Full-length reviews

The neural basis of drug craving: an incentive-sensitization theory of addiction

Terry E. Robinson and Kent C. Berridge

Department of Psychology and Neuroscience Program, The University of Michigan, Neuroscience Laboratory Building, Ann Arbor, MI 48104-1687 (USA)

(Accepted 20 April 1993)

Key words: Drug addiction; Brain; Dopamine; Incentive motivation; Sensitization; Neuroadaptation; Nucleus accumbens; Striatum

This paper presents a biopsychological theory of drug addiction, the 'Incentive-Sensitization Theory'. The theory addresses three fundamental questions. The first is why do addicts crave drugs? That is, what is the psychological and neurobiological basis of drug craving? The second is why does drug craving persist even after long periods of abstinence? The third is whether 'wanting' drugs (drug craving) is attributable to 'liking' drugs (to the subjective pleasurable effects of drugs)? The theory posits the following. (1) Addictive drugs share the ability to enhance mesotelencephalic dopamine neurotransmission. (2) One psychological function of this neural system is to attribute 'incentive salience' to the perception and mental representation of events associated with activation of the system. Incentive salience is a psychological process that transforms the perception of stimuli, imbuing them with salience, making them attractive, 'wanted', incentive stimuli. (3) In some individuals the repeated use of addictive drugs produces incremental neuroadaptations in this neural system, rendering it increasingly and perhaps permanently, hypersensitive ('sensitized') to drugs and drug-associated stimuli. The sensitization of dopamine systems is gated by associative learning, which causes excessive incentive salience to be attributed to the act of drug taking and to stimuli associated with drug taking. It is specifically the sensitization of incentive salience, therefore, that transforms ordinary 'wanting' into excessive drug craving. (4) It is further proposed that sensitization of the neural systems responsible for incentive salience (for 'wanting') can occur independently of changes in neural systems that mediate the subjective pleasurable effects of drugs (drug 'liking') and of neural systems that mediate withdrawal. Thus, sensitization of incentive salience can produce addictive behavior (compulsive drug seeking and drug taking) even if the expectation of drug pleasure or the aversive properties of withdrawal are diminished and even in the face of strong disincentives, including the loss of reputation, job, home and family. We review evidence for this view of addiction and discuss its implications for understanding the psychology and neurobiology of addiction.

CONTENTS

Summary .. 247
1. Introduction .. 248
2. The Incentive-Sensitization Theory of Addiction: an overview 249
3. Theories of addiction ... 250
 3.1. Negative reinforcement views of addiction (escape from distress) 250
 3.1.1. Problems with negative reinforcement views ... 251
 3.2. A positive reinforcement view of addiction (pleasure-seeking) 252
 3.2.1. Problems with a positive reinforcement/ecstasy view of addiction 252
 3.2.2. Requirements of an Incentive-Sensitization Theory of Addiction 255
4. Evidence for the Incentive-Sensitization Theory of Addiction 256
 4.1. Criterion 1: there should be a common neural system affected by many different addictive drugs .. 256
 4.2. Criterion 2: the repeated administration of different addictive drugs should render a common neural system hypersensitive in a gradual and incremental fashion ... 256
 4.2.1. Sensitization to the psychomotor-activating effects of addictive drugs 256
 4.2.2. Sensitization to the incentive motivational effects of drugs 257
 4.2.3. The neural basis of behavioral sensitization 258

Correspondence: T.E. Robinson, Neuroscience Building, The University of Michigan, 1103 East Huron Street, Ann Arbor, MI 48104-1687, USA.
Fax: (1) 313-936-2690; e-mail: GB92@um.cc.umich.edu.
4.3. Criterion 3: sensitization-related neuroadaptations should be very long-lasting. .. 258
4.4. Criterion 4: the expression of sensitization-related neuroadaptations should be amenable to conditioned stimulus control. .. 259
4.5. Criterion 5: the role of mesotelencephalic dopamine systems in incentive motivation. 260
4.6. Criterion 6: the effects of dopamine are on incentive salience, not pleasure. .. 260
4.6.1. Incentive salience. ... 261
4.6.2. Introspection into ‘wanting’ and ‘liking’.. 262
4.6.3. Evidence that mesotelencephalic dopamine mediates incentive salience, not pleasure. 267
5. Elaboration of the Incentive-Sensitization Theory and its implications.. 265
5.1. The independence of drug craving from drug pleasure and withdrawal. .. 266
5.2. The development of addictive behavior. ... 267
5.3. Relapse: drug-induced drug craving. ... 267
5.4. Relapse: interactions between different drugs and the effects of drug-related stimuli. 268
5.5. Relapse: the role of stress. ... 269
5.6. Individual differences in the propensity to addiction. ... 269
5.7. Implications of the Incentive-Sensitization Theory for therapy. ... 270
5.7.1. Extinction training. ... 270
5.7.2. Pharmacotherapeutic approaches. ... 271
5.8. Relationship between incentive sensitization and other views of addiction. ... 271
6. Notes ... 272
6.1. Role of control and intermittency of drug administration in sensitization. ... 272
6.1.1. Control ... 272
6.1.2. Intermittency... 273
6.2. Specific motivational effects of dopamine blockade. ... 273
6.3. The neural substrate of drug ‘liking’ (pleasure). ... 274
6.4. Dopamine, sensitization and incentive salience. .. 274
6.5. Tolerance to drug pleasure. ... 275
6.6. The compulsive nature of addictive behavior. ... 276
6.7. Benzodiazepines and sedative-hypnotics 276
6.8. The role of dopamine in mediating the effects of conditioned incentives. ... 276
6.9. Stress, aversive stimuli and stimulant-induced psychoses. .. 277
6.10. Dopamine antagonists and therapy. .. 278
7. Glossary .. 279
Acknowledgements ... 282
References ... 282

A firm conviction of the material reality of Hell never prevented medieval Christians from doing what their ambition, lust or covetousness suggested. Lung cancer, traffic accidents and the millions of miserable and misery creating alcoholics are facts even more certain than was, in Dante’s day, the fact of the Inferno. But all such facts are remote and unsubstantial when compared with the near, felt fact of a craving, here and now, for release or sedation, for a drink or a smoke.

(Aldous Huxley, The Doors of Perception, 1951)

1. INTRODUCTION

There are three major features of addictive behavior that need to be explained by any adequate theory of drug addiction*. The first is drug craving†, by which we simply mean intensely ‘wanting’‡ drugs. Although drug addiction* is defined as a pattern of ‘compulsive drug-taking behavior’, drug taking does not in itself constitute addictive behavior. Only when the repeated self-administration of drugs leads to a pattern of compulsive drug-seeking and drug-taking behavior, which occurs at the expense of most other activities, is a person said to be addicted. To understand addiction, therefore, we need to understand the process by which drug-taking behavior evolves into compulsive drug-taking behavior. Presumably this transformation in behavior occurs because addicts develop an obsessive craving for drugs, a craving that is so irresistible that it almost inevitably leads to drug seeking and drug taking. It is difficult, of course, to provide an adequate definition of subjective terms, such as ‘wanting’ and craving, but clinical experience suggests that drug craving is fundamental to addiction; it cannot be ignored. Any satisfactory account of addiction must explain: why do addicts want or crave drugs so much?

Drug addiction is also “a chronic relapsing disorder” (ref. 148, p. 522). The second major feature of addic-

* Many of the terms in this article are used in different ways by different authors and they are not always clearly defined. To avoid ambiguity we have provided a glossary with definitions of many of the most problematic terms. Thus, a reference to the glossary, which will be indicated by the symbol, †, refers the reader to the definition of a term. The reader may not always agree with a given definition, but we hope at least this makes it clear what we mean.
tion that must be explained, therefore, is: why drug craving often persists or can be reinstated, long after the discontinuation of drug use. An understanding of the propensity to relapse will be critical not only for understanding the process of addiction, but in developing effective therapies.

A third feature of drug addiction that requires explanation is that, as drugs come to be 'wanted' more-and-more, they often come to be 'liked' less-and-less. That is, as craving for drugs increases the pleasure derived from drugs often decreases. Why is this? What is the relationship between 'wanting' drugs and 'liking' drugs and does this relationship change during addiction?

The purpose of this article is to present a biopsychological theory of addiction, an Incentive-Sensitization Theory, that addresses these issues *. The paper is organized into four parts. In Part I the theory is summarized to give a brief overview of its major features. In Part II the theory is put into a broader context by critically discussing other theories of addiction, specifically negative reinforcement (e.g., withdrawal avoidance) and positive reinforcement (e.g., pleasure-seeking) theories. In doing so it is argued that theories based on the concepts of negative or positive reinforcement do not adequately explain the key features of addiction discussed above. In Part III research findings that support the concept of an Incentive-Sensitization Theory are reviewed. Finally, in Part IV the theory is elaborated and its implications discussed in greater detail.

2. THE INCENTIVE-SENSITIZATION THEORY OF ADDICTION: AN OVERVIEW

The Incentive-Sensitization Theory of Addiction posits that addictive behavior is due largely to progressive and persistent neuroadaptations caused by repeated drug use. It is, if you will, a 'neuroadaptationist model'. It is proposed that these drug-induced changes in the nervous system are manifest both neurochemically and behaviorally by the phenomenon of 'sensitization', which refers to a progressive increase in a drug effect with repeated treatment. These sensitization-related neuroadaptations have not been considered in previous theories of addiction. In fact, until recently, the phenomenon of sensitization usually was not mentioned in books and articles on addiction and if sensitization was mentioned, it was referred to only in passing, as part of a more extensive discussion of tolerance. Nevertheless, it is proposed here that the defining characteristics of addiction (craving and relapse) are due directly to drug-induced changes in those functions normally subserved by a neural system that undergoes sensitization-related neuroadaptations.

The neural system that is rendered hypersensitive ("sensitized") to activating stimuli is hypothesized to mediate a specific psychological function involved in the process of incentive motivation: namely the attribution of incentive salience* to the perception and mental representation of stimuli and actions. This makes stimuli and their representations highly salient, attractive and 'wanted'. It is the activation of this neural system that results in the experience of 'wanting', and transforms ordinary stimuli into incentive stimuli.

Sensitization of this neural system by drugs results in a pathological enhancement in the incentive salience that the nervous system attributes to the act of drug taking. The co-activation of associative learning directs the focus of this neurobehavioral system to specific targets that are associated with drugs and leads to an increasing pathological focus of incentive salience on drug-related stimuli. Thus, with repeated drug use the act of drug taking and drug-associated stimuli, gradually become more and more attractive. Drug-associated stimuli become more and more able to control behavior, because the neural system that mediates 'wanting' becomes progressively sensitized. 'Wanting' evolves into obsessive craving and this is manifest behaviorally as compulsive drug seeking and drug taking. Therefore, by this view, drug craving and addictive behavior are due specifically to sensitization of incentive salience.

But 'wanting' is not 'liking'. The neural system responsible for 'wanting' incentives is proposed to be separable from those responsible for 'liking' incentives (i.e., for mediating pleasure) and repeated drug use only sensitizes the neural system responsible for 'wanting'. Because of this, addictive behavior is fundamentally a problem of sensitization-induced excessive 'wanting' alone. This is in contrast to 'pleasure-seeking' theories of addiction, which explicitly assume that the incentive motivational properties of drugs are due directly to their subjective pleasurable effects; i.e., their ability to produce positive affective states. In colloquial language, it is usually assumed that addicts 'want' drugs because they 'like' drugs and the more they 'like'.

* This paper is not a comprehensive review of the primary research literature on addiction and addictive drugs. We cite review articles to support specific points in many instances. Readers should consult these review articles for more extensive lists of citations to the primary literature.
them the more they should ‘want’ them. In this traditional view ‘wanting’ and ‘liking’ drugs are necessarily connected. The Incentive-Sensitization Theory is unique, however, because we propose the progressive increase in drug ‘wanting’ that characterizes addiction is not accompanied by an increase in the pleasure derived from drugs. Repeated drug use does not sensitize neural systems responsible for the subjective pleasurable effects of drugs, only those responsible for incentive salience – transforming ‘wanting’ into craving.

In addition, the neuroadaptations underlying behavioral sensitization are long lasting and in some cases may be permanent. It is hypothesized that it is the persistence of sensitization-related neuroadaptations that renders addicts hypersensitive to drugs and to drug-related stimuli, even after years of abstinence. It is the permanence of sensitization that is thought to render drug-related stimuli so effective in precipitating relapse, even in detoxified, ‘recovered’ addicts.

Finally, it is hypothesized that the neural substrate for incentive-sensitization (that is the neural system(s) that normally attributes salience to incentive stimuli and becomes sensitized by addictive drugs) is the mesolimbic dopaminergic system. Sensitization results in an increase in the responsiveness of the dopamine system to activating stimuli, such that activating stimuli produce a greater increase in dopamine neurotransmission in sensitized than in non-sensitized individuals. The relationship between changes in dopamine neurotransmission, the subjective pleasurable effects of drugs and incentive salience, which occurs during addiction according to the Incentive-Sensitization Theory, are illustrated schematically in Fig. 1.

The Incentive-Sensitization Theory of Addiction will be discussed in much greater detail later. Before that, however, we need to address the features of addictive behavior that are not adequately explained by other theories of addiction and thus require explanation by a new theory. The most widely accepted theories of addiction presently fall into two classes: negative reinforcement models (e.g., drugs are taken to avoid the symptoms of withdrawal) and positive reinforcement models (i.e., drugs reinforce self-administration behavior by producing pleasure). There have been many papers describing the strengths and short-comings of negative and positive reinforcement views of addiction and it is not necessary to review this entire literature in great detail here. Instead, negative and positive reinforcement models will be only briefly summarized and their difficulty in explaining several key features of addiction (e.g., craving and relapse) will be emphasized, primarily to provide a comparison with the Incentive-Sensitization Theory. We want to stress, however, that none of these views are mutually exclusive. Pleasure-seeking, escape from distress and incentive-sensitization probably each play some role in drug-taking behavior.

3. THEORIES OF ADDICTION

3.1. Negative reinforcement views of addiction (escape from distress)

Historically, the aversive consequences of discontinuing drug use (the withdrawal syndrome) have been a
central focus of research on addiction, in part because many early studies were on opiates, which produce clear tolerance and physical withdrawal symptoms. This research emphasized the action of drugs as negative reinforcers\(^{164,148,180,227,312,326,337,349,365}\). To paraphrase Wise and Bozarth\(^{365}\), negative reinforcers sustain behavior (drug seeking and drug taking in this case) not because of the state they produce, but because of the state they alleviate. According to this negative reinforcement view of addiction drug use is maintained because the aversive symptoms associated with withdrawal are alleviated by the drug. Addictive drugs that do not result in overt physical withdrawal symptoms, such as cocaine and the amphetamines, are thought to act as negative reinforcers by alleviating a 'psychological distress syndrome' produced by the discontinuation of drug use (ref. 105 for example). In addition, previously neutral environmental stimuli associated with withdrawal can themselves come to elicit withdrawal-like symptoms, by secondary conditioning\(^{305,306,357}\). Thus, drugs may not only alleviate 'primary' withdrawal symptoms, but also the conditioned withdrawal symptoms induced by exposure to drug-related stimuli. A second negative reinforcement view is that drugs are sometimes used to 'self-medicate', relieving preexistent symptoms such as pain, anxiety or depression that occur in life independent of drug use (ref. 170 for example).

The traditional focus on withdrawal and tolerance was driven by the assumption that these processes are critical for the development and maintenance of addictive behavior. It is now clear, however, that the avoidance of withdrawal is not the most important factor in the development or maintenance of addictive behavior, although certainly the avoidance of withdrawal may motivate drug-seeking and drug-taking behavior in some instances. A number of leading figures in drug addiction research have noted, for example, that "physical dependence is neither a necessary nor sufficient condition for addiction" (ref. 365, p. 470), that "for rats and monkeys physical dependence is neither a necessary nor a sufficient condition for opiates to act as reinforcers" (ref. 290, p. 186) and that "physical dependence is currently viewed not so much as a direct cause of drug dependence but as one of several factors that contribute to its development" (ref. 148, p. 527). A number of critiques of negative reinforcement theories of addiction have been published\(^{36,149,326,363,365}\) and the major shortcomings of negative reinforcement theories in explaining addiction are briefly summarized below.

3.1.1. Problems with negative reinforcement views

- Both people and animals will self-administer opioids in the absence of withdrawal symptoms or physical dependence\(^{353,372}\). For example, Ternes et al.\(^{335}\) found that in cynomolgus monkeys the opioid, hydromorphone, maintained self-administration at doses that produced neither tolerance nor physical dependence, the latter indicated by the absence of any effect of a naloxone challenge. Similarly, Lamb et al.\(^{192}\) recently reported that former heroin addicts, who showed no withdrawal symptoms upon a naloxone challenge, nevertheless worked at high rates (lever pressed) to receive a low-dose injection of morphine.

- Maximal periods of drug self-administration often do not coincide in time with periods of maximal withdrawal distress\(^{365}\). This lack of correlation between withdrawal distress and drug-seeking behavior is also evident in comparisons made across drug classes. Jaffe (ref. 149, p. 9) notes that, although the severity of the withdrawal syndrome associated with different drugs varies dramatically, ranging from very subtle physiological signs to life-threatening consequences, "there is little correlation between the visibility or physiological seriousness of withdrawal signs and their motivational force" in maintaining addictive behavior.

- There are many drugs used medically that produce withdrawal syndromes but "are not typically self administered for non-medical purposes", including "certain tricyclic antidepressants (imipramine, amitriptyline), anticholinergics and \(\alpha\)-opioid agonists" (ref. 149, p. 9).

- There are numerous reports that the "relief of withdrawal is minimally effective in treating addiction" (ref. 365, p. 470 for references).

- There is a high tendency to relapse even after an extended period of abstinence from drugs, long after overt withdrawal symptoms have subsided. This is usually explained in the context of conditioned withdrawal effects, whereby environmental stimuli associated with withdrawal come to elicit withdrawal-like symptoms\(^{306,357}\). There are, however, a number of problems with this explanation. (1) At least a third of opiate addicts deny that they experience conditioned withdrawal symptoms when they are exposed to drug-related stimuli\(^{50}\). (2) Although many opiate addicts experience conditioned withdrawal symptoms very few cite this as the reason for resuming drug use\(^{212}\). There is, in fact, a poor correlation between craving and withdrawal signs\(^{50}\). Even withdrawal-like physiological symptoms induced by drug-associated cues (e.g., temperature, skin resistance, heart rate) are not highly correlated with reports of subjective state\(^{50}\). (3) Stewart et al. (ref. 326, p. 258) have argued that "attempts to demonstrate such conditioned withdrawal symptoms increase the probability of drug taking and relapse in animals have been unsuccessful" (ref. 329 as well).
3.2. A positive reinforcement view of addiction (pleasure-seeking)

In part because of the shortcomings of negative reinforcement theories of addiction more recent formulations have focussed on the role of drugs as positive reinforcers. Most drugs that are self-administered by people also act as positive reinforcers for animals. Thus, a positive reinforcement view of addiction posits that drug self-administration is maintained because of the state drugs induce, not because they alleviate an unpleasant state.

