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ABSTRACT 

We compare the stochastic and deterministic versions of an SI model with 
recruitment, background deaths, and deaths due to the disease. For the stochastic 
version, analysis of the mean number of susceptibles, m,, and infecteds, mF,, and of 
the means conditioned on nonextinction of the infection, m$ and mg, shows that (11 
if R, G 1, the disease dies out monotonically for the deterministic and stochastic 
models, and (2) if R, > 1, the disease dies out early with a probability close to 
(l/R,lU, where a is the number of infecteds introduced, or mY rises to a peak and 
then dies out slowly. For small populations N, the peak is an obvious maximum. If 
N > 100, the peak in my is hidden in a long, nearly stationary plateau and m$, is 
close to the deterministic endemic level for a large range of parameter values. The 
analytical results are illustrated with simulations. The results for the SI model are 
motivated by and compared with the corresponding results for the closed SIS model. 

I. INTRODUCTION 

In a previous paper in this series, Jacquez and O’Neill [6] examined 
the role of the basic reproduction number, also called basic reproduc- 
tion ratio [4], R,, in deterministic and stochastic SI models of homoge- 
neous populations that have recruitment, deaths due to the disease, and 
background deaths. If R, < 1, the epidemic dies out, in the determinis- 
tic model, the number of infecteds decreases monotonically to zero as 
time progresses, and in the stochastic model the mean number of 
infecteds decreases monotonically to zero and, in fact, the probability of 
there being an infected in the population goes to zero. If R, > 1, the 
results differ slightly between the two models. In the deterministic 
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model, the number of infecteds increases to a stationary level, the 
endemic level, which is globally asymptotically stable [21]. In the 
stochastic model, there is a nonzero probability that the epidemic will 
die out early in the process and a nonzero probability that the number 
of infecteds will increase to a long-lived quasi-stationary state the mean 
of which is close to the deterministic endemic level; these results are 
examined in more detail in this paper. A point not taken into account in 
[6] is that the long-term probability of extinction of the disease in the 
stochastic model is 1; however, for populations of size greater than 100 
that extinction takes a very long time to occur. 

The goal of this paper is to extend and correct the analytical and 
simulation results reported by Jacquez and O’Neill [6] so as to provide a 
detailed comparison of the behaviors of the deterministic and stochastic 
SI models with recruitment and with disease-related and non-disease- 
related deaths. We show how the results for each depend on the basic 
reproduction number, R,. In brief, our simulations for the stochastic 
model for R, > 1 show the following. 

(1) Early in the process, the probability of extinction of the epidemic, 
Pext, quickly rises to a value that is near (l/&)‘, where a is the initial 
number of infectives introduced into the population. The reason this 
occurs in a nonlinear model is related to the next point. 

(2) The probability mass distribution, $Y’, for the number of infectives 
splits fairly early into a single mass at y = 0, that is, extinction of the 
disease, well separated from a symmetric probability mass distribution 
for y > 0. 

(3) The quasi-stationary mean number of infectives conditioned on 
nonextinction is very close to the deterministic endemic value for a wide 
range of parameter values. The reason for that is shown analytically. 

(4) The probability of extinction remains at a relatively flat level for 
a long period corresponding to the period during which the quasi- 
stationary solution is a good representation of the dynamics. But even- 
tually Pext drifts up toward 1. Simulations show that drift for small initial 
population sizes, less than about 50. The larger the population, the 
longer it takes before that drift is perceptible; and for initial popula- 
tions greater than 100, that may be very long indeed. 

This paper is organized in the following manner. Section II gives 
background results on two basic stochastic epidemic models. Section III 
summarizes analytical results on the deterministic and stochastic ver- 
sions of the SI model under study and compares them. In Section IV, 
we present the results of simulations based on solving the systems of 
ODES for the state probabilities in the stochastic model. In the last 
section we integrate the analytical results, simulations, and background. 
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II. BACKGROUND FOR THE STOCHASTIC MODEL 

Most of the previous work on stochastic epidemic models has been 

on two models: the closed SIS model and the general stochastic epi- 
demic. 

A. SIS Model with Constant Population 

We begin by reviewing the simplest SIS model with constant popula- 
tion. Our review has gained considerably from the presentations on the 
SIS model given by N&e11 [161 and Martin-Liif [151 at the Luminy 
workshop in November 1991 and from conversations with both at the 
workshop. They also introduced us to the paper by Kryscio and Lefevre 
[ll] that presents the current state of the art for this model. 

1. DETERMINISTIC SIS MODEL 

A compartmental diagram showing the transitions in the SIS model is 
shown in Figure 1. A constant population of size N is partitioned into 
X susceptibles and Y infectives. The differential equations for disease 
transmission are 

x= -hX(Y/N)+ 6Y (1) 

and 

v= +hX(Y/N)- 6Y, (2) 

where A = c/3, c is the average number of possibly disease-transmitting 
contacts per person per unit time, p is the probability that any one such 
contact will transmit infection, and 6 is the rate of recovery. As usual, 
X means dX/dt. 

Since l/6 is the average duration of the disease before recovery, the 
threshold R, = h/6 is the number of new infections caused by an 
infective over the course of the infectious period if all contacts are with 

FIG. 1. Compartmental diagram for Equations (1) and (2). 
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susceptibles. The parameter R, is the basic reproduction number for this 
model. 

Equation (2) can be written as 

r= s[R,(X/N)-l]Y. (3) 

With the equation in this form, we can see that R,, = 1 is a threshold 
that separates the case of the monotonic extinction of the disease from 
the case where the disease stabilizes at a positive (endemic) level. For, 
since X/N G 1 in (31, if R,) G 1, I’ is always G 0 and t ++ Y(r) decreases 
monotonically to the disease-free equilibrium at Y = 0. 

On the other hand, if R,> 1 and X,, = X(t,) is close enough to N 
that R,(X,,/N)> 1, then Y(t,,)> 0, that is, the disease increases, at 
least in the beginning. Since the disease diminishes when R,,(X/N) < 1, 
a stable endemic equilibrium occurs at (X”,Yf), where 

XC/N = l/R,,. (4) 

The result that, for R, > 1, the fraction of the population that is 
uninfected equals l/R, at the endemic equilibrium is a key fact in all 
the models we will examine-both deterministic and stochastic. It 
follows that for the equilibrium infected fraction, 

Ye/N = 1 -l/R,. (5) 

If at the start of the process, there are Y = a infectives, the disease will 
increase if a/N < 1 -l/R,, and will decrease if a/N > l-l/R,. 

Let us look at these results in another way by converting system (11, 
(2) to a single equation. Since hi = X + Y = 0, N is constant over time, 
and we can replace X by N - Y in Equation (2) to obtain the following 
scalar logistic differential equation for Y: 

?=h(N-Y)&SY=Y 
1 

=*Y[(l-$+;I. 

Equation (6) has two equilibria: Yf = 0 and 

y&(A-S)N= 
2 h 

(6) 

(7) 
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Yl YN-1 

O+-1,2 --- N-la 
Y p2 PN 

FIG. 2. Transition diagram for model given by Equations (8). 

Once again we see that if R, G 1, so that Y; < 0, then Y < 0 when 
Y > 0, and Y; = 0 is a globally asymptotically stable steady state of (6) 
for Y 2 0. If R, > 1, then Y[ in (7) is positive and is a globally 
asymptotically stable steady state of (6) for Y > 0. 

2. STOCHASTIC MODEL 

We turn now to the stochastic version of this model; a diagram 
showing all possible states and transitions is shown in Figure 2. We 
continue to use N for the fixed size of the population. Now the number 
of infectives is a random variate, y, with realizations y, which are 
restricted to integer values between 0 and N. In Figure 2, pcLy is the 
transition rate for y decreasing from y to y - 1 and 7, is the transition 
rate for $TL increasing from y to y + 1. More precisely, 

(Sa) 

(Sb) 

Pr{~(t+At)=kl~(t)=y}=o(At) if k#y-l,y,y+l. 

