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The response and stability of a flexible rod, rigid crank quick return mechanism is
investigated without a small crank restriction. A Galerkin’s approach was found to be too
computationally intensive, due to the moving boundary and complex mode shapes, and
thus unsuitable for monodromy based parametric resonance stability investigations. A
simple set of polynomial modes were developed. Although requiring more modes than the
Galerkin method to obtain the same accuracy, polynomial modes require less computation
time for stability investigations. A free—free (time independent) mode method was used to
obtain non-linear dynamical and constraint equations. The method was found to be the
most accurate and least computationally expensive for response; however, these equations
were non-linear and not suitable for stability investigations.

1. INTRODUCTION

The quick return mechanism shown in Figure 1 has several industrial applications.
Modelling the crank as a rigid body and the rod as a flexible beam, it was previously
treated by the authors {1], under the restriction of a small crank length. That restriction
allowed approximations (in the form of Taylor series expansions), which considerably
simplified the equations of motion, which in turn led to tractable response and stability
calculations.

The present work addresses the large crank, and methods for determining response and
stability are presented. Basically, there are two approaches to such tasks; namely, finite
element approaches, as was done by Song and Haug [2] and Bahgat and Willmert {3],
and mode methods. Generally speaking, mode methods are more efficient, requiring fewer
degrees of freedom to be carried in the analysis for an accurate solution. However, they
are less general in that they can only readily be used for shapes for which the modes are
easily derived. Here, a Galerkin approach and a polynomial mode method are examined.
Both of these methods require the use of time dependent mode shapes. Recent publications
have examined parametric vibration stability and the response of flexible slider-crank and
cam-follower mechanism systems; see, for example, Tadjbakhsh [12], Tadjbakhsh and
Yountis [13], Zadoks and Midha [14, 15], Fahrang and Midha [16], Mahyuddin and
Midha [17] and Mahyuddin er al. [18].
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Figure 1. Rigid crank, flexible rod quick return mechanism: (a) Undeformed initial state; (b} deformed state.

The applicability of the free-free mode method to the current problem is also addressed.
The technique requires describing the deformation relative to certain co-ordinate frames
(such as, for example, a Bucken’s frame) and is detailed in reference [4]. The method has
several attractive features, namely: (1) the mode shapes are time independent; (2) the
technique can be implemented in a rigid body dynamics code (see references [4] and [3]);
(3} it leads to sparse matrices.

In all cases, a fourth order Runge-Kutta numerical integration scheme was selected for
obtaining the response.

2. RESPONSE

2.1. GALERKIN METHOD

The basic configuration of the system is set forth in Figure 1. The equations of motion
for the mechanism were derived in reference [1] and are repeated here for completeness.
In non-dimensional form they are

2 ow Fw 1 [(e(
@ aq® 80° (14 2+ 2cc0s 02

&*—1) sin 8—we*(cos 6 + £))}=0,

0<p<li<n<l, (1)
where
8=61, w(n, 0)=v(x, /L, @
e=G/a,, n=x/L, T=xi/L, A*=EI/(mL*

and where a, is the base length. The non-dimensional essential boundary conditions are

wloy=0, 7 e="0"8, wo,0=0, 3)
on an
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and the non-dimensional natural boundary conditions are

Pw a*w *w P w

dw - ~ -
22, 6)=— 2(: 0. 3700=0  Z50.0)=0 —(1 0)=0. (4)

an

In using Galerkin’s method, the mode shapes chosen are those for the pinned-pinned
beam with an overhang and are time dependent. Denoting them by €,, 0<7 <[ and e,
I<n<1, the following trial functions are used:

wﬂ(n! 9)= E f;l(e)ent(na 9)9 0< Tl<l_- (5)

n=1
N
Wrz(’?, 9) = Z ﬁr(e)enz(’?s 8)9 r‘( < 1. (6)
n=1

Application of Galerkin’s method with these trial functions leads to (see reference [1}
for more detail):

dfk _ df,, ( £*(cos 0+ )? )
Ak + - a
“ 46 El e A (1+2&cos 6+ &%) K
N —esin @8(e*—1) _
+ Y b..f, , k=1,..., N, 7
;ZH o= {(1+2&cos 6+ &%) £ ™

where

A= I emen dipt+ | €€ dn, (8)

