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Abstract: An important criterion for evaluating the effectiveness of many manufacturing firms is their 
ability to meet due dates. In low to medium volume discrete manufacturing, typified by traditional job 
shops and more recently by flexible manufacturing systems, this criterion is usually operationalized on 
the shop floor through the use of prioritizing dispatching rules. The widespread use of dispatching rules 
has led to a number of investigations where the due date performance of various rules is compared. In 
contrast to previous research on dispatching rules, this paper proposes a new approach that _decomposes 
the dynamic problem into a series of static problems. These static problems are solved in their entirely, 
and then implemented dynamically on a rolling basis. To illustrate this approach, a specific heuristic is 
developed that constructs the schedule for the entire system by focusing on the bottleneck machine. 
Computational results indicate that significant due date performance improvement over traditional 
dispatching rules can be obtained by using this new approach. 

Keywords: Scheduling; Tardiness; Job shop 

1. Introduction 

In many manufacturing systems, especially those that produce to specific customer orders, the major 
scheduling objective is to meet order due dates. Considerable research has, therefore, been directed to 
finding effective solution procedures for minimizing average job tardiness. The bulk of this research on 
multiple machine systems addresses dynamic job shops, and it deals with the relative effectiveness of 
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various priority dispatching rules. (See, for example, Conway (1965), Carroll (1965), Baker and Bertrand 
(1982), Kanet and Hayya (1982), Baker and Kanet (1983), Baker (1984) and Vepsalainen and Morton 
(1987). Baker (1984) given an excellent summary of this research.) 

This paper present an approach that is an alternative to the use of priority dispatching rules. The 
proposed solution method treats the dynamic problem as a series of static problems. A static problem is 
generated at each occurrence of a stochastic event such as a new job arrival, a machine breakdown, etc. 
Each static problem is solved entirely, and the solution is implemented on a rolling basis. In contrast to 
dispatching rules, which consider only one machine at a time, the suggested procedure schedules the 
entire system at each instance of the static problem. This approach was used successfully for single 
machine systems in Raman, Rachamadugu and Talbot (1989a). 

Static job shop scheduling for most of the commonly studied objectives presents problems of 
exponential complexity (Rinnooy Kan 1976, pp. 131-134), and much of the research on this subject has 
been directed toward minimizing makespan. Although the single machine tardiness problem is well 
studied, very little is reported in scheduling literature on general job shops. The dominance conditions 
and bounding mechanisms developed for single machines cannot be easily extended to job shops. Indeed, 
the only work on multiple machine tardiness problems that we are aware of are those of Ow (1985) and 
Raman, Talbot and Rachamadugu (1989b). Ow develops conditions for local optimality between adjacent 
jobs for a 2-machine flow shop, and utilizes these conditions for constructing a heuristic solution method 
for a general proportionate flow shop. Raman, Talbot and Rachamadugu present an implicit enumera- 
tion approach for a general multiple machine system. However, for the reasons noted above, the size of 
problems solved to known optimality is relatively small. 

In summ~ry, dispatching rules are the only solution methods currently available for solving even static 
job shop tardiness problems of reasonable size. While dispatching procedures are computationally 
efficient, the effectiveness of any one rule depends upon system characteristics such as machine 
utilization, fl0w allowance factor, etc. Therefore, given the computing power available today, Adams, 
Balas and Z awack (1988) contend that there is a need for developing more effective procedures even if 
they require additional computational effort. This paper presents one such procedure. 

The heuristig solution method developed in this paper for solving the static problem is based on 
decomposing the multiple machine problem, and constructing the schedule for the entire system around 
the bottleneck machine. This is done by establishing relative job priorities using operation due dates 
(ODDs). While the notion of operation milestones has been used extensively in the past, the major 
contribution of the suggested method lies in the manner in which these ODDs are derived by taking into 
account the impact of other jobs in the system, and in combining ODD assignment with operation 
scheduling. Although this approach requires greater computational effort, we show that, in general, it 
results in significantly better system performance for both static and dynamic problems. 

The remainder of this paper is organized as follows. The static tardiness problem is formulated in 
Section 2. In Section 3, the decomposition based heuristic solution procedure is presented. An optimal 
method for the static problem, which is used for benchmarking, is reviewed in Section 4. In Section 5 and 
6, computational results for the static and the dynamic problems are provided. Summary comments are 
given in Section 7. The notation used ila [his paper is given in the Appendix. 

$. Static scheduling problem 

An integer programming formulation is presented below for the static tardiness problem. We assume 
without loss of generality that the operations for each job are numbered such that any successor 
operation is indexed higher than its predecessors. 

