
Optimal tolerance allotment
using a genetic algorithm and
truncated Monte Carlo
simulation
J Lee and G E Johnson

As is typical of stochastic-optimization problems, the multi-
variate integration of the probability-density function is the
most difficult task in the optimal allotment of tolerances. In
this paper, a truncated Monte Carlo simulation and a genetic
algorithm are used as analysis (i.e. multivariate-integration) and
synthesis (i.e. optimization) tools, respectively. The new method
has performed robustly in limited experiments, and was able
to provide a significant reduction in optimal cost when
compared with results published in a previous study.

Keywords: tolerance allotment, tolerance optimization, stochastic
optimization, Monte Carlo simulation, genetic algorithms

The allotment of tolerances is closely tied to the overall
quality and cost of a product 1. If the tolerances are too
loose, the probability of an assembly functioning
acceptably (yield) is low. On the other hand, if the
tolerance is too tight, the manufacturing cost becomes
high. Thus tolerance allotment becomes an optimization
problem to determine the optimal allotment of the
tolerances under the constraints of the function
requirements and acceptance probability (spec yield). In
the design centring problem, nominal dimensions are
changed to find the maximum yield with fixed tolerances,
and hence the design variables are the nominal dimensions.

Methods for calculating yield (i.e. multidimensional
integration) are typically classified as either approximate
methods or stochastic methods (e.g. Monte Carlo
simulation2). Approximate methods try to calculate the

Design Laboratory, University of Michigan, Ann Arbor, MI 48109-
2125, USA
Paper received: 15 August 1992. Revised: 14 March 1993

yield by modifying the tolerance domain. In problems
with low dimensions, original tolerance domains are
approximated as simple regions such as spheres, cubics,
or simplices 3-5. Other approaches for approximating
discrete distributions have also been tried 6.

Because approximate methods change the domains
and/or distributions, the calculated approximate yield is
not the same as the yield for the original domain. As a
consequence, when approximate methods are used to
solve the tolerance-optimization problem, the reported
yield may deviate significantly from the spec yield ~. Since
the spec yield is directly related to the cost, this is
undesirable.

The computed yield is virtually the same as the actual
yield if accurate stochastic-analysis methods (e.g. Monte
Carlo simulation) are used. Unfortunately, Monte Carlo
simulation (and other stochastic methods) require many
sampling points to assure high accuracy. Because of the
amount of computational effort required, Monte Carlo
simulation may be unsuitable for the inner iteration of
many classical optimization algorithms, although the
rapidly decreasing cost of computing suggests that this
may not be the case forever.

In the method presented here, Monte Carlo simulation
is used in the tolerance-analysis procedure (i.e. yield
estimation). However, instead of approximating the
integration domain, the Monte Carlo simulation is
approximated by truncating it after a very small number
of sampling points. This greatly reduces the computational
effort required for the Monte Carlo simulation. However,
the resulting noise level in the objective function tends
to cause problems for traditional descent methods.

Accordingly, a genetic algorithm is used in the
tolerance-synthesis procedure. Genetic algorithms behave

0010-44851931090601-11 © 1993 Butterworth-Heinemann Ltd
Computer-Aided Design Volume 25 Number 9 September 1993 601

Optimal tolerance al lotment: J Lee and G E Johnson

robustly in erroneous and noisy environments. Results
reported here show that the genetic algorithm can lead
to good (i.e. cost-effective) tolerance assignment, even
though the tolerance-analysis problem is only approxi-
mately solved in each function evaluation.

S T O C H A S T I C - O P T I M I Z A T I O N A N D
TOLERANCE-OPTIMIZATION PROBLEMS

The stochastic-optimization problem can be written as
follows.

Minimize

E[f (x , 4)] {1)

subject to

E[g,~x, ¢}] ~< 0

x ~ R n

{ E R "

i= 1, 2 , . . . , r

where

E[f (x , ~)] = ff(x, ¢) dP(¢)

E[gi(x, ~)] = fgi(x, ~) dP(~)

and P is the probability-density function of 4.
Most of the effort required to solve this problem is

spent in the multivariate integration. The domain of the
integration can become unmanageable, especially when
the dimensions are high and/or the constraints are
complicated. In low-dimensional problems, the domains
may be approximated as cubes, spheres, or simplices 3-s'8'9.
However, most domain-simplification schemes become
impractical when the dimensionality of the problem
becomes high 1°. A number of schemes have been
developed to overcome these difficulties 6'11-1a.

