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Ahstruct: In this paper we introduce an apparently new, and we believe important, subclass of three-way 

layouts or two-way elimination of heterogeneity designs specified by the full information matrix S, ,2 being 

decomposable in the following way, S, ,&,S, ,+{,S,&S~,,, 5,. c2 and &O; the information matrices S, ,, 

.S, >, and .S, 0 correspond, respectively, to the treatment-row subdesign, the treatment-column subdesign, and 

the model in which both rows and columns are ignored. The special case when t,=t&=l was introduced in 

Baksalary and Shah (1990). Our subclass comprises designs for which the study of relationships between 

properties of the three-way design itself, and corresponding properties of its treatment-row and treatment- 

column subdesigns, is simplified. As the study of block designs is more straightforward than that of three-way 

designs, we see that the level of difficulty is here reduced from one three-way level to two two-way level designs. 

We believe that our decomposability property identifies the most general subclass of three-way layouts or 

two-way elimination of heterogeneity designs for which certain results on connectedness, orthogonality and 

balance hold. 
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1. Preliminaries 

We consider the usual three-way layout of experimental design 

a 

&(_v)=X~a+X~/3+X37=(X, :X,:X,) p =xy, 

il 

(1) 

7 

where the vectors a, /.?, and 7 consist of the row, column and treatment effects, 
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respectively. The matrices X1, X2, Xs are n x r, n x c and n x v ‘design matrices’ 

identifying the correspondence between the elements of y and, respectively, the 

rows, columns and treatments, of the three-way layout; the partitioned matrix 

X= (Xi : X2 : X,), therefore, is the n x (r+ c + v) design matrix for the full three- 

way layout. Since exactly one treatment is applied to each observation which ap- 

pears in precisely one row and one column, we have X,e(‘) = X2e@) = Xse(“) = ecn), 

where e(‘) is the ax 1 vector of ones. 

We write N,, =Xt’XZ for the incidence matrix whose (i,j)th element is the num- 

ber of units treated in the ith row and jth column. We then denote its transpose 

by interchanging the two subscripts, i.e., Ni2 = N2t =X4X,. Similarly we let 

Nt3 =X;Xs and N2s =X,‘X,. Their transposes are, respectively, Nst =X;X, and 

Ns2=X;X2. 

We let k, = X;e’“) denote the vector of row sizes, k2 = Xie@) the vector of column 

sizes and k3 =Xje@) the vector of treatment sizes or replications. The three 

matrices D, =X;X,, D, = Xix2 and D3 =X;X, are all diagonal and positive 

definite, with the successive elements of kl, k, and k3, respectively, as their 

diagonal elements. 

If we consider rows and columns as sets of nuisance parameters in the model we 

call the three-way layout a ‘two-way elimination of heterogeneity design’ (cf., e.g., 

Agrawal, 1966a). The matrix Ss,,, is often called the ‘information matrix’ (John, 

1987, pp. 8, 95), the ‘C-matrix’ (Raghavarao and Federer, 1975) or the ‘coefficient 

matrix’ (Pearce, 1983, p. 59) from which both row and column effects have been 

eliminated. We define this matrix as 

S,,,,=X;X,-X;H,,X3=X;M,,X,, 

where the ‘residual matrix’ Mmay be defined by M= I- XX+, with X+ the Moore- 

Penrose inverse of X, and so Mis the orthogonal projector on the null space /(Xl). 

The matrix H=XX+ =I-A4 is the ‘hat matrix’ associated with the design matrix 

X and is the orthogonal projector on the column space, or range, E’(X). Here X is 

the augmented matrix (X, : X2). 

Other information matrices of importance are those obtained by ignoring one of 

the two sets of nuisance parameters. When we ignore the column effects, we call 

the resulting two-way layout the ‘treatment-row subdesign’ and the information 

matrix is given by 

For the treatment-column subdesign (where the row effects are ignored) the infor- 

mation matrix is given by 

The information matrix for the model in which both rows and columns are ignored 

will be denoted by ,!&, where 
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W; s3.0=x;x3 - - =x;c,x,, 
n 

and C, = I,, - J, = I, - (1 /n)e(“)e(“)’ is the n x n centering matrix. 