(SC) 

If we write (6) as 

E;= AY(l-Y/N)- SY, 

then it is natural to set 

7, = AY(l- Y/W and lJy = 6Y (9) 

in the stochastic analog of (6) for discrete populations. Note that (9) 
implies that y0 = yN = 0 and p0 = 0. 

As will be seen when we develop the equations for the SI model, the 
fraction in Equation (9) should be y /(N - l), but all of the work in the 
literature on this system uses y/N, and we follow that convention here. 
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3. KOLMOGOROV FORWARD EQUATIONS 

Model (8) is a classical stochastic birth-and-death process with birth 
rates y, and death rates pY and independence of births and deaths. As 
usual in such models, we let p,,(t) = Pr@!/(t) = y1 for y = 0,. . . , N. Then, 

p,(t+At)= f Pr{~(t+At)=yl~(t)=k}~Pr{~(t)=k} 
k=O 

= [I+ At++t)].Py-,W+[ ~~+lAt+o(At)].P,+l(t) 

+[l-r,At-~.~~At+o(At)].q,(t)+o(At). 

We write these equations as 

Py(t + At) -P,(t) 
At 

4 At) 
=.Yy-lPy-I(t)+~Uy+lPy+I(t)-(Yy+~.y)Py(t)+~ 

and, letting At + 0, as 

&i,(t) =Y~--1Py-*(t) -(7$ + k+,(t) + lI.y+lPy+l(% (10) 

for y =O,l,..., N, where y_1=y0=3/N=0 and po=pN+,=O. Equa- 
tions (10) are the Kolmogorov forward equations for the stochastic SIS 
model (8) under consideration. Written out in matrix form, these 
become 

( PO 

Pl 

d 
P2 

a P3 

PN-I 

\ PN 

0 Pl 0 . . . 0 ’ PO 
I \ 

Pl 

P2 

P3 7 

0 -(Yl+Pl) 
-(y;lp*) 

. . . 0 

0 Yl ... 0 

0 0 y2 ... 0 

0 6 0 ..: iN 
0 0 0 . . . 

-pN, 

PN-1 

, \ PN ) 

(11) 

which we abbreviate as 

$=Ap. 
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The matrix A is a compartmental matrix (nonpositive diagonal entries, 
nonnegative off-diagonal entries, and nonpositive column sums), whose 
first column has only zeros and whose columns each sum to zero [7]. 
The latter property reflects the fact that, for any solution p(t) of (111, 
CL,, pi(t) = 1 for all t. One eigenvalue of A is r0 = 0 with eigenvector 
e, =(l,O,O ,..., 0)r. All the other eigenvalues r,, . . . , rN have negative 
real parts. In fact, Picard [19] shows that the ri’s are all distinct real 
numbers and therefore have a complete set of corresponding eigenvec- 
tors, which we write as vi ,..., v,. The general solution of system (11) is 

p(t) = e, + e’l’v, + ... + erN’vN. (12) 

Since each e’l’ + 0 as t -co, every solution p(t) of (11) tends to e, as 
t +m. In other words, the probability that the SIS epidemic will become 
extinct goes to 1 as t + 00. From another point of view, y = 0 is the only 
absorbing state of the Markov process in Figure 2, and therefore the 
system will eventually be absorbed into it (with probability 1). 

4. QUASI-STATIONARY SOLUTIONS 

Notice the different behaviors of the deterministic (6) and stochastic 
(11) models. In the deterministic model, if R, > 1, the disease stabilizes 
at its carrying capacity (or endemic equilibrium) Y; in (7). In the 
stochastic model (111, for any positive choice of parameters in (111, the 
disease eventually is extinguished. 

However, computer simulations of the stochastic model (11) for a 
population of size N = 100, for example, yield behavior that is much 
closer to what we would expect from the deterministic model. We 
continue to write p(t) for the probability distribution (12) that is the 
solution of system (11). Let m,(t) denote the mean of y in the 
distribution p(t): 

my(t) = I? PyWY. (13) 
y=o 

As we will demonstrate in Section II.A.8, if R, = h/6 G N/(N - 11, 
then m,(t) decreases monotonically to 0 as t +m. This situation is 
pictured in Figure 3. On the other hand, if R, > N/(N - 11, the 
computer solution of (11) seems to converge to a bimodal distribution 
with one local maximum at Yf = 0 and another local maximum near Y;, 
the stable stationary solution of the deterministic model (61, as illus- 
trated in Figure 4. As one expects from the exact form (12) of the 
solution p(t), this bimodal distribution is a temporary phenomenon; 
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0.8 

0.6 

W!Y= Y) 

I.4 

I.2 

FIG. 3. Computer simulations of the solution distribution p(t) for R, = 0.5, 
N = 100, a = 1. 

ecentually the distribution p(t) converges to e,, and the disease dies out. 
But “eventually” can mean a very long time. 

Since (11) is a continuous Markov chain with an absorbing state, one 
can compute the expected waiting time to absorption from any initial 
transient state. For R,, > 1, Oppenheim et al. [18], Norden [17], and 
Kryscio and Lefevre [ll] derive the following lower and upper bounds 
for the expected time I,,. to absorption when the total population has 
size N and y(O) = a, that is, p,(O) = 1. In these estimates, p = l/R,, = 
6/h. 

Lp p) (e-‘b”)“( g2 
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75 

.4 

.3 

Pr( r= Y ) 

.2 

FIG. 4. Computer simulations of the solution distribution p(t) for R,) = 2.0, 
N=lOO, a=l. 

where BN,i = (N - j)!Nj/N!. Note that I,,. goes to infinity exponen- 
tially in N and that the lower bound in (14) is independent of a. See 
Weiss and Dishon [23] for a similar estimate for a = N. Kryscio and 
Lefevre [ll], who derive the upper bound in (141, argue that the upper 
bound is a better estimate of I,,. than the lower bound, especially for 
N 2 200 and R,) > 2. For N = 200, 6 = 0.1, and R, = 2, I is of the order 
of 1o17 [ll]. 

In terms of the exact solution (12) to the Kolmogorov equations (ll), 
order the eigenvalues rI of matrix A so that 

r,=O>r,>r,>.... 

If r, P rz, so that e-I’ll’ + 0 much more slowly than eP’rj’f for i > 1, then 

p(t) = e, + erl’v, = e,, +v, (15) 

will act like a “short-run” stationary solution for r,t small. This solution 
is called the quasi-stationary solution of system (12). If r1 is very close to 
0, then t can be fairly large and still have r,t rather small. 
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5. CONDITIONING ON NONABSORPTION 

When the expected time I,,, to absorption is large, it makes sense to 
study the quasi-stationary solution. In particular, we would like to find 
more effective ways to analyze it carefully without dealing with the 
approximation in (15). 

One way to do this is to study the dynamics of the stochastic system 
(11) conditional on nunabsolption. We follow the vector (p,(t), . . . , p,(t)), 
normalized so that its components sum to 1. To carry this out, define 

Pi(t> for i = 1,. . . , N. (16) 

Then, writing aii for the entries of the matrix A in (111, we find 

Pi I 

4i= 1-pO 
Pi d0 -. 

l-P0 l-P0 

= ,cO”lj& + 4i E ‘Oj& 
j=O 

N 

= C aij4j + 4i Plql- 

j=l 

In other words, these q,(t)% satisfy the system of quadratic differential 
equations 

41 
42 
q3 

qN 

-(Yl+Pl) . . . 

