JOURNAL OF PARALLEL AND DISTRIBUTED COMPUTING 18, 516-523 (1993)

Utilizing Global Simulation Information in Conservative Parallel
Simulation on Shared Memory Multiprocessors*-t

J1AJEN M. LIN AND SANTOSH G. ABRAHAM

Department of Electrical Engineering and Computer Science, The University of Michigan, Ann Arbor, Michigan 48109-2122

Global simulation information is accessible on shared memory
multiprocessors and can improve the efficiency of parallel simula-
tion. However, most existing concurrent simulators do not aggres-
sively exploit this information. In this paper, we propose a Di-
rectly Accessing Information (DAI) scheme, a conservative
simulation scheme that collects useful global simulation informa-
tion in shared memory systems to reduce non-essential blocking
and resolve local deadlocks. A parallel queueing network simula-
tor was constructed on a Sequent Symmetry multiprocessor. Spe-
cial implementation techniques were used to eliminate locking
mechanisms for accessing global simulation information. Also,
search pruning techniques were developed to reduce the amount
of global simulation information used to unblock Logical Pro-
cesses (LPs). Experimental results demonstrate that the DAI
scheme achieves good speedups and substantially outperforms
conventional conservative schemes in a reasonably large problem
domain where message densities are larger than approximately
0.75. © 1993 Academic Press, Inc.

1. INTRODUCTION

In conventional parallel discrete event simulation using
the conservative approach [3], non-essential blocking can
greatly reduce simulation parallelism. Non-essential
blocking occurs when the message to be simulated next
has arrived but sufficient information from neighboring
L.Ps (logical processes) is not yet available to confirm that
no message with an earlier timestamp can arrive. This
blocking can possibly lead to a local deadlock which con-
sists of a set of blocked LPs linked by a cycle of empty
channels. And, local deadlocks may eventually evolve
into a global deadlock when no LP can be activated,
often because all LPs are linked by a cycle of empty
channels.

Non-essential blocking can be reduced by exploiting
information in the physical system (5, 10] or information
contained in the simulation itself. In this paper, we focus

* We acknowledge the Mathematical and Computer Science Division
at the Argonne National Laboratory for providing access to the Sequent
multiprocessor. This research was supported in part by NSF Grant
NSF-ASC-880890 and ONR Contract N00014-93-1-0163.

+ This paper is an improved version of [11], and contains additional
experimental results.

0743-7315/93 $5.00
Copyright © 1993 by Academic Press, Inc.
All rights of reproduction in any form reserved.

on exploiting simulation information to improve perfor-
mance. This information includes the simulation states of
LPs, simulated times of LPs, and timestamps of mes-
sages on channels. Simulation information is considered
local information to a host processor if the corresponding
LPs and channels are currently assigned to that proces-
sor. The simulation information of all other LPs is con-
sidered global information.

Conventional parallel simulation algorithms were origi-
nally developed for distributed systems. In such systems,
even obtaining a small amount of global simulation infor-
mation through null messages [3] or probe messages can
easily increase network traffic and cause performance
degradation. Recently, parallel discrete event simulators
have also been developed on shared memory multipro-
cessors {1, 4, 8, 14, and 15]. In such systems, the over-
head and delays for exchanging global simulation infor-
mation are relatively small. Therefore, global simulation
information can be exploited to a much larger extent to
unblock an LP and reduce non-essential blocking.

Motivated by the high potential benefit, we propose a
Directly Accessing Information (DAI) scheme which ag-
gressively exploits global simulation information to re-
duce non-essential blocking and resolve consequent
deadlocks. This scheme includes pruning techniques to
eliminate unnecessary search, as well as special imple-
mentation techniques to eliminate all locking mecha-
nisms associated with accessing global simulation infor-
mation. A queueing network simulator was implemented
on the Sequent Symmetry multiprocessor to evaluate our
DAI scheme. The experimental results demonstrate that
the benefit of reducing non-essential blocking can out-
weigh the cost of searching for global simulation informa-
tion. We show that global simulation information can be
used in an efficient, asynchronous, and highly parallel-
ized way.

