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ABSTRACT 

OF INTEREST in the present work is the quantitative comparison between the microscopic and the cor- 
responding macroscopic failure in a two-dimensional elastic medium with known periodic microstructure. 
This comparison establishes theoretical limits for the validity for the averaged (homogenized) response of 
microstructured elastic media. Attention is focussed on an approximation of a fiber reinforced composite 
modeled as an infinite periodic grillage of axially compressed beams with an average shear stiffness. The 
particular beam model was chosen so that the probiem would be analytically tractable, yet of sufficient 
complexity to exhibit nontrivial microscopic and macroscopic failure modes. 

A comparison of the stresses at the onset of the microscopic failure (taken to be the first bifurcation 
away from the principal periodic solution] to the stresses at the onset of the macroscopic failure (which 
corresponds in the loss of ellipticity for the incremental response of the homogenjz~d model) allows one 
to identify whether the first failure mode, aho termed the critical mode, is Iocaf fmicroscopic) or giafxd 
{macroscopicf in nature. An extensive investigation of the inAuence of various mode! parameters on the 
failure modes of the composite has been undertaken. The results obtained show the importance of the 
interstitial stiffness in deciding the nature of the critical mode. The presentation is concluded by a discussion 
of the results with suggestions for future work. 

ONE OF THE MET INTERESTING questions in mechanics pertains to the study of stability 
and failure of media with microstructure This problem is an iln~ortant aspect of the 
broader issue of change of scale for problems in mechanics, where one wants to predict 
the macroscopic behavior of a medium based on knowledge of its microstructure. 
Since some kind of instability induced failure is inevitable at adequately high levels 
of loading, of interest here is the quantitative comparison between the onset of the first 
microscopic instability in the medium and the onset of the corresponding instability 
predicted by the macroscopic equations for the medium. Such comparisons establish 
the theoretical limits of validity for the averaged models of the microstructured solids. 
A technologically important problem that belongs to the above general class of 

problems in mechanics pertains to the stability of composite media. Customarily a 
composite medium is idealized by a homogeneous continuum whose properties have 
been obtained by using an appropriate averaging technique (e.g. the homogenization 
method, a self-eons&em type method) which takes into account the solid’s micro- 
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structure. For inelastic materials. the averaged homogeneous continua include in their 
description internal variables which are directly related to certain features of the 
nlicrostructure (such as porosity, crack shape and orientation, and so on). The question 
of the composite’s stability is usually addressed by investigating the (homogeneous) 
macroscopic properties of the solid, and the onset of instability is often signaled by 
some internal variable reaching a critical value. On the other hand, instability in 
composites can be analysed directly from the knowledge of the microstructure in a 
direct approach which is also frequently followed in studies of failure mechanisms for 
composites. 

Due to the complex, often irregular geometries of microstructures and the rather 
involved nature of constitutive equations in real composites, one faces severe diff% 
culties in identifying a clear cut onset of instability or failure in composites at both 
the micro and macro level. The construction of the macroscopic model requires a 
variety of often difficult to verify intuitive assumptions and so does the study of the 
stability of the solid at the ~iicroscopic level. Hence, few attempts have been made 
thus far to correlate the stability predictions of a consistently derived macroscopic 
model to those obtained by analysing the exact microstructural instability mechanism 
for a given composite. 

In order to simplify the problem so as to permit a consistent derivation of the 
macroscopic behavior of the solid, attention is focussed on periodic microgeometries, 
created by the repetition of a fundamental building block called the unit cell. Also in 
the interest of simplicity, only rate independent materials are being considered. One 
of the first studies in this direction, for finitely strained solids, was presented by 
TVERGAARD (1981) who investigated the effects of voids on shear band formation in 
finitely strained periodic porous material. He compared the microscopic buckling 
loads and modes to the predictions for shear band instabilities based on an approxi- 
mate macroscopic model for the void--matrix aggregate. Subsequently, ABEYARATNE 
and TRIANTAFYLLIDIS (1984) used a consistent homogenization theory approach 
(needed to model correctly the strong interactions between the voids) to study macro- 
scopic instability, manifested as a loss of ellipticity (i.e. emergence of shear bands), 
for a finitely strained periodic porous elastic solid. 

The loss of ellipticity of the equations at the macroscopic level is due to a bifurcation 
of the microstructure away from the periodic principal solution whose period is the 
same as the one for the unit cell. This explains the macroscopic behavior exhibited by 
the models in the above mentioned work by ABEYARATNE and TRIANTAPYLLIIXS 
(1984). Hence, for the class of finitely strained rate independent solids with periodic 
microstructures there exists a clear definition for the onset of the microscopic insta- 
bility (bifurcation away from the periodic single cell principal solution) and a cor- 
responding definition for the onset of the macroscopic instability (emergence of shear 
bands). Moreover, one can show that the microscopic bifurcation is responsible for 
the macroscopic loss of ellipticity. The latter phenomenon can be captured from the 
former when the buckling mode at the microscopic level has a wavelength much larger 
than the length of the unit cell. A proof of this assertion, together with comparisons 
of the stress required for the onset of buckling at the micr~)scopic level to the stress 
required for the loss of ellipticity of the homogenized moduli for a two-dimensional 
layered medium under axial loading was tirst presented by TRIANTAFYLLILXS and 
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MAKER (1985). The advantage of considering the two-dimensional medium with only 
one set of fibers was that the problem was simple enough to permit an analytical 
solution for the microbuckling problem and an easy calculation of the homogenized 
moduli of the layered medium. 

The relation between microscopic bifurcation and macroscopic loss of ellipticity 
described above was subsequently proven in general for arbitrary three-dimensional 
solids with periodic microstructures (including layered media as a subcase) by 
GEYMONAT et al. (1990, 1992). In contrast to the layered media case, homogenization 
calculations as well as bifurcation calculations for two- or three-dimensional periodic 
media whose unit cells are rectangular but not degenerate (i.e. with aspect ratios of 
the order of one) can only be done numerically. Some preliminary work in this 
direction by TRIANTAFYLLIDIS and MAKER (1987) has established the regions of 
microscopic stability (where microstructural buckling is excluded) and the regions of 
macroscopic stability (where shear bands in the homogenized material are excluded) 
for periodic hexagonal arrays of elastic media with circular second phase elastic 
inclusions under finite strain. The numerical determination of the regions of stability 
from the microstructural model is exceedingly time consuming which makes a par- 
ameter study of the problem very difficult. An analytically tractable model for a two- 
dimensional composite with a nontrivial unit cell is therefore highly desirable, thus 
providing the motivation for the present work. 

The present model for a fiber-reinforced composite which is described in Section 2 
consists of a rectangular planar grillage whose beams are axially compressed in 
both directions. The matrix material of the composite is taken into account by its 
contribution to the average shear stiffness of the model. Using Bloch wave theory, 
one can find an analytical solution for the exact buckling problem of the model. The 
solution provides the lowest buckling load corresponding to a mode with given 
wavelengths in each direction. The calculation of the homogenized moduli of the 
model and the investigation of their ellipticity is described in Section 3. It is also shown 
there that the load level corresponding to the loss of ellipticity of the macroscopic 
homogenized moduli is always the same as the load level at the onset of the buckling 
eigenmode whose characteristic length is much larger than the unit cell length, in 
agreement with the general results in GEYMONAT et al. (I 990, 1992). Comparisons 
between the predictions for the onset of instability at the micro and macro levels for 
different types of models are given in Section 4. It is found that in the absence of a 
shear stiffness contribution from the matrix material the first instability in the model 
can always be predicted from its macroscopic behavior, i.e. the critical mode is a 
global or long wavelength one. For adequately large values of the interstitial shear 
stiffness however, a local mode always precedes a global one, in which case the 
homogenized model overpredicts the stability region. The presentation is concluded 
by a discussion of results in Section 5. 

2. ONSET OF THE FIRST INSTABILITY IN THE STRUCTURE 

The planar grillage type model chosen as an idealization for a fiber reinforced 
composite permits the analytical calculation of the buckling loads and the homo- 
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genized incrementa moduli. Similar models have been presented in the structural 
mechanics literature pertaining to the study of stability for planar and space periodic 
lattice structures. WAH (1965) studied the stability of finite size rectangular gridworks 
for both in-plane and out-of-plane deformations. Unfortunately, the present stability 
results for infinite grillages in the absence of interstitial stiffness cannot be recovered 
from his work because the boundary effects in his models (due to their finite size) are 
absent in the present study. 