Yl -G P2) ... 
0 Y2 *** 

0 0 ..: 

0 0 . . . 
PN 

- PN 

41 I I q2 

91 

q2 

q3 

qN 

(17) 

The steady state for this system is the solution q* of the quadratic 
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. . . 
- I-% 

It follows that (- 1, q:, qz,. . . ,qglT is the eigenvector vr in (15) for the 
original matrix A corresponding to the eigenvalue rr = - plqF. Put 
another way, if 

solves system (171, then 

(19) 

solves the original system (11). Therefore, the stationary solution q* 

that satisfies (18) truly does correspond to the quasi-stationary solution 
(0, cl*) of (11). 

In general, the stochastic system (11) will eventually hover around its 
quasi-stationary solution q*. By (191, it is easy to see that the expected 
waiting time to absorption starting from p(O) = q* is l/pu,qT, the 
absolute value of the reciprocal of the first nonzero eigenvalue of A. 



88 

6. PREVENTING ABSORPTION 

J. A. JACQUEZ AND C. P. SIMON 

Another approach to the study of the quasi-stationary solution of 
(11) is to alter the stochastic system in Figure 2 by deleting the 
absorbing state, that is, by setting p, = 0. That gives us the modified 
Kolmogorov equations 

d 
Tt 

/ 
Q, ’ 
Q* 

Q3 

Q4 = 

\ iN, 

/ - Yl -(Y:t . . . 0 0 

Yl P2) ... 0 0 

0 Y2 ‘.’ 0 0 

0 0 . . . 0 0 

0 0 . . . -(YN-1-t E-L&1) ;N 

0 0 . . . YN- 1 - E-LN 

This modified system is much easier to study than (11) or (17). For 
one thing, since system (20) is a regular Markov system, it has a unique 
steady-state distribution Q*. As Kryscio and Lefevre [ill point out, one 
can set the right-hand side of system (20) equal to zero and solve 
recursively for the Q,*‘s in terms of QT: 

for y1= 2,. . . , N, 

with QT chosen so that II,“=, (2: = 1: 

. (21) 

Kryscio and Lefevre also show that this solution Q* satisfies Q* - q* as 
N +m, where q* is the solution of system (18). Oppenheim et al. [lS] 
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y=N(l-p)=N(l-l/R,) (22) 

for N large. Since Q* N q*, the same is true for the original absorbing 
process (11). Since the value of y in (22) is precisely the value of the 
endemic equilibrium Y; in (7) for the deterministic equation (61, the 
stochastic process (11) does have a lot in common with the deterministic 
process (7). 

7. KURTZ’S APPROXIMATION THEOREM 

For large populations, one can get a handle on the quasi-stationary 
solutions of a stochastic population problem by using the theorems of 
Kurtz [12, 131, which tie together the deterministic and stochastic 
approaches. Roughly speaking, Kurtz uses the expectation of the transi- 
tions in the Markov process to approximate the stochastic dynamic by a 
deterministic one and then studies how well the trajectories of the 
deterministic dynamics approximate those of the stochastic process. 
More specifically, given a state x of a Markov stochastic process, he 
constructs a deterministic dynamic by moving X by the expected value 
of the set of all allowable transitions from x in the Markov process. If 
the underlying model is a population model so that one actually keeps 
track of fractions of the total population, and if the total population N 
is very large relative to the size of the expected transition E(AX) from 
any x, Kurtz’s theorem, a variation of the law of large numbers, states 
that this deterministic dynamic is a good approximation of the stochas- 
tic process. For N large enough, he then uses a form of the central limit 
theorem to compute the mean and standard deviation of this approxi- 
mation. 

THEOREM (Kurt.z [12, Theorem 3.11) 

Let X,(t) be a one-parameter family of continuous-time Markov pro- 
cesses defined on the m-dimensional integer lattice Z”. Suppose that there 
is a continuous finction f: R” x Z” + R’ that satisfies 

Pr{X,(t + At) = x+k(X,(t) =x} = Nf( ix,k)At + o(At) (23) 

for all positive integers N and all positions x and increments k in Z”. 
Define F: R” + R” by 

F(x)=~kf(x,k)=E(AXlX=x), 
k 

(24) 
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the expected change in X from x. Suppose that there eJcists an open set E in 
R” and a constant A4 such that 

(1) 
(2) 
(3) 

Let 

IF(x)- F(y)1 Q MIX-yl for all x,y in E; 

sup XE ECklklf(x,k) <co; 
lim d+msuPxEEqq>d Iklf(x,k) = 0. 

Z(t;x,) be the solution of the (deterministic) initial value problem 

$ =F(Z), Z(0) =x0. (25) 

Suppose that Z(t;x,) E E for all t G T, and that lim,,,[X,(O)/N] = x0 
for the original family of Markov processes. Then, for every E > 0, 

Ji~~l+{ supl$XN(t)-Z(t;x,,)i>e)=O. 
t<T 

For the stochastic process (81, one checks easily that the rates r, and 
pY in (9) satisfy the conditions of Kurtz’s theorem. The expected 
deviation from x, Equation (24), is 

(26) 

and the approximating differential equation (25) is the original logistic 
differential equation (6). Since all solutions of (6) tend to the determin- 
istic “endemic equilibrium” Y; in (71, for N large enough the “normal- 
ized” stochastic process converges weakly to a distribution sharply 
peaked at Y; by Kurtz’s theorem. Martin-Liif [15] has used the Gauss- 
ian properties of the stochastic variate Y(t) to estimate waiting time to 
absorption and has recovered estimates like those in (14). 

8. ANALYSIS OF THE DYNAMICS OF m,(t) AND m;(t) 

Kurtz’s theorem provides a single deterministic differential equation 
that describes the dynamics of the stochastic system in Figure 2. 
However, it is useful only for N large. To find a scalar deterministic 
dynamic for (8) that looks like (6) and holds for all N, we keep track of 
the mean m,(t) of y relative to the solution p(t) of system (11): 

(27) 
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L(l-X)&-F ;yp,. (28) 
y=o y=o 

An alternative approach to (281, and one that ties it more closely to the 
Kurtz approach, is to note that the expected value of the change in y 
conditional on the value y is 

E[y(t+At)-y(f)ly(t)=y]=Ay(l-$)At-SyAL (29) 

Divide through (29) by At, and take the limit as At -+ 0. Then take an 
expectation over the distribution of y to obtain (28). Note that the 
right-hand side of (28) is the expected value of the additions to the 
number of infectives minus the expected value of the number of the 
deletions from the number of infectives. 

At any critical point of t +-+ m,(t)-in particular, at any stationary 
point of (28)---the two terms on the right-hand side of (28) must equal 
each other. Write this condition as 

Aq=OQ-Y/N)YPy =1 or q=o(l-Y/wYPy 1 

f3 cy”= 0 YPy c;=oypy = R,’ 

Define c(t) by 

s(t) = 
q=Ou-Y/wYPy = %<l- Y/WYPy 

q= 0 YPy q1 YP, . 
(30) 

Since 1 - y/N = x/N, t(t) can be considered an infective weighted 
average value of the uninfected fraction. Since 0 < Cl- y/N) 6 1, then 
0 =G t(t) G 1. Equation (28) can be rewritten as 

N dm, _s h C:=O(~-Y/N)YP~ 
dt a’ q= 0 YPy 

*ygoYP, - y%YP, ’ 1 (31) 
which we write as 

(32) 
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(33) 

Notice that (32) has the same form as Equation (3) for the deterministic 
model. The difference is that e(t) replaces the deterministic X/N, but 
t(t) is a weighted average of the terms x/N in the stochastic model. 

Thresholds. We look for thresholds by studying both initial growth 
rates and the stability of my = 0 for ensembles of realizations. Since 
the numbers of infecteds and susceptibles can change only by integer 
steps, the threshold for the discrete stochastic model differs from the 
threshold for the deterministic model where the numbers of infecteds 
and susceptibles are continuous variables. 