Minimize ~] Ty (1) 
J 



N. Raman, F.B. Talbot / The job shop tardiness problem: A decomposition approach 189 

subject to 

~_,Xtik=l, j = I , . . . , N ,  k = l  . . . . .  Nj, 
l 

E(t-Pit)x,jt>-- •tXtjk, J= I , . . . ,N ,  k= l .... ,Nj 
j t 

t +Pjk -- 1 

~_,~ ~ RjkmXwk<l, t = l , . . . , T ,  m = l  . . . . .  M, 
j k q= t  

EtXt jk+ej--Tj=dj ,  k=Ny, j = I , . . . , N ,  
t 

Xtjk~(O, 1), Ej, Ti>O Vj, k , t  

where 

1 if operation k of job j is completed at time t, 
xtJk= 0 otherwise. 

V(k, l) 

(2) 

(3) 

(4) 

(5) 

(6) 

Equation (1) minimizes total tardiness. Constraints (2) require that each operation is completed 
exactly once. Constraints (3) ensure that precedence relationships among the various operations within a 
job are satisfied, and operation processing times are taken into consideration appropriately. Constraints 
(4) specify that each operation is assigned to at most one machine at any given time. Constraints (5) 
measure the tardiness of each job, and constraints (6) specify the integer nature of the variables. 

3. Heuristic solution approach 

3.1. Background 

In view of the complexity of the mean tardiness problem, most solution procedures are based on the 
use of dispatching rules. These rules prioritize jobs using a criticality index based on job and system 
status. All machines are forward scheduled, and ties among competing jobs are broken using the priority 
index. While several schemes are available for generating these indexes (see, for example, Conway 1965), 
Baker (1984) and Vepsalainen and Morton (1987) show the superiority of decomposing job due dates 
into operation milestones, and using these operation due dates (ODDs) for setting priorities. 

In particular, Baker finds that the Modified Operation Due Date (MOD) rule performs well across a 
range of due date tightness. MOD selects the operation with the minimum modified operation due date. 
The modified operation due date of operation i in job j is given by 

MODji = max(t +Pji, dji) (7) 

where t is the time when the scheduling decision needs to be made. 

Remark 1. For a given set of operation due dates, the total tardiness incurred by two adjacent operations in 
a non-delay schedule on any given machine does not increase if they are resequenced according to the MOD 
rule. 

Proof. Refer to Raman, Talbot and Rachamadugu (1989c). 

Remark 1 indicates that if ODDs are set optimally, the MOD solution guarantees local optimality 
between adjacent operations at any machine for a non-delay schedule. ODD assignment is, therefore, 
central to the effectiveness of the MOD rule. Most previous implementations of this rule determine 
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ODDs by decomposing the total flow allowance ( d j - p j )  of a given job j heuristically into individual 
operation flow allowances. (Baker (1984) describes these procedures.) ODDs obtained in this manner are 
retained throughout the solution procedure. Recently, Vepsalainen and Morton (1987) developed an 
approach in which the due date of any operation is estimated by netting the lead time for the remaining 
operations from the job due date. Because this lead time depends upon the relative priority of the job 
under consideration, it considered the interaction among all jobs in the system. 

Similar to Vepsalainen and Morton's approach, we account for job interaction effects explicitly. 
However, our procedure differs from previous approaches in that we consider ODD assignment and 
operation scheduling simultaneously. Note that, in conjunction with the MOD rule, ODDs essentially 
provide a mechanism for allocating individual job priorities. Clearly, the best set of ODDs is one which 
yields the best prioritization scheme, i.e., one that yields the minimum average tardiness. Therefore, the 
goodness of a given set of ODDs can be determined only when the system is scheduled simultaneously. 

As a result, the proposed approach is not a single pass procedure. It considers the global, systemwide 
impact of each ODD assignment. While this increases computational requirements, the experimental 
results shown in Sections 5 and 6 indicate that significant benefits are realized. 

3.2. The Global Scheduling Procedure (GSP) 

The proposed method is a schedule improvement procedure. The initial solution is generated by 
applying the MOD rule with ODDs set loosely at the maximum values that they can assume without 
delaying the corresponding jobs. Each machine is then considered in order, and an attempt is made to 
revise the schedule of operations on that machine by modifying their ODDs. Jobs processed on all 
machines are ranked in the nonincreasing order of their tardiness. For any operation in a given job with 
positive tardiness, first we determine the appropriate interval for searching for the ODD. For each 
possible ODD value in this interval, the entire system is rescheduled. The value which yields the 
minimum total tardiness is returned as the ODD for that operation. This step is repeated for all other 
operations of that job processed on the machine under consideration, for all other tardy jobs on that 
machine following their rank order, and for all machines in the system. 

We use the relative workload of a given machine to determine its criticality, and consequently, to 
determine the order in which the machines are scanned. Because an average job spends a greater portion 
of its total waiting time at the bottleneck machine(s), any improvement in overall system performance 
will likely require a revision in the operation due dates and the sequence of operations at these 
machines. The algorithm ranks all the machines from the most heavily loaded to the least loaded one, 
and considers them in order. Because the relative ranking of machines remains unchanged, they are 
numbered according to their rank, machine 1 being the most heavily loaded machine. 