The remainder of this paper is organized as follows.
Section 2 reviews and compares the related work. Sec-
tion 3 presents our DAI scheme and Section 4 discusses
how to efficiently implement this scheme. Section 5 de-
scribes the queueing network simulator and related em-
pirical studies on the Sequent Symmetry. Section 6 con-
cludes this paper.

516

GLOBAL SIMULATION INFORMATION IN PARALLEL SIMULATION

Level 2

Level O

FIG. 1. Effect of using global simulation information.

2. RELATED WORK

Many studies have been performed to reduce non-
essential blocking and/or resolve consequent deadlocks
[5]. Among these research efforts were several empirical
studies conducted on shared memory multiprocessors [1,
4, 12, 14, 15].

To illustrate our idea of aggressively exploiting shared
memory, we present an example in Fig. 1, which shows
an LP, an LP;, and some of its blocked ancestors. The
simulated time of an LP is shown in each pair of paren-
theses and the timestamp of a message is shown without
parentheses. Simulated times and message timestamps
are denoted in the same way in all the other figures in this
paper. Three circular arcs are drawn in the figure to mark
different levels of global simulation information for LP;.

A direct implementation of the Chandy-Misra-Bryant
(CMB) algorithm with null messages, as in [14], will ac-
cess only local simulation information (i.e., the informa-
tion at Level 0). In a simulation scheme that directly
accesses the simulated times of neighboring LPs as in {4,
15], some global simulation information at Level 1 (i.e.,
the simulated times but not message timestamps) is avail-
able. Our DAI scheme extends the search for global sim-
ulation information to as many levels as necessary. In
this example, global simulation information in Level 2
guarantees that LP; will not process a message with a
timestamp less than 5. LP; can then be unblocked to pro-
cess the message with timestamp 2 without any delays,
even though its parent, LP;, is still blocked.

3. THE DAI SCHEME

In this section, we first describe the simulation model.
Then, we define and use search trees to obtain lower
bounds on the timestamps of future incoming messages
for LPs. Using these lower bounds, our DAI scheme can
reduce non-essential blocking sufficiently to avoid global
deadlocks. Finally, we present out simulation algorithm.

517

3.1. Simulation Model

The simulation model consists of a set of LPs interact-
ing with each other by transmitting messages with time-
stamps through directed channels with infinite-sized
buffers. Each message has a send-timestamp and a re-
ceive-timestamp. They represent the initiation and recep-
tion times of the corresponding interaction between
physical components. Along a particular channel, mes-
sages are sent in increasing order of their send-time-
stamps and the message transmission delays are such
that they are also received in the same order. The mes-
sage acceptance horizon of an LP is a computed lower
bound on the receive-timestamps of future incoming mes-
sages. An LP computes its message acceptance horizon
and selects a message with the lowest receive-timestamp
if it is less than or equal to the horizon. A selected mes-
sage is processed to completion nonpreemptively. After
processing a message, an LP puts outgoing messages on
the corresponding channels, advances its simulated time,
and then removes the processed message from its input
channel. Note that, with shared memory multiproces-
sors, channels are implemented in shared memory.
Therefore, assuming a memory model that is as strong as
processor consistency [6}, an explicit acknowledgment is
not required after depositing outgoing messages in shared
memory.

For simplicity, we assume that each LP always has
incoming channels from its parent LPs and no LP can be
its own parent. (LP; is a parent of LP; if LP; can send
messages directly to LP;.) No generality is lost by this
assumption because extra LPs and channels can be cre-
ated, if necessary, to satisfy these assumptions. The fol-
lowing notation is used in this paper:

« (LP;, LPj): channel from LP; to LP,

» J(1): state of LP;

* J;(1): simulated time of LP,

» M;(#): receive-timestamp of the earliest message
on non-empty (LP;, LP)

+ ¥,(1): message acceptance horizon of LP;

* B;(): lower bound on the send-timestamp of any
future messages sent by LP;

The state ¥(r) of LP; is active if LP; is processing a
message, idle if LP; is not active and has no available
messages, ready if LP; is not active and has at least one
non-empty incoming channel with M;(z) = %;(¢), and
blocked otherwise.

3.2. Search Trees

To compute a message acceptance horizon for an LP,
we first derive lower bounds on the send-timestamps of
any future messages sent by its parents. The derivation of

518
the bounds uses search trees, which are defined as fol-
lows.