(a) Initialgrowth rate. If the initial condition is that a infectives are 
present, then for t = 0, p,(O) = 1, and p,,(O) = 0 for y # a. Equation (28) 
then gives the relation 

dm?(O) 
dt (34) 

Thus, the initial growth is positive if R,, > N/(N - a) and negative if 
R, < N/(N - a). Since the smallest value that a can have is a = 1 for 
the introduction of infection, 

&=N/(N-1) (35) 

is the threshold for initial spread of the disease. Obviously, as N -+ m, 
this threshold (35) for the discrete stochastic model approaches the 
threshold R, = 1 for the deterministic model. 

(b) Mean for an ensemble of realizations. The largest coefficient in the 
summation on the right-hand side of Equation (33) is 1 - l/N - l/R,. 
Hence, if that term is negative or zero, that is, when 

R, < N/(N-l), 

then dm, /dt < 0, and the ensemble average goes monotonically to 
zero. Stated another way, when R, < N/(N - 11, the function 

N 

M(P,,P,,...,P,) = C jp, 
j=O 
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is a Lyapunov function for the global stability of p* = (LO,. . .,O) for 
system (11). See [21] for more details of this approach for deterministic 
epidemiological systems. 

We now examine the places where dm,/dt is zero, in terms of the 
threshold (35). 

(1) R, < N/(N - 1). In th is case, as we have just seen, the right-hand 

sides of Equations (32) and (33) are always negative, and my,(t) falls 
monotonically to the globally stable equilibrium at m> = 0. 

(2) R, > N/(N - 1). In th’ is case, dm, /dt can equal zero in two 

ways: 

(a) 

(b) 

The equilibrium rng = 0. The disease eventually dies out; but as 
already noted, if N is large it may take a very long time for this to 
occur. 
The right-hand side of (32) is also zero when R, 5 - 1 = 0; let the 
value of .$ at that point be 5”. (i) If N is very small this is an 
obvious relative maximum of t M m,(t), where the expected 
number of additions to y just balances the expected number of 
deletions from $/. Written as 5” = l/R,, it says that at the peak 
of t c-) m,(t), the average uninfected fraction equals l/R,. This 
is the stochastic analog of (4). (ii) For larger N, this condition 
describes a not-so-obvious relative maximum in the long flat 
plateau of the graph of my. 

This discussion gives an interesting distinction between the model 
with a continuous population variable in Figure 1 and that with a 
discrete population variable in Figure 2. For the deterministic case, if 
R, > 1 and Y(O) is close to 0, t ++ Y(t) must increase initially before Y 
converges to an endemic equilibrium. For the stochastic case, it is 
possible to have R, > 1 and yet have the mean value my decrease 
monotonically to 0. This observation may play a role in studies of the 
behavior of the closed SIS model near R, = 1. 

Mean Conditioned on Nonextinction. The mean conditioned on 
nonextinction of the infection can be written 

mP CN 
““==/; = 5 yq,, 

y=l 

where the qy’s are defined in (16). One can use (17) to compute that 

dmiL N 
dt yF1 AY(l- j$ly - 6 fi Yq, + 6q1 Ii yq, 

y=l y=l 
=[A~(t)-6+Gql(t)]m~=~[&t(~)-1+q~(~)l~~~ (36) 
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At the equilibrium of rng, the mean of the quasi-stationary distribution 
of y’, we have 

.05* - 1 = sl”, 

where we write (*’ for the value of 5 at the quasi-stationary equilib- 
rium. Since, as we have seen, qf goes to zero exponentially in N, we 
conclude that the average uninfected fraction at equilibrium [*’ is 
approximately l/R,, at the quasi-stationary solution. Thus, R, 5 m - 1 = 
0 at the maximum in my and R, 5 *< - 1= qf at the quasi-stationary 
solution. However, qf’ -+ 0 as N + ~0, and even for relatively small 
N, N > 50, qf is already very small. Thus (*’ + 5”’ = l/R, as N 
increases. 

In Figures 5-7 we show some simulation results to illustrate some of 
the properties of the SIS model. 

Figure 5 shows the time course of the deterministic solution Y, the 
stochastic mean my, and the mean conditioned on nonextinction, m$, 
for R, = 0.5. Y and my fall monotonically to zero and are so close they 
are indistinguishable on the graph. Obviously one can calculate rn& and 
obtain an apparent quasi-stationary solution, but it is of no value 
because the probability of extinction of the disease is steadily rising 
toward 1. 

Figure 6 shows the time course of Y, my, and rng and of t(t) and 
R, t(t) - 1 for R, = 2 and N = 10. Notice that the mean conditioned on 
nonextinction differs some from the deterministic solution. Here my 
peaks just before 50 time units and then falls steadily toward zero. Since 
there is no long near-stationary period, the quasi-stationary solution rnt$ 
is irrelevant. Notice that R, t(t)- 1 is zero at just about the maximum 

0 

0 60 120 160 240 300 

Time 

FIG. 5. Plots of Y, my, and m$, for the closed SIS model with R, = 0.5, N = 100, 
and a=l. 
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FIG. 6. Plots of Y, my, m& t(t), and R, t(t) - 1 for the closed SIS model with 
R,=2, N=lO,anda=l. 

in my. Figure 7 gives the same plot for N = 100. Now, my does have a 
long near-stationary period, and rn> comes very close to Y. Although it 
is difficult to see on the graph, R, t(t) - 1 crosses zero at the peak in 

my. 

B. The General Stochastic Epidemic 

1. THE DETERMINISTIC KERM4CK-MCKENDRICK SYSTEM 

Another major focal point of the work on stochastic epidemic models 
has been the general stochastic model, a name given by Bailey [ll to the 
stochastic version of Kermack and McKendrick’s [lo] deterministic SIR 
model. Figure 8 presents the compartmental diagram for the Kermack- 
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FIG. 7. Plots of Y, my, 
R,=2,N=lOO,anda=l. 
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WI;, t(t), and R, .$(t)- 1 for the closed SIS model with 

FIG. 8. The compartmental diagram for (37). 
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McKendrick model. Its equations are 
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dX dY 
dt= -AX& x= AX; - kY, $=kY, (37) 

where X, Y, and Z represent the numbers of susceptibles, infectives, 
and removeds, respectively. As before, let N = X + Y + Z be the size of 
the population under study. Since N = 0 in (37), N is constant for 
system (37), as it was for system (l), (2). As Jacquez and O’Neill [61 
point out, A must vary as l/N in order to have a true SIR model in 
which the removeds play the role of the immunes and have an effect on 
the dynamics of the disease. 

2. GENERAL STOCHASTIC EPIDEMIC 

Once again, in forming the stochastic version of (37), we restrict the 
number of susceptibles and the number of infectives to be nonnegative 
integers. The conditional probabilities for the transitions are 

Pr{p(t+At)=x-l,~(t+At)=y+llF(t)=x,~(t)=y} 

= Axy.At + o( At) 

Pr(F( t + At) = x,y( t + At) = y - lIz( t) = x,y( t) = y} 

= ky.At + o( At). 

As we did for the SIS model, we let p,,(t) = Pr{%t) = x, y(t) = y]. This 
time, we are led to the system of differential equations 

d,,(t) = A(X-tl)(Y -l)p,+,,,~,(t)-Y(Ax+k)p,,(t) 

+ WY +l)~,,,+dt) (38) 

for nonnegative integers x,y such that x < n and x + y < n + a, where 
n is the initial number of susceptibles and a is the number of infectives 
introduced into the population; as before, %‘+ y = N. Jacquez and 
O’Neill [63 present a review of the general stochastic model (38); we do 
not repeat that here. We note, however, that the major results on 
thresholds, maximum size, final size, and duration of the epidemic 
depend on making A proportional to l/N; then asymptotic results are 
obtained for large N using, among other results, Kurtz’s theorem. 