But to state that addictive drugs are positive reinforcers does not explain addiction. As pointed out by Wise and Bozarth (ref. 365, p. 472): “To assert that all addictive drugs are reinforcers is to do little more than redefine the phenomenon of addiction.”... “To identify a drug as reinforcing goes no further than to identify the drug as addicting, because it is the common observation of habitual self-administration that serves as the basis for most definitions of both drug reinforcement and drug addiction. A theory of addiction based on the concept of reinforcement would have to identify actions of drugs that are operationally independent of self-administration habits in order to offer insight as to why drugs are addictive.” That is, positive reinforcement is merely a description of a behavioral effect, not an explanation of the effect. The critical questions are, why are some drugs positively reinforcing (i.e., what specific actions of drugs are positively reinforcing) and why do drugs become more effective reinforcers as addiction develops? It is usually assumed that drugs act as positive reinforcers because they produce pleasure. Thus, Wise and Bozarth state that "the only existing positive reinforcement view of addiction that might qualify as an explanatory theory identifies positive reinforcement with drug euphoria. In this view drugs are addicting (establish compulsive habits) because they produce euphoria or positive affect" (ref. 29 and ref. 213, p. 474). Similarly, Stewart et al. argued that compulsive drug use is maintained by appetitive motivational states generated by the ability of drugs to produce positive affective states.

There are, however, a number of problems with the hypothesis that the subjective pleasurable (hedonic) effects of drugs are either necessary or sufficient to motivate compulsive drug-seeking and drug-taking behavior. As put by Dewar over 15 years ago, "it was supposed that the prediction of addiction liability was essentially equivalent to prediction of euphorogenic power. As with most self-evident ideas, the mere matter of there being essentially no evidence in favor of it and much against it, had little effect on its acceptance" (p. 75).

3.2.1. Problems with a positive reinforcement / euphoria view of addiction

- If the positive reinforcing effects of drugs are primarily due to their ability to produce pleasurable affective states (euphoria) and if this is sufficient to produce addictive behavior, the subjective pleasurable effects of drugs must be enormous. Indeed, the subjective pleasurable effects of drugs would have to be so potent that just the memory of drug experiences would be sufficient to evoke compulsive drug-seeking and drug-taking behavior. Although addictive drugs can indeed produce extremely pleasant affective states (anonymous, personal communication) it is difficult to believe that this property of drugs alone is sufficient to account for addiction. For one, there is no clear relationship between the ability of individual drugs to produce
euphoria and their addictive potential. For example, nicotine is considered highly addictive, but nicotine does not produce marked euphoria or other strong hedonic states (ref. 266 for example). Also, many addictive drugs can actually produce strong dysphoric states, especially with initial use. Second, it could be argued that in addicts the magnitude of the negative consequences of continued drug use often far outweigh the magnitude of drug pleasure or the memory of drug pleasure. In fact, to most people (including many addicts), the negative consequences of continued drug use, including loss of health, friends, family, home and job, seem enormous relative to the pleasure derived from drugs. Falk et al. 86 have pointed out (p. 58): “the apparent irrationality of these activities [drug use]. The activities seem to produce more harm than benefit for the individual. How could creatures have evolved such powerful, wasteful and even self-destructive propensities? Not only are the activities apparently irrational, but also an apparent disparity exists between the immediate consequences of the behavior and its strength. The rush of an intravenous injection is transient and with street-quality heroin, rarely dramatic. Yet, the drug somehow can support day-long hustling and determine a whole subculture”.

Indeed, addicts will sometimes report that they are miserable, that their life is in ruins and that the drug is not even that great anymore – but they still want it! Addicts themselves often are bewildered by the intensity and irrationality of their own ‘wanting’. It is difficult to explain this situation by just evoking short-lasting drug pleasure. If the incentive motivational effects of drugs are due only to their ability to produce transient pleasure, but the aversive consequences of continued drug use eventually come to far outweigh the pleasurable effects – and, if drug taking behavior is maintained by simple contingencies of reinforcement, self-administration behavior should extinguish. But it usually does not (although see Falk et al. 86 for a discussion of the unique effects of intermittent schedules of reinforcement).

A positive reinforcement/euphoria view of addiction does not adequately explain drug craving or relapse elicited by environmental stimuli associated with drug taking. Both Stewart et al. 326 and Wise and Bozarth 365 have argued convincingly that drug-related stimuli can evoke ‘drug-like’ effects that serve to motivate further drug-seeking and drug-taking behavior. They recently termed this view a ‘proponent-process theory’ 329, in contrast with the ‘opponent-process’ view associated with negative reinforcement models 182,312. Stewart and Wise 329 argue “it is drug-like processes rather than drug-opposite processes that whet the appetite and stimulate renewed responding. In this view it is the ‘taste’ of the drug or the experience of stimuli that – through Pavlovian conditioning – cause drug-like central effects that motivate drug intake in experienced subjects” (p. 80).

The question remains, however, what exactly is this ‘drug-like process’? One possibility is that it resembles the positive affective state, the pleasurable state, evoked by the drug itself. That it is equivalent to what has been called a conditioned ‘high’ 56. For example, Stewart et al. 326 say: “Conditioned drug effects that mimic the unconditioned drug effects, as are conditioned positive affective states, are elicited by the environment where these drugs are experienced.” (p. 264, our italics). In this view drug-associated stimuli may evoke ‘conditioned pleasure’, which reminds the addict of the even greater pleasure of the drug itself, thus motivating the individual to once again obtain the drug 362.

Addicts do report conditioned ‘highs’, as in the example of the oft cited ‘needle freak’. In laboratory studies, however, self-reports of conditioned ‘highs’ occur much less frequently than self-reports of either conditioned craving or conditioned withdrawal-like signs 56,229. Self-reports of conditioned craving are especially frequent. This suggests that conditioned craving is dissociable from conditioned ‘highs’ and therefore, in many instances, drug craving is not caused by a conditioned ‘high’. How then is craving explained in the context of a positive reinforcement/euphoria view of addiction?

A second possibility is that relapse in a ‘recovered’ addict is triggered by cues that evoke an explicit memory or representation of past drug experiences. Unlike a ‘conditioned high’, which is accompanied by an affective experience similar to that produced by the drug itself, an explicit memory need not be pleasant in itself. It recalls past pleasure in a cognitive form, as a semantic proposition or as a conscious image of the act of drug taking and spurs the addict to attempt to regain the remembered experience of pleasure once again.

An ‘explicit memory of past pleasure’ interpretation of relapse is not implausible and may describe some instances of relapse. But an interpretation that posits explicit memories of taking drugs to be a sufficient cause for relapse finds it difficult to explain why relapse occurs only when it does. No addict who relapses after months or years of abstinence could possibly not have remembered drug experiences many times before. During the process of withdrawal every addict must often recall and dwell upon memories of the drug experience. Once withdrawal is successfully endured the circumstances of daily living would cause one to
sometimes remember earlier times, when life was different and drugs were the focus. Even without any particular cue or reminder, the mere process of free association would often call to mind scenes from earlier life, including upon occasion, drug-related experiences. Why should the explicit memory of a drug experience suddenly be sufficient to trigger relapse, when a person has had innumerable previous memories of drug experiences without relapse?

An ‘explicit memory of past pleasure’ interpretation might reply that, because relapse is often triggered by particular situations that have been paired with drug use in the past, these situations evoke a memory that is more vivid than all the memories that have come before. Whether this is true or not is an empirical question. Certainly, vivid memories can be triggered by associative cues and there is ample evidence that associative context is a powerful modulator of conditioned behavior; although whether context modulates explicit memories in this way is less clear (ref. 759 for example).

However, images or other forms of conscious remembering that occur during withdrawal, daily life or free association might also be expected to be fairly vivid at least some of the time. It is not intuitively obvious that these memories should necessarily differ in vividness or in any other subjective quality that might explain why some conscious memories provoke relapse when others do not. In other words, an ‘explicit memory’ hypothesis places an extraordinary explanatory burden on the crucial assumption that relapse-provoking memories are qualitatively different from the myriad other memories of drugs that do not provoke relapse. As far as we know, there is no evidence to support this assumption.

The most compelling evidence against the idea that drug taking is necessarily motivated by the subjective pleasurable effects of drugs comes from studies showing that drug self-administration can be maintained in the absence of subjective pleasure; that is, subjective pleasure is not necessary to maintain drug-seeking and drug-taking behavior. A striking example of a dissociation between the incentive motivational effects of morphine and the subjective pleasurable effects of morphine was reported recently by Lamb et al.192. These researchers found that opiate ‘postaddicts’ would work (press a lever) to get an injection of a low dose of morphine, despite the fact that four of five people could not distinguish the subjective effects of the morphine from the placebo – but the placebo did not reinforce lever pressing (ref. 151 as well). In other words, people ‘self-administered’ a low dose of morphine and not the placebo, but reported that neither the drug nor the placebo produced pleasure; there was no subjective difference between them. Similar effects have been reported by Fischman and Foltin94,95 in laboratory studies of cocaine self-administration behavior in humans. Cocaine users reliably choose a low dose of cocaine (4 mg) over placebo, although this dose produces no self-reported subjective effects or cardiovascular effects. In addition, Fischman and Foltin95 report that within-session tolerance to many of the cardiovascular and subjective (euphoric) effects produced by higher doses of cocaine is not accompanied by changes in drug-taking behavior; that is, within a self-administration session a dissociation develops between the subjective effects of cocaine and cocaine self-administration behavior.

On the basis of their study Lamb et al.192 concluded “that the reinforcing effects of morphine can occur in the absence of self-reported subjective effects and thus, do not appear to be causally related to drug-liking or euphoria” (p. 1172, our italics). Similarly, when asked to speculate what maintains the self-administration of cocaine in the absence of subjective pleasure Fischman95 replied:

“I think cocaine is maintaining their behavior! If you want to know what the subjects say about their self-administration of these low doses, they tell me that they were not choosing cocaine over placebo. They often insist that they were sampling equally from each of the two choice options and both were placebo. On the other hand, if you look at the data from that session, you see that they were choosing the low dose (as low as 4 mg) or the dose with no measurable effect.”... “I do not believe that measuring subjective effects provides us with the information about ‘what’ is maintaining their cocaine-taking. The best we can say at this point is that it is the cocaine that is maintaining cocaine-taking” (p. 179).

Of course, these studies also suggest that a memory or representation of the subjective pleasurable effects of morphine or cocaine is not required to sustain drug-taking behavior either, because if that were true then there should be some subjective difference in memories during low-dose morphine or cocaine compared to the placebo and there was none. Clearly there is a difference between low-dose morphine or cocaine and the placebo, but the data suggest it is not a subjective difference; it is not explicit and does not have access to conscious awareness.

Although the effects described by Lamb et al.192 and Fischman and Foltin95 are particularly striking, dissociations between the subjective pleasurable effects of drugs and drug-taking behavior have been noted previously. For example, Falk et al.86 review studies showing that “the subjective effects produced by a drug do not necessarily predict whether the drug actually will be
self-administered” (p. 58). In addition, Katz and Goldberg describe experiments that suggest “the reinforcing effects and the subjective reports by human volunteers are not functionally equivalent entities” (p. 24).

Similarly, studies in rats on the affective vs. reinforcing properties of opiates suggest these actions may be mediated by separable neural systems. This was suggested, for example, by White et al. on the basis of studies on the effects of morphine in a runway task, in which food was available in the goal box. They found that morphine acted as a strong positive reinforcer, leading to faster and faster running speeds. But at the same time animals learned to avoid morphine-paired food. Thus, “the aversive effects of morphine were accompanied by positive reinforcement, a paradox that is difficult to understand” (ref. 355, p. 66). White et al. suggested an explanation for this paradox may be “that the reinforcing effects of morphine” do “not depend upon the affective properties of the drug, but that the drug directly activate(s) a neural mechanism of reinforcement, which facilitates learning independently of the animal’s affective state”.

The studies cited above are very important because their findings directly contradict the central premise of a positive reinforcement/euphoria view of addiction. In our terms, they establish that the incentive motivational effects of drugs are not directly attributable to their subjective pleasurable effects: that is, drug ‘wanting’ is not equivalent to drug ‘liking’.

In summary, both negative reinforcement (e.g., withdrawal avoidance) and positive reinforcement/euphoria (pleasure-seeking) views of addiction have difficulty explaining a number of important features of addictive behavior. Any plausible new theory of addiction needs to address the same issues and better explain them. Specifically, an adequate theory of addiction must explain:

1. What accounts for drug craving elicited by drug-associated stimuli, if craving is not causally related to conditioned withdrawal signs, conditioned ‘highs’ or the explicit memory of past pleasure?
2. Why is craving sometimes highest immediately after drug administration, when subjective pleasurable effects are still predominant?
3. Why does obsessive craving for drugs persist in the face of enormous negative consequences associated with continued drug use, and relatively modest subjective pleasurable effects?
4. How can low doses of drugs, which do not produce discernible subjective pleasure or physical dependence, maintain drug-seeking and drug-taking behavior?
5. Why is relapse such a prevalent and persistent feature of addiction, even in ‘recovered’ addicts?
6. Why can relapse be precipitated by so many different stimuli (drugs, environmental stimuli associated with drugs, mood changes)?

3.3 Requirements of an Incentive-Sensitization Theory of Addiction

Neither traditional positive reinforcement nor negative reinforcement theories of addiction provide compelling answers to the questions listed above. We will argue below that the Incentive-Sensitization Theory of Addiction does. The Incentive-Sensitization Theory was introduced as a ‘neuroadaptationist’ model. It posits that repeated intermittent drug use results in incremental and persistent changes in a neural system that mediates craving for drugs; to be more precise, in a neural system responsible for the attribution of incentive salience (not pleasure) to stimuli. We first need to ask, therefore, whether there is any experimental evidence that repeated exposure to addictive drugs can produce neuroadaptations that meet the relevant criteria. The criteria required of such neuroadaptations in order for the theory to be true include the following:

1. To the extent that the excessive incentive salience elicited by drugs is mediated by a common substrate, there should be a common neural system affected by many different addictive drugs.
2. To explain the progressive development of addictive behavior repeated drug administration should render this neural system hypersensitive in a gradual and incremental fashion.
3. To explain the persistence of relapse these drug-induced neuroadaptations should persist for very long periods of time (if not permanently) following the discontinuation of drug use.
4. To explain the role of drug-associated stimuli in relapse the expression of these neuroadaptations should be susceptible to conditioned stimulus or environmental control.
5. To explain drug craving the activation of this neural system should mediate the incentive motivational effects of drugs and drug-related stimuli and the neuroadaptations produced by drugs should potentiate these motivational effects.
6. To explain the dissociation between drug ‘wanting’ and drug ‘liking’ this neural system should not directly mediate the subjective pleasurable effects of drugs or the subjective pleasure associated with other stimuli.

Evidence that the repeated use of a number of different addictive drugs does indeed produce neuroadaptations that meet each of these criteria is presented next.
4. EVIDENCE FOR THE INCENTIVE-SENSITIZATION THEORY OF ADDICTION

4.1. Criterion 1: there should be a common neural system affected by many different addictive drugs

Addictive drugs represent a diverse group of compounds that markedly differ in their behavioral and neurochemical actions. Nevertheless, there is increasing evidence that many addictive drugs share the ability to enhance mesolimbic dopaminergic neurotransmission. This evidence has been reviewed recently and need not be reiterated here. Suffice it to say that the following drugs have been reported to increase dopamine neurotransmission in the nucleus accumbens and dorsal striatum: amphetamine ('speed'), cathinone ('Khat'), cocaine ('coca'; 'crack'), methamphetamine ('ice'; 'crystal meth'), methylenedioxyamphetamine (MDA; 'the love drug'); methylenedioxymethamphetamine (MDMA; 'ecstasy'), methylphenidate, ethanol, fentanyl ('China white'), methadone, morphine, nicotine and phencyclidine (PCP; 'angel dust'). This common action of diverse drugs is consistent with the hypothesis that mesolimbic dopaminergic systems mediate, at least in part, the incentive motivational properties of many different drugs of abuse. Although it cannot be said that there is a single neural system that is affected by all addictive drugs, dopamine systems and their associated structures are affected by most.

4.2. Criterion 2: the repeated administration of different addictive drugs should render a common neural system hypersensitive in a gradual and incremental fashion

Drug effects are known to change when drugs are given repeatedly, and some of these changes are known involve adaptations in neural elements mediating specific drug effects. Much of the emphasis in the past has been on homeostatic neuroadaptations thought to underly the development of tolerance and to contribute to withdrawal symptoms. But as discussed above, tolerance and withdrawal do not account for the defining characteristics of addiction and therefore, tolerance and withdrawal-associated neuroadaptations do not meetCriterion 2 under discussion here. Sensitization to the psychomotor-activating effects of addictive drugs. However, some effects of drugs are not decreased, but are actually increased by repeated intermittent drug administration. Indeed, for a given drug, some effects may decrease (show tolerance) while simultaneously other effects increase. This latter phenomenon has been referred to as behavioral sensitization, behavioral facilitation, reverse tolerance and auxoesthesia. We will use the term 'sensitization' here.

Psychomotor stimulant drugs, such as amphetamine or cocaine, have been used in the majority of studies on drug-induced sensitization, and the effects of these drugs have been well characterized. For example, the acute administration of a low-to-moderate dose of amphetamine or cocaine produces 'psychomotor activation', characterized by an increase in locomotor activity (ambulation), rearing behavior and rotational behavior. Higher doses result in the emergence of focussed stereotyped behaviors, such as repetitive head movements and sniffing and a resultant decrease in locomotion and rearing. The repeated intermittent administration of a constant, relatively low dose, produces a progressive increase in drug-induced locomotor stimulation with each successive administration. Repeated administration of a moderate dose will come to elicit the stereotyped behavior typical of a higher dose, even though it produced only ambulation the first time it was given. Furthermore, sensitization-related changes in behavior can come under strong conditioned stimulus control and this feature of sensitization is discussed in more detail below. In summary, it is the gradual and incremental increase in drug-induced 'psychomotor activation' and the emergence of increasingly stereotyped behavior, that is usually referred to as 'behavioral sensitization'. The only comparable stimulant effect that has been characterized in humans is sensitization to the psychotogenic effects of amphetamine and cocaine.

Behavioral sensitization is produced by the repeated administration of many different psychomotor stimulants, including the amphetamines, cocaine, methylphenidate, fenfluramine and the endogenous trace amine, phenylethylamine. The phenomenon is not limited, however, to classical psychomotor stimulants. Other drugs, not traditionally considered psychomotor stimulants, also produce psychomotor activation, enhance dopamine neurotransmission and produce behavioral sensitization. These include: opioids, nicotine, methamphetamine, ethanol and MDA (cf. Note 7 in Ch. 6).

Repeated intermittent treatment with an addictive drug not only produces sensitization to that drug, but may also produce cross-sensitization to other drugs. Although the literature is not entirely consistent, cross-sensitization has been reported between drugs in the same class (e.g., amphetamine and cocaine) and between drugs in different classes (e.g., stimulants and opioids). Furthermore, cross-sensitization is also found between drugs and stress, which led to the
suggestion that drugs may induce sensitization by their action as stressors. Evidence for cross-sensitization between drugs and stress comes from studies showing that animals pretreated with drugs like amphetamine, cocaine or morphine are later hyperresponsive to stress and vice versa, animals sensitized to stress are hyperresponsive to a drug challenge. Even the repeated administration of exogenous corticosterone is reported to increase the locomotor response to a later challenge with amphetamine. These latter findings suggest that the enhancement of the conditioned place preference is not due to tolerance to the drug’s aversive properties, because cross-tolerance does not occur between the stimulants and morphine. Similarly, cross-sensitization has been found using self-administration procedures. Noncontingent pretreatment with amphetamine, caffeine or nicotine facilitates the later acquisition of cocaine self-administration. An especially intriguing example of cross-sensitization between opiates and amphetamine was reported recently by Cunningham and Kelley. These researchers found that the repeated intra-accumbens application of a mu receptor agonist (morphine or DAMGO) for 4 days potentiated (sensitized) the ability of systemic amphetamine to later enhance responding for a conditioned reinforcer; i.e., a light/tone previously paired with food.

