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Abstract.  We present a fast algorithm for exact extrapolation of a discrete-time and periodic band-limited signal from its values in an 
interval having the same length as the band-width of the signal. Here band-width is the number of non-zero values in one period of the 
discrete Fourier transform of the signal. Applications to problems in which the number of given values is unequal to the band-width are 
also given. The procedure is a simple autoregression on the time-domain values of the signal, and is much simpler than previous 
algorithms for discrete~tiscrete extrapolation, which required computation of a large pseudo-inverse. The procedure is highly paralle- 
lizable, and the computational savings are especially significant for multidimensional signal extrapolation. Numerical examples for 1 -D 
and 2-D extrapolation demonstrate ( 1 ) that the procedure works perfectly in the absence of noise, and (2) that it works well in the 
presence of band-limited noise. In the presence of wide-band noise the procedure breaks down, due to ill-posedness of the problem; 
some regularization techniques are proposed. 

Zusammenfassung.  Wir stellen einen schnellen Algorithmus zur exakten Extrapolation eines zeitdiskreten und periodischen, bandbe- 
grenzten Signals vor, ausgehend von seinen Werten innerhalb eines Intervalls, das die gleiche Lange hat wie die Bandbreite des Signals. 
Bandbreite bedeutet hier die Zahl der von Null verschiedenen Werte einer Periode der diskreten Fourier-Transformation des Signals. Es 
werden auch Anwendungen auf Probleme angegeben, bei denen die gegebene Werteanzahl ungleich der Bandbreite ist. Das Verfahren 
ist eine einfache Autoregression der Zeitbereichswerte des Signals, und ist viel einfacher als vorher angegebene Verfahren ffir die 
diskrete~tiskrete Extrapolation, die die Berechnung einer grol?~en Pseudoinversen erforderte. Das Verfahren ist hochgradig parallelisier- 
bar, und die rechnerischen Einsparungen sind besonders signifikant bei der multidimensionalen Signalextrapolation. Numerische Bei- 
spiele bei l-D und 2-D Extrapolation zeigen ( 1 ) dab das Veffahren peffekt arbeitet bei der Abwesenheit von Rauschen, und (2) dag es 
gut arbeitet bei der St6rung durch bandbegrenztes Rauschen. Bei der Anwesenheit von breitbandigem Rauschen bricht das Verfahren 
wegen der Schlechtgestelltheit des Problems zusammen; in diesem Fall werden einige Regularisierungsmethoden vorgeschlagen. 

R6sum6. Nous pr6sentons un algorithme rapide d'extrapolation exact d 'un signal p6riodique h temps discret et ~t bande limitde a partir 
de ses valeurs dans un intervalle ayant la m~me largeur que sa largeur de bande. Par largeur de bande on entend ici le nombre de valeurs 
non nulles dans une p6riode de la transform6e de Fourier discrbte du signal. Des applications au probl~me dans lequel le nombre de 
valeurs donn6es est diffdrent de la largeur de bande sont 6galement donn6es. La proc6dure consiste en une simple autor6gression sur les 
valeurs temporelles du signal, et est beaucoup plus simple que les algorithmes pr6-existants pour I'interpolation discret~liscret, qui 
n6cessitent le calcul d'un pseudo-inverse de grande mille. Cette proc6dure est hautement parall61isable, et les r6ductions de calcul sont 
tout sp6cialement significatives dans le cas de l'extrapolation de signaux multidimensionnels. Des exemples num6riques pour les cas 1- 
D et 2-D d6montrent que ( 1 ) la procedure fonctionne parfaitement bien en l'absence de bruit, et (2) qu'elle fonctionne bien en pr6sence 
de bruit h bande limitde. En pr6sence de bruit ~ large bande la proc6dure ne fonctionne pas, du fait du caractbre mal pos6 du probl~me; 
des techniques de r6gularisation sont propos6es. 
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1. Introduction 

1.1. Summary of the problem 

We consider the following discrete-discrete band- 
limited extrapolation problem. Given 2M + 1 values of 
a discrete-lime periodic sequence x(n) with period N 
whose discrete Fourier transform (DFF) X(k) is 
known to be zero forM < I k l ~< ½N, determine the other 
values of x(n). The term 'discrete-discrete' is taken 
from [ 15 ], which contains a detailed discussion of the 
relations between the discrete--discrete problem and the 
continuous--continuous problem, in which the signal to 
be extrapolated is continuous and its continuous Four- 
ier transform is known to be zero outside some interval. 
We do not consider the latter problem in this paper. 

Previous solutions to the discrete-discrete problem 
have used several approaches. One is to formulate the 
problem as a linear system of equations, which is solved 
using the singular value decomposition [7, 20], or 
using a minimum DFT-weighted norm solution [3]. 
Since the linear system is ill-conditioned [20], some 
sort of regularization is required. And since the linear 

system has N unknowns, a large amount of computation 
is required. Another approach [4, 6] requires solution 
of a linear system of equations with 2M + 1 unknowns, 
followed by low-pass filtering. Other approaches have 
been applied to the continuous-continuous problem, 
including iterative algorithms [ 5, 13 ] ; see also [ 9, 11, 
12, 17, 21, 23]. 

