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A general method of solving equations governing the transient
response of heterogeneous spin systems to continuous and pulsed
RF saturation using the projection-operator technique is out-
lined. An effective rate equation is derived in which there is
natural separation of relaxation and source terms. Qur previously
derived implicit solution to the coupled Bloch equations is re-
formulated using this more general approach, which avoids some
of the restrictive assumptions made earlier. With this formula-
tion, we provide an analytical and explicit solution to the full
set of coupled Bloch equations with no additional assumptions
or restrictive conditions attached limiting their general validity.
The results obtained with this new method of solution are com-
pared with the results previously obtained by the Laplace-trans-
form technique for heat-denatured albumin. « 1993 Academic

Press, Inc.

INTRODUCTION

In two previous articles ( /, 2) (to be referred to as I and
II, respectively), we described the general solutions for the
coupled equations for the response of a heterogeneous spin
system subjected to selective RF saturation either by contin-
uous off-resonance irradiation (/) or by on-resonance bi-
nomial pulses (2). Each of these solutions is based on a set
of coupled Bloch equations formulated according to a binary
spin-bath model (3-6). Two fundamental problems impor-
tant for future developments remained unsolved from these
studies. The first concerns the complexity and the implicit-
ness of the transient solutions to the theoretical model pre-
sented. The second concerns the validity of the conventional
Bloch equations when applied to saturation in solids (7, 8).
In this article, we address the first problem by proposing an
alternative method for solving the multidimensional coupled
differential equations and will address the second problem
in a subsequent article (9) by proposing an alternative for-
mulation of equations of motion for the spin-bath model.

* Part of the contents in this article was presented in the [I1th Annual
Meeting of the Society of Magnetic Resonance in Medicine in August 1992,
Berlin, Germany.

+ To whom correspondence should be addressed.

The first problem stems from the method of solution used
in our previous attempts. The time-honored Laplace-trans-
form technique (/0), when applied to problems with di-
mensionality exceeding three, tends to give analytical results
that are algebraically complex and are often implicit in na-
ture. This is rather unsettling since little, although not entirely
negligible, physical insight can be derived from them until
numerical results are generated. Moreover, this algebraic
complexity necessitates reducing the problem to a smaller
number of dimensions by restricting the validity of the so-
lutions to certain limiting conditions. For instance, in [, the
solutions were restricted to the conditions for which the sat-
uration RF is sufficiently far from the water resonance (117).
To overcome this problem, we propose using an alternative
method called the projection-operator ( PO) technique, first
advanced by Zwanzig (/2) and by Mori (/3) and used by
Adler ( /4) in a manner similar to that proposed below. This
technique provides a powerful and elegant means for deriving
explicit and analytically simple solutions to complicated
problems with multiple degrees of freedom (as typicaily
would occur in many-body problems). The power of this
technique resides in the fact that the projection operator re-
duces the solution of the coupled multidimensional problem
to one with fewer degrees of freedom (i.e., in this case, a
one-dimensional problem), the solution of which is usually
quite tractable. This feature is particularly well suited to our
problem, in which only the longitudinal component of the
free water proton magnetization M_, can be dynamically
monitored by experiment.

In the following sections, we solve the Bloch equations in
their conventional form ( /, /1) using the PO technique un-
der both continuous and pulsed saturation without any sim-
plifying assumptions. For continuous saturation, the PO
used, in the context presented herein, produces a single
equation for the relevant variable, M., in which intrinsic
relaxation and sources of magnetization transfer are naturally
separated. A remarkably simple solution is attainable under
this condition because, under continuous saturation, the time
lapse between the onset of saturation and observation is so
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long that asymptotic solution of the longest time constant
is, for all practical purpose, all one needs. In saturation with
binomial pulses, since the pulse width is on the order of a
few milliseconds, contributions from transient components
of shorter time constants may not entirely negligible, al-
though one may still ignore the faster transients to simplify
matters. The solutions obtained in these circumstances are
then compared with those obtained in I and II for heat-de-
natured albumin using the same spin-bath parameters de-
rived previously.