DEFINITION 1. A search tree of LP, is (V, A), where
V is a set of vertices and A is a set of arcs. The tree is

search-tree(LP;, v,) {

if (LP; is in the stack) { v,

LIN AND ABRAHAM

constructed using a stack and two attributes, denoted Ip
and /b, in each vertex. Initially, V = {v,} where v, - Ip is
LP,, A = {}, the stack is empty, and the tree is con-
structed by a call to search_tree(LP,, v,).

- Ib(t) = x; return; }

if (LP; is active) { v, - Ib(t) = T(0); return; }

push LP; into the stack;

for (each empty (LP;, LP)) {
-, =LP; V=VU{v}h

create v, U,

create {(v, v} 4 = A U {(v., v)};

search_tree(LP;, v,); }

pop LP; out of the stack;

vy * 1b() = max(J;(r), min(min{M; ()}, min v, - 1b(2)})), where
(LP;, LPj) is not empty, and (v, * Ip, LP) is empty; return; }

THEOREM 1. RB.(t) = v, - Ib(t), where v, is the root of
LP,’s search tree.

COROLLARY 1.
parent of LP;.

Hi (1) = min{RB (1)}, where LP; is a

Theorem 1 and Corollary 1 show how the message ac-
ceptance horizon, 7,(7), of LP; can be determined using
the search tree. The proofs of these results and others are
not included because of space constraints but are pre-
sented in [9].

3.3. Deadlock Resolution

The following theorem assumes that lower bound com-
putation is done instantaneously at each LP with the
most current simulation information of all other LPs.

THEOREM 2. There will be no global deadlocks in
simulating a non-deadlocking physical system if Corol-
lary 1 is applied to all blocked LPs for computing their
message acceptance horizons.

Figure 2a shows a local deadlock consisting of three
blocked LPs linked by a cycle of empty channels. The
implementations of the CMB algorithm with null mes-
sages [4, 14, 15] cannot unblock any of the LPs when
there is no lookahead. The implementations of the CMB
algorithm with global deadlock resolution [4, 14, 15] do
not try to unblock any of these LPs until all other LPs
have reached the end of the simulation or have formed
other local deadlocks.

Our DAI scheme resolves local deadlocks and thereby
avoids global deadlocks. Figure 2b shows a part of the
search tree of LP;. The numbers associated with the
empty channels represent lower bounds on the send-
timestamps of future messages sent along these channels.

As the figure shows, a lower bound of 6 for LP; is ob-
tained. Thus, the message acceptance horizon of LP, is 6,
which is equal to the receive-timestamp of the earliest
available message. As a result, LP, can be unblocked to
break the local deadlock.

3.4. DAI Algorithm

In Fig. 3, we present a conservative parallel simulation
algorithm that utilizes the message acceptance horizons
computed using the results in the previous subsections.
In this algorithm, we assume that the simulation of an
LP, LP;, is performed by a dedicated host processor.
Therefore, process scheduling is not included. Also, we
assume that a host processor can obtain all necessary
simulation information for computing the lower bound,
#,(1), instantaneously. (Further relaxation of these as-

FIG. 2.
blocked LPs. (b) A part of the search tree of LP;.

(a) A snapshot of a local deadlock consisting of three

GLOBAL SIMULATION INFORMATION IN PARALLEL SIMULATION

while (7;(1) < stop time)
if (3 messages for LP;) {
for (each (LP;, LF;))

if ((LP,LP;) is not empty)

519

B;(t) = recaeive-timestamp of the latest message on (LPF;,LF;});
else use Theorem 1 to compute Bi(t);
use Corollary 1 to compute HM(1);
while (3 messages with receive-timestamps < M;(t)) {
if (73(t) < ming{M,;(1)}) 7;(2) = mini{M;()};
process one message with min;{M,;(?)};

advance 7;(t);

remove the message from (LF;,LF;);
if ((LP;,,LP;) bacomes empty) {
use Theorem 1 to compute B;(t);
use Corollary 1 to update M;(t); }}}

FIG. 3.

sumptions is discussed later.) Additional information of a
physical system such as lookahead or minimum delay can
be incorporated to improve our DAI scheme [9].