In general, stochastic-optimization methods can be
classified into three categories: common nonlinear-
programming methods with simulation ~4'15, approxi-
mation methods 6, and stochastic quasigradient
methods ~6-:s.

Tolerance-optimization problems

In the assembly process, some dimensions interact with
other dimensions, and have effects on the function of the
assembly. Those dimensions are called sum dimensions.
For instance, consider the case of assembling a shaft and
a bore, as shown in Figure 1. One of the important sum
dimensions in the assembly is the clearance between the
shaft and the bore.

Suppose that the gap must be at least 0.001 in, but not
more than 0.005 in. In mathematical terms, then, the gap
must satisfy

FI(X) = x I - x 2 - 0.001 >0

F2(x) -- - x 1 + x 2 -I-0.005 >0

Therefore, two constraints are generated by restricting
the range of a sum dimension. In tolerancing problems,
the constraints are called design functions. The design
functions can be nonlinear if there exist angular
dimensions. In practical design tasks, there exist numerous
sum dimensions and their attendant constraints.

It is commonly.assumed that individual dimensions
follow normal distributions with a standard deviation of
approximately one-sixth of the tolerance. The design
functions and the acceptable tolerance regions can be
projected onto the dimension space. The region that
simultaneously satisfies both the design functions and the
tolerances is the region in which one can expect to obtain
reliable performance, and hence it is called the reliable
region. The reliable region for the assembly in Figure 1
is shown in Figure 2.

The yield is computed as the probability that x will
fall in the reliable region. Let xiu and xi, represent the
upper and lower limits of an individual dimension x~ in
an assembly. Then the yield is represented as

1u fx;nu
Y = q(xl x,)dp(xl, x ,) d x l . . . d x , (2)

11 nl '

where ~b(xl x,) is the multivariate normal probability-
density function, and q(xl x,) is a test function which
checks whether a stochastically selected point is in the
reliable region or in the infeasible region, and is defined
as q(xx x ,) = l if Fi(Xl , . . . , x ,)>O for all design
functions, and q(xl x,) =0 otherwise.

Figure 1

X2

Assembling shaft and bore

602 Computer-Aided Design Volume 25 Number 9 September 1993

x2 -x1-0.005=0 x2-xl-O.O01=O

fe
~ion

Xl

Figure 2 Reliable region as intersection of safe and tolerance region
[Case of assembly in Figure 1.]

On the other hand, in a more condensed form, the
yield is

Y=fx q~(x) dx (3)
ERA

where RR is the reliable region.
Two common cost-function models are the reciprocal-

squared model, by Hiller 19, and the exponential model, by
Wilde and Prentice 2°. In the reciprocal-squared model,
the cost function is represented as

C(t)= ~2 + f (4)

In the exponential model,

C(t)=a exp(- -~) + f (5)

where a and b are constants for the variable manufacturing
cost, and f is a constant for the fixed manufacturing cost.

In a multidimensional model, the total manufacturing
cost can be obtained by summing the individual costs
for each dimension:

C(t)= ~ C(t~) (6)
j = l

or, in the standard-deviation domain,

C(o)= ~ C(aj) (7)
j = l

The yield increases as the tolerances become tighter.
However, manufacturing costs also increase as the
tolerances become tighter. The effect of individual

Optimal tolerance allotment: J Lee and G E Johnson

tolerance improvement on the total manufacturing-cost
increase is different for each tolerance. Therefore, the
allotment of individual tolerances which minimizes the
cost under the design functions and minimum acceptable-
yield constraints becomes an optimization problem. This
optimal tolerance-allotment problem can be written as
follows.

Minimize

C(t) (8)

subject to

Pr(RR) > Kpec

where Y~p=° is the spec yield, RR is the reliable region, and
Pr(RR) is the estimated yield, or minimize

C(a) (9)

subject to

fx~R, 4~(x) dx I> Kp°o

where trz >t 0 for i = 1, 2 n.
In optimal tolerance-allotment problem formulations,

a and t are deterministic design variables, and the variable
x is stochastic. Therefore, optimal tolerance-allotment
problems are stochastic constraint-optimization problems.

Lee and Woo 7 made progress on optimal tolerance-
allotment problems by dearly defining the problem as
an optimization problem using the reliability-index
method, and establishing the solution steps. Their
algorithm is mathematically and computationally attractive.
The domains of the integration are simplified into a half
space or into a hypersphere. However, their approximation
schemes do not give solutions to problems where there
is an initially specified minimum acceptable yield (spec
yield). The main reason for this is that the real yield for
the original domain is not calculated in their algorithm.
The real yields are calculated by a Monte Carlo method
after the problem has been solved. To overcome this,
they assumed that reliability would be equally distributed
on each constraint. The results of Lee and Woo are
frequently cited in subsequent sections, and the results
of the new methods are compared with theirs where
appropriate.