SOLUTION TO THE CONVENTIONAL COUPLED
BLOCH EQUATIONS UNDER CONTINUOUS
RF IRRADIATION

By following the same convention as 1 and 11, the Bloch
equations which describe the heterogeneous spin system
modeled after a pair of coupled spin baths in the presence
of an RF field can be written in the rotating reference frame
in dimensionless parameters and variables as

d{u)
—;“;’— + B, + 6.0, =0 [1a)
e
d(v,) + Bu,— b+ (1 —2w)=0 [ib]
dr
/ v
de+(aA+ax)wA—awa+-A:O [1c]
dr 2
WM-%+ﬁw%Jim+@=Q [1d)
dr f o 2
where
M} MY M — M:
= N = =, )= — s = A‘ B, 2
M T T T S (2]

with M: and M;O denoting the longitudinal magnetization
and its equilibrium value, respectively, of the A or B spins.
The transverse components of the magnetization that are in
phase and 90° out of phase with respect to the applied RF
field, respectively, are u and v. The other dimensionless pa-
rameters are defined by r = w;¢, f = molar ratio of the B
spins to A spins,

aap = 1/ Tap, ax =rx/wy, Bag = 1/w; T2, [3a]
and
[3b]

— . - 0
0ap = Awap/Yw); Owap = w — WAR,

where w, = yB,, T, and T, p are the intrinsic relaxation
times of the A and B spins, rx is the cross-relaxation rate,
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and Awg p are the frequency offsets of the RF field with re-
spect to the A and B resonances, respectively. To simplify
matters somewhat, we assume 6, = 0z = 4, which amounts
to ignoring the small difference in chemical shift between
the A and B spins.

To solve [1], we define

X = col{ug, Ug, Wg, Up, Ux, Wa }.

(4]

We then rewrite [1] as

d
—X+RX=Y, [5]
dr
with R and Y defined, respectively, as
Bg O 0 0 0 0
-0 Bs -2 0 0 0
_l 0O 12 atax/f 0O 0 —ax/f
R 0 0 0 Ba O 0 (6]
0 0 0 -0 fa -2
0 0 —ax 0 1/2 (27N + [235%

Y =col{0,—1,0,0, 1,0} = —e, — es, [7]
where we have defined the unit vectors {e;} = col{é;} as
indicated by e, and es above. The initial magnetizations for
both the A spins and the B spins are assumed to be longi-
tudinal with w,(0) = 7, and w(0) = 5y, respectively. Thus,
X (0) = npe; + naes. We now define a complementary pair
of projection operators, p and g, as

p=eeq. q=1-p, (8]
so that p° = p,¢” = ¢, pg = gp = 0, and pX = col{0, 0, 0,
0, 0, w, }. Given these properties satisfied by p and g, we
can derive (for details see Appendix A) an inhomogeneous
equation for wy, in which the ug, 14, vg. V5, and wy depen-
dencies are eliminated from Eq. [1]. The result is given as

dM’A

— + (s + ax)ws + fT (1 — $)wa(s)ds = &(7), [9a)
dr 0

where the function ¢, bearing a superficial resemblance to
the memory term of the Langevin equation as a consequence
of the fluctuation—dissipation theorem (/3), is given by

(1) =(6T(7)- qRe,) [9b]
Er)=—npd (1) e+ L ¢T(r —5)-(ey + es)ds  [9c]

#(7) = exp(—7qR" )es, {9d]
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where ** " refers to a time derivative. In this representation,
£(7) represents a production term for the appearance of
magnetization transfer from the B spins, while the apparent
relaxation rate of the A spins is determined by the terms a4
+ ay and ¢( 7). For a time scale long compared to the inverse
of all the nonzero eigenvalues of gRT, or for 7 > Aj', j = 1,
2, 3, 4, 5, w, will satisfy an asymptotic equation given by

d

(— N aap.,)wA - o), [10]

dr

where a,,, is the apparent relaxation rate defined as

X

Gapp = a + ax + f o(5)ds. (1]
0

Solving [10], one gets

wa(r) = [WA(O) - M}ea,w, 4 Ho)
Yapp Qpp

[12]

