ) ,  u ( t  - 11 . . . . .  u ( t  - m ) )  (2 .4)  

denote the regression vector of previous output and input 
signals. The model (2.11 can also be written 

y(t)  = orqg(t) + v(t). (2.5) 

Define the transfer function 

blZ + " " + b , . z "  B(z )  
a ( z ) : = ] ; a ~ z l  ~- - - ~ . a . z ' - - ~ "  (2"6/ 

We will assume that G e ~ = ( n ,  m, p, M). 

The signal v(t)  will be assumed to be a bounded 
disturbance 

Iv(t)l-< e, Vt. (2.7) 

The past inputs {u(t), t-< 0} will be assumed to be bounded, 
but otherwise unknown, i.e. 

su~ lu(t)l-< C1. (2.8) 

This bound corresponds to an upper bound on the size of the 
initial state of the unknown system. For example, if it is 
known that the system is at rest at t = 0, we may take C1 = 0. 

The input sequence {u(t), t>0}  will be chosen by the 
experimenter and will only be required to satisfy an upper 
bound 

su~ lu(t)l-< Cz. (2.9) 

The choice of the input sequence will be discussed in greater 
detail in the following sections. 

Suppose that N + n data have been collected 

Z N:= {y(i), u ( i ) : i =  1 . . . . .  N + n } .  (2.10) 

An identification algorithm produces an estimate 0N of 0 by 
using the prior information and the set of measured data 
(2.101. The performance of the identification algorithm is 
measured by the worst-case identification error defined as 

eN(G, e ) := ilsl]ap II0- 0NIl2. (2.11) 

Note that in the definition of the worst-case identification 
error, we have not taken a supremum over the set of 
unknown systems as is done in Helmicki et al. (1991). The 
reason for this will become clear after the statement of the 
result. Following the terminology introduced in Helmicki et 
al. (19911, we will call an identification algorithm convergent 
if 

lim eN(G, e) = 0. (2.12) 

Moreover, the identification algorithm is said to be 'robustly 
convergent (and untuned)', if in addition the algorithm does 
not depend on the a priori information p and M. 

3. Pseudorandom binary sequences and the least squares 
identification algorithm 

Given the above problem formulation, the well known 
least squares algorithm is a potential choice for the 
identification algorithm. It is well known that the least 
squares algorithm enjoys many optimality and convergence 
properties in stochastic formulations of the identification 
problem. However, relatively little is known about the 
performance of the least squares algorithm in the presence of 
bounded but otherwise arbitrary noise. In other words, 
relatively little seems to be known about the performance of 
the least squares algorithm in the worst-case deterministic 
problem setting described in the previous section. In this 
section, we will demonstrate that the least squares method is 

robustly convergent for the identification problem posed 
above for a special input design using pseudorandom binary 
sequences. This result follows from a bound on the 
worst-case identification error which is the main technical 
contribution of this paper. 

First, we will briefly review some important properties of 
the Galois sequences. See Schroeder (1986) and references 
therein for more details. 

p 

3.1. Galois sequences. Let arp(x)=i~=oCiXi be an ir- 

reducible polynomial over the binary field {0, 1} of degree p 
such that x is a primitive element. Define 

p 

ek+p= ~ Ciek+imod(2), k =  l, 2 . . . . .  
i - - 0  

and (3.1) 
e1=1, e ,=0,  i =2, 3 . . . . .  p. 

(It is not necessary to choose el, i = 2, 3 . . . . .  p to be all 
zero; these can be chosen to be either zero or one.) The 
resulting sequence ek, k = l , 2  . . . .  is called a Galois 
sequence. A Galois sequence generated by an irreducible 
polynomial of degree p as above is periodic with period 
2 p - 1. Using this periodicity property, the Galois sequence 
{ek} can be extended for k = - l , - 2  . . . . .  Irreducible 
polynomials art, over the binary field {0, 1} up to degree 
p=168,  have been published (Stahnke, 1973). Using 
p = 168, we can generate a Galois sequence with period 
2168- 1 which is of the order of 1051. Each polynomial has 
the minimum number of terms possible (at most five) so that 
the linear recursion formula (3.1) is easy to implement. 