Integration of genetic algorithm and Monte Carlo
simulation

The outline of the proposed procedure is shown in Figure
3. At the first step, a set of variables is selected as the
initial population. Then, the cost function is evaluated
by Monte Carlo simulation in the analysis step. As a
synthesis step, a genetic algorithm 21 perturbs the

Computer-Aided Design Volume 25 Number 9 September 1993 603

Optimal tolerance al lotment: J Lee and G E Johnson

Set Initial population of [
t o l e r a n c e s I

I

Eualuate the Cost Function]

I Rpproxlmate Monte Carlo
simulation

Termination

I
I mprove
population
using genetic
algorithm

and r is a penalty coefficient and positive, or minimize

C((7) + r - ~b(x) d x - Y~pe¢ (11)
eRa

The minimum of the exterior penalty-function problem
is theoretically in the infeasible region with a slight
constraint violation for finite values of r. However, with
the genetic algorithm, the candidate solution points are
distributed around the minimum. Therefore, there is a
finite probability that there are solutions in the feasible
region.

Figure 3

End

Flowchart of new algorithm

population using the three steps of reproduction,
crossover and mutation. The algorithm iterates until the
termination criteria are satisfied. Various termination
criteria can be used. In this research, sufficiently large
generation numbers are set as termination generations
to investigate the behaviour of the algorithm.

Cost-function fornmlation ~ penalty-function
method

A simple way of dealing with the constraints is the
penalty-function method 22'23. One common penalty
function is the quadratic exterior penalty function, which
assigns a penalty that is proportional to the sum of the
squares of the constraint violations. The optimal
tolerance-allotment problem (see Expression 9) can now
be replaced by the following.

Minimize

W((7, r) (10)

where

' t ' = c((7) + r (- g) 2

9 = f~ ~b(x) d x - Kp=c
ERR

where

(a) = { ~ a<oa>~O

Coding of strings

The population structure of tolerance allotment is

(71 =((711, (712 (71.)
(7"2 =((721, (722, ' ' ' , (72n)

(7p~((7pl, (7p2,''" , (Tpn)

(12)

where p is the size of the population.
The strings represent discretized points in the continuous

domain. The continuous design domain should be
transformed to the discrete design domain using a
discretization and coding process. DeJong z4 discusses a
mapped, fixed-point parameter where a j bit substring is
interpreted as the usual, unsigned binary integer on the
interval [0, 2 j - 1]. This integer is linearly mapped onto
some specified interval of the real numbers. In tolerance-
allotment problems, a string is mapped onto 0 to 3tr in
the standard-deviation domain. Therefore, the precision
of coding n is given by

3(7
rc = - - (13)

2 j - 1

In tolerance-allotment problems, a chromosome is a
combination of parameter substrings which represent
each dimension's standard deviation. For the linear
tolerance-allotment problem described below, there exist
eight design variables, and a substring is composed of
6 bit. Therefore, the length of a chromosome is 48 (i.e. 6
multiplied by 8). A substring is interpreted as an integer
on the interval [0, 63]. Then, the decoded integer is
linearly mapped onto the real numbers [0, 3(Tm.x] in the
standard-deviation domain. Figure 4 shows the decoding
and mapping procedure.

The precision n of this coding is 0,0471(7ma x (= 3am,J63).
The mapping equation is

a = (decoded integerX0.0471(7m.~)

604 Computer-Aided Design Volume 25 Number 9 September 1993

• Decoding

Mapping

String
8 Subsmngs

I I i
- 3 (Imax Nominal 3 omax (= tmx/2)

Dimension

Figure 4 Decoding and mapping

Fitness inversion

To maximize the fitness, the strings identified as 'most
fit' receive more chances to produce children than the
strings of low fitness in each reproduction step. However,
in the tolerance-allotment problem, the objective is the
minimization of the cost. Accordingly, we reciprocate our
objective function for minimization and maximize, i.e.

f(x) = C
f(x) (14)

where f(x) is an original fitness function, and c is a
positive constant.

