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As is typical of stochastic-optimization problems, the multi- 
variate integration of the probability-density function is the 
most difficult task in the optimal allotment of tolerances. In 
this paper, a truncated Monte Carlo simulation and a genetic 
algorithm are used as analysis (i.e. multivariate-integration) and 
synthesis (i.e. optimization) tools, respectively. The new method 
has performed robustly in limited experiments, and was able 
to provide a significant reduction in optimal cost when 
compared with results published in a previous study. 
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The allotment of tolerances is closely tied to the overall 
quality and cost of a product 1. If the tolerances are too 
loose, the probability of an assembly functioning 
acceptably (yield) is low. On the other hand, if the 
tolerance is too tight, the manufacturing cost becomes 
high. Thus tolerance allotment becomes an optimization 
problem to determine the optimal allotment of the 
tolerances under the constraints of the function 
requirements and acceptance probability (spec yield). In 
the design centring problem, nominal dimensions are 
changed to find the maximum yield with fixed tolerances, 
and hence the design variables are the nominal dimensions. 

Methods for calculating yield (i.e. multidimensional 
integration) are typically classified as either approximate 
methods or stochastic methods (e.g. Monte Carlo 
simulation2). Approximate methods try to calculate the 
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yield by modifying the tolerance domain. In problems 
with low dimensions, original tolerance domains are 
approximated as simple regions such as spheres, cubics, 
or simplices 3-5. Other approaches for approximating 
discrete distributions have also been tried 6. 

Because approximate methods change the domains 
and/or distributions, the calculated approximate yield is 
not the same as the yield for the original domain. As a 
consequence, when approximate methods are used to 
solve the tolerance-optimization problem, the reported 
yield may deviate significantly from the spec yield ~. Since 
the spec yield is directly related to the cost, this is 
undesirable. 

The computed yield is virtually the same as the actual 
yield if accurate stochastic-analysis methods (e.g. Monte 
Carlo simulation ) are used. Unfortunately, Monte Carlo 
simulation (and other stochastic methods) require many 
sampling points to assure high accuracy. Because of the 
amount of computational effort required, Monte Carlo 
simulation may be unsuitable for the inner iteration of 
many classical optimization algorithms, although the 
rapidly decreasing cost of computing suggests that this 
may not be the case forever. 

In the method presented here, Monte Carlo simulation 
is used in the tolerance-analysis procedure (i.e. yield 
estimation). However, instead of approximating the 
integration domain, the Monte Carlo simulation is 
approximated by truncating it after a very small number 
of sampling points. This greatly reduces the computational 
effort required for the Monte Carlo simulation. However, 
the resulting noise level in the objective function tends 
to cause problems for traditional descent methods. 

Accordingly, a genetic algorithm is used in the 
tolerance-synthesis procedure. Genetic algorithms behave 
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robustly in erroneous and noisy environments. Results 
reported here show that the genetic algorithm can lead 
to good (i.e. cost-effective) tolerance assignment, even 
though the tolerance-analysis problem is only approxi- 
mately solved in each function evaluation. 

S T O C H A S T I C - O P T I M I Z A T I O N  A N D  
TOLERANCE-OPTIMIZATION PROBLEMS 

The stochastic-optimization problem can be written as 
follows. 

Minimize 

E[ f (x ,  4)] {1) 

subject to 

E[g,~x, ¢}] ~< 0 

x ~ R  n 

{ E R "  

i=  1, 2 , . . . ,  r 

where 

E[ f (x ,  ~)] = ff(x, ¢) dP(¢) 

E[gi(x, ~)] = fgi(x, ~) dP(~) 

and P is the probability-density function of 4. 
Most of the effort required to solve this problem is 

spent in the multivariate integration. The domain of the 
integration can become unmanageable, especially when 
the dimensions are high and/or the constraints are 
complicated. In low-dimensional problems, the domains 
may be approximated as cubes, spheres, or simplices 3-s'8'9. 
However, most domain-simplification schemes become 
impractical when the dimensionality of the problem 
becomes high 1°. A number of schemes have been 
developed to overcome these difficulties 6'11-1a. 