The significance of our approach as compared with 
those above is that we derive a simple autoregression 
for extrapolating the unknown values of x(n) directly 
from the known values. This has three major advan- 
tages: 
1. Since the problem is never formulated as a system 

of equations, issues of regularization and ill-condi- 
tioning do not arise. Our algorithm never requires 
even as much as a single division. 

2. The computation involved in solving an ill-condi- 
tioned system of equations is not trivial if N is large, 
especially in the multi-dimensional case. Our Mth 
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order autoregression is computationally simple and 

parallelizable in the multidimensional case. 
3. Although x(n) is required to be periodic, the period 

N can be made arbitrarily large with no attendant 
increase in the amount of computation. In contrast, 
the solutions in [ 7, 20 ] require solution of an N X N 
linear system, whose conditioning becomes worse 
as N gets larger [20]. Even the pseudo-inverses in 

Section 3 below are of size 2M+ 1, not of size N. 
Thus, the continuous Fourier transform of a band- 
limited and time-limited continuous signal 
(although no signal can be completely time- and 
band-limited, many signals of practical interest are 

effectively zero outside some time and frequency 
intervals) can be approximated arbitrary closely 

without more computation. 
The ill-posedness of the band-limited signal extrapo- 
lation problem is exhibited in the large values of the 
autoregression coefficients; these are a precise measure 
of the sensitivity of the extrapolation to the given x(n).  
However, numerical instability in the autoregression 
can be avoided by computing a desired x(n) directly 
using the variation of constants formula (see (25) 

below). 

1.2. Applications 

Band-limited signal extrapolation (or equivalently, 
support-limited spectrum extrapolation) is a key prob- 
lem in signal reconstruction and restoration. A common 
application is in spectral estimation [ 1,6, 13 ], in which 

the observed signal is extrapolated in order to improve 
the spectral resolution. Another application is in image 
filtering. Ideally, an image filter performs over an infi- 
nite-extent image, but in practice we are given only a 
piece of the image. When the filter is applied to points 
close to or on the border of the actual image, inaccu- 
racies will result if we assume some arbitrary numbers 
for the unknown values of the image outside the border, 
e.g., the image is assumed to be periodic; or a constant 
number is assumed for the unknown values. Filter per- 
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formance would improve if unknown values of the 
image could be extrapolated. 

By switching time and frequency, the problem 
becomes support-limited spectrum extrapolation [ 14]. 
One application of this problem is the missing-cone 
problem in computer tomography, as applied to non- 
destructive testing [4]. Another application is in seis- 
mic data processing. Due to the narrow frequency 
response of seismic sensors (around 4-40 Hz), the high 
frequency content of the signal is lost, resulting in loss 
of resolution of the reconstructed medium. Since seis- 
mic signals have short temporal duration (narrow time- 
domain support), spectrum extrapolation can be used 
to restore the missing information and resolve finer 
features of the medium. Finally, there is a recent appli- 
cation in phase retrieval [ 18]. 

2. Problem formulation 

2.1. The basic problem 

A discrete and periodic signal x(n) can be repre- 
sented as 

nal which is sampled at a rate higher than its Nyquist 

rate. 
Signal extrapolation refers to the problem of finding 

an estimate of a signal outside its observation interval. 
Specifically, the discrete-discrete band-limited signal 
extrapolation problem is stated as follows: 
Given x(n),  

n ~  [ r+  1, r+L], L<N, r, L are integers. 

Find 

y(n), -½U+ l <<.n<~ ½U, (5) 

such that 

y(n)=x(n) ,  n ~ [ r + l , r + L ] ,  

and 

y(n) is band-limited to [ - M ,  M] 

Here and in the sequel N is the size of the DFT, M is 
the half-band-width of the signal, and L is the length of 
the observation interval. We shall demonstrate shortly 
that the problem is underdetermined if L < 2M + 1, is 
overdetermined and ill-posed if L > 2M + 1, and has a 
unique solution if L = 2M + 1. 

x ( n ) =  ~ xN(n--mN), (1) 

where {xu(n) } is the sequence (x(n) } over one period 
(N consecutive points), i.e., 

= f x ( n ) ,  if-½N+l<~n<~½N, (2) 
XN( n ) l O, otherwise. 

x(n) is defined as being band-limited to 2M+ 1 points 
if its N-point discrete Fourier transform (DFT) 

N / 2  

X(k) = ~ x(n)e -J2"k"/~x(n) e _j2~,eu, 
n =  N / 2  + I 

k = - ½U+ 1 . . . . .  ½U, (3) 

has the property 

X(k) =0,  M< Ikl ~<½N. (4) 

For convenience, we use the term 'band-width' to mean 
2M+ 1, not M. For example, x(n) could be a sampled 
version of a continuous and periodic band-limited sig- 

2.2. A previous algorithm 

There are two major classes of algorithms for solving 
the extrapolation problem: iterative procedures and 
non-iterative two-step procedures. In [14, 16] it is 
shown that the known iterative procedures are special 
cases of a general iterative procedure (of Bialy [2] ) 
for solving linear operator equations in Hilbert spaces. 
Similarly, non-iterative two-step procedures are special 

cases of some general techniques developed in [22] 
for solving integral equations. These techniques are 
general algorithms for solving two optimization prob- 
lems in Hilbert spaces. 