Let us convert the Gaiois sequence {ek) into another 
sequence {s,} of integers according to the rule 

Sk:=(--l) ek, k = ± l ,  ±2 . . . . .  (3.2) 

A key property of this sequence is as follows. Define the 
correlation function of {sk } as 

2 0 - 2  

g ,  := ~ sks,+ ~. (3.3) 
k = O  

It turns out that (Schroeder, 1986) 

R , = 2 P - I ,  n - = 0 m o d ( 2 P - 1 ) ;  R n = - l o t h e r w i s e .  

(3.4) 

Thus, for p sufficiently large, the ratio R , / R o  is 
approximately zero for n ~ 0 m o d ( 2 P - l ) .  Hence the 
sequence {s,} is approximately uncorrelated. (Except for the 
p-tuple of all ls, this sequence contains all possible p-tuples 
of +1.) The sequence s k will be called a pseudorandom 
sequence. It should be noted that the sequence s k depends on 
p as well as Jtp. For simplicity of notation, we will not show 
this dependence explicitly. 

Galois sequences have found wide applications in 
communications and signal processing (Schroeder, 19861. 
M~ikil~i (1991) has constructed a robustly convergent 
identification algorithm in l I. Tse et al. (1991) have used 
pseudorandom binary signals in their identification studies. 
Pseudorandom binary signals have also been used in the 
study of time complexity of identification (Dahleh et al., 
1992; Kacewicz and Milanese, 1992; Poolla and Tikku, 
19921. In this paper, we will exploit the approximate 
pseudorandomness property for the analysis of worst-case 
performance of the least algorithm. 

3.2. Main result--the worst-case performance o f  the least 
squares identification. In this subsection, we derive an upper 
bound on the worst-case identification error of the least 
squares algorithm for a special input. The length of the 
identification experiment will be taken to be N + n, where 
N = 2 p - 1  for some positive integer p which will be fixed 
later. We choose the inputs {u(t), t =  1, 2 . . . . .  N + n ) ,  to 
be a scaled version of the pseudorandom sequence 

u(t) :=C2s, ,  t = l , 2  . . . . .  N + n .  (3.5) 



Brief Paper 1537 

From (2.1), we can write the system of equations 

YN = oTdpN "4" VN, (3.6) 
where 

YN:-- ly(n + 1)y(n + 2 ) . . -  y(n + N)], (3.7) 

(I~ N := [q~(n + 1)~p(n + 2 ) . . .  q0(n + N)], (3.8) 

VN:=[v (n+l )v (n+2) . . . v (n+N)] .  (3.9) 

The usual least squares estimate of 0 given YN, ePN is 

ON := (aPN~fV)-t(apNYf~), (3.10) 

assuming that *NON r is invertible. 
For the model (2.1) and the pseudorandom input u(t) 

described above, we obtain an upper bound on the 
worst-case error (2.11). This bound holds when the noise 
bound E is small and the duration of the experiment N + n is 
large. The derivation is long but straightforward and is 
included in the Appendix. 

First, we need some definitions. Let G e ~ .  Let n, m be 
fixed. For a vector x ~ R "+m, let 

: = ~  " . : = ~  " X xie /° j0- t ) ,  Y Xn+,e/¢°(/-t). (3.11) 
i=l i=1 

Now define the quadratic form 

Q(z) := laX - YI 2 dw, (3.12) 

and set 3.(G, C2, n, m) by 

~,(G, C2, n, m) := rain {Q(x):x e R " + ' ,  Ilxl12 = 1}. 

(3.13) 

In other words, ~.(G, C2, n, m) is the smallest eigenvalue of 
the quadratic form Q. Define constants E0, T, Kt,  K2 and K 3 
as follows 

6o := (M + 1)C2(1 - p-t),,, (3.14) 

8M2C~ 2nM}, 
T := max [C~(1 - p - l )3 ,  (3.15) 

nC2(2M + 1) z _ 3C2n(M + 1) 
r , . -  ( 1 - p - ' ) ~  ' K~:= (~_~  , 

K3:= (M + 1)(1 + p-i) , ,  + n-vz,  (3.16) 

where C := Ct + C 2. 

