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ACOQUSTICAL PROPERTIES OF INTERACTING AND
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Acoustical cross-sections of random homogenous dense systems of interacting and agglo-
merated Rayleigh particles are studied analytically. Both the interaction among particles
within the agglomerate and the interaction among the agglomerates are taken into account.
A model for the radial distribution function is proposed. The interaction effect on the
attenuation of a plane wave is studied.

1. INTRODUCTION

Acoustic agglomeration has potential application in improving the efficiency of conven-
tional particle removal devices, particularly cyclones, where the particulate system is radi-
ated with high intensity sound to increase the agglomeration rate of particles [1, 2]. Also,
the phenomenon of agglomeration by small spherical particles into larger clusters is
encountered in the solidification of liquid metals and in combustion systems. One of the
important products is soot particles. These particles are nearly spherical but they grow by
agglomeration and form clusters of different types. Examples are straight chains, random
clusters and fractal clusters (Figure 1). To understand the foundations of these two applica-
tions and others, the acoustical properties of agglomerated particles need to be evaluated.
A usual approach in analyzing the interaction of clusters with electromagnetic waves is
based on the definition of an equivalent sphere [3, 4], which is characterized in terms of
an effective diameter or effective properties (density and compressibility). In general, the
effective diameter is, or properties are, defined as the diameter or properties of an isolated
sphere that has the same specified characteristics as the agglomerated clusters. In dealing
with the acoustical properties of agglomerations, two interactions need to be considered;
the interaction among the particles within the cluster, and the interaction among clusters.

2. ANALYSIS

Consider a homogeneous system of randomly positioned and uvniformly distributed
identical clusters in a fluid of density p and compressibility x. Let the dimensions of
clusters be small compared to the wavelength A (the Rayleigh limit), the mean distance
between clusters be no larger than A, and the dimensions of the fluid be considerably larger
than 4. The interaction of a plane acoustic wave proportional to e*°, k (=2x/4) being the
propagation constant, with a cloud of particles is described by the extinction and scattering
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Figure 1. Types of clusters: (a) straight chains; (b) fractal clusters; {¢) random clusters.

cross-secttons [5]

Ca=(/R) LT | IS(O)F &4, (1)
L

4

Con=(4n/k) Im [Z S,-(O)], @

where S is the angle distribution factor, F; is the position vector of the jth particle, & is the
unit vector and Im refers to the imaginary part; for a single particle, the angle distribution
factor S(#) is

S(8)=3k"a’[(ec— 1) +3((1~ &)/(2+ &,)) cos ()], (3

where a is the radius of particle, £, =x,/k, &,= p/p,, and subscript p refers to the property
of the particle. In terms of this factor, the independent cross sections for a particle are

Cop=(4/Nra’(ka)'l|e.— 1"+ 3)(1 — £,}/(2+ £,) ), 4)
Cp=3ma’(ka) Im [e,— 1+ 3((1 — &,) /(2 + &,))]. 5

Under the assumption that each particle in the agglomerate scatters and absorbs sound
unaffected by the presence of other particles, the extinction and scattering by the agglomer-
ate may be expressed by a simple algebraic addition of the energy extinguished and scatt-
ered by each primary particle. The cross-section for the agglomerate is the sum of the
cross-sections of each particle, and the individual particles are assumed to scatter and



ACOUSTICAL PROPERTIES OF PARTICLES 21

absorb sound independent of others. For identical particles this leads to the following
expressions

CeA = NeCeps CsA = NcCsp ) (6)

where the subscript 4 denotes the agglomerate of N, particles.
The equivalent sphere of the agglomerate is defined in terms of equations {(4)-(6) as

(Deg/D,).=N:>,  (Dy/D,),=N."°, (7,8)

where the subscripts e and s indicate the effective diameter, based on extinction and
scattering cross-sections, respectively. The close spacing of particles in an agglomerate
invalidates the usual assumption of independent interaction. This is due to the two funda-
mental effects. The first one is the near-field effect due to the multiple scattering, which
modifies the internal ficld of the primary particle and consequently changes both the
extinction and scattering characteristics of the agglomerate. The second one is the far-field
effect which results from the coherent addition of scattered waves and only changes the
scattering characteristics. Equations (1) and (2) still describe the acoustical properties of
interacting particles if S; stands for the actual angle distribution factor. For small agglomer-
ates, where the particles are very close together, the resulting phase difference of the
scattered radiation from different particles is very small. Ignoring the near-field interaction,
S; can be described by the angle distribution factor of an isolated particle. Then, an
asymptotic expression for the scattering cross-section in terms of equation (1) leads to