For comparison with our approach, we quickly state 
a discrete~liscrete non-iterative two-step procedure [ 4, 

6]" 
1. Solve for z(m) the L×  (2M+ 1) linear system of 

equations 

M 

PSINCN, M ( n - m ) z ( m )  =x(n),  
m =  M 
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n ~  [ r +  1, r+L]. 

2. Compute 

M 

y ( n ) =  ~ PSINCN,M(n-m)z(m), 
m = - - M  

(6) 

where 

1 M 
PSINCN, M(r)=N E ~2~nr/N (8) 

n= --M 

is the impulse response of a discrete-discrete low- 

pass filter. We relate this method to the method of 

this paper in Appendix A. 

This method finds an intermediate sequence z(n) 
which has finite support in the time domain identical 

to the band-width of the original signal in the frequency 
domain. Its DFT equals the DFT of the original signal 

inside the band-width, and is different everywhere else. 

This intermediate sequence is then low-pass filtered to 

generate the extrapolated signal. Note that if 
L < 2 M +  1, then (6) corresponds to an underdeter- 

mined system of equations, so that the problem does 

not have a unique solution [ 17]; one choice is the 

minimum norm solution, as discussed in [6]. 

2.3. The new approach 

In this paper we develop a new method. Our 
approach is to exactly extrapolate a strictly band-lim- 

ited signal from 2M+ 1 specified values of it. If  

L = 2 M +  1 in (5) this results in a unique solution; 
L v~ 2M + 1 is discussed later. The extrapolator is linear 

and makes no assumption about the shape of the sig- 
nal' s spectrum. 

The major difference between this work and previ- 
ous efforts is as follows. Previous methods have explic- 

itly or implicitly written the band-limited constraint in 
the Fourier domain as (see Appendix A) 

X(k)S(k) =X(k) ,  (9) 

where 

1, (10) k ~ band-width o fx(n) ,  
S ( k ) =  0, otherwise. 

This corresponds to 
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x(n) * s(n) =x(n)  (11) 

in the time domain. In (11 ) s(n) is a scaled discrete 
sinc function and * represents a circular convolution. 

The continuous version of ( 11 ) is the integral equation 

explicitly or implicitly solved by previous approaches. 
Our choice is to replace S(k) in (10) with a different 

S(k) such that 

( L k ~ b a n d - w i d t h o f x ( n ) ,  
S(k) = 1, otherwise. (12) 

Note that this choice of S(k) in conjunction with (9) 

still implements the band-limited constraint. 

The advantage of this choice is that S(k) can be 
found so that s(n) has finite support, unlike the tails of 

the discrete sinc function. This s(n) turns the convo- 

lution into a regression on x(n). In other words, a 
(2M + 1 )-point band-limited signal satisfies an auto- 

regression of order 2M + 1; thus there is no need to 

solve (6). In a sense, (6) and (7) have been replaced 
by similar equations with a much simpler kernel; the 
new equations combine to have a simple closed form 

solution. 

3. Derivation of  1-D extrapolation equations 

In this section we discuss the one-dimensional ( I- 
D) band-limited signal extrapolation problem. First, 

the autoregression is derived, and then initialization 

procedures for when the observation interval is unequal 
to the band-width (in number of points) are discussed. 
In Section 4 we extend the method to 2-D and K-D 

band-limited signal extrapolation. In each case we 
derive an explicit equation for extrapolating the signal. 

3.1 Derivation of 1-D autoregression 

We consider a discrete and periodic signal whose N- 
point DFT (N is even) is band-limited to 2M+ 1 < N  
points. We prove the following theorem for this class 
of signals. 

THEOREM 1. A 1-D discrete signal x(n) whose DFT 
X ( k ) is band-limited to 2M+ 1 points satisfies an auto- 
regression of order 2M + 1. 
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PROOF. Without loss of generality we can assume that 
the 2 M +  1 point band-width consists of 2 M +  I con- 
secutive points centered at the origin. This is the usual 

case for a band-limited (low-pass) signal. However, 

the proof can easily be modified for an arbitrary 2M + ! 

point band-width if necessary. 

Define 

M 

S ( k ) = l +  I ~  (Zk--Z~), 
i - -  M 

k =  - ½N+ 1 . . . . .  ½N, (13) 

where 

j 2 ~  I /N Zi=e , / = - l N + l  . . . . .  ½N, (14) 

are the N Nth roots of  unity. Then S(k) satisfies 

{ L i f - M < ~ k < ~ M ,  
S(k) = l, otherwise, (15) 

and the fact that x(n) is band-limited can be written as 

X(k) =X(k)S(k ) ,  (16) 

which corresponds to 

x(n) = x ( n )  * s(n) (17) 

in the time domain. 
Simplifying (13) by multiplying different terms and 

collecting the coefficients c (n)  for identical powers of  

Zk, and noting that 1--[~= - M ( - Z i )  = - 1, we obtain 

2 M +  I 

S ( k ) =  y" c(n)Z~ 
n - - I  

2 M +  1 

= y" c(n) e -?"k"/N. (181 
n =  ] 

Equations (13) and (18) imply that 

s ( n ) = J  1 ( 1 +  f l  ( Z k - Z i ) )  
i = - - g  

= ~ c ( n ) ,  if 1 ~ < n ~ 2 M +  1, 
1,0, otherwise. 

