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We consider a quasilikelihood/variance function model when a predictor X is measured with error
and a surrogate W is observed. When in addition to a primary data set containing (Y, W)
a validation data set exists for which (X, W) is observed, we can (i) estimate the first and second
moments of the response Y given W by kernel regression; (ii) use quasilikelihood and variance
function techniques to estimate the regression parameters as well as variance structure parameters.
The estimators are shown to be asymptotically normally distributed, with asymptotic variance
depending on the size of the validation data set and not on the bandwith used in the kernel estimates.
A more refined analysis of the asymptotic covariance shows that the optimal bandwidth converges
to zero at the rate n” /3,

1. Introduction

Let Y denote a scalar response and X denote a scalar predictor variable.
Consider a heteroscedastic nonlinear regression model with

E(Y|X =x)=fi(x,f) and var(Y|X = x)=c?g(x, B, 0), (1.1)

where 62 is a scalar parameter and f and 6 are column vectors. This model is
widely applicable, including generalized linear models and many important
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nonlinear regression models as special cases. The key feature of (1.1) is that
specification of the mean and variance functions is sufficient to obtain estimates
of the parameters (f, 8, o). There is no need to specify a likelihood function.
The quasilikelihood (also known as generalized least squares) score for f is
defined to be

i {Yl_fl(XnB)}flﬁ(Xn ﬁ){g(xn B’ 9)}‘& (12)

i=1

where f} 5 is the derivative of f; with respect to . Quasilikelihood or generalized
least squares estimates of the unknown parameter f for given f are obtained by

setting (1.2) equal to zero. For a recent review of this problem, as well as
a discussion of variance function parameter estimation, see Carroll and Ruppert
{1988, chs. 2, 3},

In many circumstances, instead of observing X, a surrogate W is observed. As
is well known, ignoring the measurement error and simply substituting W for
X is inappropriate because doing so ieads to inconsistent parameter estimates.
Our interest lies in the estimation of the unknown parameters based on a sample
in which we observe ( Y, W). Under the assumption that given X, W is indepen-
dent of Y, the mean and variance functions of the observe(j data are defined by

E(Y?| W =w) = E{E(Y?| X)| W = w}. (1.3)

Eg. (1.3) shows that the distribution of X given W plays an important role in the
estimation of unknown parameters. If the distribution of X given Wis known up
to a finite set of parameters, then (1.3) gives parametric formulae for the mean
and variance functions of the observed data, to which quasilikelihood and
variance function estimation techniques can be applied.

The measurement error estimation problem has been addressed previously in
this context. Carroll et al. (1984), Fuller (1987), and Schafer (1987) discussed full

parametric estimation when a model for X given W is postulated. Stefanski

(1985), Stefanski and Carroll (1985), Whittemore and Keller (1988), and Carroll
and Stefanski (1990) considered various small error approximations to construct
estimates adjusted for measurement error. Clark (1982), Rosner et al. (1989,
1990), Whittemore (1989), Gleser (1990), Pierce et al. (1990), and Carroll and
Stefanski (1990) all consider the possibility of directly replacing X in (1.1) and
(1.2) by a linear regression for E(X| W).

In this paper, we consider estimation of the parameters in (1.1) in
a semiparametric context, so that no assumptions need be made about the
distribution of X given . In some cases, an independent validation data set
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containing (Y, X, W) or (X, W) is available; see Rosner et al. (1989) and Pepe
and Flemming (1991) for examples. For this situation, it is possible to estimate
the density of (X, W) and therefore the density of ¥ given W, an idea which was
developed independently by Carroll and Wand (1991) and Pepe and Flemming
(1991). For discrete W, Pepe and Fleming (1991) propose to estimate the

prnhahﬂnv rlpnmtv function f'(wlw\ hv its Pmnirmnl distribution, which is

constructed by replacmg each observatlon X;in the validation data w1th W=w
by a point mass 1/n%,, where nt, is the number of observations in the validation
data with W = w. lue‘y' carry Lui‘Oi.lgu this idea when X and W are discrete, but
not otherwise. Carroll and Wand (1991) consider logistic regression and suggest
using kernel regression to estimate Pr(Y = 1| W = w) from the validation data.
The use of kernel regression rather than direct estimation of the density of
X given W greatly simplifies the calculations. In both the above two papers it
has been shown that the semiparametric estimates are asymptotically normally
distributed and that the efficiency of the semiparametric methods increases with
the size of the validation data relative to the size of the primary data. As the
validation sample size becomes large relative to the primary sample size, the
semiparametric method becomes as efficient as in the cases where the density of

