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Fermi—Dirac corrections to the relic abundances
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We derive an equation for the evolution of the number density of a massive particle species in
the early universe, which correctly accounts for the Fermi-Dirac (FD) statistics. The FD-correc-
tions are sizable and potentially important if the decoupling from the thermal equilibrium takes
place at temperatures of the order of, or less than the mass of the particle. This is the case e.g.
for a few MeV tau neutrino with the ordinary weak interactions.

1. Introduction

Calculation of the evolution of the number densities of new hypothetical
massive particles has become a very important part of the study of the early
universe. A lot of work has been devoted to the calculation of relic abundances of
various cold dark matter candidates in the present day universe [1-5]. It is usually
correct to assume that the particles remain in thermal equilibrium to temperatures
much below their mass, so that around the decoupling temperature 7, it is
adequate to approximate the Fermi—Dirac (FD) statistics with the Maxwell-Boltz-
mann (MB) statistics. One can then show that in these temperatures (T < m) the
number density # is governed by the equation [1,6-9]

dn
E+3Hn= (Oppo (12— 1?), (1)
where n.g is the equilibrium density and H = (&m3g(T)T*/M{)'/? is the Hubble
expansion factor where My, is the Planck mass and the function g(7') is related to
the total energy density p by p(T) = 3572g(T)T*. (vpy4 0 is a thermally averaged
cross section to be defined precisely below; here it suffices to note that it is
independent of n. This separation of the RHS of eq. (1) into a power function of n
multiplied by a #-dependent factor can only be obtained in the Maxwell-Boltz-
mann approximation.
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If the decoupling temperature is of the order of the mass, it is not correct to use
the MB-statistics and hence eq. (1) is no more adequate. One potentially interest-
ing physical candidate for which T; ~ m is a few MeV tau neutrino. A tau neutrino
in this mass range would have a significant effect on the nucleosynthesis [10].

In general it is not possible to write down an equation for the number density »
directly, but as we shall show below, a tractable equation can be found for the
so-called pseudo-chemical potential z(¢) [7,11], that is of the functional form

dz
< = F(z(), 1), 2)

Knowledge of z(z) allows the calculation of all thermodynamical quantities as
simple integrals over momentum at each time ¢.

In sect. 2 we will derive the explicit form of eq. (2). In sect. 3 we will derive the
MB-limit for that equation and compare our result to the literature. In sect. 4 we
solve our equations numerically in a simple example and compare the solution of
eq. (2) with the correct statistics to the numerical as well as to one often used
approximative solution of eq. (1). Sect. 5 contains our conclusions and discussion.

2. The evolution equation

We will derive the evolution equation for fermions (called neutrinos in what
follows) under the standard assumption made in the literature that all the helicity
states are equally populated *. Our starting point is then the Boltzmann equation
for the scalar distribution function f(p, ¢} in the flat Friedmann—-Robertson—
Walker space—time [7,13],

E(d,+pH 3,)f(p, t) =Cg(p, t) + Ci(p, t), (3)

where E = (p?+m?)/2 and Cg(p, t) and C,(p, t) are the elastic and inelastic
collision integrals respectively. Elastic collisions are responsible for maintaining
the kinetic equilibrium, but the exact form of the elastic collision integral is not
important for our present purposes. The inelastic collision integral on the other
hand is given by

Ci(py,t) = 22[1_[( )2E (2m) 64(P1‘+'172 P3— D)

* Note that this is not necessarily true in a realistic case, where the interactions may be chiral. This
problem is considered elsewhere [12].
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where the sum over n includes all the particles in the system that the neutrinos
interact with and the sum over s; goes over the spins. Note the normalization
factor % in front of the integral, which is sometimes forgotten in the literature. The
overbars above the distribution functions refer to antiparticles. In what follows we
will assume vanishing chemical potentials so that for all the particles f=f.

In the usual approach leading to eq. (1), the following assumptions are made:

(i) The neutrinos are in kinetic equilibrium.

(ii) Particles involved in the sum over n in eq. (4) are in complete thermal

equilibrium.

(iii) MB-statistics is adequate for neutrinos.