In general, stochastic-optimization methods can be 
classified into three categories: common nonlinear- 
programming methods with simulation ~4'15, approxi- 
mation methods 6, and stochastic quasigradient 
methods ~6-:s. 

Tolerance-optimization problems 

In the assembly process, some dimensions interact with 
other dimensions, and have effects on the function of the 
assembly. Those dimensions are called sum dimensions. 
For instance, consider the case of assembling a shaft and 
a bore, as shown in Figure 1. One of the important sum 
dimensions in the assembly is the clearance between the 
shaft and the bore. 

Suppose that the gap must be at least 0.001 in, but not 
more than 0.005 in. In mathematical terms, then, the gap 
must satisfy 

FI(X) = x I - x  2 - 0.001 >0  

F2(x ) -- - x  1 + x  2 -I-0.005 >0  

Therefore, two constraints are generated by restricting 
the range of a sum dimension. In tolerancing problems, 
the constraints are called design functions. The design 
functions can be nonlinear if there exist angular 
dimensions. In practical design tasks, there exist numerous 
sum dimensions and their attendant constraints. 

It is commonly.assumed that individual dimensions 
follow normal distributions with a standard deviation of 
approximately one-sixth of the tolerance. The design 
functions and the acceptable tolerance regions can be 
projected onto the dimension space. The region that 
simultaneously satisfies both the design functions and the 
tolerances is the region in which one can expect to obtain 
reliable performance, and hence it is called the reliable 
region. The reliable region for the assembly in Figure 1 
is shown in Figure 2. 

The yield is computed as the probability that x will 
fall in the reliable region. Let xiu and xi, represent the 
upper and lower limits of an individual dimension x~ in 
an assembly. Then the yield is represented as 

1u fx;nu 
Y =  q(xl . . . . .  x,)dp(xl, x , ) d x l . . . d x ,  (2) 

11 . . . . . .  nl ' 

where ~b(xl . . . . .  x,) is the multivariate normal probability- 
density function, and q(xl . . . . .  x,) is a test function which 
checks whether a stochastically selected point is in the 
reliable region or in the infeasible region, and is defined 
as q(xx . . . . .  x , ) = l  if Fi(Xl , . . . , x , )>O for all design 
functions, and q(xl . . . . .  x,) =0  otherwise. 

Figure 1 

X2 

Assembling shaft and bore 
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Figure 2 Reliable region as intersection of safe and tolerance region 
[Case of assembly in Figure 1.] 

On the other hand, in a more condensed form, the 
yield is 

Y=fx q~(x) dx (3) 
ERA 

where RR is the reliable region. 
Two common cost-function models are the reciprocal- 

squared model, by Hiller 19, and the exponential model, by 
Wilde and Prentice 2°. In the reciprocal-squared model, 
the cost function is represented as 

C(t)= ~2 + f (4) 

In the exponential model, 

C(t)=a exp( - -~)  + f  (5) 

where a and b are constants for the variable manufacturing 
cost, and f is a constant for the fixed manufacturing cost. 

In a multidimensional model, the total manufacturing 
cost can be obtained by summing the individual costs 
for each dimension: 

C(t)= ~ C(t~) (6) 
j = l  

or, in the standard-deviation domain, 

C(o)= ~ C(aj) (7) 
j = l  

The yield increases as the tolerances become tighter. 
However, manufacturing costs also increase as the 
tolerances become tighter. The effect of individual 
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tolerance improvement on the total manufacturing-cost 
increase is different for each tolerance. Therefore, the 
allotment of individual tolerances which minimizes the 
cost under the design functions and minimum acceptable- 
yield constraints becomes an optimization problem. This 
optimal tolerance-allotment problem can be written as 
follows. 