(- wf )

(10)

7
gk—J ek dn+J new dn. (1
0

r

®; is the kth natural frequency of a pinned-pinned beam with an overhang. Analytic
expressions for the integrals in equations (7)-(11) were sought using the symbotlic manipu-
lator REDUCE [6). However, they proved so unwieldy that the approach was abandoned.
A purely numerical approach was adopted, in which the integrals were evaluated using
the quadrature routine NAAS:QCRP [7]. The partial derivatives in the integrands were
treated via finite differences, and the ordinary differential equations (7) were integrated
using a fourth order Runge-Kutta method.

Some trial calculations were made using a very flexible rod, with the properties: L=
1m,a,=059997 m, b=0-05m, h=0-05m, E=0-7x 10" N/m? I=0-5208 x 10" m*, =
7-15kg/m, G=0-0059997 m. The tip response for a crank speed of 100 rad/s was deter-
mined. One- and two-mode approximations took of the order of 25 minutes and 75
minutes, respectively, on an Apollo 4000 computer. This alone would be acceptable, but
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stability also has to be addressed. Using the monodromy matrix method set forth, for
example, in Meirovitch [8], it was estimated that each single data point on a stability chart
would involve roughly 300 minutes of computation time for a two-mode approximation.
In view of this unacceptable time, the approach was abandoned. It should be noted that
techniques do exist to speed up the determination of the monodromy matrix [19, 20], but
they were not considered because they are approximate.

2.2. POLYNOMIAL MODES

In an effort to find a less computationally intensive technigue, a time dependent poly-
nomial mode approach was developed. In variational methods, admissible functions need
only satisty the essential boundary conditions. A simple set of time dependent, linearly
independent polynomials satisfying only the essential boundary conditions are given
below:

pn=x(x—x1), 0<x<x;; ¢gr=xi(x—x1), x<x<L; (12)
Py =x*x—x), 0<x<x; Ppn=xx(x —x), x <x<L; (13)
Gu=x"(x—x1), 0<x <x; $e=x;x""'(x-x), x<x<L (14)

Note that these expressions depend on time, through the parameter x, .
These time dependent polynomials can be applied directly to the Euler-Lagrange
equation

— ——-—=0, (15)

where the Lagrangian % is given in terms of the dimensional transverse displacement v
and the angle ¢ (see Figure 1) by

& =% '[ :I (((%%)2 +2x % ¢+ x7¢ + vzqiz)) dx
+ '[L (((@)2 Ly S vzdiz)) dx
2J, \at ot
Assume for © a trial solution of the form (using the summation convention hereafter)
on=fi(D¢s, 0<x<x;, vn=fil¢,, x<x<L. (17)

Equations {15), (16} and (17) give, after considerable algebra,

AL fi+ DAy, fi+ (3, — T\ + EIT ) f;= — méTs;, (18)
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where

v 1
Fuj=x‘1+j+3( : - 2 + = )
i+j4+3 it+j+2 i+j+3
+x2(L1’+j+1_xri+j+1 _2xl(Li+j_x|i+j) +x%(Li+j-1 __x1;+j—t))
AUEYES i+j i+j—1 ’

o 1 1
ri'=___- l+j+2(—“__ )
A VI

. Lr'+j+l__x.|i+j+l 3X](Lj+j_xi+j) 2x?(Li+j_l_xli+j_l)
+x1 1 - + s

i+j+1 i+j i+j—1
o e 1 H 0%, i+ i+j+1
Fyy=—%xi"7"? - + (L7 =Xy
i+j42 i+l i+l
yanﬁ—hﬁwﬂw_ﬂﬁﬁgﬁﬁ+hﬁwyﬂq_ﬂﬂﬂ)
i+ i+j—1 ’
I =4x|/L4,

F4lj=2xJi/Lj+3, i=1) j'_’éls
Fa=2x{/L',  j=1, i#l,
F422=(4x?+4x?(L—x1))/L6.