Modified linear-fitness scaling

Us=au+b

The original fitness proportionate-reproduction scheme
frequently causes two significant difficulties: premature
termination at early generations, and stalling at late
generations. At the early stage, there exist some singular
strings which have excessively large fitness values in
comparison with the fitness values of other strings.
Therefore, these strings dominate reproduction. As a
consequence, the string pattern in the population shows
similarities with these dominating strings after several
generations. This reduces the chances of searching diverse
string combinations, and could result in premature
termination at a suboptimal point. In the late stages, the
highest fitness of a string may be slightly higher than the
average population fitness, even though there exist
diversities between the strings. In this situation, there is
no improvement toward the optimum. Therefore, it is
necessary to modify the original fitness proportionate-
reproduction schemes. Goldberg 25 suggested a linear-
fitness scaling scheme. The relation between the original
fitness u and the linearized fitness Us is

Us

Our experience suggests that a modified linear-fitness
scaling scheme where the strings in a population are
divided into two groups (lower-fitness strings and
higher-fitness strings) by comparison of their fitnesses

Optimal tolerance allotment: J Lee and G E Johnson

with the average fitness of the population may be superior
for some problems. For the lower-fitness strings, the
minimum original fitness Umin maps to 0. For the
higher-fitness strings, the maximum original fitness Umax
maps to fmultip~=" The average fitness Uavg maps to 1. The
new mapping scheme is shown in Figure 5.

Parameters

For the tolerancing problems, the parameters are selected
as follows:

population size = 100

crossover probability = 0.7

mutation probability =0.005

Experiments

The computational experiments were performed on an
Apollo DN 5500 workstation. The main purpose of the
experiments was to explore whether or not the genetic
algorithm would be sufficiently robust to overcome the
noise of the truncated Monte Carlo simulation. At the
outset, it was assumed that the genetic algorithm would
require more generations to reach a certain level of
performance if the function evaluations were more noisy.
However, the computation time for each iteration is
reduced by using the truncation strategy. Therefore, the
total computation time taken to reach a solution may
be shorter when a truncated (coarse) Monte Carlo
simulation is used.

The performance of the Monte Carlo simulation was
estimated by evaluating an 8D probability-density
function with four design functions. The nominal
dimensions are given as xr=(1.0 2.0 3.0 4.0 1.0 0.998 2.0
2.998). Tolerances are given as t r= (0.0040 0.0023 0.0025
0.0053 0.0143 0.0021 0.0015 0.0020). The design functions

Figure 5

fmultiple

1

Umin tlavg Um~ U

Modified linear-fitness scaling

Computer-Aided Design Volume 25 Number 9 September 1993 605

Optimal tolerance allotment: J Lee and G E Johnson

Table 1 Results of Monte Carlo simulation

Sampling Yield Standard
numbers deviation

10 0.87089 0.33697
20 0.83625 0.21513
50 0.83724 0.18588

100 0.83229 0.15487
300 0.83460 0.06328

1000 0.83477 0.05227
3000 0.83672 0.01556

10000 0.83892 0.01170
30000 0.84067 0.00870

are as follows:

F l (x)= - x 4 - x ~ + 5.005

F2(x) = x 2 - x 1 - x 8 d-x 7 -0 .0003

F3(x)-~ x 7 - x 6 - x 3 -{-x 2 + 0.001

F4(x) = x4. -- x 3 - - X 6 - - 0.0003

Several tests were performed for various sampling
numbers. The test runs were performed ten times for each
sampling number. Then the results of ten test runs were
averaged, and standard deviations were calculated. The
results of the simulations are shown in Table 1. The results
show that the standard variation of the simulated yields
is inversely proportional to the square root of the sample
numbers. This result indicates how many sampling points
are necessary to guarantee a certain level of precision. If
an optimization algorithm needs one standard deviation
for the simulated yield to be less than 0.01 in order to
converge to a solution, then the number of sample points
for Monte Carlo simulation should be more than 30 000.

This is because of the nature of the integrand. The
probability-density function becomes very highly peaked,
especially when the standard deviation is small. High
dimensionality makes the high peakedness more severe.

Table 1 shows that, for 100 sampling points, the
precision of the estimation was found to be 0.15 for one
standard deviation. The algorithm identified a good
solution even for this noisy environment. The number of
sampling points was gradually decreased until the
algorithm could no longer find a good solution. As the
next step, various sampling numbers were tried to explore
the relations between the computation efforts, the
approximation, and the performance.

To define the standard performance, the threshold
levels for the objective function value were set slightly
higher than optimum. The algorithm was run with
various parameter settings. The algorithm was judged to
have obtained a good solution when the minimum costs
of several consecutive generations passed the threshold
level. The relation between the computation time and the
number of sampling points was studied after each
experimental run.