X given W is known.
Neither Carroll and Wand (1991) nor Pe pe nd Flemming ( 991) co 1sider the

VRV LAl QG YWanulul i oo £

general quasilikelihood/variance funct1on model In this paper, we will construct
new estimates for this model, focusing on the continuous case. Our approach is

as lUllUWb

e Estimate E(Y| W ) nd var(Y| W = w} as functions of (f, 6, o) and w by
means of kernel regression applied to the validation data.

e Apply quasilikelihood and variance function estimation techniques to the
primary data using the estimated mean and variance function.

In section 2, we outline the proposed methods for the case that § is known, as
well as for the case that 6 is unknown and hence variance function estimation is
required. In section 3, we state the main results on asymptotic normality of the
estimates. We briefly discuss bandwidth selection in section 4. Simulation results
are given in section 5. In the discussion, section 6, we note that our results apply
almost without change to the case of likelihood estimation of parameters, and to
the case that (X, W) is discrete. Proofs are contained in three appendices.

2. Description of methods

2.1. Introduction

Suppose that the structural variance parameter 6 is known and the variance
depends on the mean, i.e., x and f. This model is important because it includes as
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special cases many GLIMs, for example, logistic regression, the Poisson model
with g(x, 8, 6) = fi(x, B), and the Gamma model with g(x, B, 0) = f3(x, p).
When 6 is unknown, overdispersion being the classical example, there are
various ways to estimate 8 [see Carroll and Ruppert (1988)]; this case is covered
in section 2.3.

In what follows, assume that we have a validation data set containing
(Y, X, W)or (X, W) of size n, and a primary data set containing ( ¥, W) of size
n, Let n = n, + n,, n,/n, = A. Derivatives are denoted by subscripts.

The algorithms studied require kernel regression estimation of functions of
X regressed on W in the validation data. As discussed by Carroll and Wand
(1991), the range of W in the observed validation data is usually smalier than
that in the observed primary data. If kernel techniques were used blindly, this
would lead to extrapolation, which is a dangerous business. To overcome this
problem, as well as to avoid technical difficulties with edge effects, all kernel
regression estimates used here are calculated on a compact set Q interior to the
support of W. Sums in the primary data are taken only for those W e Q. While
this truncation causes some loss in efficiency, it is counterbalanced by a gain in
robustness. The truncation also leads to an easily described theory.

2.2. Variance parameters known

The simplest model to describe occurs when 6 is known. Write
E(Y|X = x}=fi(x, p)and E(Y?| X = x) = f,(x, B). Let u(w, B) = E(Y| W = w),
s(w, B) = E(Y?| W = w), and v(w, f) = var( Y| W = w). Using (1.3), we propose
to use kernel regression [see Eubank (1988)] on the validation data to estimate
u(w, B), ug(w, B), and s(w, f), and then to proceed with quasilikelihood estima-
tion on the primary data using the resulting estimated quasilikelihood score.

Let K be a symmetric density function with finite support and h be a window
or bandwidth. Let © be a compact subset of the support of W. Forw € Q, define

fro=5 8 k(H52),

nuhi

1
nl)

ny W, —
ka(w, B) = hv;fl(xi,ﬁ)K< - W),

1 M Wl._
knpl9, B) =~ 3 fw(xi,ﬁ)K( ; W),

1 g
nyh ;=

bu(w, ) =

fz(X.-,ﬁ)K<Wih_w). @.1)
1
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We estimate u(w, f) by u,(w, B) = ka(w, B fw (w), ug(w, B) by uns(w, p)
= kug(W, B)/ fw (W), s(w, B) by s,(w, B) = by(w, B)/ fw(w), and wv(w, B) by

s,(w, B) — uz(w, B). The estimated quasilikelihood score for the primary
data is

ud Yj-un(Wj’ﬂ)
jenot1 Sn(W, B - uf(Wj

(W) = S (¥, W, ).