For all other i and j:

Fa=1if f+j1((”1)(J'+1)_2(fj—1)+(i"1)(j-1)
i

+xi( -1 —1
v i+l i+j-2 i+j-3 ) ==

x [ijwﬁ_s‘x‘i”")_xl((i—z)j+f(j—z))(L“f-‘*-x1+f—‘*)
i+j—3 -4

+xf(f—2)(j—2)(L“+f'5—xi+f‘5)}
i+j—35 ’

i+2_ 2epitl
rﬁ=ﬁﬂ(l__ 1)+x(L i+2) AT it
i+3 i+2 i+2 it2

467

(19)

(20)

(21

(22}
(23)
(29)

(25)

(26}

(27)

To test the procedure, the small crank problem treated in reference [ 1] was solved, using
a Runge-Kutta integration scheme on equations (18). Excellent agreement was found

lending confidence to the approach.

To test the polynomial modes on a large crank problem, the properties and dimensions
used by Bahgat and Willmert [3] in their finite element study were used, namely, G=
1-5in, L=9-3746 in, a, =4 in, ET=2-91992E6 Ibf in’, 72 =0-1268 lbm/in and 6 =90 rad/s.
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Figure 2. Large crank-tip deflection using three polynomial modes.

Tip deflections using 3 and 10 modes are shown in Figures 2 and 3. Note that most of
the deflection is captured by 3 modes. Bahgat and Willmerts’ results for the horizontal (i
in Figure 1) and vertical components (j in Figure 1} of the tip deflection, U3 and Vs,
respectively, are shown in Figure 4. Note the absence of high frequency oscillations, such
as occur in Figures 2 and 3. When (-2 percent proportional damping is included, the
results displayed in Figure 5 show trends similar to those of Figure 4. This conclusion was
made from the observation that Figure 4 deformations constitute a vector that is directed
almost perpendicularly to the rod axis at any time; hence the deformation is almost
entirely bending deformation (axial deformation was also included in their analysis). An
approximation of Figure 4 deformation in the floating frame of Figure 1 is therefore
J U3+ VZ, and since Us is always small compared to V2, the deformation is approximately
V,. Hence, Figures 5 and the second plot of Figure 4 can be directly compared, and they
do indeed display similar trends. Exact agreement is not to be expected because Bahgat
and Willmert included effects not considered in this analysis, i.e., a flexible crank, a flexible
sliding link, and axial deformation of all links. Note that the presentation of the crank
angle in Figure 5 is phase shifted to account for different mechanism configurations chosen

Tip deflection (in)

~0-016 1 1 - :

-135 -15 15 45 105 165 225
Crank angle (degrees)

Figure 3. Large crank-tip deflection using ten polynomial modes.
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Figure 4. Large crank-tip deflection results from reference [3], I3 inch crank : —-, three elements; - - -, five
elements; — - —, seven elements. Deformations (a} U; and (b) V5.

0008 3
0-006 -
0-004
002 1
101 e — —“TL
0002t
0004 |
-0-006 |
-0-008 |

-0 (10 . . . . .
-135 15 -15 -45 105 165 225

Crank angle (degrees)

Tip deflection (in)

Figure 5. Ten polynomial mode approximation to large crank problem with 0-002 damping.

for the zero angle position. Steady state was immediately achieved in Figure 5 for zero
initial position and velocity of the modes,

2.3. FREE FREE MODES

The free-free mode method, which is reasonably well known in the aerospace industry,
has recently been applied to more mechanical engineering oriented applications. In refer-
ences [4] and [5] it was implemented for mechanisms with pinned end censtraints. Also,
Buffington and Kane [9] applied it to the problem of a flexible magnetic tape moving over
a pair of fixed supports.