C:A = N czCsp ] (9)
which implies, in view of equation (4),
(Dey/ Dy)=N1". (10

In tightly packed small agglomerates, the far field is the dominant mechanism and cannot
be ignored. Thus, equation (9) is closer than equation (6) to the actual value of the effective
diameter of a sphere that is equivalent to the agglomerate in terms of the scattering cross-
section. In this case, equations (7) and (10) neglect the near-field interactions, and in
addition, equation (10) is based on the asymptotic behavior of coherent addition. To
account for these effects, the following are defined

(Deg/Dp)e=Ne"1es  (Deg/ Dp)s=N"11s, (11,12)

where 1. is the correction factor which accounts for the modification due to the near-field
interactions on the extinction cross-section and 1, is a correction factor which represents
the deviation of the scattering cross-section from the asymptotic behavior of coherent
addition, as well as the modification due to near-field interaction. The next section describes
the method of evaluation of these factors.

3. CORRECTION FACTORS

Consider a homogeneous system of randomly positioned and uniformly distributed
identical particles in a fluid of density p and compressibility x. Let the dimensions of
particles be small compared to the wavelength A (the Rayieigh particies), the mean distance
between particles be no larger than A, the dimensions of the fluid be considerably larger
than A, and the particles be spheres having a (or diameter D); with compressibility &,
density p,, and the location of the center of each sphere being represented by the vector
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F. The scattering of an incident wave P{r) by a single scatterer is known to satisfy reference

[5]:

P (ry=Ffr)+ '[ K yxPur) =V [,V PTG, F) 2V, (13)

%8

where G(r,r) is the Green’s function=(e*"~")/(4z|r—r), y.= (x,—k)}/x and y,=
(p,— p)/ p». The first term on the right side of equation (13) is the imposed incident wave
and the integral term represents the incidence due to scattering from the rest of the volume.
Equation (13) assumes the space to be a single entity in which y, and y, vary with position.
For a cloud of particles, after dividing the space into a number of small spherical volumes
V;, within which (y., y,)#0 and outside which (y., ¥,) =0, equation (13) becomes

P.(r)=P{r)+k* % f P (r)(ec— 1)G(r, 7)) dV;
+ i f [V, [ViPulry X e, ~ DG, 1;) 4V, (14)

where N, is the total number of particles in the cluster, and 7; is the location of the jth
particle. In terms of k2 =[(e, — 1)/(e, — )]k?, equation (14) may be written as

P.(r)=Pfr)+Ki? E J. P.(r)e,— DG(r, r;) AV,
j=14dy,
N, . .
+Z_[ [Vi- [ViPulr) (e, = DIIG(r, 7)) d V. (15)
J=1 4y,

If equation (15) is applied to describe the internal field of a particle /, then the two
summations on the right side for j#/ represent the contribution to the scattered field from
the surrounding particles, and the term for j=/ contributes to the field as a result of
scattering from the rest of the particle itself. For a large number of particles, the contribu-
tion of the surrounding particles scattering to the net field is significant, and is taken into
account by the introduction of a near-field correction factor. Note that if P(r) is assumed
to be the one component of the vector P(r) = P(r)é,, and that V - (VP())é,=V(V - B(r)),
then equation (15) is similar to that given by Saxon [6], which describes the internal field of
each particle resulting from a plane electromagnetic wave incident on a cloud of particles.
Assuming a uniform pressure field within each particle 7, and following Jones [3], equation
(15) may be rearranged as

i(e,— 1\ e -1V, % 3
P r)——{=£ )( K ) H TP, -]= Pir), 16
[ ) 3(ep+2 o1 a"jgé*, vPu(ry) a2 ) (16)

where Ty=a=~h{" (k) — h" (kri) Pa(cos @) —0-5 cos (2¢,) PSP (cos 0,)], AZ and P
are the spherical Bessel functions and the associated Legendre functions, respectively, and
# and ¢ are the polar and azimuthal angles. The subscript j/ indicates the relative angle
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Figure 2. Co-ordinate geometry.

between particles j and I (Figure 2). Equation (16) represents a system of N, coupled linear
algebraic equations for the N, unknown pressure at the center of each particle. For a large
number of particles, equation (16) is difficult to solve. Also, the evaluation of the spherical
Bessel and associated Legendre functions in T, requires the position of each particle be
specified. To overcome these difficuities, two approximations are iniroduced. First, the
pressure field at the secondary particle j is related to that of the primary particle / by the
leading order approximation