Here we will also make the assumptions (i) and (ii), but we will relax the
assumption (iii). Due to (i) and (ii) we can write the distribution functions as

f(p, )= f(p, 2) = (P +1) 7, (5a)

fu Do 1) f(p) = (ePE+ 1), (5b)

where B=1/T and z(¢) is the pseudo-chemical potential [7,11]. It should be
noted that, in contrast to the usual chemical potentials in equilibrium, z(¢) appears
with the same sign in both the distributions for particles and antiparticles.
Inserting (5a) and (5b) into (4) and by using unitarity and CPT or the principle of
detailed balance one can integrate the RHS of eq. (3) and get

S1(2)

(2 ) 5 Ci(p, 1)

3

(€% ~ 1)%‘,[1 o ) L ———(2m)*8*(p, + P2~ p3—ps)

X Z | 1(5')—»34|f(P1a Z)f(Pz"Z)(l_fn(I%))(l_fn(P4))~ (6)

s;, i=1

Of course, a similar integral over the elastic collision term Cg(p, t) vanishes under
the conditions (i) and (ii). Performing the same operation to the LHS of eq. (3), we
find

dz
E;[(z )3(‘9 —PH 8,)f(p, 1) = —A(2) 57 +B(2), )
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where the functions A(z) and B(z) are defined as

d3
A(Z) Eg/ (217-p)3f(p, z)zeBE+z’

d’p 1dT m?
sy=sf (e 2T)E

f(p, z)%ePE*e, (8)

where g is the neutrino spin factor. Changing the variable from ¢ to x =m /T and
inserting (6), (7) into (3), we obtain the equation for z(x) of the form (2),

dz x dT\ !
E)?:(A( ??) (—B(z) + 81(2)). )

The function B(z) on the RHS of eq. (9) represents the “free” part due to the
expansion of the universe, and the function §,(2) is the interaction term. The
remaining part of this section is involved in writing (9) in a more explicit way.

Let us define the functions J,(x, z) as

xy

* . 1/2 €
M )= [ a0t e .

With help of these integrals we can write the functions A(z) and B(z) as

A(z) = %m e’Ji(x, 2),

1dT
(H+ ?E)Jz(x, z) — HI(x, z)]. (11)

B(z)= im 3ex
’7T

The collision integral S;(z) can always be reduced to five dimensions. We will
choose our independent variables as the three energies E,, £, and E; and the two
angles, 8, the angle between the incoming particles and ¢, the (acoplanarity) angle
between the planes of the incoming and outgoing particles. With this choice of
parameters one obtains, after elementary albeit somewhat lengthy manipulations,
the result

mt

Sy(z) = 5127 s (e e** - 1)

xzf.@cpfz”dqs):l/(")(u v, t, cos 8, $) ", (12)

spin
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where

f9¢’ = flmduj;wdvf_lld cos 0%[?& gruTIY

> (exu+z _ 1)—1(exv+z + 1)_1(6‘” + 1)—1(ex(u+u—t) + 1)—1’ (13)

where £, =(a?—- 1DV? and «(u, v, 8) = |p, + p, | /m = (P2 + P? -
22,2, cos 8)'/2 and we have used the scaled variables u = E,/m, v =FE,/m and
t = E;/m. The t-integration limits are given by ¢, = 3(u + v %
«(u, v, )1 —4m?>/s), where m, is the mass of the species n and s is the usual
invariant s =(p, +p,)? =2m*(uv + 1 —#, 2, cos §). In some cases the matrix
element .# may be simple enough to allow further integrations in (12), but due to
the FD-distribution functions a complete analytic evaluation is not possible even in
the simplest case of a constant matrix element. In particular in the simple though
not very realistic case of an s-dependent matrix element squared (12) can be
integrated down to two dimensions.

Finally, in order to fix the time—temperature relation we will assume that the
universe expands adiabatically. Then

1dT H 1+1Tdh 1
—=T = /( §Zd_)’ (14)

where the function A(T) is related to the entropy density of the interacting species
s by s(T) = Z7*h(T)T?.
Altogether we can now write eq. (9) into a more explicit form,

dz Jo(x,2z) 1T dhJyx,z)—Jy(x, z)

— =4
dx J(x,z) 3 hdT Ji(x, 2)

gMp,

+sinh z y(7T) DB ml(x, 7)

2 1 2
XY (20T dp— L |47 (u, v, 1,6, 8)], (15)
n 0 g spin
where
r 4 r —1/21 T dh
=[|— +3—-—=1|
D) =(zmem)] (15

This is the main result of this section. Eq. (15) is actually simpler than what it
looks; it is only the matrix element that needs to be calculated separately for each
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different case. Of course (15) can only be solved numerically, but there, even the
multidimensional integrations are usually rather easy and the equation itself is well
behaving.