Subsequent investigations on the buckling of periodic lattice structures were 
presented by FORMAN and HUTCHINSON (1970), ANDERSON (1981) and ANDERSON 

and WILLIAMS (1986) for three-dimensional space frames, and by BA~ANT and 

CHRISTENSEN (1972, 1973) for planar frames. BA~ANT and CHRISTENSEN (1972, 1973), 

proposed essentially approximate continuum models with the goal of providing sim- 
pler continuum boundary value problems for the buckhng of these structures as an 
alternative to (more difficult) exact frame formulations. All of these studies, motivated 
from structural applications for planar or space frames, naturally do not include the 
contribution of interstitial material stiffness-an important factor in the modeling of 
composites. Moreover, the aforementioned stability analyses were concerned with the 
study of finite size models. The proposed model and the issues it addresses are different 
enough from the ones existing in the literature to merit a separate presentation. 

The two-dimensional periodic structure to be modeled here consists of an infinite 
planar frame, as shown in Fig. la. It is made up of horizontal and vertical beams 
welded together to form a rectangular grid pattern of unit cell dimensions 2a, x 2~~. 
The spaces between the beams are filled by an elastic material. Deformation of the 
frame is allowed only in the x,. _Y~ plane. This model is an idealization of a fiber 
reinforced composite where the beams represent the fibers and the interstitial elastic 
material represents the matrix. 

All the beams in the .y2 direction have axial stiffness EA, and bending stiffness El, 

with E the beam material’s Young’s modulus, A, its cross-sectional area, and 1, its 
in-plane moment of inertia. (From here on, Greek indices will always range from I 
to 2.) The interstitial material is homogeneous and linearly elastic, with thickness t, 
shear modulus G, and negligible normal moduli. The response of the structure is 
elastic. A small strain, moderate rotation theory is adopted to describe the behavior 
of the individual beams. The internal elastic energy of beam J due to a deformation 
with axial displacement z.r,(x) and transverse dis~iacement c_J_x) is given by 

(From here on, capital Latin indices will always range from 1 to 4.) Note from Fig. 
la that a3 = LI,, uq = u2, A3 = A,, A., = A?, I3 = I, and I4 = Z2. 

The energy stored in the interstitial material of the unit cell is accounted for, in an 
approximate fashion, in terms oft, G and the cell’s average shear strain y, namely, 

where the definition of the displacements Ui, V, and rotations gj of node i may be seen 
from Fig. 1 b. (From here on, lowercase Latin indices will always range from 0 to 4.) 
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FIG. la. Schematic representation of the model. 
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FE. lb. Unit cell. Definition of nodal displacements U,, Vi and 0, in the global coordinate system and 
beam displacements u, and uJ in the local coordinate system. 

Compressive forces IV,, acting in the direction of the beams as indicated in Fig. 
la, are increasing in direct proportion to a scalar factor A which will be specified 
subsequently. The compressive normal stresses taken by the interstitial material are 
ignored, since the axial stiffness of the fibers is much larger than the normal moduii 
in the matrix material. Only the shear stresses in the interstitial material are considered. 
For 2. near zero, the beams develop internal axial forces, but no internal bending 
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nloments or shear resultants. Thus they remain straight, and the interstitial material 
is stress free, i.e. it has no overall shear strain. The corresponding unique and stable 
equilibrium solution is termed the principal solution. 

As 1. keeps increasing away from zero, it reaches a particular value i, at which 
another solution, termed the buckled or bifurcated solution, emerges. Here, nonzero 
internal bending moments and shear resultants are developed in the beams. The 
structure’s deformed configuration is now no longer rectangular nor (in general) 
periodic. 

The critical load 2, can be found by examining the solution of the rate (or incremen- 

tal) form of the equilibrium equations. From here on, a quantity surmounted by a 
dot denotes the rate of change of the quantity with respect to the load parameter, i.e. 
( ‘) = d( )/dn. At the onset of bifurcation, incremental equilibrium for the unit cell 
implies* the following relations between the force and displacement rate vectors i; 
and & at the five nodes of the unit cell : 

i,, = (K;, SK:, +Kf, +K;‘,)iio+K;2d, +K:7d2+K~2d3+K:,i114 = 0, 

$4 =K:!,ho+L4,il,+L4?BZ+L43d3+(K~2+L34)i14. (3) 

In the above equations, the elements of a particular nodal force vector f, are the 
_X I, x2 components of the nodal force plus the nodal moment about x3. The elements 
of a particular displacement vector d, are the work conjugate components of the 
corresponding elements of fi, namely the ?c,,xZ displacements of the node plus its 
rotation about x3. In addition, K$ is the incremental stiffness matrix relating the cxth 
elemental force rate vector to the ,&h elemental displacement rate vector for beam ! 
(see Fig. 1 b). When the Greek index in the incremental stiffness matrix takes the value 
1, it corresponds to the beam end at the zero (center) node; 2 corresponds to the Zth 
(edge) node. Moreover L,,, is the incremental stiffness of the interstitial material alone. 
relating the Ith nodal force rate vector to the fth nodal displacement rate vector. The 
calculation of K$ for beams under axial loading follows a procedure exposed in 
LIVESLEY (1968). The calculation of L,,, from (2) is straightforward. For continuity in 
this prese~ltation, as welt as for reference purposes, the expressions for K$ and L,, 
are given in the Appendix, together with a brief outline of their derivation. 

Recall that the infinite frame model under investigation is an approximation for a 
periodic, fiber-reinforced nonlinear elastic continuum. At bifurcation, the eigenmode 
for the continuutn, ti,(s,, .Y~), has to satisfy the incremental equilibrium equation. 
which is a homogeneous linear equation of the type [LU,~;~j(.~, , .Y~. &)tiJ.,, = 0, where 
L~,~;,~(_x,, .x2, A,) is the continuum’s incremental moduli tensor evaluated on the prin- 
cipal solution at the critical load. In view of the spatial periodicity of Llpjii [i.e. 
~,,,;.,~(.~,+21~~1,,x?+2rzn,) = L2,tiB(~,,~Z), for any integersm,n] it can be shown that 

*The standard matrix method for nodal force equilibrium in frames is used; see for example t.IVESLEY 

(1968). 
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the eigenmode is of the form ti,(x,,x2) = exp [i(o,x,+02x2)]pr(x,,x~) where 
pz(x,, x2) is a periodic function of x, , x2 with the same spatial periodicity as LXBYs (see 
GEYMONAT et al., 1990, 1992). For the model considered here, one can deduce the 
following relation between i, and iii at bifurcation : 

4, = PI&, i, = -p,t,, p, = exp(2iw,a,), 

4, = ML i, = -&‘$, p2 = exp (2iozaJ. (4) 

Introducing (4) into (3) and taking advantage of the identity (A.7) one obtains the 
following equivalent homogeneous system for ilo, d,, & : 

(KI,+K:,+K:,+K;l,)il,+(~,K1,+K:,)il,+(~,K:,+K:,)il= 0, 

(17,K:,+K:,)d,+(K:,+K:,+[2- PI -P,lL,,)&+([1 -~JI1-P*l~,*h = 0, 

(/S:, +K;,)&+W -P,IV -b&J& 

+(K~,+K~z+[2-~2-~*]L22)i14 = 0. (5) 

As usual, ,& denotes the complex conjugate of pa. The second and third relations of 
(5), linear in h,, are used to solve for d3 and il, in terms of a,. The results are then 
applied to the first relation of (5) to obtain 

K[Q&, = 0, 

KM = K;, +K:, +K:, +K;, -(11,K12+K:2)M,,(lii,K:, +K:,) 

-(~,K~*+K:~)M,~(~~K:I +K;,)-(P~K:~+K;z)MzI 

x G,K:, +K:,)-(~ZK:~+K~~)M~~(~~K:,+K~I), 

MI, = {K:>+K:,+FP, -D,lL,, -[Z-P, -F,I[~-P~-P,IL,~ 

x (K:2+K~2+[2-~~-112]L22)~'L*,}-', 

M,z = -[1-~,1[1-~~lM,,L,2(K:2+K~2+[2-~~-~~1L22)~’, 

M,, = -[1-~,1[1-~21M22L21(K:2+K:2+[2-1*, -01lL,,)~‘, 

Mn = {K:2+K:2+[2-112-~Z]LZZ-[2-~,-~,][2-112-~2]LZ, 

x(K:?+K:2+[2-~,-~,]L,,)~'L,*}~'. (6) 