As is shown in Appendix B, ¢(7) is explicitly evaluated
by an appropriate set of eigenvectors and eigenvalues for the
matrix gRT. Let {v{,vZ},j=0,1, 2,3, 4, 5, denote such a
set of left and right eigenvectors which correspond to the
eigenvalues Ag = 0, A\, Az, ..., As, respectively. We can
then write

5
o(1) = =3 Ne M (v]-vi)(viT-gRes)  [13]
i=1

S -
EHr) = 8oo) + 2 e V(v - e)meA(viT - e3)
=1

—{viT-(e;+es5)}] [14]

with
gao) = —(v{T - ex)[v)T - (e + &5)]
= —viT. (e, + e5), [15]

the second equality in [14] resulting from e{ gRT = 0, which
implies that v{ = e{. Similarly, [ ¢(s)ds may be written
as

f @(s)ds = vO7 - qRe
0

so that

aapp=aA+ ax+V9T'qReﬁ. [16]

To find vP7, the right-sided eigenvector of gRT with Ay = 0,
we note

AWV = 0. (17}
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Let v} =col{a, b, ¢, d, e, 1}. It is straightforward to solve
the simultaneous equations in [17]. The results for a, b, c,
d, and e are given by

a=— axég/Z
Be + (ap + ax// W6+ B3)
h=— axfBs/2
B + (ap + ax/ (8% + 63)°
. a (8% + BR)
Be + (ap + ax/f)(6* + B3)°
R R N S -/
d=-3yyp T av+g L8]

It follows from [6] that v?T - gRes = —[2e + (ax/f)c], which
according to [11] yields the apparent relaxation rate

ak ax B -1
Oapp = 0 + 0y — -f— R +-f~ + wgr(d)

+ xgf(6), [19a]
where g7 (8) denotes the nondimensional Lorentzian line-
shape function

- 1
gi(s) =+ P

SIS I ZA,Ba
T (0 +pE) ©

[19b]

for the A- and B-spin components, respectively. We note,
in [19a], that the rate ay + ax represents the zeroth-order
term when one assumes, as did Grad et al. (15), that the B
spins are completely saturated and the RF is so far off res-
onance that it has no direct effect on the A spins. The next
term corresponds to the correction when one relaxes the as-
sumption on the saturation of the B spins. Thus far we have
reproduced the results, in explicit fashion, of I. The last term
corresponds to the direct effect of the RF on the A spins
which was previously ignored.

The steady-state magnetization, w, (oc ), according to [12]
is equal to £(c0)/tapp = —(b + €)/ . By straightforward
evaluation, one can verify that it regenerates the expression
obtained by Wu (/6). We shall not perform this exercise here.
To complete the transient solution, we solve all the nonzero
eigenvalues and eigenvectors of gR" in Appendix C.

SOLUTIONS TO ON-RESONANCE BINOMIAL
PULSED SATURATION

When the saturation RF is applied on resonance but with
an amplitude modulated by a binomial function 87(7)
(17, 2) where 8{(7) is a uniamplitude, nth-order binomial
function of the RF excitation, ie., 87(7) = w{{7)/|lw|.
where n = 1, 2, - - - specifies the amplitude modulation of
#7(7) by the coeflicients of x in the binomial expansions ( 1
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— x)”, one can also apply the P O technique to greatly sim-
plify the analytical solution obtained in 1. As we have shown
previously in I, the solution under pulsed saturation must be
divided into two regimes: the pulse-on regime and the free-
induction regime when the saturation RF is turned off. The
overall solution is obtained by solving the Bloch equations per-
tinent to each regime individually, using the end-of-period so-
lution of one regime as the initial condition for the next regime
and vice versa. The solution of the free-induction regime is
simple and well known (2-6). Here we focus our effort to
simplify the pulse-on solution obtained previously in H. During
the period when the burst of RF pulses is turned on, the equa-
tions of motion according to the spin-bath model can be written
in the same cardinal form as [ 5] with the vectors X and Y and
the matnx R which have been modified as

X = COI{UB, Wg, Va, WA}5

Y = —col{87(7),0,8(7),0} = —07(7)(e; + e5) [20a]
Bs —=287(7) 0 0
R = | (U/205(r) ap + ax/f 0 —ax/f
0 0 Ba —=2607(7)
0 —ax (1/2)07(7) as + ax
[20b]

It should be noted that although #7(r) in Eq. {20] assumes
the values +1 and —1 at different time intervals, it is constant
during a particular phase of the pulse-on period.