The free-free modes in question are with respect to a “shadow” or “floating” frame
that is moving with the flexible object. The shadow frame and the flexible object are kept
close to each other by imposition of a set of constraint relations. Many floating frames
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Figure 6. Free-free mode description of quick return mechanism.

are available. The one chosen here is the Bucken’s frame, also known as a linearized
Tisserand frame [10].

The system is shown in terms of a Bucken’s frame in Figure 6. Generalized co-ordinates
R, and R, are the components of a vector from ground to the center of mass of the
deformed beam, where the origin of the shadow beam is located. The angle y, a generalized
co-ordinate, between the vector f; in the floating frame and ground, is not prescribed at
this stage.

The elastic deformation, now defined as u(x, ), with respect to the floating frame is
written

u= 3 OV, (28)

where f; is the generalized co-ordinate corresponding to w,(x}, which is the ith ortho-
normalized Euler-Bernoulli mode shape for a free-free beam. (These functions are well
known and are not reproduced here.)

The constraint relations @;, which will be specified later, are handled by the introduction
of an augmented Lagrangian A, defined by

A=T-V+Y 4, (29)
=1

where A, are Lagrange multipliers. Instead of equation (15}, the associated Euler-Lagrange
equations are now

2(?&)_%=0, i=1,...n, (30)
dt 5q, 5(],

A

—=, ,t=0, .=]a-"! » 31

where the g, denote the generalized co-ordinates.
The position vector from the ground to any material point on the beam is given by

F=Ryi+ Roj+xh+ufs. (32)
From this, the rod kinetic energy can be obtained as

L/2
Toa=1 j (R3/2+ R3/2— yu(R, cos y + Ry sin y) + yx(R; cos y — R, sin )

=L/2

+a( Rz cos ¥ — Ry sin ) +{(77/2)(u” + x*) + yxi+ (&°/2) dx. (33)
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The modes y; have the properties
LiY L/2 L/2
J. Vi dx=5,'j, J‘ W dx=0, J XY dx=0, (34—36)
—L72 —L/2 —-L/2
where &;; denotes the Kronecker delta. Using these properties, equation (33) becomes
Trou= (/2 (LR + LRA+ 2 fi+ 7L N2+ £ ). 37
The strain energy V is given by

EI [*7
Vypd=— j (8%u/0x%)* dx. (38)
2 —-L/2
Using the mode property
L2 2 2
dy; d
'[ Vil Y gx=kts,, (39)
i dx? dy?
equation (38) becomes
Via=(EI/2)k} f7. (40}

The generalized co-ordinates are f;, R;, R; and ¥, but three independent scalar constraint

equations exist. The first two come from a vector loop around the pin grounding the
flexible rod:

Ron—(L/Dfi+w(~L/2,D/,=0. (41)

Taking the scalar product of this equation with f;, /> yields
@=R,cosy+R,sin y—L/2=0, (42)
@;=—R,sin y+ Rycos y+u(—L/2, 1)=0. (43)

A vector loop around the translating joint gives the third constraint equation
_ L - . R
R+ (xl )f, + u(x. )fz G(cos Bi+sin 0f)—a,i=0. (44)

Taking the scalar product of equation (44) with ﬁ yields an expression for x; from which
X1 can be obtained. Taking the scalar product of equation (44) with fz and substituting
the values found for x; and x; gives the third constraint equation:

®y=—Rysiny+R;cos y +u(x~L/2, {)+Gsin (¥ - @) +a, sin y=0. (45)