4. IMPLEMENTATION OF DAI SCHEME

The assumption that a host processor can access all
simulation information for computing the message accep-
tance horizon specified in Corollary 1 without delays can
only be realized by putting a global lock on all simulation
information at the current time instant. In order to avoid
performance degradation due to locking, we use the algo-
rithms in Fig. 4 to compute B,(t) and #,(¢) in the main
algorithm (see Fig. 3) without any locking. This new im-
plementation approach is shown to be correct in [9].

Recall that to determine a lower bound of an LP in
Theorem 1, we search through all empty channels be-

determine B(LF,) {

A non-deadlocking algorithm for simulating LP;.

tween the LP and its ancestors. This search space can
casily become explosive when the branching factor of
LPs and the number of empty channels are large. To
reduce the overhead of this search, we transform the
search tree of an LP to a game tree with interleaved
maximizing and minimizing levels. Figure 5 shows a part
of the search tree for an LP, LP;, and the corresponding
game tree. Now, we can use pruning techniques, such as
the well known Alpha—-Beta procedure [16], to prune our
search space. The basic idea of the Alpha-Beta proce-
dure is to prune a subtree if exploration of the subtree will
not affect the final result. As illustrated in Fig. 5b, the
Alpha—Beta procedure is able to identify that all subtrees
below the diagonal cuts do not need to be explored. As a
result, a lower bound, B(t), of 10 is computed for LP;
after visiting only three of LP;’s ancestors. To further
limit the search space, we also use two heuristic pruning
procedures to augment the Alpha—Beta procedure [9].

if (LP, is in the stack) { add the channel just traversed to Set;; return oo; }

if (LP; is active) return T(t);
push LP: into the stack;

Set; = {}; Ib=o00;

for (each (LPy,LF))

if ((LPy,LP) is not empty) Ib = min(lb, M(t));

else [b = min(lb, determine B(LP,));

if (LP, sent out messages along channels in Set; after they were added to Set;)

b=0;
pop LPF;, out of the stack;
returs max(7(t),b); }

determine H(LP;) {
mah = oo;
for (each (LP:,LP))
mah = min(mah, determine B(LP,));
returs mah; }

FIG. 4.

Algorithms for computing B,(1) and #;(t).

FIG. 5.
10. (b) The corresponding game tree that can be used to prune the
search and obtain the lower bound.

(a) A part of the search tree for LP; with a lower bound of

5. QUEUEING NETWORK SIMULATOR USING DAI

We implemented a concurrent FCFS queueing net-
work simulator to evaluate our DAI scheme. Queueing
networks are commonly used for parallel simulation stud-
ies because they resemble the conventional simulation
model [2, 14, 4]. More importantly, they provide a stress
test for parallel simulators because little time is needed to
simulate the processing of an event and, consequently,
the time to unblock LPs becomes relatively long [12]. Our
experiments are based on the algorithms shown in Figs. 3
and 4.

A 26-processor Sequent Symmetry S81 was used. The
Sequent Symmetry is a private-cache bus-based MIMD
shared-memory multiprocessor. Each of its Intel 80386
processors has a floating point co-processor and a 64-
kilobyte cache. The processor clock cycle time is 62.5 ns,
the bus clock rate is 10 MHz, and the bus bandwidth is 80
Mbytes per second. In this section, we first describe sev-
eral experimental aspects of the simulator and then
present the performance results.

5.1. Partitioning and Scheduling LPs

In our algorithms, the simulation of an LP was as-
sumed to be performed by one dedicated host processor.
In our experiments, each host processor simulates a
group of LPs within a single process. The LPs are parti-
tioned and assigned to host processors so that the inter-
actions between host processors are minimized. For in-
stance, we partition the toroid network into squares or
rectangular blocks and assign each block to a host pro-
cessor. We use a static scheduling scheme because the
global scheduling queue can become a bottleneck in dy-
namic scheduling. In our implementation, a host proces-
sor visits and tries to simulate its LPs in a round-robin
fashion. We do not maintain a queue of ready LPs be-
cause the overhead of maintaining the queue is relatively
high in queueing network simulation applications.