To solve the transient problem, one needs to find the ei-
genvalues and eigenvectors of gR' with the projection op-
erator p now defined as e4e} . As is shown in Appendices A-
C, the eigenvalues and their corresponding eigenvectors are
readily found to be

1 axBafs _05(7)
= 0= -0 -
Xo=0, ¥° ‘301[ 3p 1(Texba=p= 26A’1}’
v =ej, [21a]
n
A =B, Ve =e, Vll=e;r+0l(f)e}’ [21b]
284
LY D S v ) g
£ B B “8 S y ’
vi = N.col {81(7), =2(8s ~ X.), 0,0},
. N P ax(Bs ~ A:)
Vi Ni. I'OW{ 1(7’), z(ﬁB )\i)>0> 2XI }’
[21c]
where
D — ﬁA[ﬁB(aB +9}2(—) + 1] y [zld]
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and the normalization constants N and N’ are related by
NxN':{l — (B — x';)2} =L

The eigenvalues A,, A,, and A_ are time constants of the
transient components that may have contributions in ¢(7)
and £(7). For the spin-bath parameters of most systems of
biological interest and a time scale of 1 ms (which is shorter
than the typical pulse width one normally uses in this type
of applications), ;7 ~ 0.01 as compared to A_r ~ 1 and
A7 ~ 15, Thus, for all practical purpose, we can ignore the
contributions of the transients due to A, . We will show later
that one can also ignore the contributions due to A_.

We first evaluate the production term £(7), using the ei-
genvalues and eigenvectors given above. The asymptotic so-
lution of this term £,(o0) can be shown from Appendix B
to be given by

Eloc) = V)T Y = —v)T (&) + &),

This implies that

+

D ' Ba [22]

Ea(o0) =%(“"5" i),

which is independent of the initial conditions of the spin
system. The expression for £4(7), however, depends on the

initial condition X,(0), and from the development leading
to [B5], we can write

3
£7) = £a(00) = T eV (vi- e { AviT- X,(0)

J=1
+ v -07(7)(e + e3) ]

Here we make a simplifying approximation using the fact
that T, is so short that it is justified to consider vg practically
negligible at all times. So X,(0) = {0, wg(0), v4(0), 0},
which gives

§(r) = &7, va(0), wa(0)]

=Co+ Cie ™™+ Ce™™ + Ce™ [23a]

with
Co = £a(0) [23b]
C =~ '23; {Bava(0) + 6} {23c]
C. = ax (B — A:)[(Bs — Ac)wr(0) — 1/(2A.)] (23d]

} 1= (B — A)? '

where we have used the shorthand notation 8 for 87(7). To
solve the transient problem under the binomial pulse, we
consider a solution of [9a) in the Laplace domain,
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Wa(s) = [s + ao + @(5)]7'[E(5) + wa(0)]

= G()HE(s) + wa(0)], [24a]

where

l A
§)= —————, = a, + ax.
G(s) s+ ap + @(s) &0 T AT Ax

[24b]
G(s)and £(s) are, respectively, the propagator and the source
term that govern the time development of w,(7) from the
initial state w,(0). If G and £ change after a time period 7,,
as one would expect in the case of a binomial pulse, the time
evolution of w,(7) in the Laplace domain can be obtained
from [24a],

Wals) = G()E(s) + walr))],

where G, and §. are the new propagator and source, respec-
tively. In general, after 7 such periods, the Laplace transform
of the time evolution w,(7), 7 > 27, 7,, can be written as

WR(S) = Gl s)[Em(s) + walry)]. [25]
To obtain w,(7), one needs to evaluate G and é in every
period of the pulse sequence. Now recall that G is given by
[24b], which is dependent upon @(s). On the other hand,
@(s) itself, according to a development similar to [B3] in
Appendix B, is derived from a scalar product determined by
the evolution of the quantity ¢(7):