The algorithm is now presented. In the following, ~" is the set of all machines, y,~ is the ordered set 
of jobs processed on machine m, njm is the number of operations that job j ~,f,~ requires on m, and i~' 
is the l-th operation of any given job on m. 

Step 1. 

Step 2. 

Initialization: 
a) Assign initial operation due dates; ODD of operation i in job j is given by dig = dl - (pj - Pig). 
b) Construct the initial sequence using the MOD rule with respect to the ODDs determined 

above. 
c) Number all machines in the non-increasing order of their total workloads E1 e,z, ]E~'___~ Pji. 
d) Initialize counters: r --0;  z(0)= oo. 
e) Assign the set of unscanned machines .dr" 1 =.K. Set r -- r + 1. 
Machine and job selection: 
a) Select machine m* next for scanning where m* = minj ~ ~{j}. 
b) List all jobs j and ,Ym, Vm, in non-increasing order of their current tardiness Tj. Select job j* 

from the top of the list of all jobs in Jm*" Set l = 1. 
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Step 3. Schedule revision: 
"m* a) For operation t I in j* ,  determine the interval of values that its ODD, dj ,  i~,,, can assume. 

b) For each integer value x in this interval, generate the due dates of other operations in j*,  
and reschedule all machines using the MOD rule. Record total tardiness EjTj for each x. 

c) Assign dj.,iT,* to  the x-value that results in the minimum total tardiness. Reassign due dates 
of other operations in j* accordingly. Update Tj, V j, based on the most recently assigned 
operation due dates. 

d) If 1 = ni ,  m, go to Step 4. Else, set l = l + 2, and go to Step 3a. 
Step 4. Updating: 

a) Remove j* from the list of unscanned jobs on machine m*: Jm* = , ~ m * \ { J * } "  If J , , ,  4: ¢, go 
to Step 2b. 

b) Update the list of unscanned machines: ~¢'1 = ~ l \ { m * }  • If Jr" 1 4~ ¢, go to Step 2a. 
c) Record z ( r )  = ]~iTj,. If z ( r )  < z (r  - 1), go to Step le. Else, stop. 

The major step in the algorithm is that of schedule revision which is now discussed, 

3.3 Schedule revision 

3.3.1. ODD reassignment 
Consider Figure 1 which illustrates the schedule revision procedure. The solution tree shown is similar 

to a branch-and-bound enumeration tree with the difference that each node represents a complete 
solution. 

Given the initial solution, we start with machine 1 which has the maximum workload, and job j (say) 
with the maximum tardiness among all jobs in ,,~. Let j require operations il, i2 , . . . ,  11 on machine 1. 
(We suppress superscript m for simplicity.) Consider operation i 1 whose initial ODD is djA. The 

O p e r a t i o n  - -  - -  
i 

i 

O p e r a t i o n  

i" 2 

J o b  
1 

O p e r a t i o n  

i s  Mach ine  

~ N e x t  

m a c h i n e  

Figure 1. Solution tree for GSP scheduling procedure 
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algorithm now considers varying this due date to have integer values in an interval [L1, U1] where 
L 1 = ~_,~l=lPjl and U 1 = d r. Note that L 1 is the earliest time that i I can be completed. It follows from (7), 
therefore, that for any dj.il < L 1, the relative priority O f i 1 remains unchanged. 

A descendant node is generated for each value of x in this interval. For a given x, the ODDs of other 
operation in j are generated as follows: 

djk "~dj ,k_ 1 "q- (X--PJ , i l )PJk/ /Pj . , i ,_ l ,  k ~- 1 . . . . .  i x -  1, 

and 

d j k = d j , k _  1 + ( d j - x ) p j k / l ( p j - P j , i , ) ,  k = i  I + 1, i l + 2 , . . . ,  Ny. 

In effect, we split job j into three 'sub-jobs' Jl, J2 and J3" Jl consists of all operations prior to il, J2 
contains only il, and J3 comprises all operations subsequent to i 1. Due dates of all operations within a 
sub-job are set independently of other sub-jobs. They are derived from the due date of the corresponding 
sub-job by assigning them flow allowances proportional to their processing times, due dates of Jl, J2 and 
J3 being x -&,q ,  x and dj, respectively. ODDs of operations in other jobs remain unchanged. 

The solution value for the descendant is determined by rescheduling all jobs at all machines for the 
revised set of ODDs using the MOD rule. The branch corresponding to the node with the minimum total 
tardiness is selected, and the ODD of i I is frozen at the corresponding value of x, say x~'. ODDs of all 
operations in job j preceding i I are updated as follows: 

djk = d j , k _  1 -[- ( X ~  - -P j , i l )PJk / / e j , i l_ l ,  k = 1 . . . .  , i l -  1. 