Substituting equations (37), (40), (42), (43), (45) and (28) into equations (30} gives the
equations

mLR,— 2, cos ¥+ A;sin y+ Az sin y =0, {46)
mLR;— A, sin y — A, cos y ~ A3 cos ¥ =0, 4"
(L’ /12y + mf, f, 7+ 2m7fi fi+ A R, sin y — A Ry cos y + A, R, cos ¥
+ A2 Rysin ¥y +A; R, cos ¥ + y3 R, sin y — 43G cos (¥~ 0)

dw, . .
~ As@, €OS ¥+ A3 f; E% (@x,—L/2)a,sin y+Gsin (y—8))=0,  (48)

fi—myfi+ Elfk = Aoy d@— L/2)— Ay @x—L/2)=0  (no sum on i). (49)
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Figure 7. Small crank-tip deflection using one, two and three free—free modes.

A fourth order Runge-Kutta scheme was chosen for the numerical integration. It
required that the constraint equations (42), {43) and (45) be differentiated twice, and the
use of first order forms. However, the details will not be reproduced here. The initial
conditions used were an undeformed beam ( £(0) =0) and fi(0) = 0. Hence the initial origin
of the Bucken’s Frame is at the center of mass of the “‘rigid body”, and its initial orientation
is defined by f, being along the rigid body axis. The initial geometry and the rigid body
kinematics give R,, R;, ¥ and their time derivatives at t=0.

For validation purposes, the small crank problem previously treated is first considered.
Tip deflection using 1, 2 and 3 modes is shown in Figure 7. Comparing with previous
results, a one mode approximation is very accurate and, beyond two modes, no significant
increase in accuracy occurs with the addition of more modes.

The stiffer rod used in conjunction with the polynomial mode method was also examined.
The tip deflection using 1, 3 and 5 free-free modes is shown in Figures §-10. Rapid
convergence is seen. Note that the results agree quite well with those using the polynomial
modes.

Thus it can be concluded that the free—free mode method can successfully and efficiently
capture the response of a mechanism in which there is a moving boundary. In the authors’
experience, it is actually less costly than the polynomial mode method even though the
equations are non-linear. One word of caution, though—in a run in which an instability
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Figure 8. Large crank-tip deflection using one free-free mode.
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Figure 9. Large crank-tip deflection using three free—free modes.
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Figure 10. Large crank-tip deflection using five free-free modes.

occurred, so that the deflections became quite large, it was found that the free-free mode

method diverged. It is recommended for use for this class of problem only when the
deformations are small.

3. STABILITY
3.1. HOMOGENEOUS EQUATION STABILITY

In reference [1] it was shown that homogeneous equation instability zones in 8 — & plane
emanate from the line £=0 at points § =2, /n, § =(», +w;)/n and § =2w,/n,n=1, 2, 3,
where @, is the kth pinned-pinned overhanging beam natural frequency when the crank
has zero length. These zones or at least the lower order ones—were obtained using pertur-
bation methods and were confirmed using the monodromy matrix method. Perturbation
techniques cannot be employed in the current problem, since € is not necessarily small.
The monodromy matrix method has to be used.

The response has been obtained using both polynomial and free—free modes. The use
of the former will be addressed first. As was noted previously, three modes were sufficient
to capture the response accurately, and those are all that are considered here (comparisons
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with some of the independently obtained small & stability zones showed that, indeed,
retention of just three modes was adequate).

Equations (18) are linear differential equations with time dependent coefficients. Because
of the linearity, the monodromy matrix technique can be applied directly. It requires the
numerical integration over the crank period of the set of governing differential equations
for different sets of initial conditions. This generates a matrix (monodromy matrix) the
cigenvalues of which must be determined (their nature determines stability/instability).
This procedure must be run through for each (8, £) point and so it is computationally
very intensive. However, it is not restricted to small ¢ values.