If z(x) is known one can obtain various thermodynamical quantities as simple
integrals over the momentum,

a(x) = 2iﬂ-2./:dy y2a(T, x){exp[(y2+x2)1/2+z] + l>_1, (16)

where e.g. @ = T3 and @ = (y? + x?)/2T* for the number and the energy densities
respectively.

3. The Maxwell-Boltzmann limit

We will now derive the Maxwell-Boltzmann limit of eq. (15). In the MB-limit
the distribution function for neutrinos (5a) is approximated by

f(p, 2)mp=e"PE~2 (17)

With this simplification the functions J(x, z) can be expressed in terms of the
modified Bessel functions of the second kind:

1
Ji(x, 2) —>e_ZZ;Ki+1(x), i=0,1

1/3 1
Jy(x, z)—*e_ZZ;(FKZ(x)+;K1(x) . (18)

Secondly, the collision integral S;(z) simplifies considerably. From (6) one obtains

_dp

2 o )2E exp| —B(E, + E,)]

Si(z)mp = (l_e—u)gf

\ 2 )'32E (2m) 28%(py+py—ps— P4)g szmlﬁ(n)l (19)

Sy et
n

The second line in (19) represents a Lorentz invariant quantity, namely the spin

averaged cross section o(s) times the flux F = 4((p, - p,)* = m*)'/? = 4E,E,u ),

where the flux-related velocity factor vy, is-called the Mgller velocity [9,13,14].

Thus

Si(z)ms=(1 ”e—zz)”gq(x)z<”M¢1‘7(n)>’ (20)
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where

D m
= “BE_o, K |—
«=¢) Gy e A7)

and the averaged cross section (v, o) is defined as

41t d’p, d’p,
v o™= —_— —= o ~B(E1+Ey), o™(s). (21
< Mgl > m4T2K22(m/T) f (27‘_)3 (27’_)3 Mgl ( ) ( )

It is easy to reduce (v, o) into an one-dimensional integral over s. We borrow
the result of such an integration from the paper by Gondolo and Gelmini [9],

1
(g7 = 8m4TK2(m/T)f

dsvs (s —4m?)K, ( /s )oé’{,}(s). (22)

Using eqs. (12), (18) and (20), eq. (9) can be written in the MB-limit as

dz  K(x) 1Tdn

Fp Kz(x) ;Zﬁ + sinh z——y(T)mMPlKZ(x)E@MMa-( )> (23)

where the function y(T") is as defined below eq. (15). Of course, in the MB-limit
we can write (22) directly in terms of the number density n. First note that the
RHS of eq. (7) can always be written as dn/dt + 3Hn and then use n =n(T, z)yg
= e~ "n.(T) in the expression (20). Then from (3), (7) and (20) one obtains the
familiar result

dn
<, +3Hn= %‘,(uwa"))(ngq —n?). (24)

4. The constant matrix element case

We now wish to study quantitatively the size of the corrections arising from the
use of the FD-statistics. To this end we consider the simplest case of a constant
matrix element interaction and furthermore, we will neglect the entropy produc-
tion, so that dk/d7 =0. In order to mimic the strength of the standard model
weak interactions we choose to parametrize the matrix element as |.#;|%=
aGim*, where a is a free parameter. A value a = 20 would correspond to the
interaction strength of an ordinary neutrino in the early universe at a few MeV
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temperature. Accordingly, we will fix g(T) = 10.75 corresponding to 7 = O(1-100)
MeV. We then obtain from (15) a simplified equation,

dz Jo(x, 2)

dx  J(x, 2)

—308><1()"4( i )3 sinh z 9 25
' “Mev ZJI(x, z)f ()

where, among other things, the trivial ¢-integration has been performed. As an
aside let us note that in this case, and in fact in the more general case where
| #, |* depends only on s = (p, + p,)?, the integral over /2 ® can be reduced to a
two-dimensional one,

o 2_4.291/2
Joola(s)=4rL L [ dpfo(p ¥ dg e 77|, [Y(5)

n spin 2x

ln(.c_<)§h.%i.zz.+_®)ln(cosh(%(p+qV)+%Z) L (26)

cosh $(p—q) cosh(3(p—gqV) + 3z)

12 — T ——TTTT —— T

n/n(m=0)

i L 1 1 aaul N L il LAl L PR Sy

100 10! 102

m/T

Fig. 1. The ratio of the number density of a particle of mass m =5 MeV and m =20 MeV to the

number density of massless particles #/n{m =0) as a function of the temperature 7. Solid lines

correspond to the FD-statistics and the dashed lines to the MB-statistics. The dotted line shows the
equilibrium number density.