Theorem 3.1. Let G e ~ ® ( n , m , p , M ) .  Let lt(G, C2, 
n, m), co, T, Kt, K2, K 3 be as defined in (3.13)-(3.16), 
respectively. Let N>-T. Suppose the input u(t) , t= 
1, 2 . . . . .  N + n is a pseudorandom binary sequence as given 
by (3.5). For all 6 - %, if ;t > K~N -~ + 1(26, the worst-case 
identification error (2.11) of the least squares algorithm 
(3.10) is bounded as 

eN(G, " KiK3 1 K2K3 
C.) <--~, _ (KtN_  t + K2¢) ~ +  ,1, _ (K1N_t" + K2E) e. 

(3.17) 

Consequently, the least squares is robustly convergent. 

In order to get a better appreciation of the various aspects 
of this result, we offer the following remarks. 

• It turns out that ~. is the limit of Amin(ePN~/N), the 
smallest eigenvalue of ~PNdP~/N, as N.--,oo and e---~0. If 
m = n ,  it can be shown that ;t-<C,2o~, where on is the 
smallest Hankel singular value of G (Adamyan et aL, 1971). 

• From information based complexity theory, it is known 
that eN(G, E)>--E. Moreover, it has been shown (Dahleh et 
al., 1992; Kacewicz and Milanese, 1992; Poolla and Tikku, 
1992) that if G is an nth order finite-impulse response (FIR) 
system, then eN(G, 6 ) = ~ e )  implies that N / 2 " = ~ l ) .  
Thus, if n is large, as might be the case if G is taken to be an 
FIR system, then the minimal input length may be very long. 

In contrast, using an ARX representation, the input length 
can possibly be reduced quite significantly. 

• The upper bound on eN(G, e) depends on the quantity 
~.. This dependence prevents us taking the supremum in 2.11 
with respect to ~ ® ( n ,  m, p, M). If an a priori lower bound 
for Z is available then this can be done and appropriate 
robust convergence results can be obtained. 
A proof of this result is given in the Appendix. 

4. Conclusions 
In this paper, we have analyzed the worst-case 

performance of the least squares algorithm. We have 
obtained an upper bound on the worst-case parameter 
identification error which is used to establish appropriate 
convergence properties. 

There are many different directions in which further 
research is necessary. We feel that suitable modifications of 
the least squares algorithm for the problem of parametric 
system identification in the presence of arbitrary but 
bounded noise may be very useful. Also, it is necessary to 
develop good methods that allow for undermodeling in this 
problem context. 
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A. Appendix--Proofs 
We will prove the theorem in several steps. First, we need 

some definitions. Given two signals {u(t) : - ~  < t ~ N + n} 
and {y(t): -o~ < t-< N + n}, we define the autocorrelation 
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and cross correlation functions as follows 

1 N + n  

R,,,,(k,l;n N ) ' = - -  ~ u ( t - k ) u ( t - l ) , O < - k , l <  eo 
, • N t = n + l  

(A.1) 

1 N + n  

Ryy(k , l ;n ,N) :=~  ~ y ( t - k ) y ( t - l ) , O < - k , l <  oo 
' "  / ~ n + l  

(A.2) 

1 N + .  
R y , ( k , l ; n , N ) : = ~  ~ y ( t - k ) u ( t - l ) , O < - k , l < ~ .  

• " t = n + l  

(A.3) 

Let us define three matrices Rye, R . . ,  Re. and two vectors 
Re, R.  as follows 

Rye(k, l) := Ryy(k, l; n, N ), l <-k, l <-n; 

R..(k, 1) := R,,.(k, 1; n, N),  1 <- k, 1 -< m;  

Ry. (k , l ) :=Ry~(k , l ;n ,N) , l<-k<-n , l<- l<-m;  (A4) 

Re(l ) := Ryy(0, l; n, N), 1 <-l <-n; 

R.(l) := Ry.(0, l;n, N), 1 <-l<-m. 