LIN AND ABRAHAM

5.2. Simulator Implementation

The results derived in the previous two sections and
the scheduling mechanism were used to construct a par-
allel queueing network simulator. For comparison, a se-
quential simulator was constructed by modifying our par-
allel simulator and eliminating all unnecessary overhead
for parallelization. The event list in the sequential simula-
tor was implemented as a splay tree to improve perfor-
mance {7].

We also constructed a parallel simulator that examines
only parent LPs’ simulated times for comparison. Again,
in order to obtain a fair comparison, the simulator was
constructed by modifying our parallel simulator and elim-
inating all unnecessary overhead for accessing global
simulation information. Since this simulator cannot avoid
global deadlocks, a mechanism for detecting/breaking
global deadlocks was implemented by maintaining a
global counter that indicates the number of blocked or
idle LPs.

5.3. Empirical Results

Using the three simulators, we conducted experiments
to simulate various queueing networks. Table I shows the
parameters used in our experiments [9]. Our major goal
was to determine the parameters which affect the perfor-
mance of the DAI scheme and to show the problem do-
main in which the DAI scheme is able to achieve good
speedups.

Two distributions were used for the service times of
the queue servers. They are uniform (DIST = uniform =
LA + 2 x (10-LA) x rand) and exponential distributions
(DIST = expntl = LA-(10-LA) X In(rand)), where LA is
the lookahead and rand is a random value uniformly dis-
tributed between 0 and 1. Each LP independently gener-
ates its random number using a unique seed.

The branching factor of a network is the average num-
ber of incoming channels per node. In our experiments,
we used LPs (representing queues and their servers) con-
figured as a toroid (a two-dimensional mesh with wrap

TABLE 1
Parameters, Notations, and Their Values Used
in the Experiments

Parameter Notation Values
Number of host processors NHP 1,2, 4,8, and 16
Timestamp increment
distribution DIST Uniform and exponential
Branching factor BF 4,6,and 8
Computation granularity GRN 0, 1000, 2000, 3000, and 4000
Message population ratio MPR 0.5,0.75,1, 1.5, and 2
Lookahead LA 0,1,2,3,4,and 5
Number of LPs NLP 64, 256, and 1024

GLOBAL SIMULATION INFORMATION IN PARALLEL SIMULATION

521

14

12

10

——&—— DAI|(DIST=uniform)

—%—— DAI(DIST=expntl)

= - =fr—=* CNV(DIST=uniform)

T CcCao oV ©»n
@

—-=O==- CNV(DIST=expntl)

Nz

0 omomam @i

0 4 8 12

|

Number of Host Processors (NHP)

FIG. 6. Speedup with the toroid topology. (BF = 4, GNR = 0, MPR = |, LA = 0, NLP = 256.)

around connections), cuboid (a three-dimensional mesh
with wrap around connections), or hypercube network
having branching factors of four, six, and eight, respec-
tively. In our presentation of experimental results, the
branching factor represents one of the three topologies
described. The computational granularity represents the
additional time spent in processing a message. The mes-
sage population ratio is the total number of messages in
the system divided by the number of channels. Initially,
the messages are evenly distributed on channels and the
total number of messages is conserved during the simula-
tion.

All of the simulations in our experiments were run until
the simulated times of all LPs reached 5000. Since the
mean service time is 10 for both timestamp increment
distributions, each LP will process a large number of
messages before the simulation stops. The experiments
were replicated with many different random number
seeds and the variation in the performance results were
observed to be negligibly small.

The values of most of the parameter settings were cho-
sen to be similar to those used by other researchers in
evaluating parallel simulation algorithms {4, 13, 15]. Fig-
ure 6 presents the results of the experiments on the toroid
topology. In the figure, we compare our DAI scheme
with the conventional scheme which examines only par-
ent LPs’ simulated times. For each scheme, there are two
lines representing the speedups with different timestamp
increment distributions. The keys DAI and CNV repre-
sent the performance of our DAI scheme and the conven-
tional scheme, respectively.

Our scheme does not deadlock and, therefore, does not

spend time on deadlock detection/resolution. On the
other hand, the conventional scheme deadlocks approxi-
mately 3000 and 4000 times using the uniform and expo-
nential distributions, respectively, during the course of a
simulation run. Both schemes perform better with the
uniform distribution than with the exponential distribu-
tion.