Substituting (19) in (17) results in 

(19) 

2 M +  1 

x ( n ) =  y" c ( i ) x ( n - l ) ,  (20) 
i = l  

which is an autoregression of order 2M + 1 over the 

band-limited s ignalx(n) .  [] 

COROLLARY 1.1. A band-limited signal also satisfies 

the higher order autoregressions obtained for band- 

limited signals with a larger band-width which includes 

the original signal's band-width. 

COROLLARY 1.2. A necessary and sufficient condition 

for a signal to have a ( 2M + 1 ) -point band-width cen- 
tered at the origin is that it satis~' the autoregression 

(20). 

3.2. Derivation of explicit equation for 1-D 

extrapolation 

When a band-limited signal is observed over an inter- 
val with length L (in number of  points) equal to its 

band-width 2 M +  1, (20) implements an exact extra- 
polation algorithm. Indeed, we now derive an explicit 

expression for extrapolating to any desired point. 

Define a state vector xn as 

xn = [ x ( n ) , x ( n -  1) . . . . .  x ( n - 2 M ) ]  t. (21) 

Then the autoregression (20) can be written as the state 

equation 

c ( l )  ... c (2M) 2 ( 2 M + 1 ) ]  

1 0 . . .  0 
X n  + 1 = . . . : X n  " 

• " 1 0 

(22) 

Let A be the square matrix of  size 2M + 1 in (22).  Note 
that c (2M + 1 ) = 1, since FIM= _ m (Zk) = Z T M  + 1. A is 

in controllable (phase-variable) canonical form; from 
(19) its eigenvector decomposition is as follows [8] : 

A = U AU -  i , (23) 

where 

Vol. 33. No. 2, August  1993 
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[ 1 
1 . . .  1 " "  1 

z _ M  . . .  Z o  " z .  
u =  . . .  z g  . . .  , 

• . .  : . . .  • 

. . .  z P  . . .  M 

A=DIAG[ZM...Z_M], 

(24) 

and Zl was defined in (14). From (22) and (23) we 
have 

X m = A m - n x n  = UAm-"u -~x , ,  (25) 

which allows any x(m) (the first element Of Xm) to be 
extrapolated from any 2M+ 1 consecutive values of 
x(n) ,  i.e., {x(i), n - 2M~< i ~< n}. 

Three comments are in order here: 
1. From (13) and (14), it is clear that S* (k) = S( - k). 

Hence the autoregression coefficients c(n) are all 
real. 

2. If the signal x(n) is complex, the autoregression 
(20) applies separately to its real and imaginary 
parts. 

3. Since the eigenvalues of A are all Nth roots of unity 
[ 8 ], the extrapolated x(n) will correctly be periodic 

with period N (note that x,  = Xo). 
The system in (22) is reminiscent of state-space meth- 
ods for harmonic retrieval [7], but there are some dif- 
ferences. Here we are concerned with band-limited 
signal extrapolation, while previous work dealt with 
the identification of sinusoidal signals at unknown fre- 
quencies. Also, this procedure applies to the general 
case of any band-limited signal, while previous work 
considered only sinusoidal signals. 

3.3. Initialization of autoregression: L = 2M + 1 

For notational convenience, let the given segment of 
signal to be extrapolated be { x (  - L + 1 ) ,  x (  - L + 2 ) ,  

.... x(O) }, i.e., l= - L  in (5). I f L = 2 M +  1, then the 
given segment is precisely the elements of Xo, and the 
entire signal may be extrapolated using 

X(2M+ 1 )i = U A  (2M+ l )i U - IXo ' 

l<i<~p, p = [ N / 2 M + I ) ] ,  (26) 

and the fact that x(n) is periodic with period N (the 

brackets in (26) denote greatest integer function). 
Each extrapolated value of x(n) will be a component 

of one of the X(2M+ 1)i' 

3.4. Initialization of autoregression: L > 2M + 1 

If L > 2M + 1, then the problem is overdetermined, 
since any 2M+ 1 <L  values of x(n) uniquely deter- 
mine the other values. Indeed, unless the extra 
L -  2 M -  1 values o fx(n)  are entirely consistent with 
the first 2M + 1 values, the extrapolation problem has 
no solution. Due to observation noise, this consistency 
is extremely unlikely; hence the problem is ill-posed. 