)
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where V=1 —4m?/s and s =T?*(p? - q*) =m*(p*—q*)/x%. The correspond-
ing equation in the MB-limit is

dz Ki(x) 6.15 x 1074 (
— = -6.15 %
dx  Ky(x) *

SK(x)
W) K,(x)

sinh z. (27)

We have solved numerically egs. (25) and (27). In fig. 1 we show our results for the
evolution of the number density. In all cases we have used the value a = 20 for the
interaction strength. Fig. 1 shows that if the decoupling from equilibrium occurs at
T < O(m), then the MB-approximation overestimates the true value of the quan-
tity in question, the effect being the largest in the region 7 > m. In the last case
however one can simply find the frozen number density of particles in question
without solving the kinetic equation noting that it is equal to the equilibrium
number density of massless particles at the moment of decoupling. In fig. 2 we
show the asymptotic value (for T = 0) of the scaled number density as a function of
mass. We also show the curves corresponding to an approximate analytic solution
of eq. (1) [9,15],

H(T,
foy= "= 00 (28)

- sf< UM¢1‘T>f .

Here the index f refers to the freeze-out temperature, which is calculated from the
equation (assuming vy, o) = const.)

m
—=InC-3Ink C, (29)
T;

where C is given by

3

28 5(5+2)aGiMpyn—
7y PP 3m:

C= (41517-3g(T))_

For the free parameter §, we have used the commonly used value 6(8 +1) =1
[2,9,15]. Here one can see how the correction due to the FD-statistics dies away
asymptotically as the mass increases. This reflects the fact that, while also in this
region the MB-solution is initially inadequate, the particle ensemble remains in
equilibrium long enough for the asymptotics to be well described by the MB-statis-
tics. One should note also that expression (28) gives a very poor approximation in
the region of m < T,;. In particular when one is concerned with very accurately
known quantities such as restrictions derived from the nucleosynthesis considera-
tions, one should be careful to use at least the accurate numerical solution of eq.
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Fig. 2. The asymptotic limit (T = 0) of the scaled number density n/n(m=0) as a function of the
neutrino mass. The solid line corresponds to the FD-statistics, the dashed line to the MB-statistics and
the dash-dotted line to the approximation (28).

(1) and in some cases the numerical solution of eq. (15) with the correct statistics.

5. Conclusions and discussion

We have derived an evolution equation for the pseudo-chemical potential z(T)
in the early universe, that allows one to obtain various thermodynamical quantities
as functions of the temperature, as simple integrals over momentum, with the
correct Fermi-Dirac statistics, We have also obtained the reduction of this
equation in the usual Maxwell-Boltzmann approximation and compared this
limiting case of our result with the literature. We have solved the evolution
equations numerically for a simple toy model, where the interaction matrix
element was assumed to be a constant. Our results confirm the expectation that
the FD-corrections are sizable in the region, where the decoupling from the
thermal equilibrium occurs at temperatures of the order of, or less than the
neutrino mass. One should especially note that the use of some popular analytic
approximations for the relic number density in this region is very ill advised.
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The use of correct statistics could be important, for example in the case of a few
MeV tau neutrino, which clearly would decouple while semirelativistic. It has been
noted elsewhere [10] that such particles would strongly influence the nucleosynthe-
sis due to their potentially large energy density, which would tend to increase the
expansion rate of the universe. In these studies the MB-approximation was used.
As follows from our results the correct statistics gives 5-10% smaller results and
correspondingly weaker bounds on the tau neutrino mass.

Let us finally mention that we have assumed here that both helicity states are
equally populated. It might not be true for the chiral interactions. This is especially
the case for the standard model interactions and therefore for the aforementioned
tau neutrino. This problem, together with the calculation of Fermi corrections to
the realistic case of tau-neutrino freezing will be pursued elsewhere [12].
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