We define efficiency matrices for the treatment-row and treatment-column sub- 

designs in the two-way elimination of heterogeneity as, 

A,., =D~p1’2S3,1DJ 1’2 and A 3,2 = D,“2S3,2D,“2 9 

respectively. The efficiency matrix for the full design, after eliminating rows and 

columns, is given by 

A 3,,2 = D,“2S3,,2Dj-1’2. 

Definition 1. A two-way elimination of heterogeneity design is connected for treat- 

ments whenever all elementary treatment contrasts c’z, for any v x 1 vector satisfy- 

ing ce , ’ w = 0 are unbiasedly estimable in the design. 

Definition 2. A two-way elimination of heterogeneity design is said to be variance 

balanced or to have variance balance whenever the ordinary least squares estimators 

of all normalized contrasts in the treatments have the same variance. 

Definition 3. A two-way elimination of heterogeneity design is said to be efficiency 

balanced or to have efficiency balance whenever the ordinary least squares estimators 

of all normalized contrasts in the treatments have the same efficiency. 

A well-known necessary and sufficient condition (cf. Kshirsagar, 1957; Singh, 

Dey and Nigam, 1979) for a two-way elimination of heterogeneity design, connected 

for treatments, to be variance balanced is that the information matrix S’s,,, be a 

scalar multiple of the centering matrix: 

S 3,,2=Izc”=Iz[I-(l/v)e(“)e(“)‘]. A>O. (2) 

An also well-known characterization (cf. Jones, 1959) for an efficiency-balanced, 

treatment-connected two-way elimination of heterogeneity design is 

S 3,,2=L9S3,0=L9[03-(l/n)k3k;l, ti~(O,ll, (3) 

where rP represents the efficiency with which each treatment contrast c’t is estimated. 

We define variance balance and efficiency balance for the treatment-row and 

treatment-column subdesigns in a similar fashion, i.e., the subdesigns are variance 

balanced whenever the ordinary least squares estimators of all the normalized con- 

trasts in the treatments have the same variance, and efficiency balanced whenever 

the ordinary least squares estimators of all the normalized contrasts in the treat- 

ments have the same efficiency. Whenever the subdesigns are connected we can say 

that they have 
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variance balance * s,., = &CV, h= 1,2, (4) 

efficiency balance u 5’s,, = t9,,S3,0, h = 1,2. (5) 

Commutativity of the efficiency matrices is an important property for a design 

to possess. In the context of fixed effect two-way elimination of heterogeneity 

designs, Baksalary and Shah (1990) simply call this the ‘commutativity property’. 

If the commutativity property holds then the efficiency matrices A,., , A3,2 and As,e 

are all spanned by the same set of eigenvectors, i.e., there exists an orthogonal 

matrix U such that U’A,U, g=3.1,3.2,3.0, all are diagonal matrices. 

2. Decomposability 

An apparently new, and we believe important, subclass of two-way elimination 

of heterogeneity designs is specified by the information matrix S,.,, being decom- 

posable in the following way, 

s3.12=~ls3.1+~2s3.2-‘tOs3.0~ 519r2,ro>o, (6) 

cf. Btrube (1991). This subclass comprises designs for which the study of relation- 

ships between properties of the three-way design itself, and corresponding properties 

of its treatment-row and treatment-column subdesigns, is simplified. As the study 

of block designs is more straightforward than that of three-way designs, we can see 

that when (6) is satisfied, the level of difficulty in analyzing the design would be 

reduced from one three-way level to two two-way level designs. As we will see later 

in this paper, our decomposability property (6) seems to be, up to now, probably 

the most general form of designs for which certain results on connectedness, ortho- 

gonality and balance hold. 