Minimize 

C(t) (8) 

subject to 

Pr(RR) > Kpec 

where Y~p=° is the spec yield, RR is the reliable region, and 
Pr(RR) is the estimated yield, or minimize 

C(a) (9) 

subject to 

fx~R, 4~(x) dx I> Kp°o 

where trz >t 0 for i = 1, 2 . . . . .  n. 
In optimal tolerance-allotment problem formulations, 

a and t are deterministic design variables, and the variable 
x is stochastic. Therefore, optimal tolerance-allotment 
problems are stochastic constraint-optimization problems. 

Lee and Woo 7 made progress on optimal tolerance- 
allotment problems by dearly defining the problem as 
an optimization problem using the reliability-index 
method, and establishing the solution steps. Their 
algorithm is mathematically and computationally attractive. 
The domains of the integration are simplified into a half 
space or into a hypersphere. However, their approximation 
schemes do not give solutions to problems where there 
is an initially specified minimum acceptable yield (spec 
yield). The main reason for this is that the real yield for 
the original domain is not calculated in their algorithm. 
The real yields are calculated by a Monte Carlo method 
after the problem has been solved. To overcome this, 
they assumed that reliability would be equally distributed 
on each constraint. The results of Lee and Woo are 
frequently cited in subsequent sections, and the results 
of the new methods are compared with theirs where 
appropriate. 

Integration of genetic algorithm and Monte Carlo 
simulation 

The outline of the proposed procedure is shown in Figure 
3. At the first step, a set of variables is selected as the 
initial population. Then, the cost function is evaluated 
by Monte Carlo simulation in the analysis step. As a 
synthesis step, a genetic algorithm 21 perturbs the 
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Set Initial population of  [ 
t o l e r a n c e s  I 

I 

Eualuate the Cost Function ] 

I Rpproxlmate Monte Carlo 
simulation 

Termination 

I 
I mprove 
population 
using genetic 
algorithm 

and r is a penalty coefficient and positive, or minimize 

C((7) + r - ~b(x) d x -  Y~pe¢ (11) 
eRa 

The minimum of the exterior penalty-function problem 
is theoretically in the infeasible region with a slight 
constraint violation for finite values of r. However, with 
the genetic algorithm, the candidate solution points are 
distributed around the minimum. Therefore, there is a 
finite probability that there are solutions in the feasible 
region. 

Figure 3 

End 

Flowchart of new algorithm 

population using the three steps of reproduction, 
crossover and mutation. The algorithm iterates until the 
termination criteria are satisfied. Various termination 
criteria can be used. In this research, sufficiently large 
generation numbers are set as termination generations 
to investigate the behaviour of the algorithm. 

Cost-function fornmlation ~ penalty-function 
method 

A simple way of dealing with the constraints is the 
penalty-function method 22'23. One common penalty 
function is the quadratic exterior penalty function, which 
assigns a penalty that is proportional to the sum of the 
squares of the constraint violations. The optimal 
tolerance-allotment problem (see Expression 9) can now 
be replaced by the following. 

Minimize 

W((7, r) (10) 

where 

' t '  = c((7) + r ( - g ) 2  

9 = f~ ~b(x) d x -  Kp=c 
ERR 

where 

( a ) = { ~  a<oa>~O 

Coding of strings 

The population structure of tolerance allotment is 

(71 =((711, (712 . . . . .  (71.) 
(7"2 =((721, (722, ' ' ' ,  (72n) 

(7p~((7pl, (7p2,''" , (Tpn) 

(12) 

where p is the size of the population. 
The strings represent discretized points in the continuous 

domain. The continuous design domain should be 
transformed to the discrete design domain using a 
discretization and coding process. DeJong z4 discusses a 
mapped, fixed-point parameter where a j bit substring is 
interpreted as the usual, unsigned binary integer on the 
interval [0, 2 j -  1]. This integer is linearly mapped onto 
some specified interval of the real numbers. In tolerance- 
allotment problems, a string is mapped onto 0 to 3tr in 
the standard-deviation domain. Therefore, the precision 
of coding n is given by 