At bifurcation (2 = L,) a nontrivial solution to (6) exists when 

Det (K[1.,]) = 0. (7) 

The expressions for K& and LIJ from the Appendix [see (A.4) and (A.7)] are sub- 
stituted into (6). After carrying out the required matrix inversions and multiplications, 
the components of the 3 x 3 stability matrix K[A] are found to be 

KII[A~,,.~zI = ~{~~~~,~~~)‘~~l~,)+(~~(~~)4sz/~z)(~z[il-~z[~l)l 

+4[sz(l-s,)a,/a,l/~[~“,s,,.~,l}, 
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K,2[irS,,S2] = E{4[s,(l -S,)s?(l -sz>]“*/0~~,s,,~~21} 

= K?,[AS,,.721, 

K,~[j.,s,,sJ = -iE[s,(l -sz)]“‘l(2(az)‘(r2)4/cz)F2[j~] 

+2a,N[3”,s,sz]/D[E~,s,,s2]} 

= -~,,[~“,~~,,.~*I, 

K23[A,~I,.721 = iE[s,(l -s,)1”2{(2(a,)2(r,)4/C~)F~[~l 

-2a2N[~,s,,.~Z1/~[~~r~I,~21} 

= -~32[~,~,,.~21, 

The new terms introduced for convenience in the above equations are as follows : 

S, = (sin [c+z,])‘, c, = 12Z,/(A,)‘, rl = (12Z,/A,)“*/u,, 

B,[i] = (fl,[jJ)*/12 = c,N,[~l/((~,)‘E(r,)~), 

FJ4 = ((ol[W2 -(~~[~“1)~)/(12(~,[~1)2), 

CV.1 = { (~[4 + z,Vl) 2/[2(~,[4 -I- Gl) - (PuM)2l 
-(21[j~l>2/02[~l}/12, 

+2~,c2~2/((~2)2(~2)4~2[3”1), (9) 

I 1 
where the functions a,[flJ and z,[pJ (PI = /I,[iL]) as well as 4oL[/jz] and ~$~[fl,] are 

given in the Appendix [see (A.3)]. The dependence of the N,[1] (the axial forces on 
the beams) on the load parameter i will be described in the next section. 

Notice that the stability matrix K is a function only of the load parameter 3. and 
the S, terms, for a particular planar frame model with given geometry and material 
properties. Thus from (7), Det (K[&. Y,, sJ) = 0, one can find the value of the load 
parameter at the onset of bifurcation implicitly as a function of sI,s2, i.e. fi[s,,.sJ. 
Assuming that the load parameter is always positive, of interest are the lowest roots 
,![s,,sJ ofDet(K[&s,,S2]) = 0. 

For each pair (s,, .s2) # (0, 0), the value of fi[s,, s2] is found numerically using a 



Microscopic and macroscopic instabilities 154I 

straightfo~ard incremental procedure which detects the first change in the sign of 
Det (K[A]) from positive* to negative. Depending on the size of AL (the increment in 
,4) a simple bisection method can also be used for more accuracy in the calculation of 
x. The case of sl = sz = 0 is treated in the same manner, except Det (K[& s,,s2]) is 
replaced by K, 3 [a, 0, 01, as will be explained subsequently. 

For a given geometry of the model, results are obtained in the form of surfaces 
fi(s,,s,) where 0 G s, G 1,0 < sZ < 1. The wanted critical load 2, is the lowest point 
of that surface, i.e. 

i 

@I*&) i (0,O) 
& = min [X(si, s2)] ; Det (K[l,s,,s,]) > 0, 

0 =s .s: < 1.0 < s2 i I 
Det(Klks,, .d = 0, 

or K33[&S,,S*] > 0, 0 < L < X . (10) 

K33[A,S,,S*] = 0, 2. = f i 

For all of the structures investigated, fi[s,, sz] is a continuous smooth function of 
its arguments except at the origin, (s,,s>) = ($0). Inspection of (8) identifies the 
mathematical reason for this. When s, = s2 = 0, all the components of K except for 
K3, are identically equal to zero. Thus Det (K) is identically zero for any value of the 
load parameter. The physical reason for the singularity has to do with the fact 
that the (s,,s~) = (0,O) point corresponds to two different families of bifurcation 
eigenmodes of the structure. 

The first family consists of all modes where each mode’s wavelength (L,) fits 
into the length of the unit cell an integral number of times (24 = k,L,: kol~ (N)). 
These are termed periodic bifurcation modes and can be seen to result in 
s, = (sin [cB,~,])~ = 0 upon substitution of the relation between wavelength and angu- 
lar frequency (L, = 24~0,) into the above definition to obtain 2~3.4 = 2nk,. Hence 
from (8) K33 is the only component of K to be non-zero for the case s, = s2 = 0. 
Excluding translational rigid body modes, one finds the load parameter /T[O, 0] cor- 
responding to the periodic bifurcation modes via KX3[,%, O,O] = ((a,)‘(v,)4/c,)F, [A] + 
((~~)3(~~)4~c*)~~[~J = 0 in the manner described in (IO). 

The second family of modes corresponding to the point (.s,, SJ = (0,O) consists of 
all modes with wavelengths much greater than the unit cell size (L, = 271/w, >> a,) 
and thus @,a, -+ 0. These are termed long wavelength modes and are completely 
different from the periodic modes because their displacement fields vary very slowly 
with position. The presence of two significantly different families of modes at the 
neighborhood of (s,, s2) = (0,O) explains the existence of the singularity at the point 
on the l[s,, x2] surface. 

The bifurcation loads corresponding to the long wavelength modes are found as 
follows. First, define the terms F and n, : 

*Note: from (8) one can show that K[L = 0] is a positive definite Hermitian @ = K') matrix and thus 
Det (K[i = 01) > 0. 



1542 N. TKIANTAFYLLIIXS and W. C. SCHNAIDT 

In view of the series expansion sin (~,a,) z o,a, - (w~u~)~/~! +. ., introduction of 
(11) into (8) provides the following result upon evaluating the determinant of the 
stability matrix K : 

Det(K[&s,,sJ) = ~4(A,,[i”]n;‘+A,2[i”]n;‘n~+A??[~]~~)+C~(~6), 

A,, [A] = 8E3 {(a:r:/c:>[- (ai’v;‘/c,)F, [i]B, [i] 

+ (aX/c2)F2[Al(F, [Al -B, [Al)] +2(Gt/E)(LQrf/c,) 

x ([U:r;/C,]F, [i”] + [a;r;/cJF3[%])}a;, 

AJA] = 8E”((aSr~/cl)[-(a:r~/c,)F2[~~]B,[i”] 

+(ui’r;‘/c,)F,[i](Fz[i]-B,[3.]>]+2(Gt/E)(a,r:/c.z) 

x ([0:~4/c~]F, [n] + [ufr~/~,]F~[;l])j~u~, 

A,,[;,] = 8E3~[u,u~r:v~/(~,~Z)]([u:~~:~,]F,[~~] 

+ [&:/C2]F2[3.]) - [U,U&+/(C,C~)] 

x [(u:r;‘ic,)F,[3.]B,[3.](Fz[I]-Bz[L]) 

+ (u;r;/c?)F#_] B?[l.](F, [I] - B, [I.])] 