It was mentioned above that cross-sensitization to the psychomotor-activating effects of drugs can occur not only between drugs, but between drugs and stress. Therefore, the effects of prior stress on the incentive motivational effects of drugs are also of interest. Indeed, prior stress (tail pinch) facilitates the acquisition of an amphetamine self-administration habit. A number of potentially stressful environmental manipulations, such as social isolation or prenatal stress, are reported to increase sensitivity to amphetamine and facilitate amphetamine or cocaine self-administration behavior.

In conclusion, these studies establish that not only are the ‘psychomotor-activating’ properties of addictive drugs sensitized by repeated drug administration, but their incentive motivational properties are sensitized as well. Animals sensitized to amphetamine, cocaine or morphine later show an enhanced preference for an environment associated with drug administration and animals sensitized to amphetamine or cocaine show enhanced vulnerability to acquire a drug self-administration habit. Obviously, sensitization to the incentive motivational properties of drugs (and drug-related stimuli) could have a profound influence on the development of addictive behavior. With more and more drug experience the incentive value of the act of drug-taking and of drug-related stimuli would be progressively enhanced, which would increase the probability of repeating drug-seeking and drug-taking behavior in the future (although, see Note 1 in Ch. 6 for a discussion of the role of response contingency in drug sensitization).
4.2.3. The neural basis of behavioral sensitization. The behavioral studies summarized above strongly suggest that the repeated administration of many different addictive drugs produces gradual and incremental neuroadaptations that render animals hypersensitive to these agents. The behavioral studies also provide prima facie evidence that sensitization-related neuroadaptations involve a hypersensitivity in mesotelencephalic dopamine systems. A change in dopamine neurotransmission is implicated for a number of reasons. First, the behaviors that are sensitized by addictive drugs are known to involve an activation of mesotelencephalic dopamine systems. There is considerable evidence that both the psychomotor-activating effects and the incentive motivational effects of many of these drugs require the integrity of mesotelencephalic dopamine systems, especially dopamine projections to the ventral striatum\(^\text{362}\). Second, the activation of dopamine systems appears to be necessary to induce sensitization. The sensitization produced by amphetamine, cocaine or morphine is prevented by co-treatment with dopamine antagonists\(^\text{121,187,344,345,352}\) (see ref. 160 for a review) and amphetamine sensitization is prevented by a 6-OHDA lesion\(^\text{293}\). Third, the application of amphetamine or morphine directly into the ventral tegmental area, where dopamine cell bodies are located, induces sensitization\(^\text{160}\). Fourth, a local challenge injection of amphetamine into the lateral ventricle\(^\text{288}\) or nucleus accumbens\(^\text{178,233}\) evokes a sensitized behavioral response in animals treated previously with systemic amphetamine.

Perhaps even more importantly, behavioral sensitization is accompanied by changes in mesotelencephalic dopamine activity\(^\text{160,257,209,174,354}\). For example, amphetamine sensitization is accompanied by an increase in amphetamine-stimulated dopamine release from striatal tissue in vitro\(^\text{48,176,178,271,358,375}\). More recently, in vivo microdialysis studies have shown that although amphetamine sensitization is not accompanied by changes in the basal extracellular concentration of dopamine, it is associated with an enhanced dopamine response to a drug challenge\(^\text{144,166,231,269,274,370}\) (cf. ref. 295). Even the local application of amphetamine into the ventral tegmental area sensitizes the dopamine release produced by a subsequent systemic challenge with amphetamine\(^\text{347}\). A similar enhancement in dopamine response has also been reported in association with sensitization to cocaine\(^\text{3,157,167,236,238}\) (cf. ref. 296), ethanol\(^\text{7,24}\), nicotine\(^\text{23,101,123}\) (cf. ref. 65), morphine\(^\text{154,160}\) (cf. ref. 155), phenylethylamine\(^\text{189}\) and methylphenidate\(^\text{177}\) and following cross-sensitization between different drugs\(^\text{4,159,166}\) and between drugs and stress\(^\text{156,159,160,315,320,358}\). Furthermore, co-treatment with a dopamine receptor antagonist, which prevents the induction of behavioral sensitization to methamphetamine, also attenuates the dopaminergic response to a methamphetamine challenge assessed with microdialysis\(^\text{121}\). Although there is no convincing evidence for sensitization-related changes in dopamine receptor binding\(^\text{372}\), there is electrophysiological evidence for an increased sensitivity of nucleus accumbens neurons to iontophoretically applied dopamine in cocaine sensitized rats\(^\text{124,354}\). It is possible, therefore, that sensitization produced by cocaine and amphetamine is also accompanied by changes in the transduction of dopamine receptor-mediated events\(^\text{15,112,124,140,265,276}\).

The biophysical basis of sensitization-related changes in dopamine neurotransmission is not known. There have been a number of hypotheses proposed, including changes in autoreceptor sensitivity, changes in the intraneuronal distribution of dopamine leading to enhanced release, changes in the dopamine uptake carrier and changes in transduction mechanisms\(^\text{6,160,188,226,269,354}\). It is not known, however, whether the behavioral sensitization produced by different drugs involves the same or different cellular and molecular changes. Even the processes involved in the induction of sensitization differ from those involved in the expression of sensitization\(^\text{160,233,269}\). Furthermore, sensitization-related changes in dopamine systems have been emphasized here because only dopamine systems have been studied in any detail. But neuroadaptations in other neurotransmitter systems that interact with dopamine systems must also be considered. For example, glutamate systems have been implicated in recent studies showing that glutamate antagonists, like dopamine antagonists, prevent the induction of sensitization\(^\text{161,163,164,369}\).

In summary, there is considerable experimental evidence in support of Criterion 2. The repeated administration of many different addictive drugs produces behavioral sensitization and behavioral sensitization is associated with hypersensitive mesotelencephalic dopamine systems.

4.3. Criterion 3: sensitization-related neuroadaptations should be very long-lasting

One of the most striking characteristics of sensitization is its persistence. A single injection of amphetamine, cocaine or morphine induces behavioral sensitization lasting for weeks to months\(^\text{10,197,236,237,267,302}\) and animals sensitized with escalating doses of amphetamine remain behaviorally hypersensitive to an amphetamine challenge for at least 1 year\(^\text{222}\). In fact, Paulson et al.\(^\text{232}\) found that rats were just as sensitized a year following the discontinua-
tion of amphetamine pretreatment, which is over one third of their life-span, as they were at 2–4 weeks. These findings suggest that after at least some pretreatment regimens the neuroadaptations responsible for behavioral sensitization to amphetamine may be essentially permanent. Similarly, behavioral sensitization in rats is reported to persist for over 3 months following pretreatment with cocaine \(^{304}\), for over 50 days following pretreatment with methylphenidate \(^{301}\) and for over 8 months following pretreatment with morphine \(^{12,17,302}\).

It is not known if sensitization to the incentive motivational properties of drugs persists for as long as sensitization to their psychomotor-activating effects, but this is obviously an important issue for the Incentive-Sensitization Theory. To the extent that sensitization to the psychomotor-activating effects and the incentive motivational effects of drugs have a common neural basis we would expect both effects to show comparable persistence. Neither have neurochemical studies been conducted as long as a year following drug pretreatment. But sensitization-related changes in dopamine systems have been reported to persist for months after withdrawal \(^{260,272}\). The available evidence suggests, therefore, that the neuroadaptations underlying behavioral sensitization meet the criterion of persistence.

4.4. Criterion 4: the expression of sensitization-related neuroadaptations should be amenable to conditioned stimulus control

The Incentive-Sensitization Theory of Addiction posits that drugs sensitize a neural system that mediates 'wanting'. It is also hypothesized that associative processes focus exaggerated 'wanting' (craving) specifically onto drug-related stimuli. This implies that the behavioral expression of sensitization-related neuroadaptations should be strongly influenced by associative factors.

Indeed, the environmental context in which drugs are experienced can have profound effects on the development and expression of sensitization. Stewart \(^{323}\) recently reviewed the literature on the conditioned stimulus control of sensitization and the reader is referred to this paper for a more detailed and excellent discussion of such issues. In brief, Stewart \(^{323}\) points out that the conditioned stimulus control of sensitization can take one of two basic forms, depending to some extent on experimental design. In one design the drug (the UCS), which produces a pharmacological effect (the UCR), is given only in association with unique environmental cues (CS). After repeated pairing of the UCS and CS, the CS alone can acquire the ability to elicit drug-like responses (CR). For example, after repeated administration of a dose of amphetamine that produces locomotor hyperactivity, just placing an animal in the environment in which it previously received amphetamine is sufficient to produce conditioned locomotor hyperactivity, in the absence of any drug. A number of researchers have reported drug-environment conditioning of this type and have suggested these conditioned effects contribute to the development of sensitization \(^{12,28,283,323}\) (see ref. 338 for a review).

A second type of conditioned stimulus control of sensitization is the situation where, after explicit pairing of a drug and specific test environment, animals are administered a 'challenge' injection of the drug in either the drug-paired environment or in a new environment. In this case one observes the effect of the CS (the environment) on the response to the UCS (the drug). In some experiments of this type the expression of sensitization has come under complete conditioned stimulus control. For example, Post et al. \(^{257}\) reported that rats given ten daily injections of 10 mg/kg of cocaine in a test environment showed a progressively greater behavioral response (locomotor activation) to the drug, but animals given daily injections of cocaine in their home cage did not show evidence of behavioral sensitization when subsequently challenged with cocaine in the test environment. Similarly, Vezina and Stewart \(^{344}\) reported that repeated injections of morphine into the ventral tegmental area produced evidence of sensitization on a subsequent challenge test only when rats were tested in the environment where they received morphine. In addition, the conditioned stimulus control of sensitization may not only enhance the expression of sensitization in drug-paired environments, but may also inhibit the expression of sensitization in environments that predict the absence of the drug. For example, Vezina and Stewart \(^{344}\) found that the locomotor response to an intra-ventral tegmental area challenge injection of morphine in explicitly unpaired animals was significantly depressed relative to saline-pretreated controls (also see ref. 328). Nevertheless, sensitization is not only a conditioned response, even though the expression of sensitization can come under strong conditioned stimulus control, a point that has been made by a number of authors \(^{40,210,272,323,346}\).

Our discussion of the conditioned stimulus control of sensitization has focused thus far on the effects of drug-associated stimuli on the subsequent response to drugs. It is important to know, however, whether environmental stimuli associated with drugs can also influence the response to other incentive stimuli; even non-drug-related stimuli. This issue has received al-
most no experimental attention, despite its theoretical importance. Nevertheless, it was addressed in one study by Mitchell and Stewart. In this study male rats were given morphine either in a test arena or their home cage, every other day for four injections. All rats were then placed in the test arena in the presence of a receptive female. Rats pretreated with morphine in the test arena showed more frequent female-directed behaviors than either rats pretreated with morphine in their home cage or saline-pretreated controls. The enhancement of sexual behavior produced by the drug-associated environment did not involve changes in copulatory behavior per se, but only in the appetitive behaviors leading to copulation, including more frequent "pursuit of the female, anogenital exploration and partial mounts and... shorter latencies to initiate copulation" (p. 367). That is, the female appeared to be a more salient incentive stimulus in male rats tested in the presence of morphine-associated cues. These results suggest that sensitization to drugs may change neural systems that not only modulate the incentive properties of drug-associated stimuli, but the incentive properties of 'natural incentives'. This is important because it implies that drug-associated stimuli may potentially influence a wide range of motivated behaviors.

To summarize thus far, we have addressed the first four criteria, and reviewed evidence to establish that: (1) Many different addictive drugs activate a common neural system, the mesotelencephalic dopamine system; (2) Repeated administration of many addictive drugs causes dopamine systems to become hypersensitive and this is accompanied by a gradual and incremental increase (sensitization) in the psychomotor-activating and incentive motivational properties of drugs; (3) The neuroadaptations underlying sensitization are extremely persistent; and (4) The expression of sensitization is subject to conditioned stimulus control.

We next need to address Criteria 5 and 6. Criterion 5 requires that the neural system sensitized by repeated treatment with addictive drugs normally mediate the incentive motivational effects of drugs and drug-related stimuli. Criterion 6 requires that this neural system not mediate the subjective pleasurable effects of drugs or the pleasure associated with other stimuli.

4.5. Criterion 5: the role of mesotelencephalic dopamine systems in incentive motivation

There is a wealth of evidence implicating dopamine systems in the incentive motivational effects of drugs, as well as of food, sex and other natural incentives. Antagonist drugs that prevent the activation of dopamine receptors or the complete destruction of mesotelencephalic dopamine projections by neurochemically selective toxins, impair the instrumental performance of animals for food, and for electrical brain stimulation. A great deal of effort has been directed towards ascertaining whether the suppression of dopamine neurotransmission produces changes in behavior because of effects on the control of movement or because of effects on incentive motivation and a variety of experimental paradigms have been developed to distinguish between motor and motivational effects (see Note 2 in Ch. 6). It is now generally accepted that dopamine antagonists can have effects on behavior that are truly motivational. This is not to say they may not also have effects that are 'motor', but in many cases the effect on behavior is precisely what one would expect if dopamine antagonism reduced the motivational properties of incentives.

In summary, the large literature on the role of dopamine in mediating the incentive motivational effects of drugs and other stimuli satisfies Criterion 5. What of Criterion 6, which requires that dopamine not mediate the subjective pleasurable effects of drugs or the pleasure associated with natural incentives?

4.6. Criterion 6: the effects of dopamine are on incentive salience, not pleasure

The evidence that brain dopamine systems mediate the incentive motivational effects of natural incentives and addictive drugs provided the basis for Wise's provocative anhedonia hypothesis: the hypothesis that mesotelencephalic dopamine systems...
mediate the subjective pleasure produced by food, drugs, electrical brain stimulation, etc. and that dopamine antagonists suppress the pleasure produced by these agents. The anhedonia hypothesis provided a parsimonious explanation of dopamine's motivational effects by equating it with the psychological process of subjective pleasure *.

If the motivational properties of natural incentive stimuli or drugs depended only on their ability to produce subjective pleasure, then the effects of dopamine manipulations on motivated behavior would be compelling evidence for the anhedonia hypothesis. We suggest, however, that incentive motivation depends on a number of additional psychological processes that interact with pleasure: including associative learning and the attribution of incentive salience to external events and their representations 27,28. It is the entire complex of pleasure, learning and incentive salience + together that comprise the process of incentive motivation †.

4.6.1. Incentive salience. Of particular importance to the Incentive-Sensitization Theory of Addiction are the relative roles of 'wanting' and 'liking' in incentive motivation. The idea that there may be a psychological process (and neural substrate) responsible for 'wanting' incentives that is dissociable from the psychological process (and neural substrate) responsible for 'liking' incentives has not been considered explicitly in previous theories of incentive motivation 30,339. ** Based on a series of studies on the relationship between taste pleasure and appetite, such a dissociation was recently proposed 27,28. Berridge and his colleagues hypothesized that a psychological process specifically involving the attribution of salience to incentive stimuli (incentive salience) results in the experience of 'wanting'. This view of incentive motivation posits that salience attribution is a specific psychological process that is activated normally in conjunction with pleasure ('liking') and associative learning in the creation of new incentives. As new incentives are acquired particular stimuli that allow an individual to recognize an incentive (e.g., the sight of food; in nature, a flowering plant that signals the availability of food; or, in the laboratory, a tone that predicts food), become associated with the pleasure food produces by the process of classical conditioning. The stimulus features of the incentive predict the pleasure that will follow and may elicit conditioned pleasure. But conditioned stimulus features also become themselves the target of a separate and powerful motivational process — salience attribution. Salience attribution transforms the sensory features of the incentive stimulus into an especially salient percept, which 'grabs attention', becomes attractive and 'wanted' and thus guides behavior to the incentive. That is, new incentives become attractive in their own right as conditioned incentives † (also called conditioned or secondary reinforcers).

Thus, the role of salience attribution in incentive motivation is proposed to occur as the third stage of a three-stage process (see Fig. 2). First, pleasure is normally activated by an encounter with a natural incentive, such as when an hungry animal eats food. In the normal course of events, pleasure is a necessary step in the establishment of a new conditioned incentive. However, pleasure ('liking') is not by itself sufficient to motivate behavior 28. Pleasure by itself has no object or action. Assignment of pleasure to something requires associative learning, which is the second stage in the formation of incentives.

If pleasure is assigned to an action or stimulus by associative learning, then the action or stimulus should come to predict pleasure or elicit pleasure, on its own. No doubt this often happens. But we would argue that neither the experience of pleasure nor the expectation of impending pleasure by themselves constitute 'wanting' 27,28. 'Wanting' requires an additional process: the attribution of incentive salience to stimuli or actions. Stimuli that are attributed with incentive salience become attractive and demand attention. Like the sight of food to a starving person, they cannot be ignored. This does not necessarily make them 'liked'; the sight of food may be irresistibly attractive to the starving person, but if out of reach it may torment rather than please. But the food is still much 'wanted'. In summary, incentive motivation is proposed to involve three distinct psychological processes acting together; pleasure, associative learning and incentive salience and different neural systems are thought to be responsible for each 27,28. ***

Changes in any one of these three processes that

* Note, however, that in discussing his anhedonia hypothesis of dopamine blockade Wise 361 stated: "The anhedonia hypothesis is most vulnerable in its assumption that positive hedonic states such as pleasure or euphoria are attenuated by neuroleptics. This is, for the most part, speculation" (p. 184).

** Although neither Bindra nor Toates distinguished 'wanting' from 'liking', Toates 339 did distinguish the associative control of 'wanting/liking' from mere recall of past 'wanting/liking'. For example, as in the Krickhaus effect, a stimulus that is ordinarily not 'wanted' or 'liked' may suddenly become 'wanted/liked' on the basis of its prior associations when physiological state is changed 185.

*** For a discussion of evidence that most motivated behavior is primarily controlled by incentive processes see Toates 339.
functions. In these latter experiments animals must previously associated with a primary incentive, such as hypothesis of Wise) and the hypothesis that dopamine mediates incentive salience. Likewise, studies on potentiating effects. Barry Everitt potentiate the incentive properties of conditioned reinforcers are consistent with both interpretations of dopamine neuroadaptations underlying sensitization would cause drugs to be ‘wanted’ or craved, independently of the pleasure they produce.