3(7 
rc = - -  (13) 

2 j -  1 

In tolerance-allotment problems, a chromosome is a 
combination of parameter substrings which represent 
each dimension's standard deviation. For the linear 
tolerance-allotment problem described below, there exist 
eight design variables, and a substring is composed of 
6 bit. Therefore, the length of a chromosome is 48 (i.e. 6 
multiplied by 8). A substring is interpreted as an integer 
on the interval [0, 63]. Then, the decoded integer is 
linearly mapped onto the real numbers [0, 3(Tm.x] in the 
standard-deviation domain. Figure 4 shows the decoding 
and mapping procedure. 

The precision n of this coding is 0,0471(7ma x ( = 3am,J63). 
The mapping equation is 

a = (decoded integerX0.0471(7m.~) 
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Figure 4 Decoding and mapping 

Fitness  inversion 

To maximize the fitness, the strings identified as 'most 
fit' receive more chances to produce children than the 
strings of low fitness in each reproduction step. However, 
in the tolerance-allotment problem, the objective is the 
minimization of the cost. Accordingly, we reciprocate our 
objective function for minimization and maximize, i.e. 

f(x) = C 
f(x) (14) 

where f(x) is an original fitness function, and c is a 
positive constant. 

Modified linear-fitness scaling 

Us=au+b 

The original fitness proportionate-reproduction scheme 
frequently causes two significant difficulties: premature 
termination at early generations, and stalling at late 
generations. At the early stage, there exist some singular 
strings which have excessively large fitness values in 
comparison with the fitness values of other strings. 
Therefore, these strings dominate reproduction. As a 
consequence, the string pattern in the population shows 
similarities with these dominating strings after several 
generations. This reduces the chances of searching diverse 
string combinations, and could result in premature 
termination at a suboptimal point. In the late stages, the 
highest fitness of a string may be slightly higher than the 
average population fitness, even though there exist 
diversities between the strings. In this situation, there is 
no improvement toward the optimum. Therefore, it is 
necessary to modify the original fitness proportionate- 
reproduction schemes. Goldberg 25 suggested a linear- 
fitness scaling scheme. The relation between the original 
fitness u and the linearized fitness Us is 

Us 

Our experience suggests that a modified linear-fitness 
scaling scheme where the strings in a population are 
divided into two groups (lower-fitness strings and 
higher-fitness strings) by comparison of their fitnesses 
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with the average fitness of the population may be superior 
for some problems. For the lower-fitness strings, the 
minimum original fitness Umin maps to 0. For the 
higher-fitness strings, the maximum original fitness Umax 
maps to fmultip~=" The average fitness Uavg maps to 1. The 
new mapping scheme is shown in Figure 5. 

Parameters 

For the tolerancing problems, the parameters are selected 
as follows: 

population size = 100 

crossover probability = 0.7 

mutation probability =0.005 

Experiments  

The computational experiments were performed on an 
Apollo DN 5500 workstation. The main purpose of the 
experiments was to explore whether or not the genetic 
algorithm would be sufficiently robust to overcome the 
noise of the truncated Monte Carlo simulation. At the 
outset, it was assumed that the genetic algorithm would 
require more generations to reach a certain level of 
performance if the function evaluations were more noisy. 
However, the computation time for each iteration is 
reduced by using the truncation strategy. Therefore, the 
total computation time taken to reach a solution may 
be shorter when a truncated (coarse) Monte Carlo 
simulation is used. 