Gani and Purdue [5] generalize the general stochastic epidemic by 
replacing the infection rate Axy by a generalized infection rate, fx,, 
with the properties fxO = fey = 0. They then obtain the analog of Whit- 
tle’s [24] threshold theorem for this model. Motivated by the transmis- 
sion models for HIV, Ball and O’Neill [2] analyze a form of the general 
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stochastic epidemic in which the transmission rate Axy is replaced by 
hxy/(x + y>; they call that model the modified stochastic epidemic. 
They obtain threshold results corresponding to the results of Whittle 
[24] and Williams [25] for the general stochastic epidemic and also show 
that the modified epidemic spreads faster and infects more susceptibles. 
In this volume, Lefevre and Picard 1141 examine a model without 
recruitment in which infecteds either die or recover with immunity. The 
SIR general epidemic and the SI model without recruitment are the 
extremes for the risk of death 0 and 1, respectively. In [9], we have 
compared the deterministic versions of SIS, SIR, SI, and SIRS models 
with recruitment, background deaths, and risk of death from the dis- 
ease. 

Bartlett [3] and later Stirzaker [22] introduced recruitment of suscep- 
tibles to the general stochastic model to examine oscillations in models 
of recurrent epidemics such as measles and chicken pox. Ridler-Rowe 
[201 looked at some of the properties of a general stochastic epidemic 
with recruitment into both susceptibles and infectives. So far, the only 
paper on properties of the SI model with the rate of infection given by 
hxy/(x + y), with recruitment of susceptibles, with background death, 
and with deaths due to the disease is that of Jacquez and O’Neill [6]. 

III. THE SI MODEL: ANALYTIC RESULTS 

We turn now to the model on which this paper will focus, a model 
motivated by our interests in modeling the spread of HIV in homosex- 
ual communities. As we mentioned earlier, this is an ST model with 

-Recruitment into the susceptible population, 
-Death from the disease, 
-Non-disease-related death, and 
-Force of infection proportional to XY/(X + Y). 

Aspects of HIV transmission missing from this model are progression 
through stages of the disease (with stage-dependent transmission proba- 
bilities) and multilevel population structure with an elaborate mixing 
matrix. See, for example, [S]. 

A. The Deterministic Model 

1. THE EQUATIONS OF THE MODEL 

Figure 9 gives the compartmental diagram of the states and transi- 
tions for the SI model of this study. As usual, X and Y are the numbers 
of susceptibles and infecteds, respectively, U is the recruitment rate, p 
is the rate constant for background deaths of susceptibles and infecteds, 
and k is the rate constant for deaths due to the disease. 
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c 
FIG. 9. The compartmental diagram for the SI system under study. 

The force of infection is obtained as follows. Let c be the number of 
possibly disease-transmitting contacts made per unit time per individual, 
and p the probability of disease transmission for one such contact 
between an infected and a susceptible. Therefore, h = c/3 is the contact 
rate per individual, effective in transmission. The X susceptibles make 
AX effective contacts per unit time. Under the assumption of random 
mixing, a fraction Y/(X + Y> of these contacts are with infectives. 
Therefore, susceptibles are infected at the rate 

g(X,Y) = AxY/(x+Y). (39) 

The differential equations for X and Y are 

dx XY -- 
x=-Ax+y px+u, 

dY 
z=+*x+y 

z-(k+p)Y. (41) 

In this model, X and Y are nonnegative continuous variables. As we 
noted for the simple SIS model in Section II, the basic reproduction 
number R, is defined by 

(42) 

the number of disease transmissions per infective during the course of 
his or her disease in a population of susceptibles. Equation (41) can now 
be written as 

(43) 
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2. THE EQUILIBRIA OF THE MODEL AND THEIR STABILITY 

As one can easily compute, system (40), (41) has two possible equilib- 
ria: 

(44) 

u xcq=(k+p)(:,)-l)+p=- A-k’ (454 

(43 - l)U U(h-k-p) 
yeq= (k+p)(R”-l)+p= (k+p)(A-k)’ (45b) 

If R, G 1, then (X’,Y”) in (44) is the only equilibrium of (40), (41), 
and every solution tends to it. For, in this case, as one can see readily by 
(43), F(X, Y) = Y is a Lyapunov function for (40), (41), decreasing on 
all orbits. (See 191 and [21].) As initial conditions in our simulations of 
(40), (41), we use X(0) = II, where IZ = U/p is the equilibrium state 
number of susceptibles for the system in the absence of infection and 
Y(0) = a, the number of infectives introduced into the population. In 
the simulation studies we worked with a = 1 and a = 4. As before, 
N=X+Y. 

If R, > 1, system (40), (41) has both equilibria (44) and (45). The 
same function F(X, Y) = Y is a Lyapunov function for the instability of 
(X’,Y”). By setting the ratio of the two terms on the right-hand side of 
(41) equal to 1, one computes easily that, as in all the models we have 
mentioned, at the endemic equilibrium the uninfected fraction is the 
reciprocal of R,,: 

x”q 1 
X’4 +yc4 =R,. 

Figures 10 and 11 present the phase diagrams for the two cases 
R, G 1 and R,, > 1. As Figure 11 indicates, (Xes , Yeq) is a global& stable 
equilibrium when R, > 1. 

By adding Equations (40) and (41), one computes that every equilib- 
rium (X*,Y*) of this system falls on the line 

pX*+(k+p)Y*=U. (47) 

By (43) or (46), the endemic equilibrium (45) is at the intersection of 

this subspace and the ray 

x 1 -= 
R,X+Y . 
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X 

A=0 

FIG. 10. Phase portrait for (401, (41) when R,, < 1. 

X 

A=0 

FIG. 11. Phase portrait for (40), (41) when R,, > 1 
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B. The Stochastic Model 
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We turn now to the stochastic analog of the SI model diagramed in 
Figure 9. Again, for the stochastic model, 2 and y are random variates 
with realizations x and y that are nonnegative integers. The transition 
rates from state (x, y) are the following. 

xy 
x+y-1 : the rate at which a susceptible is converted to an infected. 

This transition rate must be assigned the value 0 whenever 
y=Oorx=O; 

u: the rate for increase of x by 1 by recruitment; 
/LX: the rate of losing one susceptible to a competing cause of 

death; 

PY: the rate of losing one infective to a competing cause of 
death; 

ky: the rate of losing an infected due to the disease. 

Figure 12 summarizes the transitions that can occur from any state 
(x, y). 

As we have done earlier, we write p,,(t) for the probability that the 
system is in state (x, y) at time t. The corresponding Kolmogorov 
forward equations are 

(x+I)(Y-l)P dPxy 
dt 

_* 
[ 

xy 
x+y-1 x+l,ypl - x+y-lP,y 1 + GA,, - Pxyl 

+(k+CL)[(Y+l)P*,y+l-YPxy]+~[(x+l)P,+,,y-xP~y]. 

(48) 

(See Jacquez and O’Neill [6].) Since there cannot be a negative number 
of susceptibles or infectives, pxy must be zero if x < 0 or y < 0. 

Y+l 

Y 

Y-l 

x-l X x+1 

FIG. 12. The transitions that can occur at (x,y). 
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Remark. In the deterministic equations, X and Y are continuous 
variables, and the self-consistent formulation that leads to the differen- 
tial equations (40), (41) has X + Y in the denominator. To see this, set 
up the basic difference equations behind (401, (41); for example, 

divide through by At, and let At - 0 to obtain (40). In the stochastic 
model, 2 and y can take on only integer values, so in state (x, y> the 
probability that a susceptible’s contact is with an infective must be 
y/(x + y - 1). In both cases, the susceptible must be taken out of the 
population before determining the fraction of those he might encounter 
that are infective. Jacquez and O’Neill 161 used X + Y - 1 in the 
denominators of Equations (40) and (41) and so had to restrict the 
domain to X + Y > 1. Although the difference is small for N = X + Y 
large, we consider it more appropriate to compare the self-consistent 
formulations of the two models. 