3
A ,
@l(s) = 2 +’>\’ (vi-e)(viT - gRey)
1 cy c_
= - — 2
(s+6A s+ AL s+7\_) [26a]
with
2 _ 2
s = ax(Bs — As) [26b]

1= (Bs A

Thus far, the development is generally applicable to any am-
plitude- and phase-modulated RF pulses. From here on, we
drop all transient contributions arising from A, and A_ on
the grounds that both of the coeflicients associated with these
terms C, and ¢, asdefined in Egs. [23d] and [26b] are small
in comparison with those of the other eigenvalues. For a
detailed evaluation, we concentrate on the simplest form of
the binomial pulses: the phase-alternated or the 1 1 pulse
sequence, which corresponds to the case when the index n
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in the amplitude-modulation function 87(r) is equal to 1.
If the total pulse duration for each cycle of this pulse sequence
is 7., then the response after one such cycle is obtained from
repeated applications of the inverse Laplace transform of
[25] evaluated at 7, = {7, and 7 = 7, respectively, with
the propagators G and G, and the sources £ and £, evaluated
according to Egs. [24b], [26a], and [23a]. Ignoring terms
in [26a] that give rises to the fast transients as just mentioned,
we have

1
st ad+ /(s + By)

_ S+ 8a
(s+ad)s+B4)+1

N _ 1 axBa) 1+ 60B,ua(0)
£(8,s) 25(6A+ D) 28.(s + Ba)

o Ma 1 + 68,va(0)
25B4 2Ba(s + Ba)

G =G,

[27]

[28a]

ax 6/\ B
]

—_—, 28b
1 + Bpagg [ ]

ua =1+ =a3+5/?i.

Substituting the above quantities into [25], one has, after
rearrangement of terms.

s+ Ba
(s+ad) s+ Ba)+ 1

{ #a 1+ 608,04(0)
2584 2BA(5 + B4)

\';'A(S) =

+ wA(O)}. [29]

The time evolution w,(7) is the inverse Laplace transform
of W (s), which can be shown to be

wa(7) = MV'A(O)[BA—‘:J?—A sinh(o,7) + cosh(aAf)]e"’f*’
A

+ H'YA — @A—(—Q—)}Sinh(am)
ZUA
- KA['EA sinh(aa7) + COSh(UAT)]]e_P,U + ks, [30a]
A
where
1 6 — BT
pa = E(ag + 6A)’ Op = \"//[(a() 2 6}\)] _ 1 [30b]
-1
Ya Fa Ka ~ [30c]

—20',\6;\, —m.
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An expression similar to [30a] may be derived for wy(7)
with the subscript A replaced everywhere by B with pg, o5,
B, Up, and «p defined similarly as in [30b], [ 30c]. For the
strength of the saturation RF fields typically used in our
experiments, 8y > 1 > (4, note that ¢, is usually imaginary
while g is real. Note also that in Eq. [ 30a], the corresponding
term containing v,(0), in the case of the B spins, can be
dropped since, as discussed earlier, vg(0) can be neglected
in view of the short T,y relaxation time. This is the sole
reason why binomial pulses can achieve selective saturation
of the B spins.

Since o, is larger than o, 84, and pa by two or three orders
of magnitude, Eq. [30a] can be further approximated by

wa(7)
_ 8uA(0)

O

= wa(0)cosh(aar)e A" + [[‘yA ]sinh(aAT)

- I(,e.‘cosh(a,{r)}é""AT + ka. [31]

For a time 7 from the beginning to the end of a 1 1 binomial
pulse, one can write

wa(7) = wa(0)cosh(oar)e™ A"

+ H'YA - U—A@]Sinh(vﬂ) = KAcosh(aAf)]e‘”A* + Ka

20'A
1
forr < 3 T, [32a]
wa(t) = wA(O)cosh(LAzTi)cosh[aA(-r - %)}e"”“

. UA(O) . OATy _ TATw
+H7A 20 ]smh( > ) KACOSh( 5 )H
w w 2
X cosh| anl 7 — ) |e 2" = {ya + Va(74/2)
2 20'A
: Tw
X Slnh{ﬂA(T — ?)]e_ﬁ,\(f—rur/Z) + KA

Tw
for—é'i<7<'rw.