R E S U L T S A N D A N A L Y S I S

Linear-constra int problem

For the first example, a problem from Reference 7 was
selected. The shape of the assembly is shown in Figure
6. The linear design functions for this example are

Fl(x) = - x 4 - x5 + 5.005

F2(X) = X 2 -- X 1 -- X8 q- X7 -- 0.0003

F3(x) = x7 -- x6 -- x3 + x2 -~- 0.001

F4(X) = X 4 -- X 3 -- X 6 -- 0.0003

Fl(x) is the constraint on the size of the base part, The
other design functions represent the clearance condition
for assembly. The nominal dimensions are given as
xV=(1.0 2.0 3.0 4.0 1.0 0.998 2.0 2.998). The reciprocal
cost-function model (see Equation 4) was modified, and
used to define the total manufacturing cost as

ai x 10 - 3
Ci(tri)- (6cri) b' (15)

The coefficients in Equation 15 were set by Lee and Woo
as a l = a z = l . 0 , a3=a4=1 .5 , a5=0.8, a6=0.9, a7=0.8
and aa=0.6, and b1=2.0, b2=1.8, b3=1.7, b ,=2.0 ,
b s = 3.0, b6 = 2.0 and b 7 = b 8 = 1.9. The spec yield is 95%.

For the genetic algorithm, the population size is 100.
Test runs were performed for various numbers of
sampling points: 10, 20, 50 and 100. At the last generation,
Monte Carlo simulations were performed using t0000

A X3 L

~,. X4

Figure 6 Linear-constraint problem

606 Computer-Aided Design Volume 25 Number 9 September 1993

Optimal tolerance allotment: J Lee and G E Johnson

Table 2 Results of linear problem

Variables Tolerances W J Lee
algorithm

Genetic algorithm

String 1 String 2 String 3

tl 0.00333 0.00333 0.00333 0.00328
t 2 0.00133 0.00133 0.00133 0.00124
t a 0.00143 0.00086 0.00086 0.00174
t 4 0.00305 0.00381 0.00305 0.00403
t5 0.01429 0.01333 0.01333 0.01281
t6 0.00171 0.00171 0.00171 0.00123
t 7 0.00133 0.00133 0.00133 0.00104
t s 0.00143 0.00143 0.00143 0.00273

Cost 1475.84* 1618.42 1676.56 1816.38

Yield, % 94.63 95.29 96.15 94.95 t

CPU run time, s 80.2 ~ 0.14~

[* Penalized cost: 1516.96. t 2000 run. ~ Apollo DN 5500/10 sampling points. § IBM 3090-400 V/M.]

COST
8O+4

6e+4

4e+4

2e+4

0e+0 ! i i

0 100 200
GENERATIONS

Figure 7 Progress of algorithm
[I--1:10 samples, O: 20 samples, l : 50 samples, O: 100 samples.]

sampling points for all strings to estimate the yields
precisely. The threshold level was set at the cost of 1600.
The results of a typical test run are shown in Table 2.
For the test run, the number of sampling points was 30,
and the generation number was 150.

The solutions were compared with the solution
reported by Lee and Woo 7. The last two rows of Table
2 show the costs and yields. The results deaf ly show that
the new algorithm gives better solutions, because the costs
were significantly reduced (by about 12%) for similar
yields. Of course, since theoretical evaluation of the
method proposed here is not available at this time, there
is no guarantee that better performance will always be

obtained. However, the results are promising, are worth
reporting, and warrant further investigation.

Figure 7 shows the progress obtained by the algorithm
for various sampling-point numbers. At the initial stage,
the costs are extremely large, owing to the random
selection of the candidate tolerances. As the generation
proceeds, the costs are reduced to the optimal cost. As
expected, the algorithm obtains a good solution in fewer
generations when larger sampling numbers are used for
the Monte Carlo simulation.

The computational complexity of an algorithm can be
represented by various measurements, such as the number
of arithmetic operations, the number of function
evaluations, the number of iterations, and the computation
time. The time complexity of the computation in this
algorithm is the sum of the time spent for the Monte
Carlo simulation and the time spent for the genetic
algorithm. Simple experiments were performed to compare
the computation time for the Monte Carlo simulation
and the genetic algorithm. In performing the algorithm
with 100 sampling points and 100 generations, the CPU
time spent for the Monte Carlo simulation and the genetic
algorithm was 791.6 s and 10.8 s, respectively, on an
Apollo DN 5500 workstation. Therefore, the computation
time for the genetic algorithm is very small in comparison
with the time associated with the Monte Carlo simulation.
Because the computation time for the Monte Carlo
simulation is exactly proportional to the number of the
sampling points, the computation effort is defined as the
generation number multiplied by the sampling-points
number, and this product can be used as a measurement
of the time complexity. In solving this problem, an
average of 171 were required for 10 sampling points.
Therefore, the computation complexity is 1710 in this
case.