Notice that 

Rye. -Ryu\  i r 
RN := _ - R y .  R,,. ) = h / e N e N ;  

/ - Re\ 1 r 
(A.5) 

Lemma A.1. Let the future inputs {u ( t ) : l  < - t < N + n }  to a 
system G • ~®(Dp, M) be as in (3.5). Let the past inputs 
{u( t ) : -oo  < t-< 1} to G be bounded by C1. Let y denote  the 
output of G in response to the input u. Then for 1 -< k, l <- n 

R..(k,  1; n, N) = C 2 + AR..(k,  1; n, N) 

if k = 1; AR..(k,  l; n, N) otherwise 

Rr,(k, l; n, N) = C~g(l - k) + ARy,(k, l; n, N), (A.6) 

Rye(k, l; n, N) = C~ ~ g(s)gOk - 11 + s) 
s = l  

+ ARyy(k, l; n, N), 
where 

IAR..(k,  l; n, N)I <c~- 
N '  

]ARy,,(k, l; n, N)[ -< MCC2(2p - 1) 
N ( p -  1) 2 ' (A.7) 

< MECE(4p - 1) 
IaRyy(k, t; ,,, N) )_  N(p - 1y 

Proof. Let ti be periodic extension of the inputs in (3.5). Let 
= u - 5. Notice that a ( t )  = 0, t -> 1 and ila(t)ll® < - c~ + c2. 

Then,  we have for 1 --< k, 1 -< n 

R..(k  + s, l; n, N) = Raa(k, 1; n, N) 

+AR.~(k+s , l ;n ,N) ,O<-s ,  (A.8) 
where 

1 N + m  

AR. . (k  +s , l ; n ,N ) :=-~  ~ a ( t - k - s ) a ( t - i ) .  
"" t = n + l  

(A.9) 

Since li is a pseudorandom sequence, Raa(k + s, l; N) is C 2 if 
s = l - k and -C2 /N  otherwise. Fur thermore  

1 n+~ 
IAR..(k + s, l; n, N)I ----- ~ ,_~+~ a(t - k - s)a(t - l) 

s 
<-~IC2C, s -> 1, (A.10) 

which is also true for s = 0. Thus 

Rr.(k, I; n, N) = ~ g(s)R..(k + s, l; n, N) 
s = l  

= C~g(l - k) + ARy.(k, 1; n, N),  
where 

2 

ARr.(k, l;n,  N):= - ~  E g(s) 
" "  s ~ l - k  

+ ~ g(s) A R . . ( k  +s, l; n, N). 

Therefore 

C 2 ~ 

F r o m  

AR, , (k  + s 2, l + st; n, N) 
1 N+n 

:= N,=-~*t... a ( t  - k - s 2 ) a ( t  - l - s ~ )  

1 N+n 
+ N,~*I... a ( t - k  - s 2 ) a ( t  - t - s O  

1 N + n  

+ -  ~ a ( t  - k - s 2 ) a ( t  - l - s O ,  
N t = n + l  

( A . I I )  

(A.12) 

(A.13) 

1 ~- - -S i ,  $ 2 < 0 ¢ .  

(A1.14) 

We have for 1 <- k, l <- n 

s9 Sl 
I A R . . ( k  + s2, l + $ i; n, N)I -< N C2 C + ~ C2 C 

+ min {sl, s2} C 2 _< 3(sl + s2) C2. 
N 2N 

Hence 

(A.15) 

Ryy(k, l; n, N) = C 2 ~ g(s)g(k - l + s )  
s = l  

+ ARyr(k, l; n, N), (A.16) 
where 

._  C~ 
ARyy(k, l; n, N ) . -  - - ~ -  s~'~t2 = 2a g(sOg(s2) 

-- S l~/q--k+a2 

+ ~ ~ g(sl)g(s2)AR,u 
S I = I  $ 2 ~ 1  

(k + s  2, l +sl;n,  N). (A.17) 

Moreover 

IAR,y(k, l; n, N)I-< Ilgll~ + N IIg]l, , . . ,s  Ig(s)l. 