j=ny+1

If Y is observed in the validation data, let I(y, x, B) = {{y — fi(x, f)} X
[5G, B} { falx, B) — [3(x, B)}, so that Y7 I(Y;, X, B) is the quasilikelihood
score for the validation data. Of course, one could use only the validation data
to estimate the parameters, but this would ignore the information contained in
the primary data. These considerations lead us to propose to estimate f by the
solution f, to the equation

0=n"12 Y (¥, Xe p+n" Y Y (Y, W, D). 22)

i=1 j=ny+1

When Y is not observed in the validation data set, we estimate § by the
solution f, to

0=n'2 Y WY, W, p). (2.3)

j=ny+1

The asymptotic limit distribution of /?1 will be presented in section 3. Our
limit results are proved in the appendix not for the estimates which solve (2.2)
and (2.3), but rather for one-step versions defined in the appendix which start
from a root-n-consistent discretized estimate of §. By a discretized estimate we
mean one which takes values in the set {0, + cn™ % 4+ 2cn™ 12, ...}, where c is
an arbitrarily small constant.

2.3. Variance parameters unknown

Data in the economic, clinical, and biological sciences are often fitted by
a heteroscedastic regression model (1.1) with unknown variance parameters o
and 6 which must be estimated. Examples of this situation are given in Carroll
and Ruppert (1988). Following Davidian and Carroll (1987) and Carroll and
Ruppert (1988), we propose to estimate the variance parameters ¢* and 8 by
weighted least squares on squared residuals and then estimate the regression
parameter f§ by quasilikelihood estimation. This method is essentially the same
as pseudolikelihood estimation of variance parameters; see Carroll and Ruppert
(1988, ch. 3).
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The basic procedure is to first obtain a preliminary n!/2-consistent estimate
of (f,0), perhaps from the validation data. In this case, the preliminary
estimate f, might be a robust estimate or the unweighted least squares
estimate based the primary data, for example, f, is such that 0 = n; /2 x
Z, w1 LY f1 /3)} Sip{W,;, B). The preliminary estimate 9* minimizes
Z;’ et AT — ﬁ*, 6)}? where = Y;—fy (W, B,) and 6% =n;'x
Z,‘n o U fl(W,, B.)}/9(W;, B,. 0,). Both f, and 0 are n'/2- consistent.

Having obtained preliminary estimates, residuals are formed and an updated
estimate of 8 is constructed using functions of the squared residuals. Finally, the
resulting estimate of (3, 8) is used to form weights, and an updated weighted or
quasilikelihood estimate of § is constructed.

In model (1.1), let q(w, B, 8) = E{g(X, 5, 0)| W = w}, t(w, B) = E{f1(X, B)|
W = w}, and let u and u; be defined as in section 2.1. Note that

v(w, 62, B,0) = var(Y| W = w)
= 0’ E{g(X, B, | W = w} + var { (X, )| W = w}.

Let K be a symmetric density function with finite support and s be a band-
width. For w € Q, define

,,(W B I(Xn ﬁ)K { i W)/h},

i W)/h})

is M»

1
n\W, P, 0) =
gnlw, B, ) nh 2
and define f W, u,, and u,z as in section 2.1. Let

u(w, B, 0) = gu(w, B, 0)/fw(w),
LW, B) = 1w, B)/fwr (W), 24)
va(w, 62, B, 8) = a2g,(w, B, 8) + t,(w, B) — u(w, B).