Most animal studies on the effects of dopamine antagonists on motivated behavior (summarized in Note 2 in Ch. 6) are equally consistent with the hypothesis that dopamine mediates pleasure (the anhedonia hypothesis of Wise) and the hypothesis that dopamine mediates incentive salience. Likewise, studies on the effects of manipulating dopamine systems on the incentive properties of conditioned reinforcers are consistent with both interpretations of dopamine function. In these latter experiments animals must learn a new instrumental response (a bar press) that is reinforced only by a stimulus (light/tone) that was previously associated with a primary incentive, such as food, water or a mate. Manipulations that increase dopamine neurotransmission in the ventral striatum potentiate the incentive properties of conditioned reinforcers and manipulations that decrease dopamine neurotransmission in the ventral striatum block these potentiating effects. Barry Everitt has suggested these studies support a view that, in some way ‘ventral striatal dopamine makes the world brighter’ (Catecholamine Symposium. Amsterdam. 1992). This view is compatible with the attribution of incentive salience hypothesis proposed here. Nevertheless, these studies could also be interpreted in support of the ‘pleasure’ hypothesis and therefore, they do not resolve the issue.

4.6.2. Introspection into ‘wanting’ and ‘liking’. At first glance it seems it should be relatively easy to resolve the issue by asking people to report what effect dopamine antagonist drugs have on the subjective effects of addictive drugs. Indeed, Wise challenged researchers to test this hypothesis, arguing that “it would be procedurally simple for workers using neuroleptics with human subjects to determine the effects of these drugs on the subjective effect of rewarding stimuli”. Despite his challenge, the relationship between dopamine blockade and anhedonia remains equivocal and the data are inconsistent.

In light of the incentive salience hypothesis, however, assessment of the effects of dopamine blockade on subjective pleasure in humans may not be as simple as Wise thought. In fact, it may be an especially difficult task. Humans may not, under normal conditions, be able to subjectively tell the difference between the two psychological processes of ‘wanting’ versus ‘liking’. Studies of introspection and self-report have established that humans often (a) report psychological ‘events’ that can be shown to have not happened; (b) strongly deny the existence of psychological events that can be shown to have influenced their behavior; and (c) confuse events that are not connected. Under many circumstances humans actually have very little direct access into the nature of their own psychological processes. Rather, introspection appears to interpret underlying processes in ways that seem plausible to the person. Introspection does not reveal psychological processes directly. This implies that a person might mistake a change in incentive salience for a change in pleasure (‘If I don’t want it, then I must not like it.’). It may be possible to distinguish between changes in ‘wanting’ and ‘liking’ by asking appropriate questions that tap into different aspects of a person’s reaction to an incentive, but this will have to be approached with great sophistication and caution.

4.6.3. Evidence that mesotelencephalic dopamine mediates incentive salience, not pleasure. Although the studies cited above are equivocal, there are at least four lines of evidence which lead us to suggest that sensitization of dopamine neurotransmission produces enhanced incentive salience rather than enhanced pleasure. The evidence is based both on reports by human addicts of their own experience and on studies in animals on the role of dopamine in sensory pleasure and motivated behavior.

– The first line of evidence comes from animal studies that have explicitly examined the role of dopamine in mediating natural reactions to the sensory qualities of tastes. These studies have used the ‘taste reactivity paradigm’, which is based upon natural hedonic and aversive reactions (tongue protrusions, gapes, forelimb
Fig. 2. A schematic illustration of a major existing model of the psychological processes that constitute incentive motivation (A, top) and our alternative model, which proposes a separate process of incentive salience and accounts for the consequences of drug-induced sensitization (B, bottom). Panel A: the ‘Toates/Bindra model’ of incentive motivation, on which our model is based (adapted from Toates339). By this model the sensory stimuli (CS and UCS) of incentive objects are both pleasant and attractive. Their ability to produce an incentive motivational state (Ki) is partly dependent on memories of previous favorable experiences with them. Physiological states (such as hunger, thirst or withdrawal) selectively potentiate the ability of particular stimuli (related to food, water or drugs) to evoke incentive processes: to become ‘wanted’ and ‘liked’ (see Toates339 for a more complete description of this model). Panel B: in our modified model of incentive motivation the psychological process (and neural substrate) responsible for incentive salience (‘wanting’). We further propose that the activation of mesotelencephalic dopamine systems plays a direct role only in the process of ‘wanting’, via the attribution of incentive salience to the perception and representation of conditioned stimuli (as described by Berlidge and Valenstein57; also see Note 4 in Ch. 6). In Panel B the portion of the model (i.e., the psychological process) that is sensitized by repeated drug administration is ‘highlighted’ within the shaded box. It is the hyperactivation of this specific psychological process (incentive salience), due to sensitization of its neural substrate by drugs, that results in the excessive attribution of incentive salience to drug-related stimuli. Whereas normal levels of incentive salience attribution results in normal ‘wanting’, we propose hyperactivation of this system results in excessive incentive salience attribution, which is experienced as craving. Craving is pathologically intense ‘wanting’. The major difference between our model of incentive motivation and the traditional model is that in ours the psychological processes and neural substrates responsible for pleasure (‘liking’) are separate from those for incentive salience (‘wanting’). Thus, in our model ‘natural incentives’ (UCS stimuli) produce pleasure directly, but produce incentive salience and elicit goal-directed approach behavior only indirectly (as indicated by the dashed arrow from ‘pleasure integrator’ to the ‘incentive salience attributor’). The direction of incentive salience attribution to stimuli that preceded or accompanied incentive salience activation is determined by associative learning. Thus, activation of the incentive salience attributor by a UCS results in incentive salience being assigned to the perception of conditioned stimuli that were originally neutral (such as the sight of a syringe) and to their mental representations. This is what makes conditioned stimuli attractive and ‘wanted’ and able to elicit approach. Conditioned stimuli (and UCS’s) are always compared against past associative memories. Without the direction provided by associative learning, incentive salience could not be focussed upon any single target. Although diffuse attribution of incentive salience would be both psychologically and behaviorally activating, without associative direction it would not be sufficient to guide behavior towards a specific goal. Familiar conditioned stimuli that have been paired with incentive salience attribution in the past are the target of incentive salience when encountered again, especially when an animal is in particular physiological states (indicated by the arrow from ‘physiological drive cues’). Incentive salience assigned to conditioned stimuli must be further ‘reboosted’ each time they are paired again with salience activation (indicated by the dashed arrow from the incentive salience attributor to associative learning). Disruption of this reboosting, by neuroleptics for example, can produce ‘extinction mimicry’ or decay of incentive value. Ordinarily, incentive salience is assigned only to stimuli that have been paired with pleasure. But brain manipulations (such as drugs or electrical brain stimulation) may circumvent pleasure, by activating the neural substrate of incentive salience directly. This will result in the attribution of incentive salience to associated stimuli and actions and result in their becoming ‘wanted’, even in the absence of pleasure. This can be considered a kind of ‘sham reward’ (see glossary entry for reward). Sensitization of the neural substrate for incentive salience will lead to pathological ‘wanting’ (craving) for stimuli associated with its excessive activation (e.g., those involved in drug taking), even if this produces little or no pleasure. As mentioned above, the direction of incentive salience by associative learning is the primary determinant of exactly which stimuli become craved. Thus, in the addict, drug-paired stimuli, which have been experienced repeatedly in association with the excessive stimulation of dopamine systems, become the nearly exclusive targets for the attribution of incentive salience. Other contributions of associative learning are also possible in this model. For example, the pleasure elicited by a UCS can change with repeated experiences, as when one develops an appreciative palate for Scotch whiskey (this is indicated in the model by the arrow from learning to the ‘pleasure integrator’). Also, a CS that has been repeatedly paired with pleasure can come to itself elicit subjective pleasure, as in the example of a conditioned ‘high’ reported by ‘needle freaks’ (arrows from the CS to the ‘pleasure integrator’ via associative learning). But we suggest these effects are separate from the attribution of incentive salience and that they have only a relatively weak influence on motivated behavior, compared to the craving produced by the attribution of excessive incentive salience. Finally, we suggest that none of the psychological processes described in this model, except for subjective ‘wanting’ (craving) and subjective pleasure, are apparent to conscious awareness. The interaction among incentive salience, pleasure and associative learning is not available to introspection. Only the final products of the interaction are interpreted by cognitive mechanisms (not shown in the figure, see Nisbett and Wilson228) as subjective ‘wanting’ and ‘liking’. For an addict, whose neural substrates of incentive salience have been sensitized, the subjective product is dominated by the intense experience of drug craving.
flails, etc.) that rats emit to tastes119. Much like the facial expressions that human infants display to sweet or bitter tastes319, these hedonic and aversive reactions reflect the perceived pleasure or displeasure of a taste sensation. The reactions of rats to taste are altered by many of the same things that control human perceptions of taste pleasure. The sensory pleasure of sweetness to humans, for example, is enhanced by hunger and suppressed by caloric satiety41,42. Hedonic reactions of rats to sweet tastes are similarly enhanced by hunger and suppressed by satiety26,43. The taste pleasure of a palatable food for humans can be abolished and replaced with subjective aversion by associative pairing of that food with gastrointestinal illness278. Similarly, hedonic reactions of rats to sweetness are abolished and replaced by aversive behavioral reactions after associative pairing of that taste with illness119. Finally, drugs that affect opioid or GABA neurotransmitters can enhance or suppress the hedonic reactions of rats to tastes in ways that should be expected based on current theories of the role of these neurotransmitter systems in taste pleasure25,230,340.

Application of the ‘taste reactivity paradigm’ to the role of mesotelencephalic dopamine systems in taste pleasure and motivated behavior leads to the conclusion that dopamine systems do not mediate taste pleasure, although they do mediate the incentive motivational properties of foods. There are three lines of evidence leading to this conclusion. (1) Dopamine antagonists do not decrease the sensory pleasure of tastes, measured by hedonic reactions, although they can decrease their incentive value. Conversely, dopamine agonists do not increase the sensory pleasure of tastes, although they can increase their incentive value346. (2) A bilateral neurotoxic lesion (6-OHDA), which depletes dopamine from the nucleus accumbens and caudate nucleus, does not diminish the hedonic evaluation of tastes, even though it completely abolishes the motivation to eat and renders natural incentives ineffective (ref. 28 and unpublished data). (3) Activation of the motivation to eat by electrical stimulation of the lateral hypothalamus, which is mediated in part by dopamine systems, does not potentiate the hedonic evaluation of tastes27.

These experiments suggest, therefore, that the role of dopamine systems in behavior motivated by food is not to enhance the sensory pleasure of tastes. Or, put another way, these experiments suggest that neural systems mediating ‘wanting’ food can be dissociated from neural systems mediating ‘liking’ food and that dopamine activates ‘wanting’. This is what would be expected if dopamine mediates the salience of incentive stimuli, rather than the sensory pleasure evoked by incentive stimuli (Fig. 2). These findings are precisely what would be expected on the basis of our hypothesis that dopamine systems mediate the incentive motivational effects of drugs and are dissociable from other neural systems that mediate the subjective pleasurable effects of drugs and other stimuli. This kind of dissociation would explain the findings reported by Fischman and Foltin35 and by Lamb et al.192 (see above). You will recall that in these studies a low dose injection of cocaine or morphine motivated drug-taking behavior in ‘postaddicts’, but did not produce self-reported subjective pleasure.

- The second line of evidence that dopamine mediates incentive salience rather than sensory pleasure comes from a series of electrophysiological experiments on the conditions under which dopamine neurons discharge in behaving animals289. When monkeys are first exposed to a novel situation dopamine neurons discharge to new, unexpected stimuli that produce orienting behavior. But these neuronal and behavioral responses soon habituate199. Dopamine neurons also respond when an animal encounters a natural incentive, such as when it touches food located out-of-sight or, in a learning task, when liquid in delivered to the mouth199,287. However, when a neutral stimulus (e.g., light) is paired with the availability of a natural incentive, dopamine neurons soon stop responding to the natural incentive and start to discharge most vigorously in response to the newly established \textit{conditioned incentive stimulus}199 (also see ref. 217). Dopamine neurons do not discharge when the animal actually eats the food, which they should if dopamine mediated the sensory pleasure associated with incentives (ref. 330 as well). Similarly, Kosobud et al.103 reported in a recent poster that in rats trained to bar press for sucrose, VTA unit activity increased prior to the presentation of sucrose. Dopamine neurons did not increase activity after sucrose presentation, when presumably the animal would experience sensory pleasure. Finally, the activity of dopamine neurons can be dissociated from non-incentive aspects of a situation and from the details of motor behavior, because their discharge is not coupled to “mnemonic or preparatory representational task components” (ref. 198, p. 337), to the execution of reaching movements to obtain and retrieve food or to a light unassociated with food199,287,289. Studies in cats also suggest that VTA dopamine neurons do not discharge in relation to most phasic movements330,341.

In summary, dopamine neurons discharge under conditions consistent with an attribution of incentive salience hypothesis of dopamine function77,78. They change their rate of discharge to a stimulus as the incentive value of the stimulus changes; as the stimulus
becomes more or less salient. Indeed, Schultz288 concluded that their electrophysiological experiments “are consistent with the conclusion that dopamine neurons respond specifically to \textit{salient stimuli} that have alerting, arousing and attention-grabbing properties” (p. 134, our italics)a.

- A third line of evidence that dopamine mediates incentive salience rather than sensory pleasure comes from recent studies using high speed chronamperometry to measure nucleus accumbens dopamine activity during i.v. self-administration of heroin or cocaine115,172. In trained animals the first few drug injections greatly elevated a dopamine-related electrochemical signal. However, detailed analysis of the time course of changes in the dopamine-related electrochemical signal, relative to subsequent injections, revealed that the dopamine-related signal increased prior to drug self-administration, peaked at the time a response was initiated and then significantly decreased immediately following drug infusion. This is consistent with the view that dopamine mediates the incentive salience attributed to a drug-associated stimulus (presumably the lever in this case), because as extracellular dopamine increased drug ‘wanting’ would increase, to the point that an animal would initiate another drug infusion. The results are not consistent, however, with the view that dopamine mediates subjective pleasure (in which case dopamine should rise after drug administration). Neither are they consistent with the view that drug responding is initiated by withdrawal symptoms associated with dopamine depletion, as suggested, for example, by Dackis and Gold64. A dopamine depletion hypothesis would predict that animals should initiate a drug infusion when the dopamine signal is at its lowest, not highest. Of course, a dopamine depletion/withdrawal hypothesis, such as that proposed by Dackis and Gold64, also suffers from the shortcomings associated with all negative reinforcement hypotheses of addiction, which were discussed above.

- The fourth line of evidence that dopamine is more likely to produce enhanced incentive salience than enhanced drug pleasure comes from a consideration of the relative patterns of change in drug ‘wanting’ vs. drug ‘liking’ reported by human addicts during the gradual development of addictive behavior (Fig. 3). The pleasure induced by drugs does not increase if the dose of a drug is held constant over the course of repeated administrations. In fact, if pleasure changes at all it decreases with repeated administrations (although, see Note 5 in Ch. 6). If increased synaptic activity in sensitized dopamine systems were the neural substrate of pleasure, a given dose should produce more and more pleasure with repeated experience, rather than less and less (or no change).

Although the pleasure produced by a drug does not increase for human addicts, the craving for the same drug does increase with repeated experience (Fig. 3). An increase in ‘wanting’ drugs, as evidenced by self-report and by progressively more compulsive drug-seeking and drug-taking behavior is, of course, the defining characteristic of drug addiction. An increase in drug craving without an increase in drug pleasure cannot by explained on the assumption that sensitization enhances a dopaminergic mechanism mediating the subjective pleasure of drugs (see Note 3 in Ch. 6). But this increasing dissociation between drug ‘wanting’ and drug ‘liking’ is precisely what would be expected if enhanced activity at dopamine synapses were the neural substrate responsible for incentive salience (see Note 4 in Ch. 6).

5. ELABORATION OF THE INCENTIVE-SENSITIZATION THEORY AND ITS IMPLICATIONS

In this section we will elaborate more precisely how the major features of addiction are explained by the Incentive-Sensitization Theory of Addiction and discuss implications of the theory. To summarize the

a Schultz288 tentatively suggested that the common psychological process underlying the discharge of dopamine neurons may be “motivational arousal”, but also noted this was not completely satisfactory because “dopamine neurons respond every few seconds to the same stimuli over several tens of trials without habituation9,92,275,287,289, whereas arousal should be a longer lasting state not repeatedly induced at such short intervals” (p. 135). We suggest that the conditions under which dopamine neurons discharge are better described by the hypothesis that dopamine neurons attribute incentive salience67,28. Fig. 3. A schematic illustration of the hypothetical relationship between changes in the incentive value of drugs and drug-related stimuli (drug 'wanting') vs. the subjective pleasurable effects of drugs (drug 'liking') during the development of an addiction. The development of an addiction is characterized by an increasing dissociation between the incentive properties of drugs, which gradually increase and the subjective pleasurable effects of drugs, which are shown here to slightly decrease (develop tolerance; but also see text and Note 5 in Ch. 6).
central elements of the theory, we posit the following.
(1) Many addictive drugs have in common the ability to
enhance mesotelencephalic dopamine neurotransmis-
sion and to engage related structures (but see Note 4 in
Ch. 6). (2) A psychological function of this neural
system is to attribute incentive salience to the percep-
tion and mental representation of stimuli and actions,
especially those that have been associated with activa-
tion of the system; to cause them to become highly
salient, attractive and ‘wanted’. (3) Repeated and in-
termittent administration of addictive drugs leads to
inclemental neuroadaptations in this neural system,
which render it increasingly and perhaps permanently
hyperresponsive (sensitized). (4) Associative control of
this sensitized neural system causes tremendously en-
chanced incentive salience to be attributed to the act of
drug taking and to stimuli associated with drug taking
(i.e., to the acts and stimuli most closely associated
with hyperactivation of dopamine systems); and thus,
in the addict, drugs come to be pathologically ‘wanted’
(craved). (5) Sensitization of the neural system respon-
sible for incentive salience can motivate addictive be-
behavior (compulsive drug seeking and drug taking) inde-
pendent of other motivating factors, such as the expec-
tation of drug pleasure or the aversive properties of
withdrawal. The associative targeting of sensitized in-
centive salience to drug-related stimuli results in the
persistence of addictive behavior even in the face of
many disincentives: for example, the loss of reputation,
job, home and family (see Note 6 in Ch. 6).

We have argued that addictive behavior is motivated
by the excessive ‘wanting’ of drugs (drug craving).
Therefore, the first major issue we need to address is:
why do addicts crave drugs independently of drug plea-
asure and withdrawal? What is the neuropsychologi-
cal process that results in obsessive craving for drugs,
leading to compulsive drug-seeking and drug-taking
behavior, even when the drug may produce little plea-
sure? The second fundamental question we need to
address concerns why drug craving persists for so long
after the discontinuation of drug use and after the
cessation of withdrawal symptoms; i.e., the nature of
recapsc. After this we will discuss the implications of
Incentive-Sensitization for individual differences in the
propensity to addiction, for therapy and the relation-
ship between Incentive-Sensitization and other views
of addiction.