The special case of condition (6) when cl = r2 = To = 1 was introduced very recent- 

ly in Baksalary and Shah (1990), where the two-way elimination of heterogeneity 

design is then said to satisfy the ‘decomposability property’, i.e., 

s3.12=s3.1+s3.2-s3.0* (7) 

We will say that the set of designs for which (6) holds, but for which (7) does not 

hold, satisfies the ‘generalized decomposability property’, while those for which (7) 

holds, and hence also (6), we will say satisfy the ‘reduced decomposability property’. 

Agrawal (1966b) constructed designs for which each of S3.12, S3.1, S3.2 and Ss,e 

has the form al+ bJ, i.e., all diagonal elements equal and all off-diagonal elements 

equal. Although this kind of design does not necessarily satisfy the reduced decom- 

posability property (7), it very often satisfies our generalized decomposability pro- 

perty (6). Since in our generalized decomposability property, the matrices S3.12, 

S 3,1, S,,, and S,,, need have no particular form, the class of designs satisfying our 

generalized decomposability property is more general than this special class of 

designs considered by Agrawal (1966b). 
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If the two-way elimination of heterogeneity design is ordinary (equal row sizes 
k, = kie(‘) and equal column sizes k2 = k2e @) for some positive integers k, and k2 
such that klr = k2c = n), then the reduced decomposability property (7) is equivalent 
to 

S 
N31N13 N3zNz3 + kk; 

3,12=D3-p-p - 
k, k2 n * 

(8) 

Any row-column design, i.e., any three-way layout with incidence matrix Ni2 = 
e(T)e(c)‘, provides a simple example of a design satisfying the reduced decomposability 
property. Since now the row sizes k, = c, the column sizes k2 =r, and the total 
number of observations n = K, the equation (8) becomes 

S 
N31Nu N3zNz3 W; 3,12=D3--------+-. 

c r rc 

A somewhat different decomposition of the information matrix S3.12 was in- 
troduced in Baksalary and Siatkowski (1990) with designs for which the information 
matrix takes the form 

S3.12=D3-v1N3,N~3-v2N3zNz3+ek3k;, ui,uz,e>O, (9) 

of which clearly (8) is the special case with vi = l/kl, v2 = l/k,, and Q = l/n. We 
will say that designs for which (9) holds satisfy the ‘extended decomposability 
property’. 

Our generalized decomposability property (6), the extended decomposability pro- 
perty (9) and the reduced decomposability property (7) are not equivalent, as we will 
show in the following two examples. 

Example 1. As an example of a three-way layout that satisfies both (9) and (6) but 
not (7), we consider the following design with seven rows, seven columns and seven 
treatments, taken from Agrawal (1966b), 

*35*2** 
**46*3* 
***57*4 
5***61* 
*6***72 
3*7***1 
24*1*** 

(10) 

where * denotes an empty cell. For this design (lo), S3.i ~S3.2 = (+)C,, Ss., = 3C, 
and S 3,12 = C,, and so (9) holds with Q = + and any v1 and v2 such that v1 + u2 = 1, 
vl, u,>O. Baksalary and Siatkowski (1990) use (10) as an example of a design satis- 
fying (9) but not (7), since obviously here Ss,i2 #Ss,i3Ss,2 -S,,,. We can, however, 
express S3.12 as in (6), i.e., this design satisfies our generalized decomposability 
property (6) with, for example, cl + TZ = 1, <,, r2> 0 and &, = $. 
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The following example exhibits a design which is not ordinary, and which satisfies 
our generalized decomposability property (6) but not the extended decomposability 
property (9). We have, however, not yet found a design which satisfies the extended 
decomposability property (9) but not our generalized decomposability property (6), 
nor have we been able to show whether or not there exists such a design. 