The due date of operation i 2 is assigned next. The interval scanned for  dj, i2 is [L 2, U z] where 
-- i2 d-X~ and =d j .  L 2 -- ~_,k=it+lPj k U2 
For a given value of x for the ODD of i2, the due dates of  operations in job j, excluding il, i 2 and 

those which precede il, a re  generated as follows: 

dyk = d j, k_  1 + 
( X -- X~ -- Pj,i2) p j  k 

ej,i  -1  - ej,i I 
, k = i  1 + 1 ,  i 1 + 2  . . . .  , i 2 - 1 ,  

and 

djk = d j, k_  1 + 
( cl~ - x ) & k  

1~ -- eJ,i 2 
, k = i 2 + l ,  i z + 2 , . . . , N  j .  

ODDs of operations preceding and including i I remain unchanged. 
In the general step, suppose we are considering ODD reassignment of operation k of job j at machine 

m. Suppose further that after investigating machines 1 through m - 1, and all operations of job j prior to 
k on machine m, we have frozen the due dates of operations Ul, u 2 . . . . .  u z in job j. Let k be processed 
between operations u t and ul+ 1 with frozen due dates of x~* and x/*+ i, respectively. In other words, the 
ordered sequence of operation in j is 

(1, 2 , "  " , u l , ' " , u 2 , "  " , , ' " , u t , ' "  " , k , "  " , U l + l , ' ' ' , , ' ' ' , U z , .  . ' , N j ) .  

Then, for assigning the ODD of k, we need to consider only the interval k [Er=Ul+ l Pj  r "~- X ~ , //*+1 -- Pj, u,+ l ]" 
In addition, while reassigning the operation due date of k, ODDs need to be generated for only those 
operations which are processed between u l and ut+ 1. 

As we go down the list of machines and move from one operation to another of a given job at a 
machine, the search interval becomes smaller. However, near the top of the tree, it can be quite wide 
resulting in a large number of descendant nodes from a given parent node. We now describe an efficient 
procedure for improving the search routine. 
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Total 
Tardiness 

x 

Figure 2. Typical behavior of total tardiness against x 

3.4. Search routine 

While searching for the reassigned ODD value x for a given operation at any machine, we need to 
theoretically consider the appropriate interval [L, U] in unit steps. Note, however, that while x can take 
many values, an operation can only occupy a given number of positions 0 in any sequence. For a 
permutation schedule in a single machine problem, 0 = N. In a job shop, 0 is large because of the forced 
idle times at different machines. Nonetheless, it is usually much smaller than the number of different 
values that x can take. Consequently, operation completion times and, therefore, total tardiness as well, 
remain unchanged for many sub-intervals within [L, U]. Figure 2 illustrates the typical behavior of total 
tardiness with respect to x for a given operation. 

The procedure for searching for the best value of x for an operation in a given job employs a 
modification of the binary search method. As shown in Figure 3, suppose that we need to search in the 
interval [L0, U0]. First, we compute tard(L 0) and tard(U0), where tard(d)  is the total tardiness of all jobs 
when x = d. Starting with the interval [L0, U 0] we successively divide each interval into two equal halves 
and compute the total tardiness value at the midpoint of each half-interval. Within any generated 
interval, scanning for the next half-interval is initially done to the left. In other words, with reference to 

~(L 0 + U/_]), i = 1, 2, 3. Figure 3, we have U,. = 1 
Scanning to the left within a half-interval terminates when it is fathomed. An interval is said to be 

fathomed if it is the most recently generated interval and the total tardiness values at its end-points and 
mid-point are the same. In Figure 3, for example, the interval [L0, U 3] is fathomed. Note that the 
fathoming procedure will ignore changes in total tardiness values within an interval if, in spite of such 
changes, the same tardiness value is realized at both end points and the mid-point of that interval. While 
such occurrences are possible, they are somewhat unlikely in most real problems. (We did not observe it 
in any one of the 50 randomly generated problems.) Nevertheless, it should be noted that while trying to 
achieve computational efficiency, this search procedure may not always return the best value of x. 

Tota l  
Tardiness 

L / 

L o U 3 U 2 Ul 

Figure 3. Search procedure 

UO X 
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At the termination of left-scanning, the procedure next evaluates the most recently generated and 
unfathomed interval to its right. If the total tardiness values at both its end-points and its mid-point are 
not the same, another half-interval is generated and left-scanning is resumed. The procedure terminates 
when all half-intervals are fathomed. The due date of the operation under consideration is reassigned to 
the x-value that results in the minimum total tardiness. 

Note that it is possible that the position of any operation of a given job which results in the minimum 
total tardiness may result in that job itself being late (if by doing so, tardiness of other jobs improved 
significantly). For this reason, it is desirable to increase the upper limit of the search interval for the 
initial operations of job j from dj to some arbitrarily large value T. The actual value used for T is of 
marginal importance because intervals which do not affect total tardiness are rapidly fathomed. In our 
experimental study, T equaled the makespan of the initial solution. 