(A.18) 

Since G • $g®(Dp, M), by an application of Cauchy's  formula 
G '  • ~®(Dp, M](p - 1)). Hence 

M 
I lglh-<p _ 1 '  (A.19) 

Mp (A.20) • =t  s Ig ( s ) l  = I I a ' l l t - < ( p _  1) - - - - - - -~  • 

Therefore for 1 --- k, l -< n 

MC 2 MpC2C 
IARy.(k, I; n, N)I -< N(p - 1) + N - ~  --- ]-~2 

<_ MCC2(2p - 1) 
N(O - 1) 2 (A.21) 

M 2r2 . 3C2M2p 
I R.(k, t; ,,,  N)I -< + 

<_ M2C2(4p - 1) 
N(p - 1) 3 (A.22) 
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Corollary A.2. Consider the system given by (2.1) and let 
G e ~t~o(D o, M). Let the future inputs {u(t): 1 ~ t < N + n} 
to the system be as in (3.5). Let the past inputs 
{u(t):-oo<t<-O} to G be bounded by C 1. Let the noise v 
be bounded by •. Let y denote the output of the system, in 
response to the input u. Then for 1 <-k, l<n;  R, , ,  Ry,, Ryy 
are given by (A.6), where 

IAR,,(k, l 'n  N)I <(?2, (A.23) 
' ' N 

MCC2(2 p - C2• 
[ARr,(k, l;n, N)I -< N- -~ -_ I~ I )+ (1  

MEC2(4p - 1) •2 
IARyy (k ' l ;n 'N)l<- - ~ - Z ~ Y  +( l_p -~ )2~  (A.24) 

2Me 

X \ V ~  (p  -- 1) 3/2 q- c2  1 + ~-~ . 

in D v. Therefore A(z) can be factored as 

a(z )  = f i  (1 +pi-'z), (A.35) 
i=1 

where p~, i=  1 . . . . .  n are the poles of G. These 
observations lead to 

(1-p-1)"<-IIAII~<-(I + p-~) ". (A.36) 

As a consequence of Corollary A.2, we may define a 
matrix R and a vector 

R := lim RN;tI I := lim WN. (A.37) 
e~, N ~  ~ 0 ,  N ~  

Let  ARN :=  R N - R and AtlJ N : =  I,I$ N - -  IJAJ. The frequency- 
domain expression o f  R al lows us to show that the smallest 
eigenvalue o f  R is ~.(G, C 2, n, m)  and the fo l lowing fact. 

Proof. (2.1) can be rewritten as 

y = )7 + r/, (A.25) 
where 

t l :=A- tv ,  Tl(t)=O,t<-O;andy=Gu. (A.26) 

Let u = u 1 + u 2 be a decomposition of u into past inputs and 
future inputs, i.e. 

ul(t ) := u(t), t <- 0 and uj(t) := 0, t > 0; 
(A.27) 

u2(t ) := 0, t --< 0 and Uz(t ) := u(t), t > O. 

Let yp := GUl and yy := Gu 2. Then easy calculations show 
that 

N+n -1/2 M ~ 
Z YZp(t-k)] <-.-n--~3/2 P ~ p - ( . - k ,  

~ffi,,+l / ( p - t )  V p + I  

M C 1 p  
- < V 2 ( p -  1) 3/2, l<--k<-n' 

( \ y}(t - k <- y}(t - k (A.28) 
t=n+l t=t / 

-< IIGII® C2 NVN-~ n 

T h u s  ),o 
y(t - k) 2 

t f n+ t  

(N~,. q(t-- 
t = n + l  

We can write 

< MCI__.__~P 

- V S ( p -  1) 3/2 

+ V ~ ( 1  + n )  ~-~ MC2, l<-k<-n, 

1/2 
k) 2 _<X/-NIIA-11I®E, l<_k<_n. 