The performance of the Monte Carlo simulation was 
estimated by evaluating an 8D probability-density 
function with four design functions. The nominal 
dimensions are given as xr=(1.0 2.0 3.0 4.0 1.0 0.998 2.0 
2.998). Tolerances are given as t r=  (0.0040 0.0023 0.0025 
0.0053 0.0143 0.0021 0.0015 0.0020). The design functions 

Figure 5 

fmultiple 

1 

Umin tlavg Um~ U 

Modified linear-fitness scaling 
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Table 1 Results of Monte Carlo simulation 

Sampling Yield Standard 
numbers deviation 

10 0.87089 0.33697 
20 0.83625 0.21513 
50 0.83724 0.18588 

100 0.83229 0.15487 
300 0.83460 0.06328 

1000 0.83477 0.05227 
3000 0.83672 0.01556 

10000 0.83892 0.01170 
30000 0.84067 0.00870 

are as follows: 

F l (x )=  - x 4 - x ~  + 5.005 

F2(x) = x 2 - x  1 - x  8 d-x 7 -0 .0003 

F3(x)-~ x 7 - x 6 - x  3 -{-x 2 + 0.001 

F4(x ) = x4. -- x 3 - -  X 6 - -  0.0003 

Several tests were performed for various sampling 
numbers. The test runs were performed ten times for each 
sampling number. Then the results of ten test runs were 
averaged, and standard deviations were calculated. The 
results of the simulations are shown in Table 1. The results 
show that the standard variation of the simulated yields 
is inversely proportional to the square root  of the sample 
numbers. This result indicates how many sampling points 
are necessary to guarantee a certain level of precision. If 
an optimization algorithm needs one standard deviation 
for the simulated yield to be less than 0.01 in order to 
converge to a solution, then the number of sample points 
for Monte Carlo simulation should be more than 30 000. 

This is because of the nature of the integrand. The 
probability-density function becomes very highly peaked, 
especially when the standard deviation is small. High 
dimensionality makes the high peakedness more severe. 

Table 1 shows that, for 100 sampling points, the 
precision of the estimation was found to be 0.15 for one 
standard deviation. The algorithm identified a good 
solution even for this noisy environment. The number of 
sampling points was gradually decreased until the 
algorithm could no longer find a good solution. As the 
next step, various sampling numbers were tried to explore 
the relations between the computation efforts, the 
approximation, and the performance. 

To define the standard performance, the threshold 
levels for the objective function value were set slightly 
higher than optimum. The algorithm was run with 
various parameter settings. The algorithm was judged to 
have obtained a good solution when the minimum costs 
of several consecutive generations passed the threshold 
level. The relation between the computation time and the 
number of sampling points was studied after each 
experimental run. 

R E S U L T S  A N D  A N A L Y S I S  

Linear-constra int  problem 

For the first example, a problem from Reference 7 was 
selected. The shape of the assembly is shown in Figure 
6. The linear design functions for this example are 

Fl(x) = - x 4 -  x5 + 5.005 

F2(X ) = X 2 -- X 1 -- X8 q- X7 -- 0.0003 

F3(x) = x7 -- x6 -- x3 + x2 -~- 0.001 

F4(X ) = X 4 -- X 3 -- X 6 -- 0.0003 

Fl(x ) is the constraint on the size of the base part, The 
other design functions represent the clearance condition 
for assembly. The nominal dimensions are given as 
xV=(1.0 2.0 3.0 4.0 1.0 0.998 2.0 2.998). The reciprocal 
cost-function model (see Equation 4) was modified, and 
used to define the total manufacturing cost as 

ai x 10  - 3  
Ci(tri)- (6cri) b' (15) 

The coefficients in Equation 15 were set by Lee and Woo 
as a l = a z = l . 0 ,  a3=a4=1 .5 ,  a5=0.8, a6=0.9, a7=0.8 
and aa=0.6,  and b1=2.0, b2=1.8, b3=1.7, b ,=2.0 ,  
b s = 3.0, b6 = 2.0 and b 7 = b 8 = 1.9. The spec yield is 95%. 