The search routine reduces the computational effort for each iteration from O(M2K3Ejpj) to 
O(M2K4), where K = EjNj is the total number of operations. For many medium to large problems, it 
may be necessary to run this algorithm with a time trap. In such cases, we use an additional mechanism 
for controlling the breadth of the solution tree shown in Figure 1. The number of intervals searched 
during the ODD reassignment at machine m is limited to u(m) which is a function of the workload of m 
(more intervals are searched for machines with higher workloads), the time taken for generating a 
complete schedule for the system using the MOD rule, and the specified time trap. 

We describe our computational experience with this algorithm for both static and dynamic problems 
in Sections 5 and 6. In the next section, we review the exact solution procedure for the static tardiness 
problem given in Raman et al. (1989b). 

4. Exact solution procedure 

In order to establish computational benchmarks for the proposed heuristic, an optimum-seeking 
procedure was also developed and tested. This procedure is a modification of the exact solution 
approach developed by Talbot (1982) for minimizing makespan in a job shop scheduling problem. The 
procedure uses a depth-first branch and bound algorithm which builds a schedule forward in time. A 
node at level L in the solution tree has an associated array A n which contains the indexes of operations 
which are schedulable at the next level. The precedence relationships restrict the cardinality of A n to the 
number of jobs in the system, which reduces computer storage as well as computational time require- 
ments. 

Starting with the unique node at level 0, the procedure selects the next operation based on a priority 
index associated with each operation or move. Three priority schemes are used in this paper. These are 
based on the Modified Due Date (MDD) rule, the Modified Operation Due Date (MOD) rule, and the 
Random (RAN) rule (Raman et al., 1989b). In each case, the descendants (operations) of any node are 
ranked in the nondecreasing order of their priority indexes. These priority schemes are also used to 
generate the initial solution. Backtracking, rather than skiptracking, is employed to keep storage 
requirements at a minimum. This optimum-seeking procedure is used in two ways in the computational 
study: 
1) To act as a CPU 'level of effort' benchmark, and 
2) to provide optimal tardiness solutions to a set of static problems. 

5. Computat ional  study - static problem 

5.1. Experiment design 

Two sets of experiments were conducted for the static problem to assess the relative performance of 
the Global Scheduling Procedure given in Section 3. 
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The first set compares GSP with five dispatching rules from the literature - Shortest Processing Time 
(SPT), Earliest Due Date (EDD), Critical Ratio (CRIT), Modified Job Due Date (MDD), Modified 
Operation Due Date (MOD), and Hybrid (HYB) (Raman et al., 1989b) rules. Since GSP is computation- 
ally more demanding than the direct implementation of these rules, the following steps were taken to 
provide for an unbiased comparison. First, these dispatching rules were implemented in the probabilistic 
dispatching mode (see, for example, Baker, 1974, pp. 202-205). In probabilistic dispatching, each 
operation, among those available for scheduling at a given point in time, was assigned a selection 
probability proportional to the priority assigned by the dispatching rule. Random sampling from this 
probability distribution was then used to determine the operation to be selected. In every problem 
instance, each dispatching rule was allowed to run for 15 seconds, and the best tardiness value obtained 
during this period across all rules was recorded. Similarly, GSP was allowed to run for 15 seconds. 

In addition, the implicit enumeration procedure discussed in Section 4 was run with a time trap of 15 
seconds. This procedure was implemented in three versions, requiring the use of MDD, MOD and RAN 
priority schemes respectively. The best solution from these three approaches was selected for reporting 
purposes. 

Two parameters, Z and R, were used to control the tightness and the variation of job due dates 
respectively. The tardiness factor Z measures approximately the proportion of jobs likely to be tardy, 
while R determines the range of job due dates. For given Z and R, job due dates were sampled from a 
uniform distribution in the interval [d(1 - 1 ~R), d(1 + 1R)] where the average job due date d is given by 
d C =  max(1 --Z), and Cma x is the makespan of the sequence obtained by scheduling all operations on a 
first-come-first-serve basis. Z and R have been used extensively for generating test data in single 
machine tardiness problems (see, for example, Srinivasan, 1971). Because of the forced machine idle 
times, Z is only an approximate measure of the proportion of tardy jobs in a job shop. Nonetheless, it 
helps anchor due date tightness at various levels. 

Several problems scenarios were generated by varying one or more of the following parameters: 
1. Number of machines (NOM): 5, 10. 
2. Number of jobs (NJ): 15, 35. 
3. Tardiness factor (Z): 0.4, 0.6. 
4. Range of due dates (R): 0.5, 1.5. 

For each scenario, ten problems were randomly generated by sampling operation processing times 
from a uniform distribution in the interval [5,100], and the average value across these instances was 
recorded. All jobs had randomly assigned routing through the system, although successive operations of 
any job were processed on different machines. In total, therefore, 160 problems were solved for each 
scheduling approach. For reporting purposes, we used normalized value of total tardiness (NMT), where 
NMT = ZjTJ(Eipj) .  