-~~~~l~~~~l~~,~~~l~~~:~:/~,l~,~~~l 
+ [a3r~/c2]F2[~]>([a:r~/~,]B, [A] 
+ [~z:r~,I~~]B,[~~])Scr~u:. (12) 

From (I 2) it is clear that for very small E the only significant term in Det (K[L, S, , s?]) 
is the biquadratic polynomial A,, [j-In; + A, 2[2]n;‘n; + Az2[i]nfj. Thus the load par- 
ameters corresponding to the long wavelength bifurcation modes for a particular 

model vary only with the unit vector (n , , n2). 

lim3:[(en,a,)‘,(cn,u,)‘] = A(n,,nz); 
i.’ 0 

A,,[i.]n;‘+A,,[&+z;+A2#.]n; > 0, 0 d 3, <i% 

A,,[~]n~tA,,[i,]n~n~+A,z[~]n~ = 0, d = /i . 
(13) 

Of all the values of A, of interest is A,, the lowest load parameter corresponding to 
the long wavelength bifurcation modes, i.e. the minimum of fi over all possible unit 
vectors (II,, nJ. From (13), it is found to be* 

A, = min[A,,A?,A,]; 
A.$.] > 0, 0 < I. < A, 

&[4 = 0, r4 = A, 

i 

3[i] = 4A,,[i]A22[2-A;2[A] 

and S[L]>O, OdIti<A, 

S[n] = 0, ;1 = A, 

*A solution for A,, does not necessarily exist for every model 
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For A, = A,, (n,), = 1, (n& = 0; for A, = A2, (n,), = 0, (n& = 1 ; and for 
A, = Ar/, (n,/n& = [-A ,2/(2A, ,)I”’ = [-2A22/A,z]‘,‘2. The physical interpretation 
of the above three possibilities will be given in the next section where the long 
wavelength bifurcation result A will be derived from considerations involving the 
macroscopic (homogenized) properties of the structure. 

3. STABILITY OF THE HOMOGENIZED STRUCTURE 

In the previous section, (IO) solves the exact (microscopic) instability problem for 
the onset of the first bifurcation in the infinite periodic structure model, because it 
places no restrictions on the eigenmodes investigated. Of interest in this section is the 
averaged (macroscopic) behavior of the model and a study of its stability. The periodic 
structure’s macroscopic behavior is characterized by the homogenized incremental 
moduli of the structure which relate the average stress increment to the average strain 
increment where the average is taken over a unit cell which is the characteristic volume 
for the periodic material. The stability of the homogenized material is reflected in the 
ellipticity of the thus derived spatially constant homogenized incremental moduli; 
loss of ellipticity in a homogeneous material with spatially constant properties means 
that the homogeneous stress state in a Dirichlet (displacement controlled) problem is 
no longer an energy minimizer and is thus unstable. For a readable account of the 
relations between material stability and corresponding constitutive restrictions see 
BALL (1977) for elastic materials and RICE (1976) for elastoplastic ones as well as 
references quoted therein. 

Following BENSOUSSAN et al. (1978). the homogenized incremental moduli JZXPyh[i] 
of a periodic medium can be found explicitly from the values of the incremental 
moduli L,,,..,[.x,, x2, 1.1 of the unit cell Y. To accomplish this, one must determine the 
incremental response of the unit cell to an applied average incremental deformation 

L6,j;. More specifically, 

where $X[s,, x2] are Y periodic functions in the unit cell and 1 YI denotes the volume 

of the unit cell. Note that a function $1 [x,, x2] is termed Y periodic if $a assumes the 
same values at opposite faces of the unit cell. All of the higher derivatives of $Z (or 
appropriate jump conditions where derivatives fail to exist) must also have that 
property. To summarize, 

*zcx,> -a21 = ti3(x13a2h $a,&l, -02) = tix.,j(-xI,a2), . ., 

$,(-al,x2) = IC1T(a,,x2), 1c1z,p(-aI.x2) = $3.&,,-~2),. . . (16) 

The zZ are found from the following variational statement which holds for all Y 
periodic functions S$, : 

(17) 
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In view of th; existence of a strain energy d per unit cell of the structure where 

8 = ~IIIICI.~LI,III~f 1 ~~cZ,I,,, [see (1) and WI, 
.I= I 

where c, and 1-:? are the strains in the .Y, and _Y? directions respectively in the principal 
solution. 

Substitution of (I), (2) and (18) into (I 5) provides the following expressions for 
the homogenized incremental moduli : 

c; 
where Us and :,(x) denote the horizontal and vertical components of the 
displacement in the local coordinate system of member J corresponding to the 

a.< 
field 6,,x~+$.(x,,x,). i.e. ;,(x) = .u6,,6,~+~,(.u.O), Z,(X) = .~6~,ii,~+~~(x,O), 
6; I.< 
Up = ~6~~6~~+$~(0,.u), -:?(x) = .~ii,,,6~~+$,(O..x), etc. In addition ‘ii, and ‘G, 
denote the horizontal and vertical components of the displacement at node i cor- 

i:; 
responding to the same field, i.e. U, = a,6,,b,l+$,(a,,0), ‘?, = a,62~d,~+;i/2(~,,0)r 

62 = a26,r:dlc+$,(0,u2), p2 = az621:6?i+$z(0,uz), etc. as seen in Fig. lb.* 
Substitution of (l), (2) and (I 5) into (I 7) provides the following variational state- 

ment defining the terms Z,,(.Y) and ‘2:.,(-u) : 

The derivations of the Euler-Lagrange differential equations and boundary con- 

ditions for G,,(x) and ‘;;,(.Y) are straightforward. The differential equations are obtained 
via integration by parts and are the familiar ones of the beam buckling problem : 

(21) 

i; *Note that $,(.\-) and $,,(.Y) are expressed in the local coordinate system of member J, while sT( y ,, .I ?), i; 
0,. and V, are expressed in the global coordinate system .v,. x1 of unit cell Y. 
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Some of the boundary conditions are obtained in view of the beam kinetic com- 
patibility and equilibrium requirements at the center node of the unit cell while others 
are obtained in view of the requirement that the solution must be periodic with respect 
to the unit cell. The remaining boundary conditions are specified to insure that the 
solution conforms to the particular average incremental deformation applied to the 
unit cell. 

Due to the symmetry of the unit cell with respect to the x, and x2 directions, these 
boundary conditions simplify considerably. As a result, only the positive quadrant of 
the unit cell (i.e. beams 1 and 2 in Fig. lb) needs to be considered. The corresponding 
boundary conditions are 

r 
d2$ 

&(a,) = a,6,,,6;,, “i:,(a,) = a,6,,4,; Ezqu;(u,) = 0, 

?,(a,) = -a2~,2~;2; 
df& 

EZ2p (a2) = 0. (22) 

A straightforward integration of (21) subject to the boundary conditions in (22) 
gives the following results [recall the definition of p.[L] from (9)]. 

II II 

2.4 , (x) = x, Z,(x)=O, i,i2(x)=0, vz(x) = 0, 

22 
u,(x)=O, 21,(x)=0, E2(x)=x, -Y&)=0, 

12 12 

24 l(X) 

sin (Plx/al) 

= 0, 21 ,(x) = 

: [ 

-cos (P,x/a,>+ -- 

tan PI -;+1, 1 
G,(x) = 0, 

I2 N, 
0 2(x) = y 

[ 

sin (B2G72> _ 
cos (P&2) - ran p2 +-h-l -x, 

4 1 
21 21 

u l(X) = 0, 2: ,(x) = + 

[ 

sin (Pdl) x 
-cos(p,x/a,)+ ~~~- - 

tan PI 

-+l +x, 
ai 1 

21 21 

u 2(x) = 0, v 2(x) = 7 

[ 

sin (B24a2) 
cos (/32x/+) - ~- 

tan P2 

+ :?c _ 1 ) 

a2 1 

(23) 
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From the symmetry of the unit cell with respect to the X, and X, axes, 

Z,(X) = Z,(X), ‘;:,(.X) = &(X), &(X) = &), :4(X) = K(X), (24) 

which completes the solution for the unit cell problem in (20). 
Substitution of (23) and (24) into (19) yields the following expression for the 

homogenized incremental moduli : 

(25) 

For small values of A. the homogenized material is expected to be elliptic. For 
adequately high values of the load parameter, the incremental moduli of the homo- 
genized structure will lose ellipticity, which is the relevant instability that can be 
detected in the macroscopic (homogenized) equations of the structure. 