Example 2. Consider the following design with three rows, three columns, and three 
treatments, 

123 
* 1 2 (11) 
3 * 1 

where again * denotes an empty cell. It is straightforward to show that the associated 
information matrix for the full design 

s3.,Z=A I;;; -Zj -Z] , 

while the information matrices for the treatment-row and treatment-column sub- 
designs are equal and are given by 

10 -5 -5 
ss,i=ss,2=+ -5 

i 1 

7 -2 ) (12) 
-5 -2 7 

and the information matrix ignoring both rows and columns is given by 

12 -6 -6 

&.0=f 

I 1 

-6 10 -4 . (13) 
-6 -4 10 

Hence, 

s3.12 = t-1 s3. I + tZs3.2 - 64.0, 

for any positive ri, r2 such that (I +r2=+. 
However, there exist no oi, v2, Q > 0 such that S3.12 could satisfy the extended de- 

composability property. 

There are special cases when our generalized decomposability property (6) and 
the extended decomposability property (9) are equivalent. For example, the case of 
ordinary two-way elimination of heterogeneity designs, i.e., designs which have row 
sizes all equal to k, and column sizes all equal to k,. For such designs, as Baksalary 
and Siatkowski (1990) point out, if we postmultiply (9) by e(“), we obtain the equality 

O=(l -Vlkl -V2k2+@n)k3, 

implying that 

l=uikt+t&-@en. 

(14) 

(15) 
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The extended decomposability property can then be rewritten as 

S 

(16) 

which is equivalent to (6) with rl = vr k,, lj2 = v2k2 and &, =@n. Substituting into 
(15), yields 

to=c1+r2- 1. (17) 

Our generalized decomposability property (6) can then be rewritten as 

s3.12 = ‘4ls3.1 + t2s3.2 - (t-1 + t2 - 1)s3.0. (18) 

For example, if we look again at the design (10) in Example 1, where kl = k2 = 3 
and n = 21, we see that the extended decomposability property is satisfied with 
v1 + v2 = 1, vl, v2> 0 and Q = 4. This implies that we can have rl + l2 = 3, rl, &J > 0 
and to = 2; in this case, it is obvious that our generalized decomposability property 
is equivalent to (18), i.e., -2C,=--+<rc,-j&c~, with <r+&=3, rr,r2>0. 

For designs where our generalized decomposability property (6) holds irrespective 
of the application of treatments, i.e., designs for which 

H,,=t,H,+t,&-t,J,,, (19) 

then (18) also holds since, again, if we postmultiply (19) by e(@, we obtain 1 = rl + 
r2 - lo and hence co = rl + r2 - 1 as in (17). 

3. Results 

A problem which seems not yet to have been completely solved, concerns the 
relationship between connectedness for treatments in a two-way elimination of 
heterogeneity design and connectedness in its treatment-row and treatment-column 
subdesigns. Raghavarao and Federer (1975) showed that if a two-way elimination 
of heterogeneity design is connected for treatments, then the treatment-row and 
treatment-column subdesigns are also connected (the row-column subdesign need 
not, however, be connected). However, the converse of this statement is not generally 
true as was shown by Shah and Khatri (1973). Raghavarao and Federer (1975) show 
that for equireplicate row-column designs satisfying the condition NrsNs2 = 
ke(“)e(“)‘, connectedness of the treatment-row and treatment-column subdesigns 
does lead to treatment-connectedness. This result was first strengthened by Sia 
(1977) who showed that when S,, 1 and S3.2 commute in an equireplicate row-column 
design (or equivalently when Ns1N13 and N32N23 commute and N12 = e(‘)e(‘)‘), then 
connectedness of the treatment-row and treatment-column subdesigns implies treat- 
ment-connectedness if and only if the sums of the eigenvalues of S3,, and S3,, cor- 
responding to the same eigenvectors are different from k, the number of replications 
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of each treatment. The commutativity of S,,, and &, by itself is not sufficient for 

this result to still hold, however, as was again shown by the design in Shah and 

Khatri (1973) where S,,, and 5’s,, do commute. 