The second set of experiments for the static problem considered a 3-machine, 5-job system. The size 
of the problems considered in this set was deliberately restricted in order to keep the computational 
costs within reasonable limits. As in the case of the first set of experiments, four combinations of the 
tardiness factor and job due date range, for Z = 0.4 and 0.6, and R = 0.5 and 1.5, were considered. For 
each combination, 25 problems were generated randomly. These 100 problems were solved optimally 
using the implicit enumeration approach as well as heuristically by the GSP method. The average of the 
tardiness values obtained across all 25 problems for each scenario under each of these two approaches 
was recorded. 

The experiments reported in this section as well as in Section 6 were conducted on the IBM 3090-600 
mainframe computer at the University of Michigan. 

5.2. Analysis of static problem results 

Results of the first experiment are shown in Table 1. For each of the 16 problem scenarios, the NMT 
values obtained from GSP are compared to those of the dispatching rule found to be the best under 
direct and probabilistic dispatching modes individually, and those of the best priority scheme used in the 
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Table 1 
Static problem: normalized mean tradiness results a 

Scenario Dispatching Enume- GSP 

(Z; R) Direct Prob. ration Value % Imp. Time b 

5 machines, 15jobs: 
(0.4; 0.5) 0.334 0.285 0.325 0.251 11.9 0.614 
(0.4; 1.5) 0.416 0.363 0.376 0.322 11.3 0.542 
(0.6; 0.5) 0.835 0.730 0.828 0.693 5.1 0.870 
(0.6; 1.5) 0.836 0.767 0.832 0.724 5.6 0.789 

5 machines; 35 jobs: 
(0.4; 0.5) 0.422 0.422 0.406 0.325 20.0 5.921 
(0.4; 1.5) 0.255 0.255 0.185 0.155 16.2 5.504 
(0.6; 0.5) 1.226 1.226 1.218 1.068 12.3 10.082 
(0.6; 1.5) 1.157 1.157 1.149 0.949 17.3 11.671 

10 machines, 15jobs: 
(0.4; 0.5) 0.273 0.210 0.273 0.203 3.3 3.850 
(0.4; 1.5) 0.368 0.317 0.362 0.309 2.5 3.289 
(0.6; 0.5) 0.631 0.532 0.631 0.542 - 1.9 5.373 
(0.6; 1.5) 0.675 0.576 0.664 0.571 0.9 5.199 

10 machines, 35 jobs: 
(0.4; 0.5) 0.333 0.333 0.250 0.230 8.0 15.095 
(0.4; 1.5) 0.372 0.372 0.316 0.266 15.8 15.097 
(0.6; 0.5) 0.911 0.892 0.916 0.796 10.8 15.098 
(0.6; 1.5) 0.867 0.864 0.864 0.748 13.4 15.099 

a Direct Dispatching rules were run without a time trap. They consistently took less than 0.1 seconds per problem. Probabilistic 
Dispatching rules and the Implicit Enumeration approach were allowed to run for 15 seconds per problem. The best solution 
found within this time trap was used for reporting. 

b Actual CPU time given an 15 second time trap. 

impl ic i t  e n u m e r a t i o n  app roach .  F o r  GSP,  we also r e p o r t  the  i m p r o v e m e n t  over  the  next  bes t  p r o c e d u r e  
tes ted ,  as well  as the  ave rage  c o m p u t a t i o n a l  ef for t  in C P U  seconds.  

G S P  is seen  to p rov ide  the  bes t  resul ts  y ie ld ing  an average  i m p r o v e m e n t  o f  12.7% over  the  next  bes t  
rule.  I t  p e r f o r m s  cons is ten t ly  b e t t e r  t han  the  d i spa tch ing  rule  i m p l e m e n t e d  di rec t ly  as well  as the  
e n u m e r a t i o n  b a s e d  app roach .  I t  y ie lds  b e t t e r  va lues  than  p robab i l i s t i c  d i spa tch ing  in 15 out  16 scenarios .  
Reca l l  tha t  the  resul ts  r e p o r t e d  for  p robab i l i s t i c  d i spa tch ing  a re  those  of  the  rule  tha t  p e r f o r m e d  the  bes t  
a m o n g  the  5 rules  t e s t ed  for  a given scenar io ,  and  for  each  rule  the  p r o c e d u r e  was a l lowed to run  for  a 
d u r a t i o n  equa l  to  the  t ime  t r ap  used  for  GSP.  Similarly,  the  resul ts  r e p o r t e d  for  the  e n u m e r a t i o n  
a p p r o a c h  is the  bes t  a m o n g  the  t h r e e  p r io r i ty  schemes  examined ,  each  be ing  a l lowed to run  for  15 
seconds .  No te  tha t  in all  bu t  the  case  o f  10 mach ines  and  35 jobs,  G S P  t e r m i n a t e d  well  a h e a d  of  the  t ime 
t rap.  