5.1. The independence of drug craving from drug plea-
sure and withdrawal

The Incentive-Sensitization Theory of Addiction
provides an unique neuropsychological explanation for
drug craving. Drug craving is the subjective experience
that accompanies the attribution of excessive levels of
incentive salience to drug-related stimuli (or their men-
tal representations), due to sensitization of dopamine
systems (see Note 4 in Ch. 6). Thus, drug craving is
considered by this hypothesis to be a psychological
process that is distinct from conditioned withdrawal
signs and from either drug-induced pleasure or a condi-
tioned ‘high’. Other views of addiction often consider
 craving to be identical with or the direct result of,
either conditioned withdrawal or a conditioned ‘high’.
For example, Childress et al.50 state: “We have often
used the terms ‘conditioned withdrawal’ and ‘condi-
tioned craving’ almost interchangeably, with the
assumption that craving might be a form of mild with-
drawal” (p. 38). But Childress et al.50 go on to say:
“Our patients did not, however, always subscribe to
this position; reports of craving usually showed low
 correlations with reports of withdrawal. To paraphrase
one indignant user, ‘No, doc, craving is when you want
it – want it so bad you can almost taste it... but you
ain’t sick... sick is, well, sick’”. To this addict with-
drawal sickness clearly is separable from drug
 craving212. Neither is craving equivalent to a condi-
tioned ‘high’, because reports of conditioned ‘highs’
 are uncommon and are thus dissociable from the more
frequent occurrence of both conditioned withdrawal
 signs and conditioned craving, as discussed earlier50,229.

The Incentive-Sensitization view of addiction is in
agreement with the indignant user cited above; craving
is pathological ‘wanting’. It is not due to sickness. It is
distinct from both the unpleasant symptoms of
withdrawal and from drug pleasure. This view is supported
by studies directly relating self-reported craving in-
duced by exposure to drug-associated stimuli to ratings
of withdrawal-like symptoms, drug-like effects and
‘outcome expectancies’80,253. Although exposure to
drug-related stimuli produced a significant increase in
self-reported craving, as well as drug-opposite and
drug-like effects “in a simple additive model the com-
bined effects of positive outcome expectancies, cue-
specific dysphoria and cue-specific drug-positive rea-
tions were able to predict 28% of the variance in
cue-specific craving”... “A much larger proportion of
the variance in craving remains unexplained by these
factors” (ref. 253, p. 1142–1143). We suggest the rea-
son there is only a weak relationship between these
variables and drug craving is that \textit{they do not cause
craving}. Craving is due to excessive activity in a sepa-
rate and sensitized neuronal system that mediates the
attribution of salience to incentives. This is a neuronal
system that normally mediates the ‘wanting’ of things
in the environment. Although this neuronal system
usually functions in concert with neuronal systems that
mediate pleasure (‘liking’), in the addict the normal link between these systems is disrupted and pathological levels of ‘wanting’ become dissociated from ‘liking’. We think this dissociation accounts for the unusual psychological profile of an addict: intense drug craving separated from the normal pleasures and punishments of life *

In this light the irrationality of addictive behavior, which is discussed so eloquently by Falk et al.₉₆, starts to make some ‘sense’. The irrationality of the behavior is due to an increasing dissociation between the incentive properties of drugs (incentive salience) and their subjective pleasurable effects. Because the process of salience attribution can be activated, independent of subjective pleasure, incentive salience can be strong even if pleasure is weak or absent. This is one reason why there is not always a strong correlation between the incentive motivational properties of drugs and their hedonic properties. It is also why people will self-administer low doses of drugs that do not produce subjective pleasure²²₅,²₂₈. Furthermore, the attribution of incentive salience is not a conscious process and the introspective experience of ‘wanting’ or craving is only a person’s interpretation of the outcome of that process. Much of the time the attribution of incentive salience may be more implicit than explicit²²₈. Regardless, the addict can be only subjectively aware of the outcome of excessive incentive salience attribution, craving. The addict may have little insight into the reason for the craving and indeed, may himself be bewildered by its intensity. At a conscious level addicts may recount all of the negative consequences of continued drug use, deplore their situation, even comment why their craving persists. This is one reason why there is not always a strong correlation between the incentive motivational properties of drugs and their hedonic properties. It is also why people will self-administer low doses of drugs that do not produce subjective pleasure²²₅,²₂₈. Furthermore, the attribution of incentive salience is not a conscious process and the introspective experience of ‘wanting’ or craving is only a person’s interpretation of the outcome of that process. Much of the time the attribution of incentive salience may be more implicit than explicit²²₈. Regardless, the addict can be only subjectively aware of the outcome of excessive incentive salience attribution, craving. The addict may have little insight into the reason for the craving and indeed, may himself be bewildered by its intensity. At a conscious level addicts may recount all of the negative consequences of continued drug use, deplore their situation, even comment why their craving persists.

5.2. The development of addictive behavior

The Incentive-Sensitization Theory can explain why the development of an addiction is typically a gradual, progressive process. The attribution of a high level of incentive salience to drug-associated stimuli and the pleasurable effects of drugs, increase the probability drug-related stimuli will attract attention and that drugs will be sought out in the future. If drug use continues, dopamine systems become progressively more sensitized. With each repetition greater and greater incentive salience is attributed to drug-associated stimuli and the associative pairing of drug-related stimuli with the intrinsic activation of dopaminic systems produced by drugs leads to an increasing focus of salience attribution upon just these stimuli. Thus, ‘wanting’ is gradually transformed into craving, drugs become craved to the relative exclusion of all else, and drug-associated stimuli elicit this craving independent of any pleasure they produce. In short, the developing addict comes to ‘want’ drugs more and more because drug-related stimuli become imbued with greater and greater incentive salience, even though at the same time drugs may be ‘liked’ less and less.

5.3. Relapse: drug-induced drug craving

Drug craving sometimes remains high or is even increased immediately after drug administration, when the drug is producing subjective pleasure, as has been reported for alcohol, cocaine, heroin and hydromorphone. This is the proverbial drink that whets the appetite and leads to relapse. Why should this be? As pointed out earlier, this is not consistent with a negative reinforcement view of craving²₃⁹, because the drug should eliminate withdrawal symptoms **. Neither is it consistent with a pleasure-seek-

* Other brain manipulations also are known to 'fracture' behavioral or psychological subsystems whose operations are so intertwined that one's subjective experience is of only one process. An example is the phenomenon of 'blindsight'²²⁰, which refers to the ability of people rendered blind by an occipital cortex lesion to accurately localize visual stimuli presented in their blind visual field, despite having no conscious awareness of perceiving any stimulus. People have no subjective experience of separate psychological processes (and neural systems) underlying the identification vs. the localization of visual stimuli. But an occipital lesion 'fractures' these processes, revealing two distinct psychological processes where there appeared to be only one. Another example is the dissociation of declarative (explicit) and procedural (implicit) memory systems seen following damage to the medial temporal lobes²¹₈. We are not subjectively aware that distinct neural systems are involved in learning to solve puzzles (for example, the Tower of Hanoi puzzle) and learning facts (for example, learning a list of words). But following a bilateral medial temporal lobe lesion the ability to learn and remember facts is lost, whereas the ability to learn and remember puzzles is left intact; although the latter occurs in the absence of conscious awareness. We think that the dissociation between 'wanting' and 'liking' seen in addicts represents a 'fracture' of psychological processes akin to 'blindsight' and the implicit/explicit memory distinction. That is, repeated drug use changes the brain, as a lesion changes the brain, revealing two distinct psychological processes where there subjectively appeared to be only one. Furthermore, like the localization of visual stimuli and procedural learning, the attribution of incentive salience is 'implicit'; it often may occur in the absence of conscious awareness.

** Except according to Solomon's opponent-process theory²⁷⁵, which is the only negative reinforcement theory that can successfully explain relapse induced by re-exposure to the drug. According to Solomon's theory, re-exposure to the drug elicits a moderate a-process or drug-like effect, which in turn triggers the still strong b-process or drug-opponent effect. The problems faced by the opponent-process theory, however, are: (1) it relies entirely upon withdrawal symptoms to motivate addictive behavior and is thus liable to the general criticisms that we described for negative reinforcement theories of addiction; (2) it posits the growth of an opponent-like process during addiction, for which there is no direct evidence other than the phenomena of tolerance and withdrawal themselves (and which is contradicted by evidence discussed above that the incentive properties of drugs show sensitization rather than tolerance); and (3) it posits the opponent-process to be elicited only and always by the a-process, whereas evidence exists that withdrawal and drug pleasure have separate, independent neural substrates²₆₅.
ing view, because a dose sufficient to produce subjective pleasure should satisfy or at least reduce the craving; not exacerbate it. Drug craving at the time of drug taking is consistent, however, with an Incentive-Sensitization view. According to Incentive-Sensitization craving is the subjective experience associated with incentive salience attribution. Because many addictive drugs increase dopamine activity, which produces incentive salience, one would expect drug administration to produce drug 'wanting'.

Indeed, there is considerable evidence that re-exposure to drugs can reinstate compulsive drug-seeking and drug-taking behavior. The idea that ingestion of a formerly abused drug induces a strong motivational state or craving for the drug and that it retains the ability to reinstate this craving over an indefinite period of abstinence from the drug is not new. One of the basic tenets of Alcoholics Anonymous (anonymous, 1939) is that people who have at one time shown uncontrollable drinking and physical dependence are permanently unable to drink moderately; one drink is said to elicit an urge to have another" (p. 257). This phenomenon is usually explained by 'priming' and Stewart et al. have argued that 'priming' reinstates drug use because "the presence of the drug in the body (not its absence) activates appetitive motivational mechanisms that are involved in the reinitiation of drug seeking behavior" (p. 253). An involvement of dopamine in priming is suggested by reports that the infusion of morphine directly into the ventral tegmental area is sufficient to prime responding for i.v. heroin or cocaine, intra-accumbens injection of amphetamine, which selectively activates the mesolimbic dopamine system, can prime responding for i.v. heroin and i.v. morphine can prime responding in animals trained to self-administer cocaine. Furthermore, dopamine systems have been implicated in priming between drug classes. An intra-accumbens injection of amphetamine, which selectively activates the mesolimbic dopamine system, can prime responding for i.v. heroin and intra-ventral tegmental area morphine can prime responding for i.v. cocaine.

According to the Incentive-Sensitization view of addiction, drugs can prime responding for each other because the same dopamine systems are activated by each and dopamine mediates the incentive salience attributed to many different drugs. Therefore, if dopamine systems become sensitized by past drug use it would be expected that a second, novel drug would be able to prime responding and precipitate relapse, as long as the second drug also activates hypersensitive dopamine systems. This idea was proposed previously by Stewart and Vezina, who argued that the ability of opiates and stimulants to prime responding for one another "may be related to the ability of opiates and stimulant drugs to cause sensitization" (p. 287), within dopamine systems. In support of this view, cross-sensitization has been reported to the psychomotor stimulant effects and to the incentive motivational effects of a number of drugs, as well as in the ability of drugs to elevate dopamine neurotransmission (see above for references).

5.4. Relapse: interactions between different drugs and the effects of drug-related stimuli

Not only can the preferred drug of abuse reinstate addictive behavior, but often other drugs can as well; and addicts usually use more than one drug (which is significant in itself). In animals too, priming can occur across drug classes. For example, i.v. amphetamine or bromocriptine can prime the self-administration of heroin and i.v. morphine can prime responding in animals trained to self-administer cocaine. Furthermore, dopamine systems have been implicated in priming between drug classes. An intra-accumbens injection of amphetamine, which selectively activates the mesolimbic dopamine system, can prime responding for i.v. heroin and intra-ventral tegmental area morphine can prime responding for i.v. cocaine.

According to the Incentive-Sensitization Theory of Addiction presented here. We would add only two additional points. First, an Incentive-Sensitization view of addiction identifies the "appetitive motivational mechanism" mentioned by Stewart et al. specifically as incentive salience and not, for example, drug pleasure. Second, we hypothesize that the ability of drugs to produce incentive salience is progressively increased (sensitized) by repeated exposure to drugs because drugs sensitize mesotelencephalic dopamine systems. Thus, in highly sensitized individuals, such as addicts, relapse is the rule rather than the exception, especially after a priming 'taste', because this acts on a hypersensitive neural system that mediates incentive salience – eliciting pathologically strong 'wanting' (craving) and thus relapse.
and objects of craving. Even in the absence of the drug and long after withdrawal signs have faded, drug-related stimuli remain potent conditioned incentives able to elicit the attribution of incentive salience. Indeed, in the context of an Incentive-Sensitization view of addiction this is why environmental stimuli associated with drugs are extremely effective in precipitating relapse in addicts (however, see Note 8).

This view is an alternative to both the conditioned 'high' interpretation and the 'explicit memory' interpretation of relapse discussed above in the section on positive reinforcement/euphoria theories. We suggest the effects of drug-related stimuli on relapse are independent of both drug cue elicited feelings of pleasure (a conditioned 'high') and of the explicit memories of drug taking such cues might elicit. You will recall we argued that an 'explicit memory' hypothesis of relapse places an extraordinary explanatory burden on the assumption that relapse-provoking memories are qualitatively different from the myriad other memories of drugs that do not provoke relapse. We suggest, to the contrary, that conscious remembering in response to cues may be essentially similar to explicit memories that have gone before, neither more vivid nor qualitatively different. The difference in the processes triggered by an effective drug-paired context, which results in relapse when earlier memories did not, may be in associative incentive systems that are not explicitly available to consciousness.

Incentive salience is such an associatively triggered process. It occurs in the absence of awareness and its operation requires no qualitative difference in explicitly conscious memory in order to provoke relapse. Unlike explicit memories, the attribution of incentive salience is an implicit process. It is governed by the laws of associative learning and is influenced by factors that control other forms of implicit learning. Chief among these controlling influences is the gating role of associative context. Context refers to the entire configuration of situational stimuli in which the CS has been learned. Associative context can modulate the effectiveness of any CS. Why then should relapse occur at a particular moment, rather than during earlier memories or earlier encounters with drug-paired stimuli? Presumably because of variations in the completeness of the associative context. The greater the extent to which contextual factors, such as mood, environment and other situational variables, mimic the context of previous drug taking, the more likely relapse will occur.

5.5. Relapse: the role of stress

Relapse to compulsive drug use is not always precipitated by re-exposure to a drug or even by specific environmental stimuli associated with drugs, but sometimes by ill-defined environmental circumstances; including mood changes evoked by stress. A traditional view of why stress may lead to relapse is that it prompts 'escape' from an unpleasant situation via drug taking. An alternative possibility is that sensitization of incentive salience could play a role in stress-induced relapse because addictive drugs and stress both activate dopamine systems and both sensitize dopamine systems. As discussed above, animals previously exposed to drugs such as amphetamine, cocaine or morphine are later hyperresponsive to stress and animals exposed to repeated intermittent stress are later hyperresponsive to the psychomotor stimulant and incentive motivational properties of drugs. According to an Incentive-Sensitization view stress may induce craving and relapse because, by activating dopamine systems, stress would magnify the incentive salience attributed to environmental stimuli. Environmental stimuli that were especially potent as incentives, such as drug-associated stimuli for addicts, would be the focus of enhanced salience due to their associative history. Drug-associated events would become especially craved again as a consequence of stress (see Note 9 in Ch. 6).

It is interesting to speculate that the converse sequence of events could also occur. That is, prior exposure to repeated intermittent stress may predispose susceptible individuals to drug addiction by sensitizing those neural systems that mediate the incentive motivational effects of drugs. In such individuals the incentive motivational effects of an initial drug experience may be significantly enhanced because of drug action on a previously sensitized neural substrate. This would increase the probability that these individuals would show subsequent drug-seeking and drug-taking behavior. Indeed, experimental evidence for such a phenomenon has been reported by Piazza et al., who found that past experience with stress (repeated tail pinch) facilitated the subsequent acquisition of amphetamine self-administration behavior in rats.

5.6. Individual differences in the propensity to addiction

The last feature of addiction we will discuss concerns the fact that the majority of people in this country at some point experiment with drugs, but most do not become addicts. For example, over 55% of 18–34 yr olds have at one time sampled illicit drugs (e.g., marijuana, inhalents, cocaine, heroin or hallucinogens; NIDA National Household Survey on Drug Abuse, 1991). Why do the vast majority of these people not develop an addiction? Why are some individuals more susceptible to addiction than others? Social fac-
tors are important, of course, but even persons from very similar backgrounds differ greatly in their tendency to develop addictive behavior. If, as proposed here, drug-induced neuroadaptations underlying sensitization play a central role in the development of addiction: (1) there should be large individual differences in the susceptibility to sensitization and (2) individual differences in the susceptibility to sensitization should be related to the propensity to addiction.

There are indeed enormous individual differences in the susceptibility to sensitization, a point that has been emphasized by a number of researchers. Some of this individual variation is due to genetic variation, because among animals there are marked strain differences in the susceptibility to sensitization. Strain differences in both rats and mice have been reported in the sensitization produced by repeated treatment with amphetamine, ethanol, cocaine, and morphine. There are also marked strain differences in mesotelencephalic dopamine systems, but we know of no studies directly relating strain differences in the susceptibility to sensitization to strain differences in mesotelencephalic dopamine systems. Nevertheless, it is important that initial studies with recombinent-inbred lines of mice suggest that the genetic determinants of acute responsiveness to drugs are dissociable from those responsible for susceptibility to sensitization. Many behavioral genetic studies on drug responsiveness have focussed on variation in the acute response to drugs, not susceptibility to sensitization. But the Incentive-Sensitization Theory suggests that the susceptibility to sensitization may be most relevant for the development of addictive behavior and, therefore, information on genetic factors leading to high susceptibility to sensitization may be of particular importance in understanding the genetics of addiction.

A number of other factors have been reported to influence individual differences in the susceptibility to sensitization including, age, sex, and hemispheric differences in dopamine systems. Whether the influence of these variables on the susceptibility to sensitization is causally related to the propensity to self-administer drugs or to related variation in dopamine systems is not yet known, although correlational relations have been reported. There are, however, a number of interesting studies on behavioral traits that do predict both the susceptibility to sensitization and the propensity to self-administer amphetamine. For example, responsivity to novelty is reported to predict susceptibility to sensitization. Similarly, animals that eat and drink in response to electrical stimulation of the lateral hypothalamus (not all do) show an enhanced susceptibility to amphetamine sensitization. Most importantly, these same traits are correlated with a propensity to acquire amphetamine self-administration and with differences in dopamine dynamics in the nucleus accumbens. Individual differences in reactivity to novelty, in amphetamine sensitization, and in amphetamine self-administration may involve variation in the responsiveness of the hypothalamo-pituitary-adrenal (HPA) axis. Animals that show a high response to novelty also show a prolonged elevation in plasma corticosterone in this situation, relative to low responders. That the HPA axis may play a role in drug sensitization is suggested by experiments showing that activation of the HPA axis is necessary to induce sensitization to amphetamine or stress, perhaps by the action of corticosterone on glucocorticoid receptors.

5.7. Implications of the Incentive-Sensitization Theory for Therapy

There is considerable interest in developing effective therapies for the treatment of drug addiction, but this has proven to be a very difficult problem. The Incentive-Sensitization view of addiction may provide some insight as to why effective therapies have been elusive, and potentially, may point the way to the development of more effective approaches. 5.7.1. Extinction training. A recent trend in the psychotherapeutic treatment of addiction is based on the recognition that drug-conditioned stimuli are very potent in eliciting craving and precipitating relapse.

There have been attempts, therefore, to ‘extinguish’ conditioned responses to such stimuli. Indeed, the repeated presentation of drug-related stimuli, in a laboratory setting, results in a progressive decline in drug craving elicited by drug-related stimuli. It is interesting, however, that some of the autonomic responses to such stimuli are more resistant to extinction than the subjective effects, and non-specific changes in mood state (especially anger) can rapidly reinstate conditioned stimulus-induced drug craving.