P (r))=e*57P(r). (17)

This approximation implies that the magnitude of the pressure field of the secondary
particles j is taken to be the same as that of the primary particle /, and that each pressure
field has a phase difference equal to the instantaneous phase difference of the wave incident
to the respective particle. Note that in a dense randomly packed isotropic medium, no
particle is uniguely defined in terms of its acoustical interactions with the rest of the
particles. Each particle has a similar interaction with the surrounding medium. Conse-
quently, the problem is reduced to N, uncoupled linear algebraic equations by inserting
equation (17) into equation (16):

i (e-D 5 X *]
I—= a Tye* ™ P (r)=
[ 3Gt 7, kT ’

3
542 P{ry). (18)

Second, the scattered sound from the surrounding particles is averaged over the solid angle

and the summation is replaced by an integration under the assumption of a continuous
distribution of particles. Accordingly, equation (18) becomes

I:l_l (5.‘-""1)3/2
3 (g,+2)(g,— 1)"?

Ra/2
25(24f.c) J a(k.DR)G(R)R® dR:l P, (R)= FP(R),
1

g,+2
(19)

where R=r/D, a=(1/4n) 2" |5 e* = @a(k,r) sin (0) d0 d¢, f,. is the volume fraction
within the cluster = N(a,/a.4)", G.(R) is the radial distribution function within the cluster,
R,=D,/D,, D,is the diameter of the smallest sphere that completely encloses the cluster,

and the factor R? is introduced so that for G.(Ry=a=1. then, 24f,. f"z R*dR=N,. The
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statistical models available iead to a non-linear integral equation for G.(R), which needs
to be solved numerically. Recognizing that the incident acoustic wave satisfies a relation
identical to that satisfied by a one-component electromagnetic wave propagating in the z-
direction, the averaging of T, over the solid angle leads to a diagonal matrix. Since A(r) =
P(r)é, has only one component, T;;=a;. Now, in terms of the spherical Bessel functions
and the definition

|y ie~1 ) -
equation (19) is reduced to
P(r)=E8(3/(e,+2))P(r), (21)
where
R4/ )
A=24f, j R*[A((a,R)+ Ax(a,R) A3(a,R)IG.(R) " dR, (22)
1
and
(e —1\" _isin 2, R i 3 3
B = (a,,- 1) » AlmR)= (22,R)* ° Ay R) = ((2apR)2 1) + (20, Ry’
As(@,R) = sin (2a,R) +3 cos (2ap12R) _3 sin (20:,,13{) .
2a,R (2a,R) (2a,R)

In deriving equation (22), it is assumed that the agglomerate contains a large number of
particles, and each particle in the agglomerate has identical characteristics. However, for
an agglomerate of a small number of particles, the system of equations represented by
equation (16) has to be solved for P,(r;) of each particle, and then & needs to be defined
as

_ Pu'(rf)
IR Ne, D) 23)

In this case, each particle has its own correction factor. In terms of & the pressure field
and the angle distribution factor § become

P.p(r)=EP A1), Sp=£S), (24)
where the subscripts D and 7 refer to dependent and independent particles. Inserting

equation (24) into equations (1) and (2) yields

Coo=(1/) LY, j IEISKO ettt 4, (25)
i

an

Co=(47/k) Im [z_ 4‘;&(0)] . (26)

The double summation in equation (25) gives coherent scattering for j # { and incoherent
scattering for j =/ Accordingly, the coherent intensity is proportional to N? and the
incoherent intensity is proportional to N,. Assuming identical particles, equations (25) and
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(26) may then be written as

Cop = NJEPF(0)Cy, C.p = (4nN_ /k) Im [£S(0)], (27,28)
where
_[ ISP
Cy -[,,, pE; dqo, {29)

and F(@) is the form factor
F(@)=(1/N)y ¥, eliktesm e, (30)
1

which describes the coherent addition of the scattered waves from different particles [7].
Equation (30), averaged over the solid angle, gives

y = (1/4n) J.h J-z F(0)®(8)sin (@) dO dé, (31)
o Jo

where @(8) is the phase function
@(0) =’ D14(0)/(Cul), (32)

I; is the intensity of the incident acoustic wave, and [,; is the independent scattering
intensity. For particles with a,«1,