In this case we may estimate a segment {$( - 2M), 
.... $(0)} from { x ( - L + l )  . . . . .  x(0)}, and use 

{$( - 2M) . . . . .  $(0) } in (26) to extrapolate a properly 
band-limited signal. The least-squares solution mini- 
mizing E°=-L+ I ( x( i ) --£( i ) ) 2, where the additional 
J?(i) have been extrapolated using (26), can be found 
as follows. Augmenting (25) and using (21) yields 

x(0). 1 x ( - L + 2 M + 2 )  
x ( - L + 2 M +  1) 

x( - L +  1) 

o] 
£(0) 

£ ( - L + 2 M + 2 )  
= C  

£ ( - L + 2 M +  l)  

£( - 2M) 

m 

£ ( - L + 2 M + 2 )  
£ ( - L + 2 M +  1) 

£( - 2M) 

], (27) 

provided that 2M+ 1 <L~<4M+2. If L > 4 M + 2  the 
matrix C will also have a n  A 4 M + 2 - L  element, i.e., 

[I~-(4.÷2~ O] 
C = I A 4 M + 2 - L  

LA2M+I-c 

Signal Processing 
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The least-squares solution to (27) is 

2(0)  
(28) 

3.5. Initialization of autoregression: L < 2M + 1 

If L < 2M + 1, then the problem is underdetermined, 

since the unspecified 2 M +  1 - L  values of  x(n) may 
be assigned arbitrary values, and a properly band-lim- 

ited signal can still be extrapolated. Indeed, note that 

all solutions to the band-width extrapolation problem 

are easily characterized, with the unspecified 
2 M +  1 - L  values o f x ( n )  as free parameters. 

The simplest way to choose a solution is to tighten 

the band-width constraint from 2 M +  1 to L (assuming 

L is odd). This specifies the signal that matches 
the given L values, and is band-limited to 

- M <  - ½ ( L -  1) <k~< ½ ( L -  1) <M.  

The minimum norm solution is also of interest; how- 
ever, it requires more work. We now wish to determine 
the signal that matches the given L values and has band- 

width 2M + I, such that 

N 1 l N - - I  

E =  ~ I[x(n)II 2=  (29) ,=Eo IIx(k)II 2 

is minimized. Using (25) and the periodicity of  x(n) ,  

this can be rewritten as 

N I p 

E= E IIx(n)l12=E 
n - -  0 i = 1 

Xo =x~Bxo,  (30) 
0 0 

where p = [ N / ( 2 M +  1 ) ] as before and B is defined as 

P 
B= ~ (A(2M+I)i)TA (2M+l)i 

i--I 

= U  T A ( 2 M + I ) i ( u T U ) A  (2M+l)i U 1 

= T " B 3 B 
(31) 

Note that B is symmetric and positive definite, and is 

partitioned so that B~ is L × L  and B2 is 

( 2 M +  l - L )  × ( 2 M +  I - L ) .  
Now partition Xo into 

xo = [x(0)  . . . . .  x( - L +  1), i x ( - L )  . . . . .  

x( - 2M) ] v 

= dViz T] v (32) 

where d is the L-vector of  given signal values and z is 
the (2M + 1 - L)-vector  of  undetermined signal val- 

ues. We wish to determine z such that E is minimized; 

then (26) can be used to compute the band-limited 
extrapolation from Xo = [dTiz T] T. Inserting (31 ) and 

(32) into (30) gives 

=dnBI d + zHB ~ d + dnB3z + zHBzz, (33) 

which is minimized when 

z = - B ~ I B ~ d .  (34) 

Hence the minimum norm solution is determined as 

follows: 
1. Compute B from (31 ) and partition it. 

2. Compute z from the given signal values d using (34) .  
3. Extrapolate the other signal values using (26) and 

(32).  
Note that even if the given L values are not contiguous, 

this procedure may still be used by simply reordering 
the rows and columns of B. Also note that the only extra 
computation required is the computation of B and the 
solution of a linear system of equations (34) of  order 

2 M +  1 - L .  

4. Derivation of 2-D and K-D extrapolation 
equations 

4.1. Derivation of 2-D autoregression 

We now consider a 2-D discrete and periodic signal 
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whose ( N × N ) - p o i n t  2-D DFT is band-limited to 
( 2M + 1 ) × (2M + 1 ) points. We prove the following 

theorem for this class of signals. 

THEOREM 2. A 2-D discrete signal x(nl,  n2) whose 

( N × N) -point 2-D DFT X( k l, k2) is band-limited to a 
square region of ( 2M + l ) × ( 2M + l ) points 

(M < ½N) satisfies an autoregression of order 2M + 1 
over each row and each column. 

PROOF. Without loss of generality we can assume that 

the (2M + 1 ) × (2M + 1 )-point band-width consists of  

the square region containing (2M + 1 ) × (2M + 1) 
points centered at the origin. This is the usual case for 

a 2-D band-limited (low-pass) signal. However, the 
proof can be modified for an arbitrary square support 

of ( 2M + 1 ) × (2M + 1 ) points if necessary. 

Proceeding similarly to the 1-D problem, define 

M 

Sl(kl,  k2) = 1 + l-I  (Z~ - Z i ) ,  
i=--M 

k,, k2 = - ½U+ 1 . . . . .  ½U, (35) 

where Zi was previously defined in (14) (note that 

Sl  ( k l ,  k2)  i s  actually independent of  k 2 ) .  Then 

Sj(kl, k2) ={~ 1, 
if - M  <~kl <~M 

and - ½N+ 1 ~<k 2 ~< ½N, 
otherwise. 