In the context of the Incentive-Sensitization Theory this might occur because the neuroadaptations underlying sensitization persist, despite extinction of the conditioned stimulus control of sensitization. That is, the ability of conditioned stimuli to control the expression of sensitization may be thought of as learning-related neuroadaptations layered ‘on-top’ of the neuroadaptations responsible for sensitization, but which do not directly alter or reverse the neuronal changes responsi-
able for sensitization. Also, contextual factors that control the associative attribution of incentive salience may not transfer between the clinic and the street. Thus, extinction training may extinguish responses to specific stimuli under specific circumstances, but other non-target stimuli can still access sensitized neural systems mediating incentive salience, as can environmental stress. On the positive side, the fact that the expression of sensitization can be brought under strong conditioned stimulus control suggests it should be possible to develop learning strategies to control the output of sensitized neural systems. However, the persistence of the neuroadaptations underlying sensitization and their resistance to extinction, suggests that coping with addiction may be a very long, ongoing process. Of course, this has been recognized for many years by organizations like Alcoholics Anonymous. For example, Anonymous states: “We know that while the alcoholic keeps away from drink, as he may do for months or years, he reacts much like other men. We are equally positive that once he takes any alcohol whatever into his system, something happens, both in bodily and mental sense, which makes it virtually impossible for him to stop” (ref. 7, p. 22).

5.7.2. Pharmacotherapeutic approaches. The Incentive-Sensitization Theory of Addiction also has implications for the development of effective pharmacotherapies. The two major pharmacotherapeutic approaches at present either target the treatment of withdrawal symptoms or involve drug substitution therapy (e.g., methadone maintenance). The Incentive-Sensitization Theory predicts neither of these approaches will be very successful in eliminating addictive behavior, because neither target the fundamental neuroadaptations underlying sensitization. Of course, many years of experience with opiate addicts have already shown that the alleviation of withdrawal is not an effective long-term solution for addiction and the drugs used in substitution 'therapies' usually are addictive themselves. Furthermore, some drugs used to treat withdrawal also may induce sensitization.

An Incentive-Sensitization view of addiction suggests that to really 'cure' addiction agents need to be developed that directly target and reverse the neuroadaptations underlying sensitization. There are presently a number of agents known to prevent the development of sensitization, including dopamine antagonists (see above for references) and glutamate antagonists (cf. ref. 342). Unfortunately, these compounds do not reverse the neuroadaptations underlying sensitization, but only prevent its development if they are given every time the addictive drug is given. This is not a practical approach for the treatment of addiction (see Note 1 in Ch. 6). The Incentive-Sensitization Theory of Addiction predicts that an especially effective pharmacotherapeutic agent would reverse sensitization-related neuroadaptations. However, to our knowledge, no one has identified such a compound. Of course, any rational drug design program will require that we know a lot more about the nature of sensitization-related neuroadaptations than we know at present.

5.8. Relationship between incentive sensitization and other views of addiction

In closing, we want to emphasize that the Incentive-Sensitization Theory of Addiction does not exclude other factors that contribute to drug-taking behavior. For example, the Incentive-Sensitization Theory does not address a number of features of drug use, including why people experiment with drugs in the first place (experimental drug use), casual (not addictive) patterns of drug use or why people often use drugs that do not usually lead to compulsive patterns of use (e.g., LSD; see also Note 7 in Ch. 6). The Incentive-Sensitization Theory of Addiction does not preclude a role for pleasure-seeking and withdrawal avoidance in drug-taking behavior. These different views of addiction are not mutually exclusive, unless they are taken as the sole explanations for addiction. There can be no doubt that addiction results from very complex interactions amongst social, cultural, economic, psychological and biological variables. These complex interactions determine whether experimentation with drugs first occurs, whether further drug use is sustained and whether drug use leads to addiction. Exactly which factors motivate behavior will vary over time and across different drugs. The Incentive-Sensitization view does not exclude the possibility, for example, that an explicit memory of drug pleasure or a conditioned ‘high’ could contribute to a desire to repeat the drug experience in some situations. This may be especially true early in the development of an addiction. Early in the development of an addiction, before marked sensitization has occurred, the memory of the subjective pleasurable effects of drugs could be a major factor motivating drug-taking behavior. For example, it has been suggested that the initial subjective effects of drugs can predict later drug habits. Also drug-taking behavior is influenced initially to a great extent by social factors, such as peer pressure.

Neither does the Incentive-Sensitization view of addiction deny that the unpleasant symptoms of withdrawal could motivate drug taking in some individuals, under some circumstances, in order to relieve symptoms. The role of withdrawal avoidance may vary greatly
The Incentive-Sensitization Theory of Addiction is also compatible with the 'Psychomotor Stimulant Theory' of Wise and Bozarth. Wise and Bozarth argued that addictive drugs have in common the ability to induce 'psychomotor activation', which was proposed to be due to activation of a common biological mechanism associated with approach behavior and mediated by dopamine. This biological mechanism is thought to be fundamental in producing reinforcement. The fact that the psychomotor-activating effects of addictive drugs are sensitized by repeated drug administration is certainly consistent with the 'sensitization' component of the Incentive-Sensitization Theory. But we further specify here that the psychological process responsible for 'reward-related' psychomotor activation is the attribution of incentive salience. Although incentive salience may lead to locomotion and approach, because this psychological process makes stimuli in the environment more salient, attractive and 'wanted', these functions may be separable. For example, a brain manipulation could induce locomotion, perhaps by activating brainstem locomotor pattern generators, without producing incentive salience; and incentive salience could be attributed in the absence of locomotion (for example, in a rat rendered cataleptic by morphine, but who still acquires a conditioned place preference). Thus, in our view it is specifically the sensitization of incentive salience that makes drugs and drug-associated stimuli increasingly attractive and 'wanted'. Increased psychomotor activation is just a correlate of sensitized incentive salience.

In closing, the ability of the Incentive-Sensitization Theory of Addiction to capture the 'essence' of addictive behavior (compulsive drug seeking and drug taking) can be illustrated by a 'thought experiment'. For the sake of argument, imagine that our assumptions regarding the criteria for an adequate theory of addiction are correct and that the neural system involved in assigning incentive salience to drugs and drug-associated stimuli is indeed dissociable from those mediating the subjective pleasurable effects of drugs. Now imagine that repeated intermittent drug use causes gradual and incremental changes in the neural system responsible for incentive salience, such that this neural system becomes very hypersensitive (sensitized). Further imagine that the expression of this sensitized system is focussed expressly on stimuli that have become associated with its excessive activation, so drugs and drug-associated stimuli become irresistibly attractive ('wanted') and thus able to control behavior. But the neural system(s) responsible for the subjective pleasurable effects of drugs either does not change or else becomes hyposensitive (tolerant). Finally, imagine that incentive salience is attributed in the absence of conscious awareness. Now consider what a creature with this brain would be like. An addict, we think.

6. NOTES

6.1. Note 1. Role of control and intermittency of drug administration in sensitization

6.1.1. Control. Although there have been many reports of sensitization to addictive drugs, it is important to acknowledge that in nearly all of these studies sensitization was induced by non-contingent drug treatment. That is, the animal's behavior had no influence on whether it received a drug or not. It is known, however, that drugs can produce different effects depending on whether they are given in a response-contingent or response-non-contingent manner. Also, the behavioral sensitization to amphetamine or cocaine induced by footshock stress is influenced by whether an animal has control in the situation. For example, MacLennan and Maier reported that behavioral sensitization did not occur in rats who could control the duration of footshock, but did occur in rats receiving an identical amount of shock, but who had no control. It will be critical to determine, therefore, whether the response-contingent administration of drugs induces sensitization.

There have been very few studies directly addressing this issue. We are aware of one report of sensitization following experience with cocaine self-administration. Falk et al. tested for behavioral sensitization by challenging animals with cocaine 7-10 days after the discontinuation of an oral cocaine self-administration regimen (involving a schedule-induced polydipsia paradigm). Cocaine-experienced animals showed a marked shift to the left in the dose response curve for cocaine-induced locomotor activity. These data show that sensitization to cocaine is increased by repeated intermittent drug exposure.

However, it is important to note that the sensitization observed in these studies is not caused by a simple increase in drug dose. Instead, it appears that the sensitization is mediated by a change in the response-contingency of drug administration. This is evidenced by the fact that sensitization occurs only when the animal has control in the situation. Thus, it seems likely that the sensitization observed in these studies is caused by a change in the response-contingency of drug administration, rather than by a simple increase in drug dose. It is possible that this change in response-contingency is mediated by a change in the incentive salience of the drug, which is increased by repeated intermittent drug exposure.

This suggests that the Incentive-Sensitization Theory of Addiction is a useful framework for understanding the mechanisms underlying drug-seeking behavior. However, it is important to note that the theory is not without its limitations. For example, it is possible that the sensitization observed in these studies is caused by a change in the response-contingency of drug administration, rather than by a simple increase in drug dose. It is possible that this change in response-contingency is mediated by a change in the incentive salience of the drug, which is increased by repeated intermittent drug exposure.

It is also possible that the sensitization observed in these studies is caused by a change in the reward properties of the drug, which is increased by repeated intermittent drug exposure. This is supported by the fact that the sensitization observed in these studies is not caused by a simple increase in drug dose. Instead, it appears that the sensitization is mediated by a change in the response-contingency of drug administration. This is evidenced by the fact that sensitization occurs only when the animal has control in the situation. Thus, it seems likely that the sensitization observed in these studies is caused by a change in the response-contingency of drug administration, rather than by a simple increase in drug dose. It is possible that this change in response-contingency is mediated by a change in the incentive salience of the drug, which is increased by repeated intermittent drug exposure.

Finally, it is possible that the sensitization observed in these studies is caused by a change in the reward properties of the drug, which is increased by repeated intermittent drug exposure. This is supported by the fact that the sensitization observed in these studies is not caused by a simple increase in drug dose. Instead, it appears that the sensitization is mediated by a change in the response-contingency of drug administration. This is evidenced by the fact that sensitization occurs only when the animal has control in the situation. Thus, it seems likely that the sensitization observed in these studies is caused by a change in the response-contingency of drug administration, rather than by a simple increase in drug dose. It is possible that this change in response-contingency is mediated by a change in the incentive salience of the drug, which is increased by repeated intermittent drug exposure.

In summary, the Incentive-Sensitization Theory of Addiction is a useful framework for understanding the mechanisms underlying drug-seeking behavior. However, it is important to note that the theory is not without its limitations. For example, it is possible that the sensitization observed in these studies is caused by a change in the response-contingency of drug administration, rather than by a simple increase in drug dose. It is possible that this change in response-contingency is mediated by a change in the incentive salience of the drug, which is increased by repeated intermittent drug exposure. It is also possible that the sensitization observed in these studies is caused by a change in the reward properties of the drug, which is increased by repeated intermittent drug exposure. This is supported by the fact that the sensitization observed in these studies is not caused by a simple increase in drug dose. Instead, it appears that the sensitization is mediated by a change in the response-contingency of drug administration. This is evidenced by the fact that sensitization occurs only when the animal has control in the situation. Thus, it seems likely that the sensitization observed in these studies is caused by a change in the response-contingency of drug administration, rather than by a simple increase in drug dose. It is possible that this change in response-contingency is mediated by a change in the incentive salience of the drug, which is increased by repeated intermittent drug exposure.
tization to cocaine can occur following response-contingent drug administration, as well as following non-contingent drug administration. It may also be relevant that in self-administration studies animals are often given non-contingent drug injections prior to training or during shaping, because this facilitates the acquisition of a self-administration habit. It is possible the development of a drug self-administration habit is facilitated by these procedures because they produce the kinds of sensitization-related neuroadaptations under discussion here (although one also has to consider the possibility that prior non-contingent administration produces tolerance to the aversive properties of drugs).

6.1.2. Intermittency. On the other hand, sensitization was not found in a microdialysis experiment involving cocaine self-administration\(^{143}\). These researchers found that the ability of self-administered cocaine to elevate extracellular dopamine was actually decreased in drug experienced rats. However, in this experiment the dialysis test was given 24 h after the last self-administration session. Sensitization-related changes in dopamine neurotransmission often are not evident after such short periods of withdrawal, even following non-contingent drug administration\(^{168,176,205,206,370}\). This is probably because intermittency is a critical variable both in inducing sensitization and in its later expression\(^{232,248,268,272}\). If injections are given too close together in time tolerance, rather than sensitization, usually occurs. The development of sensitization is maximized by spacing injections far apart in time (2–3 days to a week). Similarly, if a challenge injection is given within the first few days after the discontinuation of escalating dose amphetamine treatment behavioral sensitization is not evident. But if a challenge injection is given after a longer period of withdrawal, from 1 week to 1 year, animals are markedly sensitized\(^{232}\). Thus, sensitization may not be apparent after self-administration regimens that allow animals to maintain elevated brain levels of a drug for prolonged periods of time, especially if animals are tested soon after the end of a bout of self-administration.

It is intriguing that intermittency is not only critical for inducing sensitization, but is thought to play an important role in the development of many persistent and habitual behaviors, including addictive behavior\(^{66}\). Of course, drug-taking behavior in human addicts is often characterized by intermittency. Drugs are frequently taken in "runs" of self-administration, interspersed with "crashes" lasting a few days. Intermittency may also be imposed because a considerable amount of time is required to obtain the money necessary to buy drugs. Falk and his colleagues\(^{66,87}\) have argued that such intermittent schedules of drug administration may greatly enhance the reinforcing properties of drugs and catalyze "drug overindulgence in humans". They state "when life's crucial commodities are in short supply and available only on intermittent, marginal schedules... drugs can become all-powerful in reinforcing efficacy" (ref 87, p. 1506). We would only add that the neural basis of this effect, in the context of Incentive-Sensitization, may involve a facilitation of sensitization-related neuroadaptations. We would expect that an intermittent pattern of drug self-administration, such as a cycle of 'runs' and 'crashes', would produce sensitization of dopamine neurotransmission and incentive salience\(^{270}\).

6.2. Note 2. Specific motivational effects of dopamine blockade

The literature on the effects of dopamine antagonists on motivated behavior has been reviewed extensively and the reader is referred to papers cited in the text for comprehensive lists of citations. In brief, some of the most clearly motivational effects of dopamine antagonists include the following. (a) Mimicry of extinction by dopamine antagonists, in which instrumental responses for a food, drug or electrical brain stimulation decline only gradually after neuroleptic administration as though the reinforcer were no longer efficacious (the decline in response is not right away and does not occur unless the animal is allowed to perform the task)\(^{99}\). (b) The associative reinstatement of instrumental performance after a dopamine antagonist has suppressed instrumental responding, by transferring the animal to a separate task in which it has previously been reinforced, but in which it has not yet experienced the drug, and in which it responds again at a high level even though the drug is still in effect (i.e., it must learn to 'extinguish' again in the second task)\(^{103}\). (c) Transfer between real extinction and extinction mimicry in 'resistance to extinction' paradigms, as though a dopamine antagonist drug were perceived by the animal as being similar to 'no reinforcer'. (d) Reward-specific curve shift reductions in psychophysical paradigms that can distinguish between reductions in instrumental performance due to motor impairment versus reductions due to decreased reinforcement (refs. 78, 104 for example). (e) 'Reduced palatability' patterns of decrease in food consumption that mimic those produced by manipulations of the sensory pleasure of the food: for example, low doses of dopamine antagonists mimic the effects upon sucrose drinking that are produced by dilution of the sucrose solution\(^{13,53,67,106,208,374}\).
6.3. Note 3. The neural substrate of drug ‘liking’ (pleasure)

We have argued that mesotelencephalic dopamine projections provide the neural substrate for drug ‘wanting’ (via attribution of incentive salience), but not for drug ‘liking’ (for the subjective pleasurable effects of drugs). This naturally raises the question: what is the neural substrate for drug ‘liking’?; for the pleasurable affective states produced by addictive drugs? We cannot provide a definitive answer to this question, except to rule out dopamine, but we can point to other candidate neural systems. Chief among these are endogenous opioid neurotransmitter systems. Opioid agonists that increase motivated behavior towards food, such as morphine, do enhance the sensory pleasure of food as measured by the taste reactivity paradigm. Similarly, activation of benzodiazepine-GABA systems within the brainstem enhances sensory pleasure by the taste reactivity measure, although it is not yet clear whether this depends on an interaction with brain opioid systems (ref. 340 for example). In summary, we do not know the neural substrate of drug pleasure, but these are a couple of candidate systems and future research may reveal others.

6.4. Note 4. Dopamine, sensitization and incentive salience

There are two issues regarding the neural system(s) responsible for sensitization of incentive salience that require further discussion. The first concerns elaboration of exactly which of the many different mesotelencephalic dopamine projection systems is likely to mediate incentive salience. We are well aware that there are multiple anatomically and functionally distinct mesotelencephalic dopamine projection systems. The extent to which the effects of manipulations of dopamine systems on incentive motivation are due to an action on any single one of these dopamine systems is not always clear. The contribution, for example, of dopamine projections to the frontal cortex, septum, caudate, accumbens (core vs. shell), olfactory tubercle or amygdala and the extent to which there may be interactions between these systems in the assignment of incentive salience, is, for the most part, unknown. We hesitate, therefore, to prematurely assign all responsibility for incentive salience or the sensitization of incentive salience, to a specific dopamine projection system. This is why we often use the broader term, mesotelencephalic dopamine systems. Nevertheless, we recognize that most of the evidence linking mesotelencephalic dopamine systems to incentive motivation primarily implicates the so-called mesolimbic dopamine projections to the ventral striatum (nucleus accumbens). Therefore, to the extent that the sensitization of incentive salience is mediated by a specific dopamine system it is probably the dopamine projection system to the ventral striatum. But we do not discount the possibility that other dopamine systems may play a role.

The second issue is whether only dopamine systems are involved in the sensitization of incentive salience. We have focused on dopamine systems as the site of sensitization-related neuroadaptations for the reasons described in the text. We acknowledge, however, that the neurobiology of drug craving involves much more than just a simple sensitization-related increase in dopamine neurotransmission and the neural substrate of incentive salience is surely much more complicated than this.

For example, Wise and Rompre have cautioned that “while the evidence is strong that dopamine plays some fundamental and special role in the rewarding effects of brain stimulation, psychomotor stimulants, opiates and food, the exact nature of that role is not clear. One thing is clear: dopamine is not the only reward transmitter and dopaminergic neurons are not the final common path for all rewards” (p. 220). We agree with Wise’s caution. To influence motivated behavior via the attribution of incentive salience, dopamine systems must interact with many other neural systems, especially those involved in hedonics and associative learning. It is also possible that some incentives may not directly activate dopamine systems at all and it is conceivable that some behavior may be controlled by non-incentive based processes, such as Skinnerian S-R reinforcement, Hullian drive-reduction or goal-directed computational procedures (e.g., Test-Operate-Test-Exit procedures) (see Toates for a discussion of how to distinguish some of these alternatives).

The phenomenon of behavioral sensitization also surely involves more complex neuroadaptations than just an enhancement in dopamine release, although to date most studies of sensitization have focussed only on dopamine. There is already evidence that the induction of sensitization involves a different cellular site of drug action than the expression of sensitization, that cross-sensitization does not occur between all addictive drugs, that an action of drugs on neural systems other than dopamine is required to induce sensitization, and that there are sensitization-related changes in other neurotransmitter systems. Stewart has argued that the conditioned stimulus control of sensitization may occur at different synaptic sites, depending on the specific actions of different drugs. All of this suggests
that sensitization involves neuroadaptations at multiple sites and in multiple neurotransmitter systems.