In  genera l ,  the  re la t ive  super io r i ty  o f  G S P  is h igher  for  Z = 0.4 and  R = 1.5. F o r  a given n u m b e r  of  
mach ines ,  it  a lso improves  wi th  an  inc rease  in NJ. T h e  d e p e n d e n c e  on N O M  is, however ,  less obvious.  

Table 2 
Static problem: normalized mean tardiness. Comparison of GSP with the operational solution 

Scenario Optimal GSP % Deviation 
(Z; R) value solution value from optimality 

(0.4; 0.5) 0.252 0.259 (19) a 2.8 
(0.4; 1.5) 0.387 0.417 (15) 7.8 
(0.6; 0.5) 0.538 0.554 (17) 3.0 
(0.6; 1.5) 0.637 0.653 (16) 2.5 

a Number of problems out of 25 for which GSP found the optimal solution. 
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When NJ = 35, an increase in NOM does not appear to appreciably affect the relative performance of 
GSP. On the other hand, for NJ = 15, its effectiveness is reduced with an increase in NOM even though 
it remains superior in 3 of 4 scenarios. 

The results of the second experiment are given in Table 2. The number of times GSP found the 
optimal solution is shown in parentheses next to the GSP solution value. This table indicates that GSP 
frequently finds the optimal solution, and in 3 out of the 4 cases, its average solution value is quite close 
to the optimal value. 

6. Computational  study - dynamic problem 

Experimental investigation of the dynamic scheduling problem addresses the effectiveness of imple- 
menting the solution of the static problem obtained by GSP on a rolling basis. In a dynamic environment, 
a static problem needs to be generated whenever a new job arrives (or in a real system, when a machine 
breaks down or to reflect actual, versus planned, processing times, etc.). At that point in time, the 
network depicted in Figure 1 is generated afresh taking into account the operations already in process. 
Note that at that point in time, one or more machines can be busy. Since preemption is not permitted, 
such resources are blocked out for the period of commitment. The solution determined by GSP is 
implemented until the next job arrives when the process of generating and solving the static problem is 
repeated, thus closely mimicking how GSP would be used in a real system. 

6.1. Experiment design 

The experimental model considers a job shop with jobs arriving randomly following a Poisson process. 
Each job is assigned a due date that provides it a flow allowance proportional to its processing time, 
resulting in a due date dj = aj + Fp~ where aj is the arrival time of job j, pi is its total processing time 
and F is the flow allowance factor that controls due date tightness. Four levels of due date tightness are 
achieved by using F values of 2, 3, 4, and 5. 

Each job has a random routing through the system which comprises 5 machines. The operation 
processing times at each machine are sampled from a uniform distribution. This distribution was varied 
to yield two levels of relative machine workloads. The actual machine utilizations obtained ranged from 
78% to 82% for the case of balanced workloads, and from 66% to 93% for unbalanced workloads. In 
both cases, the average shop utilization was approximately 80%. 

As in the case of the static problem, GSP is compared with SPT, EDD, CRIT, MOD, MDD and HYB 
rules. GSP was implemented with a time trap of 1.0 CPU second per static problem in order to keep 
computational costs within reasonable limits. 

6.2. Analysis of  dynamic problem results 

The computational results are shown in Table 3. Among the dispatching rules, MOD performed the 
best across all scenarios. It is, therefore, used as the benchmark for evaluating the effectiveness of GSP. 

Table 3 
Mean tardiness for dynamic problem 

Flow Balanced workloads Unbalanced workload 
allowance MOD GSP MOD GSP O/ O/ 

2 268 252 0.15 396 357 0.01 
3 151 139 0.04 252 231 0.07 
4 84 68 0.09 154 143 0.06 
5 39 28 0.11 111 81 0.09 
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Also given in the table are the values yielded by GSP and the corresponding level of significance a for 
one-tailed tests concerning paired differences between MOD and GSP. GSP is seen to retain its 
effectiveness for all flow allowances, and for both levels of workload balance. As shown in the table, 
these results holds for significance levels of 0.15 or better. 

7. Summary 

This study examines the effectiveness of decomposing a dynamic mean tardiness problem into a series 
of static problems and implementing the solution to the static problem on a rolling basis. In so doing, it 
also evaluates the impact of the solution quality for the static problem within a dynamic framework. To 
illustrate this approach, a specific heuristic is developed which first determines the sequence for the 
bottleneck machine. The schedule for the entire system is then constructed around the sequence at the 
bottleneck machine and implemented dynamically. 

The experimental results show that by expending extra computational effort in developing a global 
schedule for the entire system, significant improvement over local dispatching rules can be achieved for 
both static and dynamic problems. This improvement is demonstrated even after controlling for relative 
computational effort. In addition, for the dynamic system, significant performance improvement is 
achieved even when GSP is allowed an execution time of only 1.0 second. In a real system, such an early 
termination of the scheduling procedure will rarely be required. Computations can continue until there is 
a system change (for example, a job arrival) that triggers the need for a new schedule. Generally, this 
time would be in minutes or hours (not 1.0 second), and hence, more static problems would be solved 
completely which could possibly lead to further improvement in the performance of GSP. In addition, 
because of its relatively small memory requirement, GSP can easily be implemented on today's 
microcomputers. 