We estimate t(w, B), q(w, B, 0), and var( Y| W = w) by t.(w, B), g.(w, B, 0), and
v(w, 62, B, 6) respectlvely Let 62, 6,, and B, be preliminary n'/2-consistent
estimates for o2, 6, and f respectively, for example, the variance function
estimates based on the ( Y}, X;) in the validation data [see Davidian and Carroll
(1987) and Carroll and Ruppert (1988)].
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First, we obtain &% and 0 such that

—1’2 I’AZ ﬁ*’é)[ - ) 5 2 a2 ] A:|
L gy [ B = 0 )

" HH(Wp AZ ﬂ‘*s ]

+n-12
j="v+103( J*9ﬁ*a8 )

x[{Yj_un(Wﬁ BA*)}Z - Un(Wj’ 6-2’ ﬁ*?é)]’ (25)
where
MT(xa 0-29 ﬂ’ 0) = (02 gﬂ(xs B.ﬂ 9)’ g(x’ ﬂ9 6)),

HZ(W7 027 B’ 0) = (qunO(W’ ﬁa 9)’ qn(w’ ﬁ’ 0))’

ie., M and H are the derivatives of g and v, with respect to (6, 6>)T respectively.
This is a generalization of pseudolikelihood estimation appropriate for the
measurement error model. When X is measured exactly, i.e., X = W, then since
= 0, solving (2.5) for @ is equivalent to pseudollkehhood estimation of 6.
We can now form a weighted estimate of 8, estimating it by the solution ﬁ3 to
the equation

_ e Yo hiXe )

fip(Xis B)
i=1 g(Xi’ﬁ’ 0) !

fa ¥ MMS)M(WM} 26)

A

j=m+1 v,(w;, 84, B,

If Y is not observed in the validation data, then we estimate (02,6, f)
by the estimating equations (2.5) and (2.6) without the first terms and with
n~ 12 replaced by n, '/?. That is, we estimate ¢ and 6 by the solution to the
equation

Ny . 2 3
e B0 0 )
i=1 Un( U*,B*,e )

X[{Yj—un(Wj’ ﬁ*)}z —Un(Wj’ 025 0, ﬁ*)] (27)
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We denote these estimates by 61 and 6,. Then, estimate B by the solution [?4 to
the equation

n

0=n"2 % {Y;—u (W, B)} ung(W;, B) {0a(W;, 61,601, B)} " (2.8)

j=n,+1

As stated previously, our theoretical results apply not to the solutions to
(2.6)-(2.8), but rather to one-step versions of them.

3. Main results

In this section, we state the asymptotic resuits for the estimators defined in
section 2. The proof of Theorem 1 and the calculations for Corollaries 2 and
3 are given in appendices A, B, and C respectively. The remaining results can be
obtained by similar arguments.

3.1. Asymptotic results with Y observed in validation

In this subsection, we will state the main asymptotic results for the estimates
defined when Y is observed in the validation data, specifically (2.2), (2.5), and
(2.6).

Let AT denote (4™")". Let f and fy denote the joint and marginal densities
of (X, W)and W, respectively. Let @ be a proper compact subset of the support
of W and J be an open interval containing Q. We first obtain the limit
distribution for the one-step version of (2.2), the estimate is appropriate for the
case that @ is known.

Theorem 1. Assume that
I'{(B) is nonsingular,

S fw, u, ug, ugg, S, sg are continuous on J and

are in the class C2[Q], (3.1
inf fp(W) >0 and inf v(w, f) >0, (3.2)
wel welJ

Ji> fips figps f2: fap € LP, (3.3)
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then

sup E(] fi(X, H)IP| W = w) fw(w) < ©,
sup E(|fip(X, B)[7I W = w) fw(w) < o0 for i=12,

sup E(| figp(X, B} ?| W= w)fw(w) < o0 for some p > 2.

Suppose n*"~‘h— co for some n<1—1/p, {n**h/logh)}~* -0, nh’/
log(h™1) - 0, and nh* - Q. Then, with ‘= denoting convergence in distribution,

n'2(f, — B)=N{0O, T (B (BT TT(B)}

where
PA(B) = 5 UG, X, )+ 39,(Y, W, )],
#(w. ) =20 0, )
%(B) = - BTV, X, HIT(Y. X, )
+ AP(Y, W, )Y¥T(Y, W, B)+ A24,(B)], (3.4
4,(6) = cov{{(ﬁ(x, B — w(w, ﬂ)}%”(—(%)—)} (33)

Similar to the results of Carroll and Wand (1991) and Pepe and Flemming
(1991), in the case of generalized linear models the first term in (3.4) is the Fisher
information from the validation sample and the second term is the Fisher
information from the primary sample. The third term is the cost due to
nonparametric regression estimation of u and v.