The equireplicate condition was relaxed in Baksalary and Kala (1980), where the 

more general commutativity condition 

was considered. In the following theorem, we give an extension for two-way elimina- 

tion of heterogeneity designs with equal row sizes and equal column sizes, satisfying 

our generalized decomposability property (6). Our proof follows that of Baksalary 

and Kala (1980). 

Theorem 1. Consider a two-way elimination of heterogeneity design which is or- 
dinary, i.e. , with equal row and column sizes: k, = k,e(‘) and k2= k,e(@, which 
satisfies both the generalized decomposability property 

s3.,2= tls,., +t2s3.2-tOs3.0, ‘t-1, t2, 'tO>o, 

and the commutativity property 

If the treatment-row and treatment-column subdesigns are connected, then the design 
itself is connected for treatments if and only if 

rl~(3.1)+r2~(3.2)#ro, s=l,...,v-1 s s 9 cw 

where os(3.l) and @s(3.2) are eigenvalues of, respectively, A3,, and A3.2 corresponding 
to the same eigenvector. 

Furthermore, (20) is also equivalent to 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ s=L...,v-1, (21) 

where pu, is an eigenvalue of N3, N13D3-l not equal to k,, and o, is that eigenvalue 

of N32NzD;l not equal to k2 and which corresponds to the same eigenvector as 
does the eigenvalue pS. 

Proof. We have a two-way elimination of heterogeneity design with efficiency 

matrices satisfying the following relation: 

A,.12=rlA3.1+52A3.2-roA3.0, 51~~2,to>O, (22) 

in view of our generalized decomposability property (6). Since we assume that the 

design satisfies the commutativity property, the three matrices A3,i, A3.2 and A,,, 

have a common set of eigenvectors. The zero eigenvalue for each matrix cor- 

responds to the same eigenvector D, 1’2e@‘). The other v - 1 eigenvalues of A3,o = 
I_ (1 /n)D3-‘/2e(V)e(V)‘D, 112 are all equal to 1. If the treatment-row and treatment- 

column subdesigns are connected, then the remaining eigenvalues of A,,, and A3.2 
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are all nonzero, and equal, respectively, to 

@;344_f and @.2)+$; s=l ,...,v-1. 
1 

From (22) we find that the design itself is connected for treatments if and only if 
the v- 1 eigenvalues of A3,r2 

rl~(3.‘)+r2~(3.2)-ro#0, s s s=l,...,v-1, (24) 

or equivalently (20) holds. Furthermore, substituting (23) in (24) yields the inequality 

rl(l-$)+~2(l-+0, s=l,...,v-1, 

which implies (21). 0 

Baksalary and Kala (1980) obtained the special case of our Theorem 1 for row- 
column designs, i.e., with rr = T2 = &, = 1, kl = c and k2 = r. 

With our next theorem, we present a relationship between efficiency balance in 
a two-way elimination of heterogeneity design and efficiency balance in its sub- 
designs. 

Theorem 2. For a treatment-connected two-way elimination of heterogeneity design 
satisfying the generalized decomposability property S3,,, = C,Sj., + 52S3.2 - to&o, 

cl, T2 and &_,>O, any two of the following properties imply the third: 
(i) the design is efficiency balanced; 

(ii) the treatment-row subdesign is efficiency balanced; 
(iii) the treatment-column subdesign is efficiency balanced. 

Proof. Follows at once from the characterizations in (3) and (5). 0 

A form of this theorem was first given in the first part of Theorem 2 in Singh, 
Dey and Nigam (1979). Our version is a slight extension of the version given in 
Baksalary, Shah and Siatkowski (1990), since we have replaced the more restrictive 
reduced decomposability property, by our less restrictive generalized decomposability 
property. 