(36) 

The fact that x (n l ,  n2) is band-limited in the nl-direc- 

tion can be written as 

X(kl ,  k2) = X ( k l ,  k z ) S l ( k l ,  k 2 ) ,  (37) 

which in the spatial domain becomes 

x(nl,  n2) =x(nl ,  n2) *s l (n l ,  n2). (38) 

Simplifying (35) by multiplying different terms and 
collecting the coefficients c(nj ) for identical powers 
of Z~,  and noting that lift_ - M ( - Z i )  = - 1, we obtain 

2M+ I 

S l ( k , , k z ) =  ~ c(nl)Z~ I 
nl =1 

2M+ 1 
= y" c(nl)e -BÈ*'"'/N (39) 

nl =1 

Equations (35) and (39) imply that 

s l ( n l , n 2 ) = 9  - - l  1+  1-I (Zk , -Z i )  
i=--M 

I c(n l ) ,  i f l ~ < n l ~ < 2 M + l  

= and n2 = 0, 
1,0, otherwise. 

(40) 

Substituting (40) in (38) results in the autoregression 

2M+ 1 

x(nl ,  n2) = ~., c(i)x(nl  - i ,  n2), (41) 
i=1  

which is an autoregression of order 2M + 1 over each 

row of the signal x (n t ,  n2). 

By interchanging the roles of  kl and k2 in the proof. 
we obtain the same autoregression over the columns of 

x(nl, n2). [] 

Note that the autoregression coefficients are identical 

to those we found for 1-D band-limited signals in The- 

orem 1. 

COROLLARY 2.1. If  the signal band-width lies inside 
a rectangle of size (2Ml + 1 ) × (2M2 + 1 ), then the 
signal rows satisfy an autoregression of order 2MI + 1 

while the signal columns satisfy an autoregression of 

order 2M2 + 1. 

COROLLARY 2.2. A ( 2 M +  1) X ( 2 M +  1) band-lim- 

ited signal satisfies the higher order auto-regressions 
obtained for ( 2 ( M + a )  + 1) × 2 ( M + b )  + l)-point 
(a, b > 0 )  band-limited signals, if the larger band- 
width includes the smaller band-width. 

COROLLARY 2.3. A necessary and sufficient condition 

for a 2-D signal to have a ( 2M + 1 ) × ( 2M + 1 ) -point 
band-width centered at the origin is that all of its rows 
and columns satisfy the autoregression (20). 

When a two-dimensional band-limited signal is 
observed over a rectangular region with sides equal to 
those of  the signal band-width, the autoregression in 
(20) implements an exact extrapolation algorithm. To 
perform a 2-D extrapolation, I -D extrapolations can be 
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done over rows and columns in parallel. The separation 
of the 2-D extrapolation into decoupled 1-D extrapo- 
lations, and the resulting parallelization of the proce- 
dure, makes this extrapolation procedure fast, and 

therefore attractive. 

4.2. Derivation of K-D algorithm 

Consider a K-D discrete signal whose K-D DFT has 

a band-width of 2M + 1 points along all directions of 

the Cartesian coordinate axes. The following theorem 
can be proved for this class of signals. 

THEOREM 3. A K-D discrete signal x(nl, n2 . . . . .  n~) 

whose K-D DFT X(kl, kz . . . . .  kk) is band-limited to 

2M + 1 < N points in all directions satisfies an auto- 

regression of order 2M + 1 over each direction. 

PROOF. The same method used in the proof of  Theo- 
rem 2 can be applied. Thus the proof is omitted. 

COROLLARY 3.1. I f  the signal band-width is different 

in different directions, then the signal satisfies auto- 

regressions of corresponding orders in different direc- 
tions. 

COROLLARY 3.2. A K-D band-limited signal with a 

certain band-width in a specific direction satisfies the 

higher order autoregressions obtained for K-D band- 

limited signals with a larger band-width in that partic- 

ular direction, if the larger band-width includes the 

original signal's band-width in that direction. 

COROLLARY3.3. A necessary and sufficient condition 

for a signal to have a 2 M +  1 point band-width in all 

directions is that it satisfies the autoregression (20) in 
all directions. 

When a multi-dimensional band-limited signal is 
observed over a region with sides equal to those of the 
signal band-width, the autoregression (20) implements 
an exact extrapolation algorithm. To perform a K-D 
extrapolation, 1-D extrapolations can be done over dif- 
ferent directions, in parallel. This makes the extrapo- 
lation procedure fast, and therefore attractive. 

5. Numerical results 

In this section some numerical examples are given, 
in a variety of noise situations. Some possibilities for 

regularization in the presence of wideband noise, which 
makes the problem ill-posed, are also briefly discussed. 

Three noise situations are examined: 

1. noiseless data: 

2. additive band-limited noise; 
3. additive wide-band noise. 

Since 2-D and K-D band-limited signals satisfy an auto- 

regression identical to that of  1-D band-limited signals 
in all directions, it suffices to investigate the perform- 

ance of the extrapolator for 1-D band-limited signals. 
However, for illustration a 2-D example is also given. 

5.1. Noiseless data 

In Fig. 1 a band-limited signal whose 64-point DFT 

has a 9-point support is shown. The magnitude of its 

DFT is shown in Fig. 2. The extrapolator coefficients 
for this situation are [c(1)  . . . . .  c (9 ) ]  = [8.7136, 

- 34.0200, 78.1091, - 116.2225, 116.2225, 
-78 .1091 ,  34.0200, -8 .7136 ,  1.0000]. Figure 3 

shows the nine points from which the signal is to be 

extrapolated. The extrapolated signal is shown in Fig. 
4; it can be seen that the signal is extrapolated perfectly. 