(A.29) 

(A.30) 

Ry,(k, l; n, N) = R~,(k, 1; n, N) + Rn,(k, I; n, N), 

Rye(k, l; n, N) = Ryy(k, l; n, N) + Rn~(k , l; n, N) 

+ Rpn(k, l; n, N) + Rnn(k , l; n, N), (A.31) 

where Rp, and R~p are given by (A.6). Now an application of 
Schwarz inequality results in 

IR,,(k, l; n, N)I -< IIA-111. C2•, 1 < k, I -< n, (A.32) 
1 / N + n  \ I/2 

[Rprt(k, l; n, N)  <- ~ (t=n~+ i ) 7 ( t -  k )  2) 

XllA-Ill~e,  l < k , l < - n ,  (A.33) 

[Rnn(k,l;n,N)l<-l[A-lll2E2,1<-k,l<-n. (A.34) 

Finally, since G is analytic in Do, A(z)  does not have zeros 

Fact A.3. Let R be as in A.37 for a system G • I._J ~ ® ( i ) .  
iffin 

Then R is invertible. If G • ~ ® ( n ,  m), then lim ON = 
~ 0 , N ~  

0. 

Proof of Theorem 3.1. We only need to derive the error 
bounds. According to Theorem 1.18 in Grenander and Szego 
(1958) ,  the largest eigenvalue ~,max(ARN) of  ARN is bounded 
above by [[ARNIh. Hence if ) , > 2 o -  > IJARNIh for some Zo, 
from the following decomposition 

O N -- 0 = RNI~I N -- R-I I~  I = (R "Jr ARN) -1 All/N 

- (R + ARN)-I(ARN)O (A.38) 

we get 

[ION_ 0112_< IIAqJNu2 + I[01h IIARNII1 
; t -  IIARNIh (A.39) 

From Corollary A.2, since m -< n and C 2 -< C, we have 

nMC 2 
"AR,,III+..ARy, I I , < - ( M ~ _ l l +  2 0 - 1 ) N ( p  _ 1) 2 

2MCIp • ) 
"b V~'N ( p _ 1)3/2 4 

nE 
x (1 - p - I ) ~ ,  (A.40) 

\ (p - ~) / 

X CC2 nC2E 
N 4 ( 1 - p - I ) " "  (A.41) 

Let T~_= max {8(MC1/C2)2(1 - p-i ) -3 ,  2nM}. If N -  > T, 
then V2 N -  1/2MCj p (p - 1) - 3/2 + nMC2 N -  l <_ C2" Let E o : = 
(M + 1)C2(1 - p - ' ) ' .  Then, for N -> T and • -< %, we have 

( ( 2 M +  1 + ~ - ) C 2  -I- 2MCtp E 
V ~  = 1)3/2 "1" (1 -- p - - t p )  

n•  < 3(M + 1)C2n 
X (1 - p - - ' ) " - -  ( 1 - - - ' p ~  •" (A.42) 

Since p > 1, the following inequalities hold 

( M ~ _  ~ + 2p - - \  nMC2 2nMC2(2M + 1) 

< nC2( TM + 1) 2 
-- N(1 - p-1)3 , (A.43) 
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f . 2p - 1 \ CC2 <n(2M + I)CC2 

<nC2(2M + 1) 2 
N(1 - p -  i)3 . (A.44) 

Then,  from the inequalities (A.40)- (A.44) ,  an upper  bound 
on IIARNIh is obtained as 

3(M + 1)C2 n nC2(2M + 1)2 4 e. 
I IARNIh<A°:=  N ( 1 - p - I )  3 ( 1 - p  i)n 

(A.45) 

Since the upper bounds on AR,,(k, l; n, N), 

ARy,(I, l; n, N), ARyy(k, 1; n, N) given in Corollary A.2 are 
uniform in k and I in the range of interest, an upper  bound 
on IIAU2NII2 is obtained as follows 

Aqj <n-]/2/nC2(2M + l)2 3(M + I)C2n , N,2-  E~ 
/'/ I/2,~, 0 ,  (A.46) 

Finally, we have the following estimate on II 0112 

110112 -< ( l l A l l ~ -  l + IIBll~) ~/2< - (M + 1)IIAll~ 
- - < ( M + l ) ( l + p  1),. (A.47) 

Using (A.45), (A.46), (A.47), the desired error bound 
follows. • 