For  the genetic algorithm, the population size is 100. 
Test runs were performed for various numbers of 
sampling points: 10, 20, 50 and 100. At the last generation, 
Monte Carlo simulations were performed using t0000 

A X3 L 

~,. X4 

Figure 6 Linear-constraint problem 
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Table 2 Results of linear problem 

Variables Tolerances W J Lee 
algorithm 

Genetic algorithm 

String 1 String 2 String 3 

tl 0.00333 0.00333 0.00333 0.00328 
t 2 0.00133 0.00133 0.00133 0.00124 
t a 0.00143 0.00086 0.00086 0.00174 
t 4 0.00305 0.00381 0.00305 0.00403 
t5 0.01429 0.01333 0.01333 0.01281 
t6 0.00171 0.00171 0.00171 0.00123 
t 7 0.00133 0.00133 0.00133 0.00104 
t s 0.00143 0.00143 0.00143 0.00273 

Cost 1475.84* 1618.42 1676.56 1816.38 

Yield, % 94.63 95.29 96.15 94.95 t 

CPU run time, s 80.2 ~ 0.14~ 

[* Penalized cost: 1516.96. t 2000 run. ~ Apollo DN 5500/10 sampling points. § IBM 3090-400 V/M.] 

COST 
8O+4 

6e+4 

4e+4 

2e+4 

0e+0 ! i i 

0 100 200 
GENERATIONS 

Figure 7 Progress of algorithm 
[I--1:10 samples, O: 20 samples, l :  50 samples, O: 100 samples.] 

sampling points for all strings to estimate the yields 
precisely. The threshold level was set at the cost of 1600. 
The results of a typical test run are shown in Table 2. 
For  the test run, the number of sampling points was 30, 
and the generation number was 150. 

The solutions were compared with the solution 
reported by Lee and Woo 7. The last two rows of Table 
2 show the costs and yields. The results deaf ly  show that 
the new algorithm gives better solutions, because the costs 
were significantly reduced (by about  12%) for similar 
yields. Of course, since theoretical evaluation of the 
method proposed here is not available at this time, there 
is no guarantee that better performance will always be 

obtained. However, the results are promising, are worth 
reporting, and warrant further investigation. 

Figure 7 shows the progress obtained by the algorithm 
for various sampling-point numbers. At the initial stage, 
the costs are extremely large, owing to the random 
selection of the candidate tolerances. As the generation 
proceeds, the costs are reduced to the optimal cost. As 
expected, the algorithm obtains a good solution in fewer 
generations when larger sampling numbers are used for 
the Monte Carlo simulation. 

The computational complexity of an algorithm can be 
represented by various measurements, such as the number 
of arithmetic operations, the number of function 
evaluations, the number of iterations, and the computation 
time. The time complexity of the computation in this 
algorithm is the sum of the time spent for the Monte 
Carlo simulation and the time spent for the genetic 
algorithm. Simple experiments were performed to compare 
the computation time for the Monte Carlo simulation 
and the genetic algorithm. In performing the algorithm 
with 100 sampling points and 100 generations, the CPU 
time spent for the Monte Carlo simulation and the genetic 
algorithm was 791.6 s and 10.8 s, respectively, on an 
Apollo DN 5500 workstation. Therefore, the computation 
time for the genetic algorithm is very small in comparison 
with the time associated with the Monte Carlo simulation. 
Because the computation time for the Monte Carlo 
simulation is exactly proportional to the number of the 
sampling points, the computation effort is defined as the 
generation number multiplied by the sampling-points 
number, and this product can be used as a measurement 
of the time complexity. In solving this problem, an 
average of 171 were required for 10 sampling points. 
Therefore, the computation complexity is 1710 in this 
case. 

Figure 8 shows the progress of the algorithm in terms 
of the computation effort. It shows that the algorithm 
progresses faster when a smaller number of sampling 
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i = i 

4000 5000 6000 
COMPUTATION EFFORT 

Figure 8 Progress with respect to computation effort 
[rq: 10 samples, O: 20 samples, I :  50 samples, <>: 100 samples.] 