The loss of ellipticity condition for a two-dimensional continuum occurs when for 
some load level A. a unit vector n (with components n, , nz) can be found such that 

Det (LZX,+~~~[/2]nl;n,) = 0 (n, = cos 4, n2 = sin 4). (26) 

For i. = 0 the acoustic tensor _!YX,ti6[O]ngnii is positive definite for any unit vector n, as 

one can easily verify. Continuity with respect to i. dictates that ellipticity is lost for 
the first time at At, which satisfies 

A~,[i”]n:+A:‘,[3”]n:~I+A~~[~“]n~ > 0; 0 < i < 1.1,; 

~1, =cos$, n2 =sin4, V (b~[O,27c], 

Ar,[~“]n;Z+A~~[[i.]nfnS+A~~[j~]ntt = 0; 1, = I_*,; 

11, = cos @c, n2 = sin 4,, 

AY,[il = 9 I,,, [J.lIz’,,2,[4, 4/24 = -.4”,2,2[4~2222[4> 

.c2,4 = -(~,1?2[~1+~,22,t~I>(~~,,It~“l+~~Z,,[~”l) 

+~,,,,~~l~z2Z~~~~l+~,~12~~.l~~,2,~~.l~ (27) 

where the expressions for A,‘$[A] in terms of A?+~~ have been derived in a straight- 
forward fashion from (26). 

Direct substitution of (25) into (27) yields, after also taking into account the 
definitions of B,[/Z] and F,[i] from (9) and the definition of l-[/z] from (23) 

(28) 
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where ARa[;?l are given by (12). The result in (28) implies* that &, = A,, the critical 
load parameter corresponding to the long wavelength bifurcation mode defined in 
(13) and (14). It has thus been shown using a constructive proof that the loss of 
ellipticity instability for the homogenized (macroscopic) model corresponds to a 
bifurcation instability of the exact (microscopic) model when the wavelength of its 
buckling mode is much larger than the unit cell (L, >> a, or equivalently o,a, << 1). 

The above result, i.e. that the long wavelength eigenmode buckling load for a 
nonlinear periodic medium coincides with the load at which the homogenized moduli 
of the material lose their ellipticity is a general theorem holding for incrementally linear 
period media as shown in a very general three-dimensional context by GEYMONAT et 
al. (1990, 1992). An earlier constructive proof of this result in the case of layered 
composites was given by T~IANTAFYLLIDIS and MAKER (1985). 

4. RESULTS AND DISCUSSION 

The logical starting point for the results is the parametrization of the model. Instead 
of the six geometric parameters A,, Z, and a, (areas, moments of inertia and lengths 
of beams in the X, and x2 directions), the following parameters are introduced 

c = ((c,)2+(c2)2)‘!2, xr = tan ’ [cz/c,J ; c, f 12Z,/(A,J2, 

r = ((ri)‘+(r,)*)‘;‘, x1 z tan..’ [r*/r,]; rz 3 (12Z,/A,)“Z/a,, 

a = ((~~)~+(~~)~)I~~, xc, - tan--’ [nz/ff,]. (29) 

The c $, c2 and c parameters in (29) are termed shape parameters. In the case of a 
beam with a rectangular cross-section, c, simplifies to h,/b, where Jz, is the beam’s in- 
plane thickness and b, is the out-of-plane thickness. The shape parameters tend to 
increase with more efficient beam cross-section designs, such as I-beams, that place 
most of the cross-sectional area as far from the neutral axis as possible. The I,, r2 
and r parameters in (29) are termed slenderness parameters. For a beam with a 
rectangular cross-section, r, simplifies to h,/a,. The slenderness parameters should be 
of the order of 10-l or smaller because the model derivation involves slender beam 
assumptions. Finally, 2a is the diagonal size of the unit cell. 

At this point the dimensionless interstitial stiffness parameter g is introduced 

Gt 

g=z. (30) 

The dimensionless load parameter 1 to be used in the model is defined as follows 

N, = 2Ea,aA cos 8, N2 = 2Ea,nl sin 8, (31) 

where 0 is termed the load ratio parameter. With the above definition, the dimen- 
sionless compressive stresses 6, /E and 02/E applied on the model in the x, and x2 
directions respectively are 

*B&f, F&2.] and r&] have no roots in the range of interest 0 < i < jr,, for all cases considered. 
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(32) 

where U, = N1/(2u2a) and CJ? = N,/(2u,u) are the dimensionless average principal 
stresses applied along the X, and .Y, directions, respectively. 

The results of the critical load dependence on various microstructure geometries 
will be shown in the form of curves in o,/E-02/E diagrams. Because of the choice 
of parametrization made in (31) and (32), these plots are polar plots of the critical 
load parameter ,& versus 0. In all the calculations reported here E = 1 and u = 4’2, 
thus fixing the units of force and length for the subsequent results. 

At first, attention is focussed on the stability of the grillage in the absence of 
interstitial material (y = 0). The critical load IL, is found from (10) as the minimum 
height of the surface L (J~P,,,/‘s~) with the dimensionless mode wavenumber par- 
ameters, s, defined in (9), .sZ = (sin [~,a,])~. For slender beams, a typical graph of i: 

as a function of ,,/s-, and d’s, is given in Fig. 2a (xc, = 7~14, c = 2/:/2. x, = rcj4, r = 0.2, 

xP = n/4) for 6, = 71/4. The wanted minimum i, of i[&y, ,/.s?) occurs at the origin 
&, = & = 0, at the vicinity of which the surface 1, is singular and forms a hump. 
Since the minimum of 1 occurs at the origin, & = A,, where A, is defined in (14). For 
slender beams one always finds that A, = A, or A?. thus implying n, = i or j, i.e. that 
the macroscopic characteristic directions for the failure of the structure coincide with 
the principal stress axes. For much stubbier beams a typical graph of fi as a function 
of J.P, and V/.s, is given in Fig. 2b (xc, = 71/4, c’ = V/5, xc = n/4, r = 5.0, x, = 7~14) for 

FIG. 2a. Typical buckling load i; versus mode wavenumber parameters J,s,. ,/sl surface for a small beam 
slenderness parameter r when the interstitial stiffness is ignored (,q = 0). Notice that the minimum of i 

occurs at the origin (O,O), indicating that the critical mode is a long wavelength mode. 
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FIG. 2b. Typical buckling load /c versus mode wavenumber parameters .&, ,,& surface for a large beam 
slenderness parameter r when the interstitial stiffness is ignored (y = 0). Notice that the minimum of fi 

occurs at the origin (O,O), indicating that the critical mode is a long wavelength mode. 

0 = n/4. Once again, the wanted critical load A, occurs at the origin & = & = 0, 
at the vicinity of which the surface 2 is singular and forms a valley. Since the minimum 
of i occurs at the origin, /1, = AC. Note that in contrast to the slender beam case, 
A, = A,, which implies a macroscopic characteristic direction for the failure of the 
structure that is not in one of the principal stress directions. This can be easily seen 
from Fig. 2b, where if one approaches the origin from along the bottom of the valley 
(in this case with s, = So), one obtains the value i, = A,. It should be mentioned at 
this point that x(0,0) (which corresponds to the periodic buckling mode of the 
structure, i.e. the mode where the wavelengths in both directions are integral multiples 
of the respective unit cell dimensions) is always considerably higher than any value 
of ff and hence is omitted in Figs 2a and 2b as well as in Figs 8a and 8b. 

The common feature for all the critical load calculations in grillages with no 
interstitial stiffness (g = 0) is that the critical buckling mode always corresponds to 
the long wavelength mode (_&/a, = 2z/(oza,) -+ co). This result is to be expected, 
since virtually all of the strain energy of the buckled configuration is stored through 
beam bending. Because the long wavelength modes correspond to vanishingty small 
beam curvatures, they thus minimize the energy stored per unit cell of the structure. 
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The same result was found by BENDSEE and TRIANTAFYLLI~IS (1990). who used a 
grillage model in their study of optimal microstructures. 