The approach of treating a dynamic problem as a series of static problems is immediately applicable in 
practice where it could potentially result in significant due date performance improvement in job shops 
or flexible manufacturing systems. In a real system, there would be other stochastic events such as 
machine breakdowns, variations in processing times, etc., in addition to random job arrivals. Under the 
proposed approach, static problems are generated and solved at each occurrence of such events. 
Dispatching rules also solve static problems; however, unlike GSP, they use only partial information 
which is usually local to the machine at which the scheduling decision is to be made. 

Appendix. Notation 

j 
J = 
m = 

t = 

p j  = 

Cj = 

s j  = 
= 

r j  = 

e j  = 

P j k  = 
P jk  = 

d j k  = 

R j k  m = 

Job index, j = 1, . . . ,  N. 
Set of available jobs --- {j}. 
Machine index, m = 1, . . . ,  M. 
Time period, t --- 1, . . . ,  T, where T is the scheduling horizon. 
Due date of job j. 
Processing time of job j. 
Completion time of job j. 
Sets of pairs of adjacent operations in job j. 
Number of operations in job j. 
Tardiness of job j = max(0, cj - dy). 
Earliness of job j = max(0, dj - cj). 
Processing time of operation k in job j. 
Cumulative processing time for job j up to and including operation k = Ek=lpj/. 
Due date of operation k in job j. 

1 if operation k of job j requires machine m, 
0 otherwise. 



N. Raman, F.B. Talbot / The job shop tardiness problem: A decomposition approach 199 

Acknowledgement 

Significant contributions were made to this research by Ram Rachamadugu at the University of 
Michigan. The authors are also grateful to the anonymous referees for their helpful comments. The 
research of N. Raman was partially supported by the IBE Summer Research Grant at the University of 
Illinois at Urbana-Champaign. 

References 

[1] Adams, J., Balas, E., and Zawack, D. (1988), "The shifting bottleneck procedure in job shop scheduling", Management Science 
34, 391-401. 

[2] Baker, K.R. (1974), Introduction to Sequencing and Scheduling, Wiley, New York. 
[3] Baker, K.R. (1984), "Sequencing rules and due date assignments in a job shop", Management Science 30, 1093-1104. 
[4] Baker, K.R., and Bertrand, J.M.W. (1982), "A dynamic priority rule for sequencing against due dates", Journal of Operations 

Management 3, 37-42. 
[5] Baker, K.R., and Kanet, J.J. (1983), "Job shop scheduling with modified due dates", Journal of Operations Management 4, 

11-22. 
[6] Carroll, D.C. (1965), "Heuristic sequencing of single and multiple component jobs", Ph.D. Dissertation, MIT, Cambridge, 

MA. 
[7] Conway, R.W. (1965), "Priority dispatching and job lateness in a job shop", Journal oflndustrial Engineering 16, 123-130. 
[8] Kanet, J.J., and Hayya, J.C. (1982), "Priority dispatching with operation due dates in a job shop", Journal of Operations 

Management 2, 155-163. 
[9] Ow, P.S. (1985), "Focused scheduling in proportionale flow shops", Management Science 31, 852-869. 

[10] Raman, N., Rachamadugu, R.V., and Talbot, F.B. (1989a), "Real time scheduling of an automated manufacturing center", 
European Journal of Operational Research 40, 222-242. 

[11] Raman, N., Talbot, F.B., and Rachamadugu, R.V. (1989b), "Due date based scheduling in a general Flexible Manufacturing 
System", Journal of Operations Management 8, 115-132. 

[12] Raman, N., Talbot, F.B., and Rachamadugu, R.V. (1989c), "Scheduling a general Flexible Manufacturing System to minimize 
tardiness related costs", Working Paper No. 89-1548, Bureau of Economic and Business Research, University of Illinois at 
Urbana-Champaign, Champaign, IL. 

[13] Rinnooy Kan, A.H.G. (1976), Machine Scheduling Problems: Classification, Complexity and Computations, Nijhoff, The Hague, 
Netherlands. 

[14] Srinivasan, V. (1971), "A hybrid algorithm for the one machine sequencing problem to minimize total tardiness", Naval 
Research Logistics Quarterly 18, 317-327. 

[15] Talbot, F.B. (1982), "Resource constrained project scheduling with time-resource tradeoffs: The nonpreemptive case", 
Management Science 28, 1197-1210. 

[16] Vepsalainen, A.P.J., and Morton, T.E. (1987), "Priority rules for job shops with weighted tardiness costs", Management 
Science 33, 1035-1047. 