1. MEANS 

As we did for the closed SIS model in Section II.A.8, we write a 
system of two deterministic differential equations that uses the mean 
number of susceptibles and infecteds to keep track of the stochastic 
dynamics (48): 

m 

%?(t) = Ebwl = c KPx,(t), 
x,y=o 

cc 

my(t) = mw)l = c x y = oY&(t)* 

The differential equations for mz and my are readily obtained from 

(49) 

(50) 

the differential equations (48) of the state probabilities 161, as we did in 
Equation (28) for the closed SIS model: 

(51) 

(52) 

(53) 
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2. THRESHOLDS AND EQUILIBRIA FOR THE MEANS 

For R, G 1, we see from (53) that dm,/dt is always negative, and so 
m,(t) falls monotonically to zero as t +a. Therefore, as Jacquez and 
O’Neill [6] point out, the stochastic equilibrium in this case is 

u 
m,,= -, 

P- 
my = 0, 

and it is globally asymptotically stable. At this equilibrium, cxY = 0 for 
all y > 0; therefore, for R, G 1, the deterministic and stochasttc systems 
have the same equilibrium. In particular, as we saw for the closed SIS 
model, the function 

M(P) = CYPX, 
x.y 

is a Lyapunov function for the global stability of this equilibrium when 
R,, < 1. 

To study the dynamics for R, > 1, we first define two means that will 
be useful: 

X 

t(t) = 
Lo~y=ox + y _ 1 YP,, L=,~v=lx+;-_lYPxy 

L=&=OYPxy = LO&= IYPXY 
(54) 

Y 

77(t) = 
L=J= I x + y - 1 XPX, 

cx=“cy=,xpxy . (55) 

Note that 5 is a weighted average of the uninfected fraction x/(x + y 
- 1) with weights yp,, and 77 is a weighted average of the infected 
fraction y/(x + y - 1)~ with weights xpxY, so that 0 G e(t) G 1 and 0 G 
q(t) sz 1. Following Jacquez and O’Neill [6], we rewrite (511, (53) as 

dm, 
- = - AE( t)my - pm,. + U, 

dt 

~=(~+~)[R,,5(t)-l]m,. 

We will use the notation 5”’ and nm for the values of 5 and rl at any 

zero of (57) where rng f 0. Then, by (57), 

5”’ = I/R,,, (58) 

which can be viewed as the stochastic analog of (46). 
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By setting the right-hand side of (56) equal to zero and substituting 
in (58), we note that any steady state Cm_&, rng> of (56), (57) must satisfy 

U= pm,$+(k + p)mT&, 

the stochastic analog of (47). 

(59) 

3. STOCHASTIC DYNAMICS CONDITIONAL ON NONEXTINCTION 

Just as we did in our study of the closed SIS model in Section II.A, 
we keep track of the stochastic dynamics conditioned on nonextinction 
of the disease. These dynamics are important for two reasons. First, as 
will be seen for the simulations for R, > 1, the marginal distributions 
split fairly soon after the start of the process and become bimodal; the 
distribution of the number of infecteds then has an isolated mass at 
y = 0 and, separated from that, an approximately symmetric peak with y 
positive. Second, for R, > 1, some epidemics die out early and so should 
not be counted when one compares theoretical results with data on 
actual epidemics. 

For the stochastic system (48) under study, the states ((x, O>}T_ 0 form 
a communicating class (any one such state can be reached by any other 
in a finite number of steps), and this class is an absorbing class for the 
system. 

We define the probability of extinction 
probability of absorption of the process, 
there is infection in the population: 

PC,, of the disease, that is, the 
and the probability Pinf that 

p,,,(t) = c P,“(f) and ‘inf(‘) = C C Pxj~(~). t60) 

x=0 n=Oy=l 

Of course, Pex,(t> + Pin&t> = 1. 
We work out the dynamics of (48) conditioned on not reaching the 

absorbing class. For x = 0,1,2,. . . and y = 1,2,. . . , let 

P P 
qxY = 1 - $,, pi0 = e ’ 

the probability of being in state (x, y), conditional on not having been 
absorbed. Let a2y be the coefficient of pij in the linear expression for 

Z%)?, Equation (48). Then, for x > 0 and y > 1, 

= C Ca!yqi,+qxy(~+k) Cqil. 
i=O j-1 i=O 

(61) 
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This is the system that compares with (17) for the constant-population 
SIS model (11). 

The means conditioned on nonextinction are 

and 

One can use (61)~(63) to compute the rate of change of mzT_ and rng 
with t: 

dm,& 
- = U- h[(t)m$ 

dt -pm&+(p+k) P,*mC CFL~ , [ (64) x=0 1 
T=( p+k)[&t(t)-I+ P:(t)]+, (65) 

where 

P;“(t)= 5 qX1=Pr{~=ll~#O}, 
x=0 

(66) 

the probability that y = 1, conditional on nonextinction. Notice that the 
term in square brackets in (64) can also be written as Cxso(m& - x)q,,. 

Compare (64) and (65) with the corresponding Equations (56) and 
(57) for dm,/dt and dm, /dt. The only differences are in the C qxl 
and Cxq,, terms. This is similar to the difference we found between 
Equations (32) and (36) for the closed SIS model, where the difference 
was the q, term. In particular, at the quasi-stationary solution, where 
dm& /dt = 0 and rng # 0, 

t*e_L+yi. 
0 0 

As occurred for the closed SIS model, we expect C, qzl to converge to 0 
as N + ~0, so that 5 *e -+ 5”’ = l/R, as N + 00. Such convergence has 
been evident in all our simulations with N > 100. 

Similarly, adding Equations (64) and (651, we note that at the 
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quasi-stationary solution, 
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where rnk = m,$ + rng , the equilibrium mean population size condi- 
tioned on nonextinction. Once again, if the C, qX, and C, xq,, go to 
zero as N +m, then for large N, <m&,m>) lies near the invariant 
subspace (47) that contains (Xeq,Yeq) and <m&m;>. 

Rewrite (63) as rnZ& = my /Pi,,. Then, differentiation yields 

Therefore, at any critical point of my,mg is increasing; at any critical 
point of rnF+&, my is decreasing. In particular, my will hit its maximal 
value before the system reaches its quasi-stationary solution. In addi- 
tion, dm, /dt + Pinf drnf& /dt as N -+ 00. 

4. QUASI-STATIONARY SOLUTIONS: KURTZ’S APPROACH 

In Section II.A.7, we used Kurtz’s approximation theorem to approxi- 
mate a normalized version of the stochastic dynamics (11) by a deter- 
ministic differential equation (25), (26). In this approximation, the 
quasi-stationary solution of (11) corresponds to the endemic equilibrium 
of (25). It is, of course, an asymptotic result for N large. 

In this section, we will use Kurtz’s theorem to draw for system (48) 
the same conclusions that were drawn for system (11): 

For U large, the quasi-stationary solution of (48) is a distribution 
that is sharply peaked at Y” in (49, so the behavior of the 
stochastic dynamic (48) is very similar to the behavior of its 
deterministic counterpart (40), (41), both for R, G 1 and for R, > 1. 