Figure 6 shows that our scheme outperforms the con-
ventional scheme and achieves acceptable speedups. The
experimental results obtained with the cuboid and hyper-
cube topology also indicate that the speedups obtained
with the DAI scheme are much higher than the conven-
tional scheme. However, the DAI scheme is found to be
more sensitive to the branching factor because it aggres-
sively searches through empty channels. With the same
message population ratio, a higher branching factor in-
creases the search space and reduces the performance of
our scheme. For instance, the speedups obtained using
the hypercube topology (with a branching factor of eight)
were a factor of two lower than those using the toroid
topology. In contrast, the conventional scheme is not
sensitive to the branching factor.

The message population ratio is a critical parameter to
the DAI scheme. Figure 7 shows the speedup as the mes-
sage population ratio (MPR) is varied. As the MPR is
increased from 0.5 to 1.5, the performance of the DAI
scheme increases rapidly. Adding more messages not
only increases parallelism but also decreases the number
of empty channels. Since the DAI scheme aggressively
searches through empty channels, a higher message pop-
ulation ratio reduces the search space and lowers the
simulation overhead in DAI. The performance of the DAI

522

LIN AND ABRAHAM

14
12 =
~——@=—= DA|(BF=4)
s 10
s // / 4= DA|(BF=6)
e 8 / // 4 DAI{BF=8)
-]
d & ~-=0—-- CNV(BF=8)
u
P, / Z/ —=-=0~=-- CNV(BF=6)
/ // .Jj —=—fxr—=* CNV(BF=4)
2 S
%—.-@-2525::. :::::::?
0 i e s}
0.5 0.75 1 1.25 t.5 175 2
Message Population Ratio (MPR)

FIG. 7.

scheme drops below that of the conventional scheme for
low MPRs. For the entire set of experiments we con-
ducted, this is the only region of the parameter space
where the DAI scheme is worse than the conventional
scheme.

Previous research has demonstrated good parallel per-
formance when lookahead is used {4, 5]. The speedup of
the DAI scheme increases linearly from 6 to 10 as the
lookahead is increased from zero to five time units, ver-
sus from 1 to 3 for the conventional scheme with BF = 6,
NHP = 16, DIST = expntl, GRN = 0, MPR = 1, NLP =
256. This suggests that exploiting global simulation infor-
mation can improve performance beyond that achievable
by only exploiting physical system information such as
lookahead. The DAI scheme is complementary to other
schemes that exploit information about the physical sys-
tem, such as lookahead. We also explored the perfor-
mance effects of varying the computational granularity
and the number of LPs {9].

Our experimental results demonstrate some limitations
of the DAI scheme. In important discrete event simula-
tion applications, the MPR is much lower than one; e.g.,
in circuit simulation the MPR is approximately 0.1. The
DALI approach does not appear to be well-suited for such
applications. Also, at high message populations, dead-
lock avoidance is usually more efficient than deadlock
resolution. In our experimentation, we compared the
DAI scheme exclusively to the conventional scheme with
deadlock resolution. Our work in conjunction with pre-
vious empirical research comparing deadlock resolution
to deadlock avoidance appears to indicate that the DAI
scheme is better than either of the conventional schemes

Speedup as message population ratio is varied. (NHP = 16, DIST = expntl, GRN = 0, LA = 0, NLP = 256.)

for systems with high MPRs. However, further experi-
mentation comparing the DAl scheme to the conven-
tional scheme with deadlock avoidance is required before
the superiority of the DAI scheme for high-MPR simula-
tion applications can be clearly established.

6. CONCLUSION

This study was motivated by the potential high benefit
and relatively low overhead of exploiting global simula-
tion information in a shared memory multiprocessor.
Theoretically, the DAI scheme removes non-essential
blocking to resolve any local deadlocks. Careful imple-
mentation is crucial to the success of the DAI scheme.
We showed that extra locking for accessing simulation
information is not necessary and can be avoided. Fur-
thermore, we developed efficient search pruning tech-
niques for computing message acceptance horizons in a
potentially exponential search space. Experimental
results on a Sequent Symmetry S81 demonstrated that
global simulation information can be efficiently exploited
in a shared memory environment to increase the parallel-
ism and speedups in simulating some important queueing
networks.