Note that the condition nh* — 0 forces p to be greater than 8/3. Note also that
the asymptotic covariance in (3.4) involves neither the kernel density K nor the
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bandwidth h. As 1 — 0, the estimate is also as efficient asymptotically as in the
case where the density of X given W is completely known.

In the next result, we present the limit distribution of estimates of (4, ¢) when
Y is observed in the validation data.

Theorem 2. In addition to the conditions in Theorem 1, assume that (3.1) holds

for q and t and (3.3) holds for g and f % . Let (62, 6, B,) be n"*-consistent estimates
of (62,0, B). Then

'’ ( ;j _ i) = BiA + B 'Ban'*(By — B) + Os(1), (3.6)
where
—pn—1/2 & lW(Xi,G%,ﬁ,a)r o ) 2 .2 ) 1
A=n Y ig:l gz(Xi,ﬁ’ 0) [{(Y, fl(Xu ﬂ)} 4 g(Xu .B’ G)J
— “ H Wj, 2, ,0)
+n7i jzgﬂ %W,%f%_e“) LLY;— u(W;, b)) ~ v(W;, 62, B, 0)]
A [H(W, ¢ B, 8)
— i i; [m {UZ{Q(X,-, B, 0) — g(W;, B, 0)}
+fHX,, B) — t(Wy, B) + 2u(Wy, BY{u(W,, B) — fi(X,, ﬁ)}}],
J 1
g, — L p[MX." BOM(X, " B.0)
L+4 | g“(X, B, 09)
;LH( W, a2, B,0)HT (W, %, B,8) ]
* 2(W. 0%, B,0) J
B. = 1 E M(X, a2, B,0)g; (X, B, 0)
T+ 72X, B, 0)
LHW, 0% B, 0)o; (W, B, 6)
+ oX(W. 0%, f, 0) ’

Asymptotic normality follows directly from (3.6). If the variance function does
not depend on B, then the asymptotic distribution of 6 and &2 does not depend
on the method used to obtain the preliminary estimate f,. In fact, it is easy to
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check that B; = 0 in this case. Also note that the effects of the preliminary estimates
6, and 62 are asymptotically negligible. The asymptotic variance of the third term
in A is the dispersion induced by the nonparametric estimation of fy, u, g, and ¢.

We now turn to the quasilikelihood estimate of f when 0 is estimated and Y is
observed in the validation data.

Theorem 3. In addition to the assumptions in Theorem 2, we assume that I'3(f) is
nonsingular. Then

n'2(f5 — By=N{0, I's (B3B3 T(B)}
where
1

FS(B) = m E[lﬂ(Ya X’ ﬂ’ 9) + )“q/ﬂ(Ya VV’ 62’ ﬂ7 0)]9

y - u(W’ ﬁ)

'P(,V’ w, Uz’ﬂ’ 9)=U(W 0_2 ﬂ 0) Ug

(w, B),

1
L(B) = 1 EL(Y. X, B O)I(Y, X, 3. 0)

+ A¥P(Y, W, a2, B, 0)PT(Y, W,a% B,0) + A2 45(B)].

43(B) = cov[{fl(x, B) — u(W, B)} %]

3.2. Y not observed in validation

Corollaries 1-3 state the limit results for (2.3), (2.7), and (2.8), and hence are the
analogues to Theorems 1-3 for the case that ¥ is not observed in the validation
data. Since Y is not observed in the validation data, the changes in the
corollaries are the absence of (Y, X, f) in the asymptotic variances and the
constant 4/(1 + 1) due to a different normalization.