Ly=(167*v*a®1,/(9¢* )Y (1 — 3 cos (8))%, (33)

where v is the frequency, a is the radius of the sphere and ¢ is the speed of sound.
In terms of equations (4} and (33), the phase function reduced to

7(1—1-5 cos (8))°
lex— 1P +31(1—£,)/2+ &)

The extinction correction factor 7, can be evaluated from equations (11) and (28) as

(0)= (34)

1 &

r=({x; & miesor} misor)” 65

and the scattering correction factor #, can be evaluated from equations (12) and (27) as

N, 1/6
= [rz] yl&IlZ/Nc] . (36)

Now, for a homogeneous, continuous, isotropic and infinite distribution of particles, the
form factor is, after averaging over all orientations of particles and replacing the double
sum in equation (30) by an integral [8, 9],

dr, (37)

Ry/2 :
F(6)=1+24f, j‘ RIG(R)— 1132 PR)
) BR

and B = 4, sin (8/2). Now, within the Rayleigh limit, and noting that G(R) — 1 =0 for
R>2,and 0 <@ < x, sin (BR)/(BR) =~ | and equation (37) is reduced to

R/2
F(0)=1+24f, J RY{G.{R)-1]dR. (38)
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Thus, equations (27) and (28) become, in terms of equations (20}, (31) and (38},
C:D=Nc|§|2‘rcsh (39)
C.p=(4n/k)EpN, 1Im [S(0)] + (47 /k)E,N, Re [S(0)], (40)

where the subscripts Im and Re refers to the imaginary and real parts, respectively.

Now, the effective diameter of a cluster needs to be evaluated. In terms of this diameter,
the acoustical properties of the cluster are developed where the interaction among the
clusters themselves is negleclted. The interaction among clusters may be modeled in a
manner similar to modeling the interaction among single particles. For each cluster with
an effective diameter Dy,

§e=[1 —%ah]—l, (41)

A4,=24 j;,er R%(2a,R)G(R) dR, (42)

Ye=(1/47) r J F(6)®,(0) sin (8) d0 d¢, (43)
o Yo

@,,=31+cos’ 9), (44)

F.(8)=1+24f, r RIGAR)—1] Sinﬁ(%d}z, (45)

and B=4aq,sin (8/2), a.= D /A, f..= N(z/6)Dy=(1/N)(a,/a4)'f,, N is the number
of clusters per unit volume=N/N,, N is the number of particles per unit volume and f, is
the volume fraction of the system. Now G.(R) is the radial distribution function, which
describes the mechanical interaction among the clusters. Note that the diameter used in
the definition of f,. is D,, and not D.y. This is due to the fact that the mechanical
interaction recognizes the geometrical dimension of the cluster which is better described
by D 4. On the other hand, D, describes an effective diameter of the cluster as it appears
to the waves. G.(R) may be described by one of the models depending on the volume
fraction. Now, the acoustical properties of the system are

Qup=4a, I [ESO)),  Qw=0.EL 7. (46,47)

For a system containing non-agglomerated particles, equations (46) and (47) still apply,
provided that D= D,. A cloud of particles and different types of clusters give different
acoustical characteristics, related to the relative positions of particles in the cloud or within
the cluster. The next section evaluates the acoustical properties of interacting particles and
different types of clusters.

4. CLOUD OF INTERACTING PARTICLES AND CLUSTERS

4.1. INTERACTING PARTICLES

For a system of particles, where the particles exhibit short range potentials, it appears
that the Percus-Yevick [10] model (hereafter called PY model) is the most realistic model
among others. To provide a close form expressions for the sound cross-sections, the model
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needs to have a simple structure without sacrificing the main features of a statistical model.
Two solutions to the PY integral equation are available in the literature [11, 12]. Either
these solutions do not give explicit expressions for the entire domain or they are not easy
to handle. Using the radial distribution function given by Thiele [11] for 0< R< 1, where
G(R) is continuous up to the third derivative at R=1, the following linear model is
proposed:

0, ifo<R<l,
G(R)={F+ER, if1<R<py,,
1! 1fR>x].