Figure 8 shows the progress of the algorithm in terms
of the computation effort. It shows that the algorithm
progresses faster when a smaller number of sampling

Computer-Aided Design Volume 25 Number 9 September 1993 607

COST
8e+4.

6e+4

4e+4

2e+4

0e+0 i i i

1000 2000 3000

Optimal tolerance al lotment: J Lee and G E Johnson

i = i

4000 5000 6000
COMPUTATION EFFORT

Figure 8 Progress with respect to computation effort
[rq: 10 samples, O: 20 samples, I : 50 samples, <>: 100 samples.]

COMPUTATION EFFORT
1120000o

100000

10000

Figure 9

1000
0 100 1000 10000 100000

SAMPLING NUMBER
Sampling numbers against computation effort

points are used. The computation effort to reach the
threshold level is shown in Figure 9.

To examine the relation between the computation
effort and the point of truncation for the simulation, seven
different sampling numbers, 10, 20, 50, 100, 1000, 3000
and 10000 sampling points, were used for the Monte
Carlo simulation. The generation numbers required to

reach the threshold level are the averaged values of four
runs for each sampling number. Figure 9 shows clearly
that the algorithm progresses faster (i.e. with less
computation effort) when a smaller number of sampling
points are used (up to the point where there are too few
sampling points to ensure a good solution). The algorithm
progressed to a good solution when as few as eight
sampling points were used in this example.

Nonl inear-cons tra int problem

Next, a nonlinear-constraint problem posed by Lee 3 was
tried. The shape of the assembly is shown in Figure 10,
and the corresponding design functions are as follows:

Fl(X) = (X 6 - - X 5) - - (X 8 - - X 7)

F2(x) = (x 3 --x4)--(Xll - -xlo)

F3(x) = (x8 - xT)*(x2 - x 3) - - (x 6 - x 5) * (x I 0 - x 9)

+ tan(n/180)*{(xlo-x9)*(x z - x 3)

--(X8-- XT)*(X6-- Xs) }

F4(x) = (x 6 - x 5) * (x 10 - x 9) - (x 8 - x 7) * (x 2 - x 3)

+ tan(n/180)* {(x 1 o - x9)*(x2 - x 3)

--(X8-- X7)$(X6-- X5)}

Fs(x) = - x 1 +X12 +0.01

F6(X) = x 1 -- x12 q-0.0l

The first two design functions are the vertical and the
horizontal clearance conditions of the two parts. The
third and the fourth design functions restrict the difference
between the angles 01 and 02 to be within ___n/180 rad
(1 °) for successful assembly. The last two conditions
require the size difference between two parts to be within
+0.01. The nominal dimensions are given as xr=(50.0,
40.001 25, 20.05, 9.9985, 9.9985, 30.0, 10,0, 30.0, 10.05,
30.0, 40.0, 50.0). The modified cost function of Equation
15 is used.

Xl q x2

,41 Xl l

i

" - I

Figure 10 Nonlinear-c0nstraint problem

x 8

608 Computer-Aided Design Volume 25 Number 9 September 1993

Optimal tolerance allotment: J Lee and G E Johnson

Table 3 Results of nonlinear problem

Variables Tolerances W J Lee
algorithm

Genetic algorithm

String 1 String 2 String 3

t I 0.01647 0.01647 0.01294 0.0187
t 2 0.18824 0.20707 0.86591 1.2331
t3 0.05897 0.05189 0.03585 0.0579
t4 0.05646 0.05646 0.06587 0.0705
t~ 0.00235 0.00235 0.00235 0.0019
t 6 0.00212 0.00212 0.00212 0.0022
t 7 0.00306 0.00306 0.00306 0.0019
t a 0.00212 0.00212 0.00212 0.0015
t 9 0.82765 0.63847 0.82765 1.2385
t 1 o 0.05788 0.06212 0.05647 0.0714
t I , 0.02353 0.01224 0.02259 0.0579
tl 2 0.01176 0.01176 0.01294 0.0168

Cost 7.90 7.97 8.08 10.38

Yield, % 94.91 95.40 95.47 94.50*

C P U run time, s 364.2 * 0.418 $

[* 2000 runs. t Apollo D N 5500/30 sampling points. ~ IBM 3090-400 V/M.]