In the notation of Kurtz’s theorem, we will use U = np., the recruitment 
rate, as the parameter N in the statement of the theorem. This makes 
sense since we consider the models as starting at the disease-free 
equilibrium S?$ = n = U/p. We set 

f((XYY),( -LO)) = FX> f((x,~)>(O, -1)) = ( P+ k)y, 

f((X7Y),(-171)) = x+;y_l) * 
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The last three expressions are homogeneous of degree + 1, so they 
clearly satisfy 

Furthermore, 

so hypothesis (23) holds in Kurtz’s theorem. The approximating deter- 
ministic differential equation is 

/ J&Y 

iii -,~;,M .f((-%Y)@lA)) = Y+(y-1) -/Jx+l 

+ h-V 

\ X-t(Y-l) 
-(PL+k)Y 

I 

(68) 

By the theorem, if @$(t),y,(t)) is a solution of (48) for U large 
enough, then (l/U)@$(t),y,(t)) converges to the globally stable 
equilibrium of (68): 

In particular, y,(t) converges weakly to 

u 1 
A_k q-1 7 

i 1 

and 

z”(t) 1 

X;(t) +ZYf_/(t) + R,’ 

(69) 

Notice that we could have used v/(x + y> instead of xy/[x +(y - 111 
in (68) because Kurtz’s theorem gives an asymptotic result as U +m, for 
which xy/[x +(y - l)l+ xy/(x + y>. 
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5. COMPARISON OF DETERMINISTIC AND STOCHASTIC MODELS 

Initial Time Course of Epidemic. From Equations (43) and (531, if 
the epidemic starts with a few infectives in a large population, then 

x X 

x+y=x+y-1 =l. 

In that case, Equations (43) and (53) become the same linear differen- 
tial equation, 

with initial growth rate (k + E.L)(R, - 1) [6]. 

hariant Subspace of Equilibrium Solutions. From Equations (47) 
and (591, we see that the equilibrium solutions for the deterministic 
system (40), (41) and the stochastic means system (511, (53) fall on the 
same invariant subspace. From Equation (671, the equilibrium stochas- 
tic mean conditioned on nonextinction falls quite near this subspace. In 
fact, by the argument in Section III.B.4, for large rz, it falls very close to 
the deterministic endemic equilibrium. Our simulations bear this out. 
Figure 13 indicates this subspace. 

Comparison of m*G and Y cq. We can use the dynamics (641, (65) of 
the means conditioned on nonadsorption, <m>, m$>, to shed some light 
on the comparison between the endemic equilibria of the deterministic 
(401, (41) and stochastic (48) models. We assume throughout this 

FIG. 13. Invariant subspace on which the deterministic and stochastic mean 
equilibria fall. 
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discussion that P: = Cxqxl and C, xqxl go to zero for large enough N; 
see Equation (66) and the ensuing discussion. 

Comparing (54) and (551, we note that 

By (64) and (65), at the quasi-stationary solution, 

and 

Therefore, 

Compare (70) with the endemic equilibrium (45) of the deterministic 
system: 

y”q = (k+p)+:,(Ro-l). (71) 

If I* = 0, then (70) and (71) yield 

Y”q = U/k = m*&. 

Expressions (70) and (71) are also close if, in the denominators of (70) 
and (711, (k + ~1 is much bigger than E_L/R,,~~ and p/CR,, - 1). 

On the other hand, if k is large enough and R, > 1 small enough 
that the right-hand terms in the denominators of (70) and (71) dominate 
the left-hand term, (k + p), then m*,& and Y”q may differ some, even 
for reasonably large n. Figure 24 (see Section IV> presents an example 
of this phenomenon. 

IV. THE SI MODEL: SIMULATIONS 

The simulations of the stochastic model were carried out on a SUN 
SPARCstation with use of double-precision arithmetic. The pxy were 
generated directly by integrating their system of simultaneous differen- 
tial equations (48). Although x and y are defined on [O,m), the pxy’s 
become negligible for x and y much larger than II, so for each 
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simulation pxy was set to zero for x and y above certain bounds. At 
each time point a check sum of the qXy, namely C,C, pxy , was calcu- 
lated. The check sums on all simulations were always equal to 1, to 
within six decimal places. 

We present no simulations for R, G 1; the results are simple and 
adequately presented in [6] and in the text. Simulations for R, > 1 were 
run for k = 0.06, p = 0.02 for n = 10,30,100,300. The recruitment rate 
U was set to give the equilibrium number of susceptibles in the absence 
of infection, U = np. R, was varied by changing the effective contact 
number h. For each value of 12, runs were obtained for R, = 1.1,2,8 and 
a = 1 and 4. For each simulation we calculated the marginal probabili- 
ties for x and y at a series of points in time: 

P.,W = c Px,(% p,.(t) = c Px,W 
x=0 y=o 

Note that P,,, = P.~. In addition, the means m,, my,,m&,m~ and the 
variances and covariances were calculated. 

In addition to the main runs, an example was run with p = 0.09 and 
k = 0.01 to show that Y”q and m*G can be separated. 

A. The Marginal Probabilities 

Figures 14 and 15 show the change with time in the marginal 
probabilities for R, = 2, a = 1, and IZ = 10 and 100. The results for 
R, = 8 do not differ qualitatively and are not shown. The major findings 
can be seen by comparing the results for n = 100 with those for n = 10. 
Initially all of the probability mass is on (x, y) = (n, 1). For n = 100 
(Figure 15), the probability mass distribution soon splits into two distri- 
butions. One has mass concentrated on y = 0 and distributed in x about 
mean U/p; the other has mass distributed around the means rn& and 
m$, conditioned on nonextinction. For n = 10 (Figure 141, the picture is 
rather different. The probability mass on y starts to split, but then it 
gradually falls back onto y = 0 while the x marginal becomes dis- 
tributed around m, = U/p; here we see the eventual complete extinc- 
tion of infection that is expected for models with an absorbing state. 
This is seen in our simulations only for II = 10 and 12 = 30 (not shown); 
we would have to run the simulations out to very long times indeed to 
pick it up for n 2 100. 

The corresponding plots for the marginal probabilities when four 
infecteds are introduced, a = 4, are similar to Figures 14 and 15 except 
that less probability mass appears at y = 0 in the early rise to a 
quasi-stationary level. For comparison we show only the plots for 
n = 100 in Figure 16. 
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B. The Probability of Extinction 

The probabilities of extinction, P,,,(t) = p,,(t), are plotted for II = 
10,30,100,300 and with a = 1 in Figure 17 and a = 4 in Figure 18. There 
are a number of interesting features to these results. 

P exf = (l/R,)” at the Quasi-Stationary Leuel. P,,, rises to an early 
plateau that is near (l/R,)“. Why? Early in the process, for y small, 
and the more so the larger x is, the generation of infectives is approxi- 
mately a linear birth-and-death process, with birth rate A and death rate 
k + p for each of the introduced infectives. Such a process has a 
probability of extinction of [(k + p>/ Al” = (l/R,)“. However, as y 
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FIG. 14. (Continued). 

increases, there is a progressive deviation from the linear birth-and- 
death process. But, as is seen in the plots of the marginals, for IZ even 
moderate in size, the probability mass distribution splits and the system 
comes to a quasi-stationary state. Pext is generated early while the 
process is still mostly a linear birth-and-death process and then remains 
at that quasi-stationary level after the split in the mass distribution. 
That is not true for n = 10, for which Pext pauses momentarily near the 
quasi-stationary level and then continues to rise toward P,,, = 1. For 
n = 30 the same occurs, but the system stays near the quasi-stationary 
level somewhat longer. 