[32b]

In Eq. [32], one needs also to evaluate the “initial” transverse
magnetization v, at various time points, which can be readily
shown, by ignoring all longitudinal relaxation effect during
the pulse, to be

20

va(7) = e“""(cosh(aAr) + 7

Aﬁi sinh(aa7){BaVA(0)

+20[1 ~ 2wA(0)]}) [33]
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COMPARISON WITH SOLUTIONS
BY THE LAPLACE TRANSFORM
FOR HEAT-DENATURED ALBUMIN

The model parameters developed in I and II for heat-de-
natured albumin, in part by ancillary empirical determina-
tions and in part by physical reasoning, were used again here
for all the computations with no further adjustment. In ad-
dition, since in our formulations here we have included the
contribution from the on- and near-resonance saturation of
the free-water component, we need the parameter T, which
can be readily measured to be approximately 80 ms.

In the case of pulsed saturation, results (not shown here
in the interest of conciseness ) were obtained using Egs. [30]-
[33] nearly identical to those presented in II, which is to be
expected since both methods are nearly exact solutions to
the same set of equations. However, in the case of continuous
saturation, there are significant differences, particularly at
low-frequency offsets, between the results reported in I and
those obtained here. To illustrate these differences, typical
results of apparent relaxation rate and steady-state magne-
tization as a function of the frequency offset of the saturation
RF obtained by these two methods are shown in Fig. 1. There
are two sources that contribute to these discrepancies. At
low-frequency offsets, the difference is due to the fact that
the solutions in I were obtained from a truncated set of cou-
pled equations and consequently the effect of direct satura-
tion of the A spins was not properly accounted for. At high-
frequency offsets, there is also a small deviation in the ap-
parent relaxation rate as shown in Fig. la. This results from
the asymptotic solution used in the PO technique, which
overestimates a,,, at high-frequency offsets by an amount
which can be shown to be on the order of O(ag + ax/f) 2.
While the difference is quite small under normal conditions,
improved approximations for the “memory function,” ¢,
could reduce this discrepancy. Finally, Fig. 2 shows the ap-
parent longitudinal relaxation rates (Fig. 2a) and the steady-
state magnetization M. (Fig. 2b) as a function of the satu-
ration RF amplitude at frequency offsets of 5 and 7.5 kHz,
respectively. From the plots shown in Fig. | and Fig. 2, it is
not difficult to conclude that for spin systems typified by
heat-denatured albumin, the most efficient RF irradiations
for solid spin saturation are those with an offset in the range
of 5 to 10 kHz and an amplitude that gives a nutational
frequency of 1000-2000 rad/s.

APPENDIX A
We start with
d
—+R)X = A
( o )X Y [Al]
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FIG. 1. Plots of calculated (a) apparent longitudinal relaxation rate and (b) steady-state longitudinal magnetization of heat-denatured albumin as a
function of frequency offset of the saturation RF (w, is fixed at 2026 rad/s) using previously obtained spin-bath parameters from Ref. (/). Solid line,
solution, by the projection-operator technique, of a full set of coupled Bloch equations; broken line, solution, by the Laplace transform [Ref. ( /)], of a
truncated set of coupled Bloch equations.