For the grillages with no interstitial material (,y = 0) typical dimensionless critical 
stress (o,/E and a,/E) diagrams are given in Figs 3a and 3b for thin and stubby 
beams, respectively. More specifically, Fig. 3a corresponds to the thin beam grillage 
used for Fig. 2a (xi, = rc/4, c = \/z, xc = z/4, I’ = 0.2, X~ = n/4) for 0 < 8 < n/2. The 
chain-dotted (-- . --) line in Fig. 3a corresponds to A, (0) and the chain-dashed (-- -----) 
line corresponds to A?(O). The shaded area in Fig. 3a contains all the stress states 
for which the grillage is stable. The chain-dotted and chain-dashed parts of the 
boundary of the shaded area contain all of the stress states corresponding to the onset 
of the first bifLlrcation. The first bifurcation coincides with the first loss of ~llipticity 
for the homogenized moduli, since I_, = A,. The critical stresses @Fig. 3b correspond 
to the stubby beam grillage used for Fig. 2b (xii = 7~14, c = 4’2, xc = n/4, r = 5.0, 

x8. = 7r/4) for 0 < 0 < n/2. Similarly to the previous figure the chain-dotted and chain- 
dashed lines correspond to A,(@) and A,(H), respectively. while the dashed (-- -- --) 
line corresponds to A,,(O) which as expected for the stubby beams satishes 
A,(a) < A, (0). A,(O). The shaded area containing the origin and bounded by A,,(f)) 

FIG. 3a. Typical critical dimensionless stress diagram for grillages with slender beams when interstitial 
stiffness is ignored (a = 0). The (-.-) line corresponds to the long wavelength mode A,,(U), and the 

( ) linecorresp&ds t; the iong wavelength mode AZ(U). The shahed arca contains all the strain states 
for which the grillage is stable. 
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FIG. 3b. Typical critical dimensionless stress diagram for grillages with stubby beams when interstitial 
stiffness is ignored (g = 0). The (-. -) line corresponds to the long wavelength mode A,(B), the (---) 
line corresponds to the long wavelength mode A,(0) and the (- - -) line corresponds to the long wavelength 

mode A,(O). The shaded area contains all the strain states for which the grillage is stable. 

contains all the stable stress states for the grillage and coincides with the domain of 
ellipticity for the homogenized moduli since ,I, = A,. 

The effect of the various geometric parameters of the grillage on the stability region 
of the structure in the ~7, /E-o,/E space is investigated in Figs 4-7b. 

The influence of the shape of the grillage on its stability region is studied in Fig. 4 
in the case of a thin beam grillage (25” < x0 < 45”, c = 4, xC = ~14, r = 0.2, x, = 7~14) 
for 0 < 0 < 7rrj2. Notice that the structure made up of square unit cells (a, = a2 

or xc, = 7r/4) possesses the largest region of stable stress states. The stable regions 
corresponding to the other values of x0 are nested one inside the other as the unit cell 
shape becomes more and more elongated. This behavior is at first surprising, because 
although the effect of moving x0 away from 7r/4 consists of weakening beams in one 
direction, it actually strengthens those in the other direction. However, the x- and y- 
responses of the structure are coupled due to the fact that beams in the x-direction 
and y-direction are fastened together by welded joints. This means that when the 
bifurcation mode involves rotations of the joints (which is the case for the long 
wavelength mode) the strengths of the beams in both directions affect the critical load. 
This is the reason the unit cell shows weakening for all load ratio parameters, including 
the range of 8 where the load is more concentrated in the apparently strengthened 
direction. Qualitatively similar results can be obtained for stubbier beams. 
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FIG. 4. Dependence of the stability region of a slender beam grillage with no interstitial stiffness (,q = 0) 
on the shape of the unit cell as measured by the angle xz formed between the cell diagonal and the .‘I, axis. 

The influence of the stubbiness of the beams, as described by the r and xI parameters, 
is investigated in Figs .5a and Sb. More specifically, Fig. 5a explores the dependence 
on X~ of the stability region in the al/E-oz/E space for a slender beam grillage 

(x0 = n/4, c = J2. XC = 7~14, Y = 0.2. 25 < XI < 45 ‘) for 0 < 8 < n/2. Similarly to 

the result in Fig. 4, and for the same reason, the stability boundaries are nested one 
inside the other, with the largest region of stable stress states corresponding to the 
model with x,- = 7c/4. In view of the slenderness of the beams, the stable regions are 
of the type presented in Fig. 3a, since their stability boundaries are formed by the 
A,(H) and AZ(e) curves. The effect of X~ on the stability of grillages with stubbier 
beams is illustrated in Fig. Sb (xc, = 7~14, c = 4, xc = 7114, Y = 5.0, 25’ < X~ < 45 ) 
for 0 < 0 < 7c/2 where one can see the transition from a stability region boundary 
determined by AL/(@ (for xI = 7-c/4) to a stability region whose boundary is determined 
by A, (0) and A*(0) (for xr = 25”). Again, the stability regions are sequentially nested 
as expected inside the xr = n/4 curve. The effect of changing r while keeping xr constant 
is easily predictable and produces stability regions nested inside one another as Y 
decreases. 

The effect of the beam shape constants c and xc on the stability of the grillage is 
investigated in Fig. 6. For slender beams (xc, = 7r/4, c = ,/% 25’ < xc. < 45 ‘, r = 0.2, 
x, = n/4) the effects of the parameters xc are shown in Fig. 6 for 0 < 0 < 7cj2. Unlike 
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the effects of xc, or xl, the stable regions are not sequentially nested as xC moves away 
from z/4. However, the effects of xc are negligible compared to those of xu or xI. The 
effect of changing c predictably produces stability regions nested inside one another 
as c increases. This happens because holding r constant and increasing c reduces the 
beam cross-sectional areas, thus weaking the structure. 

From the results shown in Figs 4, 5a, 5b and 6, one concludes that the beam 
stubbiness parameters r and xI determine the type of failure mode for the structure 
[i.e. whether I_.(G) = A&Q), or I,(O) = A,(@ or A,(Q)] and hence the shape of the 
stable region in the C, /E-oJE space. Upon examining a very wide range of the grillage 
parameters for the case of g = 0, it has been found that I,, = Au (0) solutions can only 
occur when r becomes sufficiently large. This transition between failure modes can be 
seen as the effect of the beam stubbiness i’ on the characteristic direction at the loss 
of ellip_ticity, $C = tan- ’ (nzc/n,,), depicted in Fig. 7a for a structure with xu = 7r/4, 
c = J2, xc = 1114, 1 .O < r < 8.0, and x,- = 7114, for 8 = 40’. As expected, there is a 
more or less abrupt transition from the I., = A, or A2 slender beam type mode (with 
C#I~ = 0 or +C = 7c/2) to the 2, = A, stubby beam type mode (with 0 < & < 7-c/2). The 
load ratio parameter was intentionally chosen as 0 = 40” because the symmetry of 
the above model about the x, = x2 diagonal prevents the model from achieving any 
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FIG. 5a. Dependence of the stability region of a slender beam grillage with no interstitial stiffness (g = 0) 
on the differential strengthening of beams in each direction as measured by the slenderness angle xT (xT < ?ri4 

corresponds to stronger beams in the s, direction). 
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c;h, other than xi4 (or 0) if 0 = n,i4. For stubby beams, there is a strong dependence 
of 4, on the load ratio parameter 0 as typified by Fig. 7b (x~, = n/4, C+ = J2, xc = x/4, 
r = 4.25, x,- = z/4) for 0 < 0 < n/z. 

In all the above results, where the interstitial stiffness is neglected (y = 0), the 
stability region in the cr,/E-cr,)E space (i.e. the stress states for which buckling is 
excluded) coincides with the ellipticity domain for the homogenized equations, since 
the critical mode is always the long wavelength mode. The situation is quite diKerent 

for .ci # 0 where for adequately large values of CJ a local buckling mode can precede 

the global one, i.e. at A,, (4’s ,, J.T~& # (0.0). Some typical graph_! of i:(Js,, -,J!s~), 

for the case of y # 0 are shown in Figs 8a and 8’~. The i(X/.s,, Js?). surface in Fig. 

Sa corresponds to a grillage with the same beams as in Fig. 2a (x,, = 7~4. c = J2, 
II, = n/4, r = 0.2, x,. = n/4) for 0 = n/4, but with a rather large interstitial stiff- 
ness parameter y = 1.0. The critical load in this case is achieved sitnultaneously 

for (,“.s,.~/s~), = (0, 1). (./,s~.~~~~~~)~. = (l,O), and (J,s,, l;./,~z)C = (I, l), i.e. E., = 

L(O. I) = x(1,0) = I( I, 1) (an unusual type of situation due to the symmetry of the 
geometry ofthe unit cell and the symmetry of the loading, about the s, = _Y? diagonal). 
The above results correspond to antisymmetric type modes since sin’(~z>,c~,) = 1 (for 
x = 1 or 2) for which the longest corresponding wavelengths are L,zirr, = ‘>lt/{ctr,rr,) = 

2n/(n’2> = 4. 
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FIG. 6. Dependence of the stability region of a slender beam grillage with no interstitial stiffness (,q = 0) on 
the differential strengthening of beams in each direction as measured by the beam shape angle x, (x< < n/4 

corresponds to cross-sections with a more efficient cross-section design in the x, direction, i.e. c1 > c?). 