A 2-D example is shown in Figs. 5-8. 

~" 2. 

5 I 
4.5 

4~ 

3.5 

0.: 

0 
-30 -20 -10 0 10 20 30 

n 

Fig.  1. A band- l imi ted  s ignal  whose  64-poin t  DF-F has a 9-poin t  

band-width .  
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Fig. 2. DFT magnitude of the band-limited signal shown in Fig. 1. 

5 41I 
3.5 [ 

1 %0 -io -io ~ 1'o 20 30 
n 

Fig .  3. Known values of  the signal in Fig .  1 which are used for 
extrapolation. 

5.2. Additive band-limited noise 

Suppose the given data {x(n) ,  r +  1 ~< n ~< r + L} are 
contaminated with additive band-limited noise, where 
the band-width of  the noise is equal to or less than the 

band-width o f x ( n ) .  One way this situation can arise is 
for the band-limitation to occur after the signal is con- 
taminated with noise. For example, seismic data are 
band-limited due to the frequency response of  the meas- 
uring equipment (seismometers) ; any noise in the data 
will be similarly band-limited. 

Since the signal plus noise is still band-limited, the 
given noisy data may still be extrapolated using (20) .  
Although it might seem that extrapolation should mag- 

Fig. 4. Extrapolated version of the signal shown in Fig. 1. 

kl 

Fig.  5. A 2 - D  band-limited signal whose  ( 6 4  × 6 4 ) - p o i n t  D F T  has  a 

( 9  × 9 ) - p o i n t  band-width. 

kl 

Fig.  6. D F T  magnitude of  the band-limited signal shown in Fig.  5. 

nify the noise, the signal-to-noise ratio (SNR)  of  the 
extrapolated signal will be the same as the actual SNR, 
since the signal-plus-noise is reconstructed perfectly. 
Indeed, there is no direct procedure for distinguishing 
a band-limited signal from similarly band-limited 
noise; other a priori information must be used. 
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kl 

Fig .  7. Known values of the signal in Fig.  5 which are used for 
extrapolation. 

kl 

Fig.  8. Extrapolated version of the signal shown in Fig.  5. 

Once the signal-plus-noise has been completely 
extrapolated, standard noise-reducing signal process- 
ing techniques may be employed. For example, if the 
signal and noise are both realizations of random proc- 
esses, a Wiener filter may be used to compute the linear 
least-squares estimate of the signal. 

Two examples of extrapolation from signals with 
additive band-limited noise are illustrated in Figs. 9 -  
12. Figures 9 and 11 show the noisy data; Figs. 10 and 
12 the extrapolations. It can be seen that the noise is 
not amplified unduly in the reconstructed signals. 

4.5 

4 

3.5 

3 

2.5 

-30 -20 

in 

10 20 30 

Fig .  9. Noisy observations (with band-limited noise) of the signal 
in Fig.  1. 
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Fig.  10. Extrapolated signal using the noisy observations shown in 
Fig.  9; the original (noise-fee) signal is drawn in dotted line. 

5.3. Additive wide-band noise 

Now suppose the given data {x(n) ,  
r + 1 ~< n ~< r + L} are contaminated with additive wide- 

band noise having a band-width greater than the band- 
width of x(n) .  This is a well-known ill-posed problem 
[5, 9-12, 19-21, 23]. Now extrapolation using (20) 
will give poor results, since (20) was derived under 
the assumption that the data is a segment of a band- 
limited signal, which is no longer true. (In fact, if white 
noise is added, the extrapolated signal tends to resemble 

Itl 

Fig.  1 I. Noisy observations (with band-limited noise) of the signal 
in Fig.  5. 
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Fig. 12. Extrapolated signal using the noisy observations shown in 
Fig. 11. 

the impulse response of (20).) Usual noise-reducing 

signal processing techniques cannot be used, since only 
a segment of the noisy signal is available. What can be 

done depends on the relative sizes of the bandwidth 

2M + 1 and data length L. 
IfL = 2M+ 1, the given data can be low-pass filtered 

by convolving it with a discrete sinc function, window- 
ing to zero data values outside the interval [ r + 1, r + L] 

[6]. This will introduce edge artifacts into the spec- 
trum, since the window will convolve the spectrum 

with a discrete sinc function. However, if the low-pass 

filter cut-off frequency is less than the maximum signal 

frequency, the resulting filtered data will be approxi- 
mately band-limited. Then the filtered data can be 

extrapolated using (20), with reduced error. Another 

possibility is to perform a wavelet decomposition of 

the data, and discard the high-frequency components. 
However, 'high-frequency' will be defined in terms of 

the wavelet basis functions, not the complex exponen- 
tials, so this will be approximate at best. 

If L > 2 M + I ,  and the noise is band-limited to 
[ - I ( L -  1), ½(L-  1)], we can do much better by 

using an L-point extrapolator, rather than a (2M + 1 )- 

point extrapolator, to extrapolate exactly the signal- 
plus-noise, and then low-pass filter the result to be 
band-limited to [ - M, M]. Wiener filtering could then 
be used to reduce the noise present in the frequency 
band [ - M, M]. 