Corollary 1. In addition to the conditions in Theorem 1, we assume that I' () is
nonsingular. Then

ny2 (B, — B)=N{0, I (A LAY (B},

where

y = u(w, )
v(w, B)

L (B) = E[¥(Y, W, B) ¥T(Y, W, B) + A4:(B)],

uﬂ(W’ ﬁ)]
(W, B) |

F(B)=E[Y¥(Y, W, )], ¥(nwp)= ug(w, B),

4;(8) = CO_V[{(ﬁ(X’ B) — u(W, B)}
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Corollary 2. Under the conditions of Theorem 2,

6, -6 . -
";17/2(6_{_ O'2> = C14, + Cy lcsngla/z(ﬁ* — B) + op(1),

where
_ " H(W, ¢% B,0)
— 12 i o ) 2 __ 2
A= L o ey e PY e 0 B 0)

'1 & H(Wj’ 0,2’ Ba 0) 2
TR i; [m {0 {9(Xi, B,0) — q(W,, B,0)}

+ 10, BY — t(W5, B) + 2u(W, BY{u(W;, B) — fi(X, ﬁ)}}],

C.-E H(W, o B, 0)HT(W, 0%, B, 6)
e VAW, a2, B, 0) ’
_ _[HW,d% B,0)v,(W, B,0)
Cs= E[ V2 (W, a2, B, 0) ]

Corollary 3.  In addition to the assumption of Theorem 2, we assume that I' ,(B) is
nonsingular. Then

ny/2(Ba ~ B)»N{O, FZ‘(ﬂm(ﬁ)FZT(B)},

where
T4(B) = E[¥4(Y, W, 0%, B,6)],

(3, w, 0%, B, 0) = UY(T‘% ug(w, B),

74(B) = E[¥s(Y, W, 0% B, 0) ¥{(Y, W, 0% B,0) + M4(ﬂ)],

44(B) = cov[{ﬁ(x, B) — u(W, ﬂ)};(—;—ﬁ((z’—?mil.

3.3. Covariance estimation

Since X is not observed in the primary data, we estimate the third term based
on the validation data,

) | X’y 3y) — n Wi’ Al 2 2 o
A@)=L % {f( ' ‘Z()W “ﬁ() p ’} g Wiy B T (Wi, ).
n is M1

n, =1
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Define
ROy N AY; CNA)
mi=y g(X;, 1)
S H_l_ . unﬁ(Xia ﬂl )unﬂ(Xiv ﬂl)
? = .

nf=ﬂv+1 l),,(Xg,BAl)

Estimate I, () and Y;(B) by S, + S,and S, + S, + A24,(f,)A1 + 2) respective-
ly. Since f, is consistent, S,, S,, and 4, (f,} are consistent estimators for I' (),
y:1{f), and 4,(p) respectively. Similarly, we can easily obtain consistent es-
timators for the rest of the covariances.

4. Bandwidth

Note that the classical optimal 4 with rate n™'/3 is not allowed under the

condition nh* — 0. In order to find the appropriate rate for & and perhaps later
to obtain an estimate of it, we generalize the bandwidth selection method in
Carroll and Wand (1991). We focus on the estimate 8, although the same
considerations should apply to the other estimates. The method is based on
a higher-order expansion of the covariance of an asymptotically equivalent form
of n'2(B, — p). Let n, = (n'/?/h)"' + n'/?/h?. By a second-order Taylor series,
it can be shown that n'*(8; — f) = V, + Op{n,), with

E,. V) =T By B TT(B) + aln, bya' (n, h) + O(1/nh), (4.1)

where

_ A . uﬁ(W» ﬂ)
A= 21 + A)fZZK(Z)dZ E[v(W, B) fw (W)

x {20 (W, B)fw (W) + u" (W, ﬂ)fw(W)}],
ug(W, B)
v (W, B)f (W)
x {4 (W, B) — 2u(W, B)s(W, B) — 4u(W, B) f1(X, B)
+ 2 (X, B)L(X, B) + 20(W, Byu(W, B)
(W, B)
ug(W, B)
a(n, h) =T (B)"H{(n'?h) "' A, — n*?h?4,},
W =0u/dw, [ =0fow, u' = 0%u/d%w.