Calculations of i(&, Js2) for (6, dT) J* over [0, I] x [0, 1] were performed here 
for a great variety of unit cell geometries and interstitial properties. For almost all of 
the models examined, the critical mode was found in one ofthe four corners of the 
(&!, Js) domain of definition of 2, i.e. ds, = 0 or I and ,/sz = 0 or 1. Some models, 
however, possess critical modes not corresponding to one of the four corners qf 
[O. 1] x [0, I], but rather to a point interior to this region. Figure 8b depicts the i(Jit 

_J%) surface for a grillage with xLz = 7c,!4, c = 1.35, xt = zj4, r = 0.1225, xr = 
11.5 ‘, and g = 1.0, for B = 0, showing the mil~imum load at the interior point 

(&i, ,,I%)~ z (0.84,0.15). Models which display this type of behavior belong to the 
limited class of unit cells whose beam properties are significantly stronger in one 
direction than the other. Furthermore, these models must be loaded solely in the 
strong direction in order to obtain the critical mode at an interior point, i.e. the 
interior point mode is very sensitive to the load ratio parameter 8. For example, for 
the model used to generate Fig. Sb, as soon as 0 deviates from 0, the critical mode 
moves to the (A, Js2) = (1,O) corner. 

For the more common grillages where the minimum of r(/,s,, Q’%?; 0) occurs at 
one of the four corners of the [O, I] x [0, I] domain, the set of all stable stress states 
can be found as the intersection of the domain for which a long wavelength bifurcation 
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FIG. 7a. EfTect of the beam slenderness parameter T on the loss of cllipticity direction 4, for grillages uith 
no interstitial stiffness (,q = 0) at fixed 0 = 40 

,6 

1.4 

1.2 

1 

F 
+ 
IJ 0.8 
L 

3” 

0.6 

0.4 

0.2 
i 

0 I 1-7 I~----7 
0 10 20 30 40 50 60 70 80 90 

0, degrees ton($c=n,,h 

FIG. 7b. Effect of the load ratio parameter 0 on the loss of ellipticity direction 4, for a grillage with no 
Interstitial stiffness (,q = 0) and I’ = 4.25. 
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FIG. 8a. Typical buckling load rf versus mode wavenumber parameters Js,, Js2 surface for a grillage with 
interstitial stiffness LJ # 0. Notice that the minimum 1 is no longer at the origin but at one of the other 
corners of the [0, I] x [0, I] domain of definition of the wavenumber parameters, indicating that the critical 

mode is a local one. 

FIG. 8b. Under exceptional circumstances, for grillage models with interstitial stiffness 9 # 0, one can find 

the minimum in the critical load surface i(&,, Ji2) t o b e an interior point (dark spot) away from the 
boundary of the [0, I] x [0, I] domain of the wavenumber parameters. This indicates that the critical mode 

is a local one whose wavelength has no special relation to the unit cell dimensions. 
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FIG. 9a. Typical critical dimensionless stress diagram for slender beam grillages with low interstitial stifTness 
q = 1 .O x lG- ‘~ The (--. ) and i----) lines correspond to the lonp wavelength mode curves A, (lit and 
A,(O), while the (------). (...) and (----) I. mes correspond to the finttc mode curves i(O, 1 : /I), ;( I, 0 : 0) 
and ;( I. 1 ; O), respectively. The shaded area contains all the stable strain states, and since it is defined by 

global modes, it coincides with the ellipticity domain. 

mode is excluded, the domain for which a bifurcation with mode (Js,, ,,,&J = (0, 1) 

is excluded, the domain for which a bifurcation with mode (JY,,&;) = (I. 0) is 

excluded, and the domain for which a bifurcation with mode (&,,d<i) = (1. I) is 
excluded. The stability set corresponding to the long wavelength mode (ellipticity 
domain) is formed by the intersection of the three sectors bounded respectively by 
the -SC, axis, the -L’? axes and the A,(B) curve; the X, axis, the _xz axes and the AZ(O) 
curve: and the X, axis, the x2 axes and the A,Jfl) curve {see for example Fig. 3b). In 
addition to the aforementioned eilipticity domain, one has to consider the three 
additional sectors bounded respectively by the s, axis, the _-c2 axes and the x(0, 1 ; 0) 
curve; the x1 axis, the x2 axes and the x( 1,O; 0) curve; and the X, axis, the _Y: axes 
and the i( 1, 1 ; U) curve. Results for these calculations in the case of the grillage 
considered in Fig. 3a (xc, = 7114, c = ,/?, xc = ~14, Y = 0.2, X~ = 7~14) for 0 < 8 < n/2, 
but with two different nonzero values of y, are depicted in Fig. 9a (,q = 1 .O x 10 ‘) 
and Fig. 9b (9 = 3.0 x IO-‘). Notice that the x(0, 1 ; B), f( 1,O; 0) and x(1, 1 ; 0) 
curves lie outside of the A, (8) and AT(@) curves for g = 1 .O x 10 ’ and this means 
that the critical modes for this model are always long wavelength modes. Hence, the 
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Frc. 5%. Typical critical d~me~sion~~ss stress diagram for slender beam griflages with high interstitial 
stiEness .B = 3.0 x 10’ ‘. The (-. -) and (--f lines correspond to the long wavelength mode curves A / iir) 
and A,(O). while the (- ). (. .) and -) lines correspond to the finite mode curves A~U, 1; 0). i( I,#; 0) 
and IfI, 1; U), respectively. The singly shaded area is the ellipticity domain bounded by the A, and A, 
curves, while the daubly shaded area is the stability domain inside of which bifurcation of any wavelength 
is excluded. Notice that in this case the stability domain is entirely contained inside the elliptic@ domain. 

ellipticity domain coincides with the stability domain in the cl/E-02/E space for 
g = 1.0 x IO-“. For the higher interstitial stiffness parameter g = 3.0 x 1O--5 the situ- 
ation is reversed, as seen in Fig. 9b, and the stability region is entirely contained inside 
of the elhpticity domain. For this value ofg, a local buckling mode will always precede 
a global one. It is of interest to note that all three curves fi(O, 1; B), x(1,0 : 0) and 
l(t, I ; 8) intersect at cil /E = rr,/E due to the geometry and loading symmetry of this 
model with respect to the diagonaf x1 = xL-. 

The dependence of the critical mode on the interstitial stiffness parameter g is 
depicted in Figs 10a and lob. Most models, i.e. the anes for which the critical mode 
occurs at one of the four corners of the [0, l] x [0, 1] domain, generate results very 

similar to those shown in Fig. lOa, which was calculated for xc, = 7114, c = ,/2, 
xc = 7r/4, r = 0.2 and x,. = n/4, for 0 = 40”. The load ratio parameter was intentionally 
chosen as 0 = 40”’ (as opposed to 8 = 7c/4) in order to avoid the situation mentioned 
above where three modes are critical for g, !_ = o~/E. As expected, as soon as the 
interstitial stiffness crosses a critical vatue, J s1 corresponding to the solid line (---.) 

jumps to I, whilie k/G remains at 0, since the critical mode becomes {,J& ,,/i.,) = 
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FIG. IOa. Dependence of the critical wavenumber parameters ,js,, (--) lint, and $:, ( ) line. on 
the interstitial stiffness 9 for a slender beam symmetric grillage loaded at 0 = 40 

(1,O). The more unusual grillages, which are so much stronger in one direction 
than the other that they can exhibit critical modes in the interior of the [0, I] x [0, l] 
domain, all generate results similar to those shown in Fig. lob. The model used to 
generate Fig. 10b is the same as that used in Fig. 8b (x(, = n/4, c = 1.35. xc = n;‘4, 

I’ = 0.1225. xv = 11.5 ) for 6 = 0. In contrast to Fig. IOa, both d<v, and ,/s? jump to 
nontrivial values ( # 1, #O) simultaneously when g reaches a critical value. 