Let Solving [AS],

X, = pX, X,=gX [A2] .
X,(7) = e "X, (0) +f dse"CTIR(Y — gRX ), [A6]
Y, =pY, Y,=gY. [A3] 0

Now note that since Y = —e; — s, pY = 0and gY = Y,s0  which implies that
that we have the decomposition

d
d =X, + pR[ X, + e "X, (0
B—Txp'i’pR(Xp-{-xq):O [Ad4) 4777 P ’ o(0)
d + f dse CTIR(Y — gRX,) | =
X+ GRX, + X)) = Yo = Y [AS5] X (Y = 4RX,) | =0
a 3354 b
< 1
E i ..... 20
8 25 N
- %"
§
— 7]
® 159 >
K b
£ ] 2
g 7]
2 s
§
0 T T T —~T 04— U T T T
o 1000 2000 2000 4000 5000 0 1000 2000 3000 4000 5000
RF amplitude in nutational frequency (rad/s} RF amplitude in nutational frequency (rad/s)

FIG. 2. Plots of calculated (a) apparent longitudinal relaxation rate and (b) steady-state longitudinal magnetization of heat-denatured albumin as a
inction of saturation RF amplitude using the projection-operator technique and spin-bath parameters obtained from Ref. (7). Solid line, frequency offset
5 kHz; broken line, frequency offset = 7.5 kHz.
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or

% X, + pR[X,, - fo dse“”"""“qRX,,]

= —pR“: dse”"IRY 4 e’”’“Xq(O)] . [AT]

Now we employ the initial condition u(0) = v(0) = 0, w,
=, { = A, B, and hence X,(0) = col{0,0,95,0,0,0} =
npey. Furthermore, since X,-e, = w,, we form a scalar
product of this expression with e ; then [A7] becomes

f— w, + (efReg)wa — [f dswA(s)(egRe"‘”"")qReb]
T 0

= -—[J; dsefRe™ IRy + egRe“"’"X,,(O)} . [A8]

Now consider a product of the form

(*) =[a"R(gR)"b] = [{R"a}"(¢R)"b]
=[{qR"a}"R(4R)" 'b],

m being an integer >1, since ¢7 = ¢. Following m — 1 it-
erations,

() = ({{gRT)"a} "Rb) = ({[¢R"]™a} T¢Rb)
since g is idempotent, or g° = g, and therefore
(elRe"®gRe;) = ({gR e ™ 5} TgRes).

We now define a new vector

$(r)=e"Pe,, ¢(r) = —gRTeMe, [AJa]
then
(efRe ™gRes) = —[¢T(7)- gRes].  [A9b]
We Jikewise have
~[edRe "X, (0)] = ns[$7 () ;] [A10]
— (edRe”Y) = [¢"(1)- Y]
= -[¢T(r)-(e; + &)l [All]
By using [A9] to [A11], [A8] can be rewritten as
d .
== Wa + Regia + (J; dsg(r — s)wA(s)) = #r), [A12]
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where

P(7)=[¢7(7)- (4R )e] [A13]

Hr)=[87(r): X, (0)] + J; dsp (7 —s5)- Y. [Al4]

APPENDIX B

Let v1, v/ denote left and right eigenvectors of the operator
gRT, respectively. Since ed gRT = 0, there is at least one zero
cigenvalue with v{ = e/ its left eigenvector and, in this case,
five more nonzero eigenvalues. Let us number these by the
indices j = 0, 1, 2, 3, 4, 5. Applying the identity operator 1
= (25 vivi))to [A9], we obtain

5 .
¢(r) = e R vivi)- e
=0

5
(V] ee)¥? + 2 e N (v~ )0}
j=1

I

[B1]

5
=2 NeTNV(vi- ),
=1

I

o(7) [B2]

where we have used the relation gR™v/ = A\v/. Therefore,
from [A13],

e(1)=[$7(7)- qRes]

5
— 2 Ne V(v e)(viT - gReo).

j=1

Il

[B3]

Now making use of the condition Y = —e; — e5, X,(0) =
nges, we have from [A14]

E(T)E¢T(T)'Xq(0)+LT¢T(T—s)'Yds

5
—np 2 Ne V(v e ) (viTe;)
=1

i

5 T .
+ 2 Ajf ds M (vieg){viT(e; + es5) ).
J=1 0

But \; [j dse ™ "V =1 — ¢ "%, which implies that

5

- . 5 .
Hr)=2 (vice){viT-(ex+es)— 2 e M9 (v]- e)
J=1 Jj=t

X ANV <(npes +v{T-(e; +e5)}. [B4

Finally, we use 3 %, viv /=1 — v2v{ 1o write, for any vecto
V that is orthogonal to e
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M e
—~—
<

-
-
.