_ The computational strategy was as follows. Potential instability zones emanate from the
0-axis where £=0. To determine these points, consistent with the three-mode approxima-
tion, & was set equal to zero in equation (18) and the resulting eigenvalue problem solved
numerically. Rather than go through the very computationally intensive effort of generat-
ing a stability chart, it was decided instead just to search for instabilities in the range of
practical speeds and sizes, which was taken to be as follows: § between 0 and 20 rad/s
and ¢ such that £<0-3. Using the properties specified previously for the very flexible rod,
the monodromy matrix method did not reveal any instabilities in the practical range. Thus,
for the stiffer configuration likely to be encountered in practice, it can be concluded
even more strongly that homogeneous equation instabilities do not occur for practical
operating speeds.

Problems arise in addressing instabilities using the free—free mode method. The free-
free equations (46)-(49) are non-linear, and so would have to be linearized before stability
could be addressed. A possible approach to such a linearization is one in which the co-
ordinate 7 (see Figure 6) would be replaced by an angle measure from the f; axis. It is
conjectured that a small angle approximation would then lead to a set of linearized equa-
tions to which standard methods could be applied. Buffington and Kane [9] used a similar
technique for their problem and it led to a set of linear equations for stability analysis.
However, the approach sufiers from the shortcoming that such co-ordinaics are not ones
used in commercial codes, such as ADAMS [11]. Procedures to generalize the process of
linearization so as to be applicable to a set of generalized co-ordinates defined with respect
to ground are not obvious, and the issue is left as an open question. In view of these
problems, the possible use of free-free modes for addressing stability is left for future
work.

3.2. INHOMOGENEQUS EQUATION STABILITY

In reference [1] it was shown that in the small crank problem there were instabilities
due to the inhomogeneous terms in equations (7). They arose at crank speeds equal to 1/
n times the first natural frequency of the overhanging beam for zero crank length (¢=0).
For non-zero &, there is no fixed natural frequency of the overhanging beam, since the
location of the pivot point changes appreciably during a cycle. In Figure 11, for example,
variation of the first natural frequency with the crank angle (and hence the pivot location)
is shown for £=0-2. Larpe variations are scen. Under these circumstances, it is not clear
whether or not the instabilitics found in reference [1] occur.

Using numerical integration of equations (18), the tip deflection, using three polynomial
modes and the flexible beam configuration, was obtained at a crank speed equal to the
average natural frequency (=900 rad/s) for §=0-2. The result is shown in Figure 12. A
beating, but not unbounded, motion is seen. However, for all practical purposes the
motions can be regarded as unstable, since the amplitudes involved are so large (of the
order of meters!). Thus, in this sense, the instabilities are still present. As in reference [1],
though, they are at speeds well outside the practical range.
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Figure 11. First natural frequency using three polynomial modes, versus crank angle, at £=0-2.
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Figure 12. Tip deflection at 6 =average first natural frequency, £=0-2.

Numerical integrations were also carried out for crank speeds equal to 1/10 times the
averaged first natural frequencies for =01, 0-05, 0-10 and 0-20. The peak values of the
tip displacement were all found to be small, with no discernible instabilities arising.

Thus, in summary it can be concluded that, as in the small crank case, instabilities due
to the inhomogeneous terms in the equations of motion arise, but they are at crank speeds
well above any anticipated practical speeds.

4. CONCLUSIONS

Three mode methods (Galerkin, polynomial and free-free) have been presented as means
of investigating the stability and response when the crank is large. Of the three, the
Galerkin method (using time dependent modes) was accurate but too computationally
intensive for stability investigations. The polynomial mode method also reguired time
dependent modes and captured most of the tip deflection with three modes. The polynomiai
mode method was efficient enough to be useful for studying stability by the computational
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m

onodromy matrix method. No parametric resonance instabilities were found at crank

speeds in the practical range. The free-free mode method, which employed time indepen-
dent mode shapes and the Bucken’s frame, was shown {o capture the response of a
mechanism in which there is a moving boundary. The free—free mode method was the
most computationally efficient method for response, even though constraint equations
were required. However, the equations were non-linear, and stability using those equations

is

an open question. Lastly, the inhomogeneous equation instability did not occur during

the practical range of crank speeds.

o oo
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