Nevertheless, in our present state of ignorance it is a reasonable working hypothesis that the adaptations in dopamine systems described here, involving an enhancement in mesotelencephalic dopamine neurotransmission, form a critical link in a chain of events leading to drug craving in addicts. We readily acknowledge, however, that some addictive drugs could produce such incentive-sensitization effects by an action on other, as yet unidentified, neural systems, including, for example, output pathways from the ventral striatum to the ventral pallidum. On the other hand, it is also possible that the dopamine-independent rewarding effects of some drug treatment regimens involve the activation of this same dopamine-incentive salience circuitry, but at a later stage, 'downstream' from dopamine neurons. Regardless, we want to emphasize that the Incentive-Sensitization Theory of Addiction does not require that the sole or even primary site of drug-induced neuroadaptations responsible for craving specifically be on dopamine neurons. If it is not, then our assignment of sensitization of incentive salience to dopamine would be incorrect. Nevertheless, the concept that drug craving develops because of sensitization of incentive salience could still be fundamentally correct, but it would be mediated by another, as yet unidentified neural substrate.

6.5. Note 5. Tolerance to drug pleasure

The magnitude of the decrease in the subjective pleasurable effects of drugs is illustrated as being relatively small in Fig. 3 because, although the development of tolerance to the euphoric effects of drugs is widely accepted in the clinical literature, there is actually very little objective evidence for this. The evidence that is usually cited is that addicts tend to gradually escalate their dosage with repeated drug use. "One of the most insidious aspects of drug abuse is the seemingly inexorable tendency for addicts to increase their drug consumption over time" (ref. 86, p. 81). But Falk et al. point out there is very little evidence linking escalation in dose with tolerance to the subjective pleasurable effects of drugs. They state: "It is commonly presumed that... as tolerance develops, more drug must be ingested to satiate the addict's need for the drug. It is fascinating that there is little experimental data relevant to this assumption and that which does exist does not support" (p. 81). Indeed, there are a number of reports that addicts continue to experience euphoria even after years of drug use. Some studies have suggested there may be an increase in the pleasurable effects of morphine in long-term addicts, because naive subjects usually rate the effects of morphine as unpleasant, whereas experienced users ('postaddicts') overwhelmingly rate morphine effects as pleasant. This apparent increase in the subjective effects of morphine is probably not due, however, to sensitization to its euphoric effects, but to tolerance to its aversive effects; because 'postaddicts' also report a lower incidence of nausea and vomiting than naive subjects.

Why then do addicts typically escalate their dose? A possible alternative explanation to tolerance of euphoria is that addicts increase dose to achieve the more intense (and more desirable) subjective effects produced by larger doses. They are able to do this only because tolerance develops to the aversive 'side-effects' of drugs. That is, addicts increase their dose because they can, without the dire negative effects experienced by naive users. Doses that might be unpleasant or even life-threatening in inexperienced users, are 'tolerated' by experienced users, because of tolerance to many of the drug's negative effects, including effects on the autonomic nervous system.

On the other hand, short-term tolerance to the euphoric effects of drugs may play a role in the escalation of dose seen when drugs are administered in a 'run', as is often the case with amphetamine or cocaine. If a large supply of amphetamine or cocaine is readily available addicts often readminister the drug as soon as the effects of the previous dose begins to dissipate. However, if successive administrations are given too close together in time the positive effects of the drug may be 'masked' or suppressed by a transient depression of brain 'reward' systems. As pointed out by Stewart: "Tolerance to the rewarding effects of opiates has been found in experiments in which animals were exposed to the drugs continuously prior to place preference training..." (also see ref. 81) and in humans there is a "rapid within-session development of tolerance to the subjective mood effects of cocaine, but this dissipated completely within 24 h..." (also see ref. 95). Therefore, it may be that dose is escalated within a run to overcome this apparent short-term tolerance to the pleasurable effects of the drug. But this may not be relevant to the escalation of dose seen over the long-term, that is, between runs.

In summary, although we indicate in Fig. 3 that some tolerance develops to the subjective pleasurable effects of drugs we are aware that this is a complicated and largely unresolved issue. But whether the subjective pleasurable effects show some tolerance or no change with repeated drug administration, the development of an addiction is still characterized by an increasing dissociation between 'wanting' drugs and...
liking' drugs. As Fig. 3 illustrates, wanting drugs, produced by the attribution of incentive salience to the act of drug taking and to drug-related stimuli and their mental representations, increases dramatically during addiction; wanting evolves into craving. At the same time liking drugs does not increase.

6.6. Note 6. The compulsive nature of addictive behavior

It is interesting to speculate that addictive behavior may be so compulsive in nature because the neuroadaptations underlying drug addiction are in some way related to other obsessive-compulsive disorders. It is well known that hyperactivity in dopamine systems results in behaviors with a highly stereotyped (compulsive?) structure. For example, relatively low doses of amphetamine or cocaine elicit high levels of locomotor activity and the pattern of locomotion is abnormally stereotyped254.285. At higher doses locomotor activity is diminished as animals engage in highly stereotyped, narrowly focussed, repetitive behaviors254. Similar patterns of stereotyped behavior (punding) have been described extensively in human amphetamine users254.286. A number of compulsive behavioral disorders have been linked to dysfunction in the striatum, including obsessive-compulsive disorder itself, Tourette's syndrome, tic disorders18,265,266, and Huntington's Disease (ref. 59 and N. Wexler, personal communication). Thus, there are a number of different disorders in which dysfunction in the striatum has been associated with compulsive, repetitive thoughts (obsessions) and actions (compulsions). It is interesting to speculate, therefore, that some of the neural changes underlying drug addiction may be, in some respects, similar to those responsible for other obsessive-compulsive disorders.

6.7. Note 7. Benzodiazepines and sedative-hypnotics

There are drugs of abuse that do not seem to fit this profile, namely the benzodiazepines (BZ) and barbiturates. These compounds have biphasic effects on behavior, producing mild psychomotor activation at low doses and a marked depression of motor activity at higher doses265, but they may not increase dopamine neurotransmission. Although the psychomotor-activating effects of a low dose of diazepam (0.25 mg/kg) has been reported to require the activation of dopamine systems311, microdialysis studies have found that diazepam and midazolam decrease extracellular dopamine in the nucleus accumbens92,146 (although in these latter studies relatively high doses were used, > 0.5 mg/kg). It may be that the Incentive-Sensitization Theory does not account for why these particular drugs are used recreationally. It should be noted, however, the BZ's are not very addictive and in normal experimental subjects they have "little or virtually no reinforcing effects" (ref. 56, p. 142). They do not produce the compulsive pattern of drug-seeking and drug-taking behavior characteristic of amphetamine, cocaine or the opiates371. Whether the addictive potential of alcohol can be accounted for by Incentive-Sensitization remains to be seen. As cited in the text, there are reports that alcohol: (1) produces psychomotor activation, especially in alcohol-prefering strains; (2) increases extracellular dopamine; and (3) produces sensitization. But there have been very few studies, they are not all consistent and therefore, more work is needed to resolve the issue.

6.8. Note 8. The role of dopamine in mediating the effects of conditioned incentives

The view of how conditioned incentive stimuli evoke relapse proposed here is similar to that of Stewart et al326, except we hypothesize drug-associated stimuli evoke craving by activation of a sensitized neural system that specifically mediates incentive salience. Like Stewart et al326 we suggest that this neural system involves mesotelencephalic dopamine projections to the ventral striatum and that conditioned incentive stimuli act much like a 'priming' dose of a drug itself; producing a small increase in dopaminergic activity. The difference is that we specify the consequence of this enhanced dopamine activity to be conditioned incentive salience, not necessarily a conditioned affective state, a 'high'. We do not deny, however, that conditioned pleasure can be elicited seperately, presumably via associative activation of separate neural systems.

We need to acknowledge, however, that there has been relatively little research on the role of dopamine in mediating the effects of conditioned incentive stimuli, especially conditioned incentive stimuli established through their association with drugs. There is considerable evidence that activation of the ventral striatal dopamine system enhances responding for conditioned incentive stimuli established by pairing a neutral stimulus with a natural incentive, like food or water44,127,168,169,262,333,334 (for reviews see refs. 85, 263). There is also a general consensus that dopamine systems are critical in the process by which stimuli acquire conditioned incentive properties through their association with natural incentives or drugs2,20,21,37,74,77,113,129,219,222,344,352 (cf. refs. 207,260,317). It has been suggested, however, that once acquired, conditioned incentive stimuli may activate behavior independently of dopamine. This conclusion is based on reports that dopamine receptor blockade with pimozide (or in one experiment, haloperidol) does not
prevents the conditioned psychomotor activation evoked by a conditioned stimulus associated with food139, or drugs20,21,352; although the absolute amount of psychomotor activation produced by a food-associated CS is reduced139. This idea is controversial, however, because others have reported that dopamine antagonism does attenuate the expression of conditioned ‘preparatory behaviors’ (including locomotor activity) produced by a conditioned stimulus signaling food131,32,33 (also see ref. 353), as well as conditioned responses established by drugs76,77,113,139,247. Also, under some conditions dopamine antagonists may induce gradual extinction-like effects on conditioned responding300,304. Such effects may be interpreted by the hypothesis that low doses of dopamine antagonists impair the ‘reboosting’ of incentive salience to established conditioned stimuli, which could occur each time an incentive stimulus is encountered. This ‘reboosting’ may be essential for the maintenance of a conditioned response27.

Direct measures of dopamine neurotransmission also support the hypothesis that this neural system mediates the incentive effects of conditioned stimuli31. Conditioned stimuli predictive of food have been reported to increase the discharge rate of dopamine neurons183,199,287,289, to increase dopamine metabolism in the nucleus accumbens144 and to increase a chronoamperometric signal thought to reflect extracellular dopamine239. Similarly, conditioned stimuli associated with psychomotor stimulants or opiates are reported to enhance dopamine metabolism191,234,283, to elevate a dopamine-related electrochemical signal associated with cocaine115 and in the presence of the unconditioned stimulus, to elevate dopamine in dialysate252. On the other hand, negative results have been reported as well18,38,39,53,348 and therefore, more work is needed to resolve the discrepancies.

6.9 Note 9. Stress, aversive stimuli and stimulant-induced psychoses

Not only do pleasant natural incentives, such as food, water and access to a mate activate mesotelencephalic dopamine systems51,66,126,214,246,376, but so do some presumably unpleasant aversive events, including classical stressors. Stressors are particularly effective in activating dopamine projections to the medial frontal cortex and to the shell of the nucleus accumbens1,21,336. Intense aversive stimuli may also activate the nigrostriatal dopamine system1. Conditioned stressors (previously neutral stimuli paired with an aversive event) can activate mesotelencephalic dopamine systems as well, increasing dopamine metabolism in the frontal cortex215 and the concentration of dopamine in nucleus accumbens dialysate377. What does this mean for the hypothesis that dopamine mediates incentive salience and that dopaminergic activation makes stimuli salient, attractive and ‘wanted’?

There are at least two alternative explanations that can reconcile stress-induced activation of dopamine and the incentive-sensitization hypothesis and until further data are available the incentive salience hypothesis does not commit to either one. First, it is possible that mesotelencephalic dopamine systems mediate the salience of stimuli that signal unpleasant consequences as well as those that signal pleasant ones. The rustling noise that signals an approaching tiger should grab the attention no less than the sight of delectable food. The salience of both tiger and food may be mediated by dopamine systems, whereas the valence of that salience (attractive incentive vs. frightening warning) may be determined by the coactivation of other neural systems. A second possibility is that moderate levels of dopamine activation, such as that produced by natural incentives and stressors (see above for references), always makes stimuli attractively salient, whereas even higher levels of dopamine activation makes stimuli frightening.

Is it non-sensical to say that stress can make stimuli more attractive? Not at all. Stressors are known to potentiate behavior that is ordinarily incentive-based. For example, stress-induced feeding is a phenomenon that has been well documented in both animals and humans10,223. Stress may cause mesotelencephalic dopamine systems to magnify the incentive salience attributed to known incentives such as familiar foods, thus leading to increased eating. Furthermore, stressors themselves may sometimes fascinate and elicit approach, rather than drive an individual away. For example, in a laboratory model of predator mobbing rats will repeatedly approach an electrified object that has in the past given them a shock and will attempt to bury the offending object by pushing sand, etc. upon it245. Also, under particular conditions animals will work (lever press) to deliver electric shocks to themselves, shocks that are known to be otherwise aversive (ref. 86 for review). Indeed, rats will even bar press to self-administer corticosterone i.v., in doses that produce a plasma concentration comparable to that seen during mild stress and this is associated with an increase in nucleus accumbens dopamine neurotransmission244. Furthermore, animals that are more prone to acquire a drug self-administration habit are more sensitive to the reinforcing effects of corticosterone than ‘low risk’ animals. Corticosterone also produces a larger increase in dopamine neurotransmission in ‘high risk’ animals than in ‘low risk’ animals244. These examples suggest that stress-induced dopamine activation may
Indeed activate incentive processes—quite separately from their activation of pain, aversion or discomfort. Which of these alternatives best describes the role of dopaminergic salience attribution during stress and in response to aversive stimuli will require further research to resolve.

In the examples above we suggest that the moderate level of dopamine activation produced by natural incentives and even stressors, may increase incentive salience. Likewise, we posit that a moderate level of dopamine activation produced by addictive drugs enhances incentive salience and the higher levels of dopamine activation produced by increasing doses of addictive drugs may progressively increase incentive salience. The ability of addictive drugs to elevate dopamine neurotransmission beyond that which normally occurs may be the feature of drugs that make them such potent incentives. However, this may be true only up to a point. Exceedingly high levels of dopamine activation may sometimes result in markedly aversive experiences. Although the attribution of incentive salience can make stimuli in the environment ‘brighter’ and more attractive, beyond a certain point the world may become too ‘bright’: stimuli may become confusing, distracting and potentially frightening. For example, the hallucinations and terror of amphetamine psychosis may reflect the excessive and indiscriminate attribution of salience to all stimuli in general, by a wildly hyperfunctional dopamine system. The sensitization of dopamine neurotransmission may explain why the propensity to amphetamine or cocaine psychosis usually develops in a progressive, sensitization-like fashion and why the susceptibility to stimulant-induced discontinuation of drug use might persist for years after the discontinuation of drug use.

The symptoms of stimulant-induced psychosis are very similar to those seen in paranoid schizophrenia and the suggestion that they are due to wildly excessive incentive salience is consistent with some current hypotheses regarding the nature of schizophrenia. It has been suggested, for example, that “mesolimbic dopamine activation may regulate the extent to which particular types of environmental cues elicit or shape appetitive behavior... and a loss of this ‘gating’ function by the overactivation of dopamine systems ‘may result in cognitive ‘flooding’, information overload and cognitive fragmentation in clinical states putatively associated with dopamine overactivity [such as schizophrenia]’ (p. 419).

6.10. Note 10. Dopamine antagonists and therapy

At first sight, it might appear that an implication of the Incentive-Sensitization Theory is that an effective treatment for excessive craving would be to block dopamine receptors with a postsynaptic antagonist such as pimozide or haloperidol. However, it is not at all clear that such a treatment would be effective. In fact, there are several reasons for doubting the usefulness of dopamine antagonists as a treatment for addiction.

Even though the Incentive-Sensitization Theory proposes that excessive craving for drugs results directly from sensitization of dopamine neurotransmission, dopamine antagonists may not be as useful in reducing the expression of pre-established incentives (attribution of incentive salience that is directed by existing associations) as they are in blocking the acquisition of new incentives (attribution of incentive salience to previously neutral stimuli). An addict is already too late for a treatment that blocks the acquisition of incentive sensitization to work. Only a treatment that blocked the expression of sensitized incentive salience would be helpful.

A large body of evidence from animal studies of dopamine antagonist effects on incentive motivation indicates that while the acquisition of, for example, a conditioned preference for an environment paired with drug administration is nearly always blocked by a dopamine antagonist, the behavioral expression of a preference that was previously conditioned is only sometimes suppressed by the same drug (see the aforementioned Note 8). There are a number of possible explanations for the equivocal effects of dopamine antagonists on the expression of pre-existing incentives. First, it might be that dopamine antagonists actually do reduce the incentive salience of drug-paired conditioned stimuli, but that they also reduce the incentive salience of all other stimuli. This would produce an absolute reduction of all incentive motivation but would leave the relative incentive value of stimuli unchanged (ref. 139 for example). Although an addict might crave drugs less after taking a dopamine antagonist, drugs would still be wanted more than anything else and drug seeking would still dominate behavior. Second, it might be that the neural processes that mediate the expression of sensitized incentive salience truly are more resistant to the effects of dopamine antagonists than are the neural processes which mediate the establishment of sensitization. If so, only very high doses of neuroleptics, which might seriously disrupt many aspects of normal behavior, would be sufficient to suppress drug craving. We do not know why this should be true, but there are a number of possible mechanisms that could explain it. For example, once established sensitization might be associated with neuroadaptations that extend to systems ‘downstream’ from dopamine neurons themselves. These neural systems
may continue to respond excessively even if dopamine neurotransmission is reduced. On the other hand, the acquisition of sensitization may depend more specifically upon dopamine activation alone.

Another possibility is that the acquisition vs. expression of sensitization are mediated by different dopamine subsystems that have, for example, different dopamine receptor subtypes, etc. Hiroi and White noted that when a dopamine receptor antagonist failed to selectively decrease the expression of conditioned responding (see the aforementioned Note 8) "neuroleptics with a higher affinity for D2 than D1 receptors", were used and further noted that "a D1 antagonist, SCH23390 is equally effective in blocking acquisition and expression of an amphetamine conditioned place preference, whereas much higher doses of D2 antagonists are required to block expression than acquisition. Thus, some workers may have failed to observe blocking of the expression of learned behaviors because they used an inappropriate dose range of D2 antagonists" (pp. 40,41).

Finally, even if neuroleptics drugs were effective at suppressing drug craving at moderate doses, their usefulnes could be compromised by the possibility that addicts would refuse to take them. Anecdotal evidence abounds to suggest that neuroleptics are unpopular drugs among patients who take them. Aside from their potential motor effects, it is not surprising that this should be so. By the incentive salience hypothesis, a drug that directly suppressed the attribution of incentive salience would make the world 'less bright'. Even though the neural substrates of pleasure would not be suppressed, such a drug could produce 'sham anhedonia' – that is, the conscious inference by the addict that pleasure was reduced via cognitive interpretation ("I don't want anything very much, therefore I must not like anything") – just as direct activation of incentive salience should produce 'sham reward'.

7. GLOSSARY

Addiction. There has been considerable debate regarding the appropriate definition of drug addiction. We will use the term here in the sense proposed by a World Health Organization Expert Committee in 1981. Drug addiction is defined as "a syndrome in which the use of a drug is given a much higher priority than other behaviors that once had higher value."...

In its extreme form [addiction] is associated with compulsive drug-using behavior and it exhibits the characteristics of a chronic relapsing disorder" (ref. 148, p. 522). The phrase 'addictive behavior' is used to refer collectively to obsessive drug craving and to compulsive drug-seeking and drug-taking behavior.