The coefficients in Equation 15 were set by Lee as
a1=0.2, a2=l.0, a3=a4=O.O15, as=0.008, a6=0.009,
a 7 = 0 . 0 0 8 , as =0.006, a 9 = 1.0, axo =0.01, art =0.015 and
a12 =0.2, and bx=b2 b12=2.0.

There are 12 design variables, and a substring for a
variable is composed of 8 bit. Therefore, the length of
a string is 96. A substring is interpreted as an integer on
the interval [0, 255]. The precision n of the coding is
0.011 765am=x.

The results of a test run are shown in Table 3. For the
test run, the number of generations was 300, and the
number of sampling points was 30. The results show that
the cost was reduced by about 20% in comparison with
the cost obtained by Lee's algorithm 3, and the yield is
slightly improved. Again, we cannot guarantee that this
will always be the case. However, the results are
sufficiently interesting to report them here in order to
spur further investigation.

To examine the relation between the computation
effort and the approximation of simulation, several
sampling numbers were used for the Monte Carlo
simulation. Figure 11 shows the progress of the algorithm
for 30 sampling points and 100 sampling points. Figure
12 shows the progress of the algorithm in terms of the
computation effort for each case. Figures 11 and
12 show that the algorithm progresses faster when a
smaller number of sampling points are used, even though
it takes more generations.

S U M M A R Y

The optimal costs were significantly reduced in comparison
with the costs of the domain-approximation schemes for
the cases that we have investigated. This suggests that it

COST

lo+3 -

le+3

80+2

60+2

40+2

20+2

0e+0
0 1 0 0 2 0 0 3 0 0 4 0 0

GENERATIONS

Figure 11 Progress with respect to generations
[[:]: 30 samples, 0 : 1 0 0 samples.]

would be worthwhile to develop the new algorithm
further, study its theoretical performance, and test it on
a wider range of practical examples to see whether or
not the excellent results obtained in this study will be
generally duplicated.

The two problems considered here were successfully
solved with extremely small numbers of Monte Carlo

Computer-Aided Design Volume 25 Number 9 September 1993 609

Optimaltolerance allotment:J Lee and G E Johnson

COST

lo+3

lo+3

80+2

60+2

40+2

2e+2

00+0
0 1 0000 20000 30000 40000

COMPUTATION EFI~RT

Figure 12 Progress with respect to computation effort
IT-l: 30 samples, . : 100 samples.]

simulation sampling points. For the linear-constraint
problem, the algorithm identified a good solution as long
as more than eight sampling points were used. For the
nonlinear-constraint problem, the algorithm successfully
identified a good solution for 30 points. This might be
because of the longer string structure of the nonlinear-
constraint problem. Despite the coarse resolution and
low precision, the algorithm satisfied the spec yield with
sufficient precision. It is not possible to draw general
conclusions about how many sampling points will be
required in other cases. More experirnental investigation
could develop rules of thumb based on case studies.
Theoretical investigation of the algorithm's characteristics
would be the most satisfying method to address these
questions.

For many mathemat ical -programming algorithms, the
time complexity can increase geometrically with the
number of variables. However, in the code developed in
this paper, the time complexity increases linearly as the
dimension increases. Computat ional experiments bear
this out. Therefore, we believe that the new algorithm
could offer significant advantages for high-dimension
problems.

The strategy developed in this paper is unique and
practical. Tolerance-optimization problems are not trivial.
The cost-function modelling and the determination of
the design functions takes substantial time and effort.
Domain-approximat ion schemes offer advantages in
short computat ion time; however, these advantages are

offset in cases in which it is important to identify the best
possible solution, or in which the spec yield is constrained.

This basic idea presented here (truncated Monte Carlo
simulation coupled with a genetic algorithm) could be
used to solve other stochastic-optimization problems.
This is a worthwhile subject for future research. A more
complete description of the work reported here, along
with an extensive bibliography, is given in Reference 26.

A C K N O W L E D G E M E N T S

The authors gratefully acknowledge the financial support
provided by Daewoo Electronic Corporation, Seoul,
Korea. The paper is based on the PhD dissertation of
J Lee, which was completed under the direction of
G E Johnson at the University of Michigan, USA, in
August 1992.