In the Long Term, Pext - 1. As just noted, Pext eventually goes to 1.0, 
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FIG. 15. Plots of marginal probabilities (a) in x and (b) in y for R, = 2, n = 100, 
and a=l. 
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FIG. 16. Plot of marginal probabilities (a) in x and (b) in y for R, = 2, n = 100, 
and a=4. 
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FIG. 17. Probability of extinction of the disease for R,, = 2 and a = 1 for II = 
10,30,100,300. 

but for y1 even as small as 100 that takes so long we don’t see it in our 
simulations. That is well illustrated in our results for n = 10 and n = 30. 
This is the same phenomenon as was seen in the SIS models, where the 
estimates of Oppenheim et al. [18], Norden [17], and Kryscio and 
Lefevre [ll] show that the quasi-stationary state is extremely long-lived 
for relatively small values of N. 

Remark. The take-off toward PC,, = 1 was seen in our previous 
simulations [6] for n = 10 and n = 30 but was misinterpreted. In our 
previous studies the check sums began to deviate above 1.01 near the 
time when Pext began to move up off the quasi-stationary level, so 
take-off was thought to be due to error accumulation. A careful check 
of our program brought to light a small error in programming that had 
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FIG. 18. Probability of extinction of the disease for R,, = 2 and a = 4 for n = 
10,30,100,300. 
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its major effect on the check sums for n small. After correcting the 
error, all check sums remained at 1.0 to within six decimal places, but 
the take-off of P,,, still occurred for n = 10 and n = 30. 

C. The Means and the Quasi-Stationary State 

Figure 19 plots X,m,y,mT$ and Y,m,.f,m.> for II = 10, a = 1, and 
R, = 2.0. Figure 20 gives the same plots for IZ = 100. Note the long-lived 
near-stationary state for n = 100 where m,, and my are essentially 
constant and rn> and rn.Z$ are very close to Y’q and Xeq, respectively. 
However, for n = 10, the near-stationary state is too short-lived to be of 
any consequence; my falls steadily toward zero, so m,$ is irrelevant. 

X means 

Det X 
2 I * 
01 

0 50 100 150 

Time 

4 

200 250 300 

Y means 

0 

0 50 100 150 200 250 300 

Time 

FIG. 19. Plots of X, m,p, rn$ and Y, my, rng for R, = 2, a = 1, and II = 10. 
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FIG. 20. Plots of X, m,, rn$ and Y, my, m> for R, = 2, a = 1, and n = 100. 

Similar results were obtained for a = 4, but, as expected, the larger 
the number of infecteds introduced, the lower the quasi-stationary level 
of PeXt, so mY and rng are closer in value. For comparison we show the 
results for IZ = 10 and IZ = 100 for a = 4 in Figures 21 and 22, respec- 
tively. 

In the simulations on the SIS model, my rose monotonically to an 
obvious maximum for n very small or to a quasi-stationary level for n 
large. Numerically there was only one root to R, t(t)- 1 = 0. Figures 
such as Figure 20 raise a new possibility for the more complex SI model. 
There, mY rises to a relative maximum and then falls to an apparent 
quasi-stationary level. Does R, t(t) - 1 = 0 have more than one root? 
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FIG. 21. Plots of X, m,, rn& and Y, my, rng for R, = 2, a = 4, and n = 10. 

The answer is sometimes yes. Figure 23 plots t(t), n(t), and R, t(t) - 1 
for R, = 2 and N = 100. It shows an obvious root at about the peak in 
my. Numerically, there are two more roots, one near 175 time units and 
another near 225 time units. From 350 time units to the end of the 
simulation, which was at 500 time units, R, t(t)- 1 was constant at a 
value of -0.00043. 

In the results shown so far, rn; was always very close to the 
deterministic value Y for large t and IZ = 100, more so for n = 300 (not 
shown). Hence we sought parametric combinations that would separate 
the two. Figure 24 shows results for k = 0.01, p = 0.09, R, = 1.45 in 
which rn*i is clearly different from Y”q. 
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FIG. 22. Plots of X, my, rn;, and Y, my, m$, for R, = 2, a = 4, and n = 100. 

D. Variances and Covariances 

For every simulation, the variances of 3’ and jY and their covariance 
were calculated for the distributions conditioned on nonextinction, that 
is, around the means rng and rng. All show much the same 
pattern-high values while the variables are changing rapidly and then 
relatively small variances and very small covariance for the quasi- 
stationary state. Figure 25 gives two examples. 

V. DISCUSSION AND CONCLUSIONS 

For the closed SIS (constant population size) model we have re- 
viewed known results on the solution of the Kolmogorov equations, on 



STOCHASTIC SI MODEL 121 

0.8 

0.6 

0.4 

0.2 

0 

-0.2 

Time 

FIG. 23. Plot of v(t), ((t), and R,, c(t)- 1 for R, = 2 and it = 100. 

the quasi-stationary solutions obtained by conditioning on nonabsorp- 
tion, on the approximation to the quasi-stationary solutions obtained by 
modifying the model to prevent absorption, and on the asymptotic 
results obtained with the use of Kurtz’s theorems. To that, we have 
added an analysis of the dynamics of the mean number of infecteds, 
my, and the mean number conditioned on nonabsorption, rng, coupled 
with simulation studies of some special cases. For R, > N/(N - 11, we 
show that for N small, my has a relative maximum at the root of 
R, t(t) - 1 = 0 and then falls to zero. For such cases one can calculate a 
quasi-stationary solution rng, but it is of little interest because there is 
no long, almost stationary plateau in rnF that corresponds to the 
endemic equilibrium of the deterministic model. However, for N large, 
my has a long nearly stationary plateau in which the relative maximum 
lies at the root of R, (It)-- 1 = 0. In this case, the quasi-stationary 
solution rn& has meaning. Even for relatively small N, rng is close to 
the endemic solution of the deterministic model. By Kurtz’s theorem, it 
converges asymptotically to the endemic plateau of the deterministic 
model as N grows. 

To the extent feasible, our goal is to carry out a similar program for 
the more complex SI model that has constant input to the susceptible 
class, background deaths for susceptibles and infecteds, and deaths due 
to the disease, so that the population is no longer constant. We show 
that Kurtz’s theorems give asymptotic results as the parameter U = IZ p 
goes to 00. A start is made on studying the infinite-dimensional Kol- 
mogorov systems of equations for this system. Much remains to be done 
with the approximations of the Kolmogorov equations analogous to 
systems (17) and (20) for the closed SIS model. 

The analysis of the differential equations for the means, m:F, my, 
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FIG. 24. Plots of means for R, = 1.45, k = 0.01, and p = 0.09 for n = 100. 

m$, and m$, coupled with simulation results, have given us a clearer 
picture of the dynamics of the stochastic model of this system. 

(1) Early in the process the probability of extinction rises to a value 
that is close to (l/Z?,)“, where u is the initial number of infecteds 
introduced into the population. We were at first surprised by this 
behavior because the system is nonlinear. However, the simulations 
indicated that the probability mass distributions split fairly early into a 
single mass on y = 0 separated from an apparently symmetric probabil- 
ity distribution for y > 0. This early split occurred while the system was 
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still close to linear in behavior and we know that the probability of 
extinction for a linear birth-and-death process is exactly (l/R,)“. 

(2) We argue that the solutions for m> and Y at equilibrium must 
be quite close to each other for a large range of parameter values for n 
fairly small. By Kurtz’s theorems, they approach each other asymptoti- 
cally as IZ ---) m for all parameter values. 

(3) For II small, mY rises to a maximum and then, as expected, falls 
steadily toward zero. Nonetheless the quasi-stationary solution shows a 
plateau somewhere near but not close to the endemic solution of the 
deterministic model; both the deterministic solution and the quasi- 
stationary solution are irrelevant to the dynamics in these circum- 
stances. For n large, my rises to long-lived, relatively flat plateau; then 
the quasi-stationary state is close to the endemic solution of the 
deterministic model. In that case, the deterministic solution may be a 
good approximation to the stochastic dynamics when the disease takes 
off, that is, the quasi-stationary solution. 
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