-

5
T (vie){viTV} =

j=t J=1
~eg) = —(VT-v),
which leads to

Hr)=—(e;+es) v}

s
— X e M(vi-e){\viT npes + viT-(e; +es5)}. [BS]
1

Asymptotically, it is clear that as 7 = o,
&)= Hoo) = —(e; +es)" - v], [B6]

and the memory term in the equation of motion for w, —
fo dse(s):

x 5 x . ‘

f dse(s) = -2, Ajf dse ™ (vi-eg){vi' - qRes)
0 e 0
5

—=> (v]-es){viT - qRes)

J=1

S .
—~(gRes)T X vivi- e

=1
—(gRes)T(1 — v2v{)- e
—(ed - qRes) + (v - e)(vT - gRes)

I

or

fx dse(s) = v7T - gReq. [B7]
0

APPENDIX C
The eigenvalues for gRT are determined as solutions of

the characteristic equation det|gRT — A1| = 0. One root
corresponds to A = 0, and the remaining roots satisfy

Bg— A —b 0 0 0
5 Ba—A 1/2 0 0
det| 0 -2 aptax/f-2 0 0o |=o.
0 0 0 Ba—A —b
0 0 0 5 Ba—A\

[Cl]

Since the matrix of the determinant is block diagonal, [Cl]
can be solved by inspection. Two of the eigenvalues can be
obtained by solving the lower-right block:
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A4.5 = BA =+ 6. [CZ]

The other three eigenvalues are the roots of the equation
from the upper-left block:

(Be — M(Bs — M(ap + ax/f— X)) + 1]

+6%(ag + ax/f— A)=0. [C3]

By setting y = 85 — X\, ¥ = ap + ax/f — Bg, [C3] is recast
into the form
P}y (4 y+ 6y =0. [C4]

This is further transformed into the standard form with a
vanishing quadratic term, i.e., x* + ax + b = 0, by letting

y=x—y/3,
where
a=3[3(6%+1) -y [C5]
b= jylsy* + 26>~ 1]. [C6]

with the roots then given in terms of

May=A+B, — %’ {(4+B)=iV3(4 - B)}, [CT]

b bZ a3 1/3
AE(—E_*_\’}—Z__F_Z_?) [C8a]

b bz a3 1/3
BE(—E—\//'Z-FZ—?) . [Cgb]

For the eigenvectors that have been determined already
in the text, v = e and v? = col {a, b, c, d, e, 1}, with the
expressions for g to ¢ given by [17]. In view of the block
separability of the remaining eigenvalues, it should be pos-
sible to try a similar ansatz to determine the corresponding
eigenvectors. Consider first the vectors for which (8, — A)?
+ 82 = 0. Let us write v, = col {0, 0, 0, M, N, 0}, which
implies that (84 — MM — 0N =00r M = [5/(8A ~ N)]N,
with N to be determined by normalization. Likewise, let v,
=row{0, 0,0, M, N', P'}, for which we find (8, = MM’
—oN'=0and N'/2 = AP =0,or M' = [~5§/(8a — NN,
P = N'/2X. In as much as N and N’ are arbitrary, apart
from a normalization requirement, we can choose N = N’
and apply the condition vyv, = 1, which yields

N? ———55—2—-4»1 = 1;
(Ba — M) ’

but — 82/(84 — )2 = 1, which means N = 1/ V2. Therefore,
we may choose
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\ 1 1[0 0.0 8 : 0} [C9a] So if we let
vr :-—-—*CO s 5 ’—_—-_-——_) ’ a
VE (tBA >‘) 52 + [(:BB . )\)2 + 52]2 )
1 -5 1 - (Bs ~ A) = ' y],
M==row{0,0,0, ——, |, — C9% B
MY { Br= N 2x] 1G5

where arg denotes argument, then we may write

for A satisfying (84 — M) + 82 = 0. The eigenvectors v}, for N

A satisfyingy [(,§3] can be calculated using similar arguments. N= m’ N'=e mg(ﬂ)vm'
For conciseness, we left out the details and simply provide
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