COMPUTATION EFFORT 
1120000o 

100000 

10000 

Figure 9 

1000 
0 100 1000 10000 100000 

SAMPLING NUMBER 
Sampling numbers against computation effort 

points are used. The computation effort to reach the 
threshold level is shown in Figure 9. 

To examine the relation between the computation 
effort and the point of truncation for the simulation, seven 
different sampling numbers, 10, 20, 50, 100, 1000, 3000 
and 10000 sampling points, were used for the Monte 
Carlo simulation. The generation numbers required to 

reach the threshold level are the averaged values of four 
runs for each sampling number. Figure 9 shows clearly 
that the algorithm progresses faster (i.e. with less 
computation effort) when a smaller number of sampling 
points are used (up to the point where there are too few 
sampling points to ensure a good solution). The algorithm 
progressed to a good solution when as few as eight 
sampling points were used in this example. 

Nonl inear-cons tra int  problem 

Next, a nonlinear-constraint problem posed by Lee 3 was 
tried. The shape of the assembly is shown in Figure 10, 
and the corresponding design functions are as follows: 

Fl(X ) = ( X  6 - -  X 5 )  - -  ( X  8 - -  X 7 )  

F2(x) = (x 3 --x4)--(Xll - -xlo ) 

F3(x) = (x8 - xT)*(x2 - x 3 )  - -  ( x 6  - x 5 ) * ( x  I 0 - x 9 )  

+ tan(n/180)*{(xlo-x9)*(x z - x 3 )  

--(X8-- XT)*(X6-- Xs) } 

F4(x) = ( x 6  - x 5 ) * ( x  10  - x 9 )  - ( x 8  - x 7 ) * ( x 2  - x 3 )  

+ tan(n/180)* {(x 1 o - x9)*(x2 - x 3) 

--(X8-- X7)$(X6-- X5)} 

Fs(x) = - x  1 +X12 +0.01 

F6(X) = x 1 -- x12 q-0.0l 

The first two design functions are the vertical and the 
horizontal clearance conditions of the two parts. The 
third and the fourth design functions restrict the difference 
between the angles 01 and 02 to be within ___n/180 rad 
(1 °) for successful assembly. The last two conditions 
require the size difference between two parts to be within 
+0.01. The nominal dimensions are given as xr=(50.0, 
40.001 25, 20.05, 9.9985, 9.9985, 30.0, 10,0, 30.0, 10.05, 
30.0, 40.0, 50.0). The modified cost function of Equation 
15 is used. 

Xl q x2 

,41 Xl l  

i 

" - I  

Figure 10 Nonlinear-c0nstraint problem 

x 8  
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Table 3 Results of nonlinear problem 

Variables Tolerances W J Lee 
algorithm 

Genetic algorithm 

String 1 String 2 String 3 

t I 0.01647 0.01647 0.01294 0.0187 
t 2 0.18824 0.20707 0.86591 1.2331 
t3 0.05897 0.05189 0.03585 0.0579 
t4 0.05646 0.05646 0.06587 0.0705 
t~ 0.00235 0.00235 0.00235 0.0019 
t 6 0.00212 0.00212 0.00212 0.0022 
t 7 0.00306 0.00306 0.00306 0.0019 
t a 0.00212 0.00212 0.00212 0.0015 
t 9 0.82765 0.63847 0.82765 1.2385 
t 1 o 0.05788 0.06212 0.05647 0.0714 
t I , 0.02353 0.01224 0.02259 0.0579 
tl 2 0.01176 0.01176 0.01294 0.0168 

Cost  7.90 7.97 8.08 10.38 

Yield, % 94.91 95.40 95.47 94.50* 

C P U  run time, s 364.2 * 0.418 $ 

[* 2000 runs. t Apollo D N 5500/30 sampling points. ~ IBM 3090-400 V/M.] 