Here

F=(=4f2+3f,+D/(fi— 1",  E=—45(f,—fD/(fi-1)', x=(1-F)/E

and 2, is approximated by the intersection of the linear profile with G=1. The comparison
between the linear model and the PY model vs. the volume fraction is shown in Figure 3.
Note that the linear model captures the essential behavior of the PY model, especially its
extremum at R = 1. In terms of the linear model, the factors ¢ and y become

.5:[1 +80, % (B /(as) ~ Ba/ &2 +i Baa /6~ Bao) +- ')]’ @)

g,+2
where
Bi=3E(Ln(x1)}/32, Ba=(E(x:—1)—1)/8,
Bs=3E(1-x})/8,  Ba=[F(x}-1)/5+E(1—x})/5),

and

n [1 ~8f, +8/UF~ D(xi= D+ 6B - 1)] | (49)

4 Hee— 1P +31(1 — 6,) /(2 + &,)[]

]

<
-

-
[}
T

Radial distribution function, G(R)
- Y -
T

3

%0000009]

1 . 1
14 16 1-8
Radial distance, R
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4.2, RANDOM CLUSTERS

Random clusters can be treated as small clouds of diameter D, containing N, particles.
Due to the randomness of the position of a particle relative to others, the particle number
density is uniform within the cluster and, as a result, G.(R) = 1. Then, equation (22) yields

_ 3if
0¢,0;

ai—4a}l, e,<asxl. (50)

For a first order approximation, the far-field correction factor yields

=‘2_2[ 2 : 2]: (51
4 Ulee—1F+3)(1-£,)/(2+ £)I')

where F(8)=1. The correction factors related to the interaction among clusters can be
evaluated under the assumption of uniform cluster density from equations (42) and (43)
as

A= 3lfw[l'f‘l -ba ,E,] {52)
and
22 1
== . 53
= [[lsr1f2+3i(1“£p)/(2+sp)| 1] 53

4.3, FRACTAL CLUSTERS

By definition, a fractal cluster exhibits self-similarity in shape. The radial distribution
function for a fractal cluster is [13]

GuR)=— 2K _ emmn (54)
c( )_4?TD3R3_fe i .
P

where K and p are related to the fractal dimension f by

1 (f + 1)f/2 _ (ﬁ.ll)”z (55)
NG rl
In terms of f, 4 and y become
241K(2f 1 { 2p 2p
Qa,) (lef) (f - Nl/f)’ (56)
Fo)=1+ 2K (—3&)f_2 ( -/, ) (57)
(4rD;) \N'7, N7,

The correction factors which account for the interaction among fractal clusters are the
same as those given in equations (52) and (53).
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5. ATTENUATION OF PLANE WAVE

Following Morse and Ingard [5], let the acoustics of a particulate system be described
by an effective density and compressibility as

-1

1- v v

pur= [wi] L k==K ik, (58, 59)
p Pp

where the subscript g refers to the properties of particles, In terms of these, the independent

pressure P; is obtained from the wave equation, excluding the scattering and adsorption

effects of particles. The pressure is related to the intensity as P~ /p.gc.I. The scatterers
attenuate the intensity of a plane wave according to

I=1Ioe™NCo, (60)

where X is the distance of penetration, I, is the initial intensity of the wave and N is the
number of scatterers (particies or clusters) per unit volume. Then, the dependent pressure
distribution within the particular medium becomes

Pp= P, NCrk/D 1)

Now, consider the propagation of small disturbances {generated by the sinusoidal oscil-
lations of a wall) in a semi-infinite compressible gas at rest. Assume that all sources of
dissipation (viscous friction, conduction and radiation) are neglected except for the dissipa-
tion of sound due to scattering or absorption. Assume that the particles have negligible

flow resistance and, as a result, C,=0 and C,= C,. Then, the attenuation of pressure is
described by

|Po/Pi|=exp[—( fo/3)e’ (e — 11+ 31(1 — £,)/ 2+ e, )ONE  y(X/ D)1 (62)

This relation shows that the interaction effect, represented by |£|*y, may enhance or reduce
the attenuation effect, depending on the properties of the particulate system and volume
fraction. The effect of interaction particles on the attenuation of a sinusoidal plane as it
penetrates into the particulate domain is shown in Figure 4,
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Figure 4. Dependent to independent pressure ratio vs. dimensionless penetration distance: - - -, interacting
particles; ——, non-interacting particles.
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6. CONCLUDING REMARKS
A model is proposed for the acoustic characteristics of small particles and clusters in a

dense particulate system. Analytical expressions for the acoustical properties are derived
based on a proposed linear model which describes the essential behavior of the pair
distribution function. It is found that interaction among particles may increase among
particules may increase or decrease attenuation depending on the volume fraction and
properties of the particulate system.

10.
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