A theorem similar to our Theorem 2, but with one further condition, holds for 
designs that are variance balanced. We extend Theorem 3 in Baksalary, Shah and 
Siatkowski (1990) (which is a corrected version of the second part of Theorem 2 in 
Singh, Dey and Nigam, 1979) with our: 

Theorem 3. For a treatment-connected two-way elimination of heterogeneity design 
with the number of treatments v 2 3 and satisfying the generalized decomposability 

property S3.12=tlS3.1 +t2S3.2-t0S3.0, Cl, t2 and to>& cf. (61, any three of the 
following properties imply the fourth: 
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(i) the design is variance balanced; 
(ii) the treatment-row subdesign is variance balanced; 

(iii) the treatment-column subdesign is variance balanced; 
(iv) the design is equireplicated. 

Proof. Follows from the characterizations in (2) and (4). 0 

In our next theorem, we extend a result given by Baksalary and Shah (1990) for 
designs satisfying the reduced decomposability property, i.e., Ss, i2 = Ss,, + Ss., - S3.0, 
to designs satisfying our generalized decomposability property, i.e., 5’s,,, = <,S,,, + 

tZs3.2-td3.0~ (1, t2 and to>o. 

Theorem 4. If a treatment-connected two-way elimination of heterogeneity design 
satisfying the generalized decomposability property, i.e., S3.,, = <,S3,, + 52S3.2 - 

c&!&, Lj, , t2 and &,> 0, is efficiency balanced or if its treatment-row or treatment- 
column subdesign is efficiency-balanced, then the commutativity property holds. 

Proof. We first suppose that the treatment-row subdesign is efficiency-balanced. 
Then we can write 

A,., = flA3.0, 

and, postmultiplying by A3.2, yields 

A3.43.z = flA,,oA3.z= flA3.2, 

which is symmetric and so the commutativity property holds. The proof for the 
column-treatment subdesign is similar. 

When the row-column design itself is efficiency-balanced, then we have 

A 3.12 = L9A3.09 

which is equivalent to 

A3.2 = 
(to+ 043.0- (~43.1 

r2 

Therefore, if we now premultiply (25) by A,,,, we obtain 

AxiA3.z = 
(ro+L9)A,.1A,.o-r~A32., _ (to+Wh-W& - 

(2 (2 
9 

which is symmetric and so the commutativity property holds. 0 

(25) 

Another relationship between efficiency balance and the commutativity property 
is given in the following Theorem 5 which is a slight modification of Theorem 4.2 
in Baksalary and Shah (1990) and the Lemma on page 7 in Baksalary and Siatkowski 
(1990). In their Theorem 4.2, Baksalary and Shah (1990) assume only the reduced 
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decomposability property, and in the lemma on page 7, Baksalary and Siatkowski 
(1990) assume equal row and column sizes with the information matrix satisfying 
the extended decomposability property S 3.12=D3-hN31N13-~N32N23+ek3k;, 
4U2,@>0. 

Theorem 5. A treatment-connected two-way elimination of heterogeneity design, 

which satisfies S3, 12 = <IS,. 1 + (2S3.2 - c$& for some (1, (2 and (0 > 0, is efficiency 
balanced if and only if it satisfies the commutativity property and <I @I’. ‘) + & c$S(~.~’ 
is the same for all s= 1, . . . . v - 1, where the nonzero eigenvalues @1(3.h), . . . , $f::), 

h = 1,2, are ordered correspondingly to a fixed set of common eigenvectors of A,, , 

and A3.2. 

Proof. If A3.12~ L9A3,, for some L9, then S3,i2 = riS3,i + (2S3.2 - &$40 implies that 

tv43.1+<2A3.2=(tO+ L9M3.09 

and so A3,,A3,2 = A3,2A3.1. This in turn implies that 

rl~,(3.‘)+r2~s(3.2)=ro+Lp for s=l,...,v-1. 

Conversely, if A3,1A3,2 = 3.2 3,1 A A and <i Qs(3.l) + <2@s(3.2) is equal to a constant c, 
say, then S3,,, = r,S3.i + tf2S3.2 - <&23,0 implies that 

@,“. 174 = li @ (3.1) 
s +(2@(3.2)-(o=c-~o, 

s 

and so S,,,, is a scalar multiple of S,,,. 0 
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