REFERENCES

1 Bjerke, O Computer-Aided Tolerancirug ASME Press, USA (1989)
pp 86-87

2 Hammersley, J M and Handscomb, D C Monte Carlo Methods
Methuen, UK (1964)

3 Lee, W J 'Tolerancing: computations on geometric uncertainties'
Doctoral Dissertation University of Michigan, USA (1989)

4 Good, I J and Gaskins, R A 'The centroid method of numerical
integration' Numer. Math. Vol 16 (1971) pp 343-359

5 Director, S W and Hachtel, G D 'The simplicial approximation
approach to design centering" IEEE Trans. Circuits & Syst~ Vol
CAS-24 No 7 (1977) pp 363-372

6 Wets, R 'Stochastic programming solution techniques and
approximation schemes' in Bachem, A, Groetschel, M and
Korte, B (Eds.) Mathematical Programmin# - The State-of-the-Art
Springer-Verlag, Germany (1983) pp 566--603

7 Lee, W J and Woo, T C 'Tolerancc~ thor analysis and synthesis'
J. En O. Indust. Vol 112 (May 1990) pp 113-121

8 Lebedev, V I 'On cubature formulas of spheres' J. Computat.
Math. & Math. Phys. Vol 16 (1976) pp 293-306

9 Freeden, W 'On integral formulas of the (unit)sphere and their
application to numerical computation of integrals' Computing
Vol 25 (1980) pp 131-146

10 Deal I 'Multidimensional integration and stochastic program-
ming' in Numerical Techniques for Stochastic Optimization
Springer-Verlag, USA (1988) pp 187-200

11 Donelly, T G 'Bivariate normal distribution' Comnmn. A CM Vol
16 (1973) p 638

12 Brown, J L 'On the expansion of the bivariate Gaussian
probability density using results of nonlinear theory' 1EEE Trans.
Inf. Theor. (1968) pp 158, t59

13 Drezner, Z 'Computation of the bivariate normal integral' Math.
Comput. Vol 32 (1978) pp 277-279

14 Polak, E Computational Methods in Optimization Academic Press,
USA (1971)

15 Bazzaraa, M S and Shetty, C M Nonlinear Programming: Theory
and Algorithms John Wiley, USA (1979)

16 Ruszynski, A and Syski, W 'Stochastic approximation algorithm
with gradient averaging for unconstrained problems' IEEE Trans.
Automatic Control Vol AC-28 (1983) pp 1097-1105

17 Kiwiel, K 'An aggregate subgradient method for nonsmooth
convex minimization' Math. Prog. Vol 27 (1983) pp 320-341

18 Gaivoronskiy, A A 'Methods of stochastic nonstationary
optimization' in Operations Research and System Reliability Press
of the Institute of Cybernetics, Kiev, Ukraine (1978)

19 Hiller, M J 'A systematic approach to the cost optimization of
tolerances in complex assemblies' Bull. Mech. Eng. Educ. Vol 5
(1966) pp 157-161

20 Wilde, D and Prentice, E 'Minimum exponential cost allocation

610 Computer-Aided Design Volume 25 Number 9 September 1993

of sure-fit tolerances' ASME Paper 75-DET-93 ASME, USA
(1975)

21 Holland, J H 'Adaptation in natural and artificial systems'
University of Michigan Press, USA (1975)

22 Carroll, C W 'The created response surface technique for
optimizing nonlinear restrained systems' Oper. Res. Vol 9 (1961)
pp 169-184

23 Fiacco, A V and McCormick, G P Nonlinear Programming:
Sequential Unconstrained Minimization Techniques John Wiley,
USA (1968)

Jinkoo Lee received a BSME from
Yonsei University, and an MSME and
a PhDfrom the University of Michioan,
USA. His research interests were in
design optimization and mechanism design.
He now works at Daewoo Electronics,
Korea, where he designs VCR systems
and studies magnetic-recording mech-
anisms.

Optimal tolerance allotment: J Lee and G E Johnson

24 DeJong, K A 'An analysis of the behavior of the class of genetic
adaptive systems' Doctoral Dissertation University of Michigan,
USA (1975)

25 Goldberg, D E Genetic Algorithms in Search, Optimization, and
Machine Learnin0 Addison-Wesley, USA (1989)

26 Lee, J 'Tolerance optimiTation using genetic algorithm and
approximated simulation' Doctoral Dissertation University of
Michigan, USA (1992)

Glen E Johnson received a BSME from
Worcester Polytechnic Institute, USA,
and an MSME from Georgia Tech, USA,
and a PhD from Vanderbilt University,
USA. He is the director of the Design
Laboratory at the University of Mirhigan,
USA, and the Chair of the .,~erican
Society of Mechanical Engineers' Design
Engineering Division. His research and
teaching activities are in the areas of
optimal design, the design of machine
components, and the design of mechanical
systems.

Computer-Aided Design Volume 25 Number 9 September 1993 611