The coefficients in Equation 15 were set by Lee as 
a1=0.2, a2=l.0, a3=a4=O.O15, as=0.008, a6=0.009, 
a 7 = 0 . 0 0 8 ,  as =0.006, a 9 = 1.0, axo =0.01, art =0.015 and 
a12 =0.2, and bx=b2 . . . . .  b12=2.0. 

There are 12 design variables, and a substring for a 
variable is composed of 8 bit. Therefore, the length of 
a string is 96. A substring is interpreted as an integer on 
the interval [0, 255]. The precision n of the coding is 
0.011 765am=x. 

The results of a test run are shown in Table 3. For the 
test run, the number of generations was 300, and the 
number of sampling points was 30. The results show that 
the cost was reduced by about 20% in comparison with 
the cost obtained by Lee's algorithm 3, and the yield is 
slightly improved. Again, we cannot guarantee that this 
will always be the case. However, the results are 
sufficiently interesting to report them here in order to 
spur further investigation. 

To examine the relation between the computation 
effort and the approximation of simulation, several 
sampling numbers were used for the Monte Carlo 
simulation. Figure 11 shows the progress of the algorithm 
for 30 sampling points and 100 sampling points. Figure 
12 shows the progress of the algorithm in terms of the 
computation effort for each case. Figures 11 and 
12 show that the algorithm progresses faster when a 
smaller number of sampling points are used, even though 
it takes more generations. 

S U M M A R Y  

The optimal costs were significantly reduced in comparison 
with the costs of the domain-approximation schemes for 
the cases that we have investigated. This suggests that it 

COST 

lo+3 - 

le+3 

80+2 

60+2 

40+2 

20+2 

0e+0  
0 1 0 0  2 0 0  3 0 0  4 0 0  

GENERATIONS 

Figure 11 Progress with respect to generations 
[[:]: 30 samples, 0 : 1 0 0  samples.] 

would be worthwhile to develop the new algorithm 
further, study its theoretical performance, and test it on 
a wider range of practical examples to see whether or 
not the excellent results obtained in this study will be 
generally duplicated. 

The two problems considered here were successfully 
solved with extremely small numbers of Monte Carlo 
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0 1 0000 20000 30000 40000 

COMPUTATION EFI~RT 

Figure 12 Progress with respect to computation effort 
IT-l: 30 samples, . :  100 samples.] 

simulation sampling points. For  the linear-constraint 
problem, the algorithm identified a good solution as long 
as more than eight sampling points were used. For  the 
nonlinear-constraint problem, the algorithm successfully 
identified a good solution for 30 points. This might be 
because of the longer string structure of the nonlinear- 
constraint problem. Despite the coarse resolution and 
low precision, the algorithm satisfied the spec yield with 
sufficient precision. It  is not possible to draw general 
conclusions about  how many sampling points will be 
required in other cases. More  experirnental investigation 
could develop rules of thumb based on case studies. 
Theoretical investigation of the algorithm's characteristics 
would be the most satisfying method to address these 
questions. 

For  many  mathemat ical -programming algorithms, the 
time complexity can increase geometrically with the 
number  of variables. However, in the code developed in 
this paper, the time complexity increases linearly as the 
dimension increases. Computat ional  experiments bear 
this out. Therefore, we believe that the new algorithm 
could offer significant advantages for high-dimension 
problems. 

The strategy developed in this paper  is unique and 
practical. Tolerance-optimization problems are not trivial. 
The cost-function modelling and the determination of 
the design functions takes substantial time and effort. 
Domain-approximat ion schemes offer advantages in 
short computat ion time; however, these advantages are 

offset in cases in which it is important  to identify the best 
possible solution, or in which the spec yield is constrained. 

This basic idea presented here (truncated Monte Carlo 
simulation coupled with a genetic algorithm) could be 
used to solve other stochastic-optimization problems. 
This is a worthwhile subject for future research. A more 
complete description of the work reported here, along 
with an extensive bibliography, is given in Reference 26. 
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