REFERENCES

1. Ayani, R. A parallel simulation scheme based on distance between
objects. Proc. SCS Multiconference on Dist. Simulation, 1989, pp.
113-118.

. Bagrodia, R., Chandy, K. M., and Liao, W. An experimental study

on the performance of the space-time simulation algorithm. ln
Proc. Work. Par. & Dist. Sim. 1992, pp. 159-168.

GLOBAL SIMULATION INFORMATION IN PARALLEL SIMULATION

3. Chandy, K. M., and Misra, J. Distributed simulation: A case study
in design and verification of distributed programs. IEEE Trans.
Software Eng. 5, 5 (Sept. 1979) 440-452.

4. Fujimoto, R. M. Performance measurements of distributed simula-
tion strategies. In Proc. SCS Multiconference on Dist. Simulation.
1988, pp. 14-19.

5. Fujimoto, R. M. Parallel discrete event simulation. Comm. ACM
33, 10 (Oct. 1990}, 30-53.

6. Goodman, J. R. Cache consistency and sequential consistency.
Tech. Rep. 61, SCI Committee, 1989.

7. Jones, D. W. An empirical comparison of priority-queue and event-
set implementations. Comm. ACM 92, 4 (Apr. 1986), pp. 300-311.

8. Konas, P., and Yew, P. Synchronous parallel discrete event simu-
lation on shared-memory multiprocessor. In Proc. Wark. Parallel
& Distrib. Sim. 1992, pp. 12-21.

9. Lin, J. M. Efficient parallel simulation for designing multiprocessor
systems. Ph.D. thesis, University of Michigan, Ann Arbor, 1992.

10. Lin, J. M. Exploiting dynamic topological information to speed up
concurrent multicomputer simulation. In Proc. Work. Parallel &
Distrib. Sim. 1992, pp. 201-202.

11. Lin, J. M., and Abraham, S. G. Discrete event simulation on shared
memory multiprocessors using global simulation information. In
International Conference Parallel Processing, 1992, Vol. 111, pp.
254-261.

12. Nicol, D. M. Parallel discrete-event simulation of FCES stochastic
queueing networks. In ACM SIGPLAN Symp. Prin. Practice of
Parallel Prog. 1988, pp. 124-137.

13. Prakash, A.. and Subramanian, R. An efficient optimistic distrib-

Received June 15, 1992; revised February 2, 1993; accepted April 22,
1993

523

uted simulation scheme based on conditional knowledge. In Proc.
Work. Parallel & Distributed Sim. 1992, pp. 85-94.

14. Reed, D. A., Malony, A. D., and McCredie, B. D. Parallel discrete
event simulation using shared memory. I[EEE Trans. Software Eng.
14, 4 (Apr. 1988), 541-553.

15. Wagner, D. B., Lazowska, E. D., and Bershad, B. N., Techniques
for efficient shared-memory parallel simulation. In Proc. SCS
Multiconf. on Dist. Simulation 1989, pp. 29-37.

16. Winston, P. H. Artificial Intelligence. Addison~Wesley, Reading,
MA, 1984,

JIAJEN M. LIN received the B.S. and M.S. degrees in electrical
engineering from National Taiwan University, Taipei, in 1983 and 1985,
respectively, and the Ph.D. degree in computer science and engineering
from the University of Michigan, Ann Arbor, in 1992, He is currently a
senior design engineer at Intel Corporation. His research interests are
computer architecture, computer-aided design, and parallel processing.

SANTOSH G. ABRAHAM is currently an Assistant Professor in the
Department of Electrical Engineering and Computer Science at the
University of Michigan, Ann Arbor. From 1984-1987, he was a re-
search assistant in the Center for Supercomputing R&D at the Univer-
sity of Illinois. His research interests are in the areas of multiprocessor
and memory hierarchy simulation, compilation for parallel systems, and
computer architecture. Santosh Abraham received the B.Tech. degree
from the Indian Institute of Technology, Bombay in 1982, the M.S.
degree from the State University of New York at Stony Brook in 1983,
and the Ph.D. degree from the University of Illinois, Urbana, in 1988—
all in Electrical Engineering.