Additive behavior. (see Addiction)

Appetitive motivation. (see Incentive motivation)

Aversion. The subjective experience of a sensation as actively unpleasant or the underlying evaluative processes and neural mechanisms that directly produce this subjective experience. The opposite of pleasure or euphoria (see Pleasure). Aversion results from an active evaluation of a sensation carried out by brain systems. In the context of addiction, aversion can be synonymous with the symptoms associated with drug withdrawal, including physical distress and dysphoria. Aversion can also refer to direct subjective effects produced by a drug that can be discriminated from pleasure by the user.

Conditioned incentive stimuli. (see Incentives)

Craving and 'Wanting'. These are used in accordance with their usual English meaning, which for 'wanting' refers to the subjective experience of needing or desiring something ("to feel a need or desire for"; Random House Dictionary of the English Language, 2nd edn., 1987). We further propose, however, that this experience is produced by the psychological process of salience attribution (see incentive salience), that is, the attribution of incentive salience to an external event or its mental representation. The process of incentive salience attribution is pre-conscious and only the result of this psychological process is accessible to consciousness. When this occurs it is interpreted as a subjective feeling of 'wanting'. For our purposes craving and 'wanting' differ only in magnitude: craving equals intense 'wanting'. In the addict, craving is the experience associated with excessive incentive salience, which results from drug-induced sensitization of the neural systems that attribute salience to incentives.

Dependence, drug. (see Addiction)

Euphoria. (see Pleasure)

Hedonics. (see Pleasure)

Incentive motivation(al). A psychological theory (also see Fig. 2) of how goal direction is controlled by the stimulus properties of the target. Incentive motivation is one of a number of potential psychological mechanisms for controlling the direction of motivated behavior. Drive reduction and opponent processes are examples of other potential mechanisms that might control behavior independently of incentive processes (see Toates for discussion and evidence).

Incentive motivation appears to be the chief mechanism that controls behavior directed towards natural incentives such as food, water and a potential mate and towards more artificial incentives, such as self-administered drugs and reinforcing electrical brain stimula-
In the context of addiction, incentive motivation and appetitive motivation are synonymous: that is, appetitive motivation works primarily through incentive processes. Incentive motivation directed towards particular stimuli results from the outcome of a three-stage process. First, the neural substrates for pleasure are activated by the consequences of a particular act or event. Second, pleasure is associated with the object, act, event or place in which pleasure occurs by the processes of classical associative learning. Third, salience is attributed to subsequent perceptions and mental representations of the associated object, act, event or place, by a separate neural system from those responsible for the first two processes. This third process of salience attribution (incentive salience) is proposed here to involve dopamine. The attribution of incentive salience causes the associated situation to become attractive and ‘wanted’ and it is this psychological process that produces the direct manifestation of incentive motivation: goal-directed seeking and instrumental behavior.

Incentive salience. Refers to the attractiveness of external stimuli, events, places and their mental representations, their ability to capture attention (also see Fig. 2). The term, incentive salience, applies always to the perception of external events and to internal representations of those events. Incentive salience must be actively generated (attributed) by the brain and assigned to particular perceptions and representations, based on their association with past activation of mesotelencephalic dopamine systems. For any given stimulus incentive salience will vary at different times depending upon changes in learned associations regarding the stimulus, the internal state of the perceiver and most specifically, the degree of activation of the dopamine systems that mediate incentive salience. Incentive salience is one of a number of psychological mechanisms that can produce direct behavior (other mechanisms include drive reduction and goal-directed computational algorithms that do not depend on modulated perception of the goal; see Toates). Incentive salience constitutes one component of the complex process of incentive motivation. Although the assignment of incentive salience to an event normally is triggered by a pleasurable experience, manipulations of dopamine systems can disconnect incentive salience from pleasure and alter incentive salience independently. It is hypothesized that the attribution of incentive salience to an event or representation is an unconscious process; only the product of this process, the perception of the object as ‘wanted’, is interpreted and consciously experienced.

Incentive stimuli (incentives). Stimuli that have been attributed with incentive salience. The perception and mental representation of these stimuli are transformed as a consequence and as incentive stimuli they become salient, attractive, ‘wanted’, and approached. The terms natural incentives and artificial incentives are also used. The 3-stage process described for incentive motivation evolved to enable animals and humans to recognize and respond to ‘natural’ incentives. By natural incentives we mean stimuli such as food, water, social and sexual partners, thermal and tactile sensations, which have been endowed by evolution with the capacity to elicit pleasure and incentive salience under particular conditions (e.g., under certain hormonal conditions). Most natural incentives exert their effects via sensory receptors. ‘Artificial’ incentives, on the other hand, such as addictive drugs or electrical brain stimulation, bypass sensory receptors and activate the component processes of incentive motivation more directly. Most incentive stimuli are conditioned incentive stimuli: stimuli that have become incentives as a consequence of associative learning during the three stage process described for incentive motivation. Conditioned incentive stimuli not only include the arbitrary lights and sounds used in laboratory experiments (e.g., an auditory tone that signals food delivery), but also the stimulus configurations that must be learned through experience that allow natural incentives to be recognized (e.g., the sight of a delectable food; the sound of a loved one’s voice). Conditioned incentive stimuli are often referred to as conditioned rewards (see below), secondary rewards or secondary reinforcers (see below).

‘Liking’. See Pleasure.

Negative reinforcement. See Reinforcement.

Pleasure and ‘liking’. These are used in accordance with their usual English meaning, which refers to the subjective experience of a sensation as pleasurable or hedonic and the underlying evaluative and neural processes that directly produce this subjective experience. The opposite of aversion (see above). Pleasure is usually the first stage of the larger process of incentive motivation (together with incentive salience and associative learning) and serves as the normal trigger that activates components of associative learning and incentive salience. By itself, however, pleasure is not equivalent to either reward or ‘wanting’: it is merely a subjective experience or feeling. The evaluation of the sensation that produces pleasure is pre-conscious; only the product, the subjective pleasure, is experienced. In the present paper and in the context of addiction, the term pleasure is used synonymously with the terms euphoria, hedonia or positive affective state.
Positive affective state. (see Pleasure).
Positive reinforcement. (see Reinforcement).
Reinforcement. A purely behavioral and descriptive term for the relationship between the occurrence of a stimulus and changes in the subsequent probability of the behavior that preceded it. Reinforcement denotes a change in the probability of a behavior (increased or decreased) that is contingent on presentation of stimuli. Reinforcement does not offer either a psychological explanation or a physiological explanation of why the probability of a behavior is changed; it merely notes the existence of the change. Reinforcement can be positive or negative. Positive reinforcement refers to increases in the probability of emission of a behavior produced by subsequent presentation of a stimulus (the positive reinforcer). In the context of addiction the term positive reinforcement is sometimes used both in its proper descriptive sense and sometimes in the theoretical or explanatory sense of reward (see below), where the pleasure produced by a drug is implicitly assumed as a psychological explanation for the change in behavior. In order to avoid ambiguity in the present paper we use positive reinforcement only in its proper descriptive sense. Negative reinforcement refers to increases in the probability of omission of a behavior produced by subsequent omission or termination of a stimulus. For example, in the context of addiction, drugs may act as negative reinforcers by relieving the distress of drug withdrawal.

Reward. The word reward is used in the literature in many different ways and for the most part we avoid the term. For us, the process of reward is essentially equivalent to the process of incentive motivation; that is, reward refers to the process of creating incentives (or, as a noun, a stimulus that triggers this process). Rewards (or incentives) cause future behavior to be changed in a goal-directed fashion so as to obtain again the situation or stimulus that triggered the process. This process normally requires three separate stages. The first stage is the activation of pleasure by the consequences of a particular act or event. In the second stage pleasure is associated with a mental representation of the object, act, event or place in which pleasure occurred, by the process of classical (associative) conditioning. The third stage involves the attribution of incentive salience to subsequent perceptions and representations of the associated object, act, event or place, which causes them to become ‘wanted’. Stimuli that signal the availability of the incentive become attractive. Acts that led to the situation in the past are likely to be repeated. New acts, which the animal or person can predict (cognitively) will lead to the incen-
tive in the future, are likely to be produced. If the three stages of normal reward (pleasure, associative learning, incentive salience) are separated, the process remains incomplete. Some separations have been achieved by brain manipulations; others are useful simply as illustrative ‘thought experiments’. If the first stage of pleasure is activated without associative learning or salience attribution, then it is merely an isolated hedonic experience that remains unconnected to other events in the world or to subsequent behavior. If the first two stages occur alone so that pleasure is activated in conjunction with associative learning only, then associative conditioning of pleasure will occur to the associated events, but they will not be attributed with incentive salience. The events will become ‘liked’, but they will not be ‘wanted’ (this separation may possibly be achieved by destruction of brain dopamine systems35). Conversely, if the third stage, incentive salience, is activated alone, then ‘wanting’ arises in isolation from other processes. This may be achieved, for example, by a stimulating electrode that directly activates brain dopamine systems37. If salience attribution is magnified abnormally in conjunction with associative learning, but pleasure is not, for example, by the process of drug-induced sensitization discussed here, then the attribution of incentive salience becomes intensified and focused narrowly on the stimuli and acts associated with drug administration and they become pathologically ‘wanted’ (craved). This may be considered a type of ‘sham reward’, which shapes instrumental behavior and creates craving, but is dissociated from pleasure. Viewed from the outside, the behavior produced by sham reward and natural reward is identical on all measures of ‘wanting’ or instrumental performance. Only behavioral measures that are specifically sensitive to pleasure – rather than wanting – will identify sham reward (without pleasure) as distinct from natural reward (triggered by pleasure).

Salience. A salient stimulus is a stimulus that has been (or is being) attributed with incentive salience (see above). Salience refers to the feature(s) of the percept or representation of a stimulus that makes it highly noticeable and difficult to ignore. A salient stimulus is not merely more obvious, but it also becomes ‘wanted’ and attractive because, according to our usage, it is incentive salience that is attributed to the percept or mental representation (but see Note 9 in Ch. 6 on aversive salience).

Salience attribution. (see Incentive salience; Incentive motivation).

Secondary reinforcers. (see Incentive stimuli)

‘Wanting’. (see Craving/‘wanting’).
Acknowledgements. Preparation of this manuscript and research by the authors was supported by Grants from the National Institute on Drug Abuse (04924) to T.F.R. and from the National Institutes of Health to K.C.B. (NS23959). An earlier version of this theory was first presented at a UCLA/NIADDK symposium on 'The Biological Basis of Substance Abuse, Santa Monica, CA, January 9–12, 1991. We are grateful to Alido Badiani, Jill Becker, Craig Berridge, Barry Everitt, Tim Schallert, Jane Stewart, Frederick Toates, Keith Truillo, Elliot Valenstein, Derek van der Kooy, Ian Whishaw and Roy Wise for their helpful and thought-provoking comments on an earlier draft of this paper.

REFERENCES

36 Brain, D.L. and Geyer, M.A., Sensorimotor gating and the...

121 Hamamura, T., Akiyama, K., Akimoto, K., Kashihara, K., Okumura, K., Ujike, H. and Ottsuki, S., Co-administration of either a selective D1 or D2 dopamine antagonist with methamphetamine prevents methamphetamine-induced behavioral sensitization and neurochemical change, studied by in vivo intracerebral dialysis, Brain Res., 546 (1991) 40–46.

140 Hu, X.-T., Broderson, R.J. and White, F.J., Repeated stimulation of D1 dopamine receptors causes time-dependent alterations in the sensitivity of both D1 and D2 dopamine receptors within the rat striatum, Neuroscience, 50 (1992) 137–147.

146 Invernizzi, R., Pozzi, L. and Samanin, R., Release of dopamine is reduced by diazepam more in the nucleus accumbens than in the caudate nucleus of conscious rats, Neuropharmacology, 30 (1991) 575–578.

167 Karler, R., Calder, L.D. and Turkani, S.A., Changes in CNS
sensitivity to cannabinoids with repeated treatment: tolerance

168 Kato, J.L. and Goldberg, S.R., Preclinical assessment of abuse

169 Kazukeya, Y., Akimoto, K. and Otsuki, S., Subchronic metham-
phetamine behavioral sensitization, Brain Res., 552 (1991)
295–300.

170 Kiyatkin, E., Wise, R.A. and Gratton, A., Chronamperometic
sensitization: behavioral and neurochemical correlates. In P.W.
Kalivas and C.D. Barnes (Eds.), Sensitization in the Nervous

171 Kita, T., Okamoto, M. and Nakashima, T., Nicotine-indu~d
907–912.

172 Keller, R.W., Maisonneuve, J.M., Carlson, J.N. and Glick, S.D.,
Within-subject sensitization of striatal dopamine release after a
single injection of cocaine: an in vivo microdialysis study, Synapse,

173 Kellev, A.E. and Delfs, J.M., D opamine and conditioned rein-
forcement. I. Differential effects of amphetamine microinjec-
tions into striatal subregions, Psychopharmacology, 103 (1991)
187–196.

174 Kelley, A.E. and Delfs, J.M., Dopamine and conditioned rein-
forcement. II. Contrasting effects of amphetamine microinjec-
tion into the nucleus accumbens with peptide microinjection
into the ventral tegmental area, Psychopharmacology, 103 (1991)
197–203.

175 Khanzian, E.J., The self-medication hypothesis of addictive
disorders: focus on heroin and cocaine dependence, Am. J.

176 Kita, T., Okamoto, M. and Nakashima, T., Nicotine-induced
sensitization to ambulatory stimulant effect produced by daily
administration into the ventral tegmental area and the nucleus

177 Kiyatkin, E., Wise, R.A. and Gratton, A., Chronamperometric
measurements of dopamine levels in the rat nucleus accumbens,

178 Knoblisch, G., Curtis, D., Faustman, W.O., Zarrow, V., Stewart,
S., Mefford, I. and King, R., Increased CSF HVA with craving
in long-term abstinent cocaine abusers, Biol. Psychiatry, 32

179 Kokkinis, L., Zacharko, R.M. and Anisman, H., Amphetamine
1623.

180 Kolta, M.G., Scales, F.M., Ali, S.F. and Holton, R.B., Ontogeny
of the enhanced behavioral response to amphetamine in am-
phetamine-pretreated rats, Psychopharmacology, 100 (1990)
377–382.

181 Kolta, M.G., Shreve, P., De Souza, V. and Uretsky, N.J., Time
course of the development of the enhanced behavioral and
biochemical responses to amphetamine after pretreatment with

182 Kolta, M.G., Shreve, P., and Uretsky, N.J., Effect of meth-
ylephedrine pretreatment on the behavioral and biochemical
responses to amphetamine, Eur J Pharmacol., 117 (1985) 279–
282.

183 Kolta, M.G., Shreve, P. and Uretsky, N.J., Effect of pretreat-
ment with amphetamine on the interaction between am-
phetamine and dopamine neurons in the nucleus accumbens,

184 Koob, G.F., Dopamine, addiction and reward, Sem. Neurosci.,

185 Koob, G.F. and Bloom, P.E., Cellular and molecular mecha-

186 Koob, G.F. and Goeders, N.E., Neunatomical substrates of
drug self-administration. In J.M. Liebman and S.J. Cooper
(Eds.), The Neuropharmacological Basis of Reward, Oxford

process theory of motivation: neurobiological evidence from
135–140.

188 Kosobud, A.E., Harris, A.E. and Chapin, J.K., Actions of drugs
of abuse on reward-related activity in neurons of the ventral
tegmental area and prefrontal cortex in the rat, Soc. Neurosci.

189 Kozlowski, L.T. and Wilkinson, D.A., Use and misuse of the
concept of craving by alcohol, tobacco and drug researchers,

190 Kriekhaus, E.E. and Wolf, G., Acquisition of sodium by rats:
interactions of innate mechanisms and latent learning. J. Comp.
Physiol. Psychol., 65 (1968) 197–201.

191 Ksir, C., Hakan, K., Hall, D.P. and Kellar, K.J., Exposure to
tobacco enhances the behavioral stimulant effect of nicotine
and increases binding of [3H]acetylcholine to nicotinic recep-

192 Kuczenski, R. and Leith, N.J., Chronic amphetamine: is
amphetamine a link in or mediator of the development of tolerance
405–413.

193 Kuczenski, R. and Segal, D.S., Psychomotor stimulant-induced
sensitization: behavioral and neurochemical correlates. In P.W.
Kalivas and C.D. Barnes (Eds.), Sensitization in the Nervous

194 Kuroki, T., Tsutsumi, T., Hirano, M., Matsumoto, T., Tate-
bayashi, Y., Nishiyama, K., Uchimura, H., Shiraiishi, A., Naka-
hara, T. and Nakamura, K., Behavioral sensitization to beta-
phenylethylamine (PEA): enduring modifications of specific
dopaminergic neuron systems in the rat, Psychopharmacology,

195 La Hoste, G.J., Momeade, P., Rivet, J.M. and Le Moal, M.,
Differential sensitization to amphetamine and stress responsivi-
381–384.

196 Lal, H., Miksic, S., Drawbaugh, R., Numan, R. and Smith, N.,
Alleviation of narcotic withdrawal syndrome by conditional stim-

197 Lamb, R.J., Preston, K.L., Schindler, C., Meisch, R.A., Davis,
F., Katz, J.L., Henningfield, J.E. and Goldberg, S.R., The
reinforcing and subjective effects of morphine in post-addicts: a
1173.

198 Lasagna, L., von Felsinger, J.M. and Beecher, H.K., Drug-in-
duced mood changes in man. I. Observations on healthy sub-
jects, chronically ill patients and "postaddicts", IAMA, 157
(1955) 1006–1020.

199 Leith, N.J. and Kuczenski, R., Two dissociable components of
behavioral sensitization following repeated amphetamine admin-

200 Leyton, M. and Stewart, J., Preexposure to foot-shock sensitizes
the locomotor response to subsequent systemic morphine and
intra-nucleus accumbens amphetamine, Pharmacol. Biochem.

201 Lin-Chu, G., Robinson, T.E. and Becker, J.B., Sensitization of
rotational behavior produced by a single exposure to cocaine,

202 Ljungberg, T., Apicella, P. and Schultz, W., Responses of mon-
key midbrain dopamine neurons during delayed alternation per-

203 Ljungberg, T., Apicella, P. and Schultz, W., Responses of mon-
key dopamine neurons during learning of behavioral reactions,

204 MacLennan, A.J. and Maier, S.F., Coping and the stress-in-
duced rotational behavior produced by a single exposure to cocaine,

205Magee, L., Persistence of the effect of amphetamine on stereo-

206 Maj, J. and Wdzony, K., Repeated treatment with imipramine
or amitriptyline increases the locomotor response of rats to (+)-amphetamine given into the nucleus accumbens, J. Pharmacol., 37 (1985) 362-364.

221 Nisbett, R.E. and Wilson, T.D., Telling more than we can know: verbal reports on mental processes, Psychol. Rev., 84 (1977) 231-259.

236 Piazza, P.V., Deminère, J.M., Le Moal, M. and Simon, H., Stress- and pharmacologically induced behavioral sensitization...

282 Schenk, S., Valadez, A., McNamee, C. and Horger, B.A., Blockade of sensitizing effects of amphetamine on...

370 Wolf, M.E., White, F.J., Nassar, R., Broderson, R.J. and