The determining factor for whether or not the critical mode is global or local for a 
given microstructure is the critical value of the interstitial stiffness parameter, gc. 
For 0 < g < LJ~, the critical mode is a global one (determined by the macroscopic 
homogenized moduli), while for g > g<, the critical mode is a local one which is not 
obtainable from macroscopic information. Consequently, the dependence ofg, on the 
load ratio parameter 0 for a particular grillage is of fundamental importance in 
characterizing the domains of stable stress states for that grillage. Results of g( as a 

function of H for a number of different slender beam grillages all with c = J2 and 
I’ = 0.20 are given in Fig. I I. The g, curves were generated using the following four 
models : one for which x0 = 42.5 , xc = 7r/4 and X~ = 7~14, (. .) line ; one for which 
xti = 7114, xc = 42.5” and xr = n/4, (---) line; one for which x(, = 7114, xc = 7114 and 
x, = 42.5‘. (- -) line ; and finally one for which xii = x, = X~ = n/4. (-----) line. Note 
the rather signiticant variation ofg, near H = n/4 in contrast to its relative insensitivity 
to variation of xc,, xc and x, over the rest of the H domain. 
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5, G~NCLU~IONS 

Of interest in the present work is the quantitative comparison between the onset of 
the first instability in a medium with known periodic microstructure and the onset of 
the corresponding instability predicted by the macroscopic equations for the medium. 
This comparison establishes the theoretical limits of validity for the averaged (homo- 
genized) response of n~~~rostructur~d elastic media. fn the interest of simplicity, 
attention is focussed on an a~~rox~rna~ion of a fiber reinforced composite modeled 
as an infinite periodic grillage of axially compressed beams with an average shear 
stiffness to approximate the shear resistance effect of the composite’s matrix material. 
The particular beam mode1 was chosen so that the problem would be analytically 
tractable, yet of sufficient complexity to exhibit nontrivial microscopic and macro- 
scopic failure modes. 

A comparison of the stresses at the onset of the microscopic failure (taken to be 
the first bifurcation away from the principal periodic solution) to the stresses at the 
onset of the macroscopic failure (which corresponds to the loss af ellipticity for the 
incremental response of the homogenized model) allows one to identify whether the 
first failure mode, aIso termed the critical mode, is Iocal (microscopic critical mode) 
or global ~~~a~ros~o~~~ critical mode) in nature-. An extensive investigation of the 
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FIG. Il. Dependence of the critical interstitial stiffness parameter qL (below which the long wavelength 
mode is the critical one and hence the domain of stability is charactcrired by the ellipticity of the 
homopeni7ed model) on the loading angle 0 for four different slender beam grillapes: x, = y = x, = ~‘4. 
( -) line; x, = 42.5 and xc, = xc = rr;4, ( ~. ) hne ; x,> = 42.5 and x, = X~ = n/4, (. .) hne: and 

x< = 42.5’ and x<, = x, = n/4, ( -~) line. 

influence of various model parameters on the failure modes of the composite has been 
undertaken. The results obtained show the importance of the interstitial stiffness in 
deciding the nature of the critical mode. For values of the interstitial stiffness below 
a certain threshold (which depends on the geometry and material properties of the 
model) the global mode is the critical one which can thus be detected from the 
homogenized equations of the model. For interstitial stiffnesses above that threshold, 
a local failure mode precedes the global one, thus rendering the failure predictions of 
the homogenized model inaccurate. For the case of low interstitial stiffness where the 
critical mode is global in nature, the stubbiness of the beams plays an important role 
in the determination of the characteristic direction associated with the loss of ellipticity 
of the homogenized model. An additional interesting feature of the results is that the 
critical mode’s wavelengths in the x- and J’-directions have no particular relation to 
the corresponding cell dimensions. Thus, depending on the loading geometry and 
microstructure, one can have critical modes with wavelengths ranging from any finite 
number (real, not necessarily integer) of cell lengths (for local critical modes) all the 
way to modes with wavelengths much larger than the unit cell size (for global critical 
modes). 
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It should be emphasized here that while the above analysis was performed on a fairly 
specialized periodic medium, it is clear that it can be generalized without difficulty for 
arbitrary, periodic, three-dimensional, rate independent solids, if one is willing to 
relax the analytical tractability requirement and work with numerical (f.e.m. usually) 
techniques. The advantage obviously is that a much richer class of microstructures 
can be investigated. but the cost is a considerable increase in computer time. A 
parameter study to determine conditions under which the critical modes are local or 
global in nature becomes prohibitively time consuming for realistic two- or three- 
dimensional non-degenerate unit cells, as found by TRIANTAFYLLIDIS and MAKER 

(1987). The present work is thus also useful as an efficient parametric study to 
determine which loadings and microstructures result in a global critical mode and 
which result in a local one. 

One should keep in mind that in this work failure is defined as the onset of a 
bif.urcation instability in the infinite periodic structure. It is important to determine 
whether this failure is catastrophic or not, a question that can be answered only by a 
postbifurcation analysis of the problem. For the catastrophic postbifurcation solution, 
the issue of imperfection sensitivity becomes important, for it will provide the load 
levels permissible in a realistic structure prior to failure. These problems, the solutions 
ofwhich are the logical continuation of this work, are complicated by the infinite extent 
of the structure and its resulting continuum spectrum for the eigenvalue problem. 

The effect of finite boundaries (which have been systematically ignored in the 
present work) on the response of the composite is another direction for further study. 
The size of the structure will inevitably enter in the stability analysis for the case where 
the critical mode is global in nature, i.e. when the critical mode wavelength is much 
larger than the unit cell size. Boundary effects are also expected even when the critical 
mode is local in nature, and the interaction between the critical local mode and a 
global mode which can be present at about the same load level (due to the finite size 
of the structure) is yet another interesting possibility. 
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APPFCNDIX 

The calculation of K& for beams under axial loading follows a procedure exposed in L.IVESI.EY 
(196X). The expression for the total potential energy for a beam J, &b,,,,,r is given in (2). By 
solving the equilibrium equations O&,,,,, r 0, one can express c&,,,,, in terms of prescribed end 
(elemental) displacements and rotations d,. (Note that the hat notation is used here to diffcr- 
entiate an end nodaf displacement and rotation vector d, in local coordinates from its counter- 
part. d,, expressed in global coordinates, referred to earlier.) The elemental in~remen~l stiffness 
matrices K$ for the beam in local coordinates are then given by 

For the case of the beam loaded by a compressive axial force N.,, this procedure yields the 
following elemental incremental stiffness matrices K;,, along the principal equilibrium path : 

ii.;, zz 

EA, 
LI/ 

0 

where* 

(A.2) 

*Note that the subscript r is used in (A.3) because the quantities described there are the siime for beams 
I and 3 ;md are the same for beams 2 xnd 4. This is in contrast to (A.2) where the subscript I is retained. 
.I is used there because the four beams that make up the unit cell have four different geometric ~~riei~t~tions. 
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i, = (6, +~,)/6-B;/l2, $e = (c= +r,)/6, &Iz = 0,/4, ;, = ~,/2, 
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0% f B&in [Al -A ~0s UU)/{W --OS Wzl) -A sin [B.lI~ 

h = B,(B,-sin W,1)/{2(1 --OS [8,1)-B2 sin UZl~~ 
P’: = NdlWJJ. (A.3) 

The above results hold for the case of the beam axis aligned with the X, direction, since they 
provide elemental incremental stiffness matrices. In order to obtain the global incremental 
stiffness matrices Ki,, for a beam of given R$ matrices and orientation angle “J with respect to 
the X, axis, the following transformation is used. 

K&‘,] = T@,!TT. (A.4) 

The orientation matrix T is 

T= 

The calculation of the L,, is similar to but more straightforward than the above procedure 
for obtaining the K& because the internal strain energy &,nteTSt,,,a, for the matrix material 
approximation is already in terms of global nodal displacement quantities (and is quadratic in 
those quantities) 

~*~,“,,,,t,,,,l 
LIJ = ad, ad, 

The L,, are 

L,, 

0 0 0 

= -L,, = -L,, EL,, = II 0 Ga,/a, 0 1 i 

0 0 0 

0 0 0 

= -L,, = -L,, =L,, = i G 0 0 1 ’ 

0 0 0 

r” G Ol 

Gal/a, 0 0 
L*2 = -L24 = -L,, = L,, = 

i 1 0 0 0’ 

0 0 0 

64.6) 

(A.7) 