Still another possibility is to use a procedure similar 
to one suggested in [4]. The error in performing the 
extrapolation using the (2M + 1 )-point extrapolator on 
noisy data y(n) =x(n )  + v ( n )  is s(n) *v(n). Here 
' s ( n ) * '  symbolizes the extrapolation operation. If 

v(n) can be simulated, e.g., by using a shaping filter 

on white noise, the extrapolation error can be approx- 
imately compensated. 

6. Conclusion 

A new procedure for extrapolation of discrete band- 

limited signals has been presented. Unlike previous 
methods requiring solution of a system of equations, or 

repeated iterations, the new procedure is a simple auto- 

regression. A matrix form of the algorithm, which is 

also simple and may be more numerically stable, was 

also presented. The method extends to two- and higher- 
dimensional signals; in these cases the algorithm is 

highly parallelizable. Numerical examples for both I- 
D and 2-D signals demonstrated the procedure. 

If the data length and band-width are unequal, or if 

noise is added to the data, some sort of regularization 
is required. Regularization procedures were proposed 

for (1) data length less than band-width, (2) data 

length greater than band-width, (3) additive band-lim- 

ited noise, and (4) additive wide-band noise. We 
believe that the simplicity of the algorithm sheds new 

light on the band-width extrapolation problem. 
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Appendix A 

In this appendix we compare our procedure with the 

procedure of [6] (specified by (6) and (7) ) ,  and 
explain why our procedure, unlike that of [6], avoids 
solving a linear system of equations. 

A. 1. Matrix formulation of the problem 

A matrix formulation will be used throughout. For 
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either procedure, the band-limited constraint can be 

written in the frequency domain as X(k) S(k) = X(k), 

and in the time domain as x (n)  * s (n)  = x(n) .  Defining 

the matrix S as having ( i , j ) th  element S ( i - j )  and the 

vector x = [x( - i N +  1) . . . . .  x(½N) ] "r, x(n)  *s(n)  = 

x(n)  can be written in matrix form as Sx =x.  

Now suppose x(n)  is band-limited in frequency to 

the interval [ - M ,  M], and values o fx (n )  are given in 

time in the interval [ - M ,  M]. Le txo=  [ x ( - M )  . . . . .  

x(M) ]1- be the vector of given values of x(n) .  Parti- 

tioning S x = x  appropriately results in 

$21 822 $23 ) = ~ , (42) 

$31 $32 333 

where a =  [x( - i N +  1) . . . . .  x ( - M -  I)]T and b =  

[ x ( M +  1), x( j v .... ~:N)] are vectors of the unknown 

values of x(n  ). The band-width extrapolation problem 

is to solve (42) fo ra  andb.  

A.2. The procedure of  Jain et al. 

In [6] S(k)  is chosen to be (10),  so that s(n)  is a 

discrete sinc function (8).  Since the elements of S are 

almost all nonzero, the solution of (42) requires some 

work. In the present formulation, the procedure of [6] 

can be summarized as follows. First, solve the system 

of equations $22z = xo for the ( 2M + 1 ) -vector z (note 

that this is the system (6 ) ) .  Using the middle equation 

of (42),  

Z = $221Xo = $221 $21 a + $221 823b + x  0 . (43) 

Second, compute the unknown a and b from z using 

(note that this implements the low-pass filtering oper- 

ation (7) ) 

 ,ll ,l ,] [i] = [,2Z] o [i] IS21 $22 $23 = ~ . ( 4 4 )  

LS31 $32 $33 $32Z 

The second equality in (44) follows from the first and 

third equations of (42) and the verifiable relations 

(valid for s (n)  being the discrete sinc function) 

SII =SI28221S21,  SI3 =812S221823 , 

$31 =$323~21S21 ' 833 = 8 3 2 3 ~ 1 8 2 3  " (45) 

Note that the third relation of (45) is the transpose of 

the second, since S is symmetric, and that various rela- 

tions state that various Schur complements of various 

submatrices of S are identically zero. 

A.3. Our procedure 

In this paper we have chosen S(k)  to be (12),  not 

(10),  sothats(n)  = 0  unless 1 <~n<~2M+ 1. Hence the 

matrix S is banded. Equation (42) for this choice of 

S(k)  has the form (note that S is also circulant) 

I ° ° °* * *  * *][:] 

• 0 "" 0 0 * "" * * * a 

i i ' i ! i "'" : : ! , 
0 0 "-' 0 * * --- * 0 0 

0 0 --" 0 0 * ... * * 0 

) • (46) 

where each * represents a non-zero value. Because of 

this banded structure, the elements of a and b can be 

recursively computed fromxo, without any of the above 

machinery. In particular, the ( I N + M +  l ) th  row of 

(46) computes x ( M +  l ) from { x ( - M )  . . . . .  x(M)};  

succeeding rows compute other values of x(n) .  The 

simplicity of our procedure thus stems from the use of 

a banded matrix S, instead of the non-banded S matrix 

of discrete sinc functions. 
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