A, = /lj‘KZ(z)dz E}:

H(X, B) fip(X, ﬁ)}}

1 %ean ¥
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A technical report containing the somewhat complicated calculations for (4.1) is
available upon request. In the generalized linear model, the mean
u(w, B) = u(w”B), and it can be shown that A; = A, = a(n, h) = 0 when § = 0.
It also can be shown that the asymptotic variance of 8, is minimized at h = oo
when f§ = 0. In terms of rates of convergence for estimating the linear combina-
tion &7 B, the bandwidth h is chosen such that {£7 a(n, h)}? is minimized. Except
for the case that u(w, ) = u(w’f) and B = 0 mentioned above, the optimal
bandwidth is ko = yon~ /3, for some y,. Note that the rate n~ '/ satisfies the
conditions in Theorem 1.

The plug-in method suggests estimating y, by replacing the unknown quanti-
ties in y, by estimates. If there exists a discretized n*-estimator §, of the unknown
yo for some 0 < a < %, then the limit result in Theorem 1 stili holds for the
estimated bandwidth kg = jon~1/3. Let f(h) denote our parameter estimator
based upon a bandwidth h. It is easy to show that

nV2{ f(he) — i)} ——0,

where h satisfies the conditions in Theorem 1, if we discretize §, as we discretized
Bo in the proof of Theorem 1. From (A.12) to (A.15), it is sufficient to show
that for y, = v¢ + t,/n% where t, —>t, is a fixed deterministic sequence and
h, = yn~ Y3, and that

P2 A8, ha) — 4B, H)} ——>0. “2)

Since the conditions in Theorem 1 hold for h,, we can apply Lemma 1 and
Lemma 2 to A4,(f, h,) and A,(B, h) to show (4.2).

5. Simulation

The validation data containing (X, W) were generated such that
X = 05W + 8| W|°U, where (W, U) has a bivariate normal distribution with
mean (4, 0) and covariances oyy =0 fand é0% = o3 = 1. The primary data
containing ( Y, W) were generated according to the Michaelis—-Menton model, i.e.,
such that ¥ = 1/(8, + f1/X) + &, where ¢ has the standard normal distribution.
Two hundred simulated data sets were run for each of the three validation data
sizes 50, 100, and 200 and for each of the three primary data sizes 100 and 300.

As in Carroll and Wand (1991), we used an ad hoc bandwidth éyn~ 1’3 which
is easily programmed, where Gy is an estimate of the standard deviation of
W based on the validation data. A Gaussian kernel and a grid of 21 points
covering the range of the validation data were used. Observations W outside
the range of the validation data in the primary data should not be used in the
estimating equations. To avoid boundary effects, those data points in the
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Table 1
Michaelis-Menton model: ¥ = (@ + B/X)™' + e, where e ~ N(0, 1) and (z, ) = (0.2, 0.3)".

X = W + 025U, where W ~ N4, 1) and U ~ N(0, 1)

n, =50 n, = 100 n, = 200
Param Semi Param Semi Param Semi

n, = 160
Mean 0.320 0.318 0.305 0.311 0.290 0.285
Median 0.308 0.306 0.300 0.305 0.287 0.279
SD 0.124 0.156 0.118 0.133 0.106 0.118
RMSE 0.125 0.157 0.118 0.133 0.106 0.119
MAE 0.070 0.097 0.073 0.089 0.068 0.079
RE{(%) 138.3 100.0 1217 160.0 1154 166.0

n, = 300
Mean 0.309 0.305 0.307 0.307 0.303 0.298
Median 0.304 0.306 0.309 0.309 0.302 0.294
SD 0.072 0.091 0.071 0.077 0.066 0.073
RMSE 0.073 0.091 0.071 0.077 0.066 0.073
MAE 0.048 0.053 0.045 0.052 0.045 0.048
RE(%) 114.4 100.0 115.1 100.0 106.5 100.0

X = W+ 0.5U, where W ~ N4, i) and U ~ N{0, 1)
n.= 50 n. = 100 n, = 200
Param Semi Param Semi Param Semi

n, = 100
Mean 0.330 0312 0.316 0.310 0.301 0.282
Median 0.317 0.290 0.308 0.305 0.295 0.272
SD 0.129 0.162 0.125 0.139 0.111 0.124
RMSE 0.132 0.162 0.126 0.139 0.111 0.125
MAE 0.073 0.096 0.079 0.093 0.067 0.077
RE(%) 1304 100.0 117.6 100.0 113.6 100.0

n, = 300
Mean 0.323 0.299 0.317 0.301 0.314 0.297
Median 0.320 0.296 0.317 0.303 0312 0.294
SD 0.082 0.098 0.079 0.081 0.070 0.077
RMSE 0.085 0.098 0.080 0.081 0.070 0.077
MAE 0.056 0.060 0.052 0.053 0.047 0.052
RE(%) 107.5 100.0 101.9 100.0 112.1 100.0

*Param is the parametric correction for attenuation, while Semi is the semiparametric
quasilikelihood.
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Table 2
X =W+ 025{W|0.5 U, where W ~ N(4, 1) and U ~ N(0, 1)
n, = 50 n, = 100 n, = 200
Param Semi Param Semi Param Semi
n, =100
Mean 0.323 0.312 0.309 0.309 0.293 0.282
Median 0.307 0.296 0.301 0.306 0.291 0.275
SD 0.126 0.159 0.123 0.137 0.108 0.120
RMSE 0.128 0.159 0.123 0.137 0.108 0.121
MAE 0.073 0.096 0.073 0.091 0.006 0.077
RE(%) 130.6 100.0 125.7 100.0 1159 100.0
n,= 300
Mean 0.313 0.298 0.310 0.301 0.306 0.296
Median 0.308 0.295 0.311 0.303 0.304 0.291
SD 0.077 0.095 0.075 0.079 0.068 0.074
RMSE 0.078 0.095 0.076 0.079 0.068 0.074
MAE 0.049 0.058 0.047 0.051 0.045 0.050
RE(%) 118.0 100.0 107.8 100.0 1108 100.0
X =W+ 05]W|°3U, where W ~ N(4, 1) and U ~ N(0, 1)
n, =50 n, = 100 n, = 200
Param Semi Param Semi Param Semi
n, = 100
Mean 0.352 0.290 0.335 0.299 0.316 0.275
Median 0.336 0.266 0.327 0.294 0.315 0272
SD 0.150 0.181 0.145 0.153 0.122 0.132
RMSE 0.159 0.181 0.149 0.152 0.123 0.134
MAE 0.096 0.105 0.087 0.110 0.076 0.084
RE(%) 108.7 100.0 127.0 100.0 110.0 100.0
n, = 300
Mean 0.345 0.276 0.335 0.282 0332 0.290
Median 0.340 0.271 0.330 0.280 0.329 0.280
SD 0.106 0.113 0.096 0.092 0.078 0.088
RMSE 0.115 0.116 0.102 0.094 0.084 0.088
MAE 0.068 0.081 0.063 0.061 0.058 0.059
RE(%) 1185 100.0 98.1 100.0 102.6 100.0
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primary data which are within one bandwidth of the minimum and maximum
values of the validation data were also deleted.

The vparametric reeression calibration estimate { Param ) was obtained a

180 palaintiil ICEALSSIVI LaniallVil Lolliniale 24

described in Rosner et al. (1989). First compute the estimate E(X | W) of E(X
by using simple linear regression, and then perform the usual analysis. The
proposed semiparametric estimate (Semi) was computed by a full iteration starting
from the naive estimate, which was obtained by ignoring the measurement error.
Tables 1 and 2 give the mean, median, standard deviation (SD), root of the mean
squared error (MSE), median absolute error (M AE), and the relative efficiency
(RE)in terms of the median absolute error with respect to the proposed estimates.

For both the linear model X = W + U and the linear heretoscedastic model
X = W+ §|W|%3U, for 6 = 0.25, 0.5, the semiparametric regression calibration
estimates were somewhat less efficient than the regression calibration estimates,
but not disastrously so.

Next, we study the model W = XU, where X has uniform distribution on (0, 5)
and U has a gamma distribution with mean 1 and variance 1. The results are

v

given in table 3. In terms of bias and variability. the nronosed estimate r‘lpar]v

Hiveiad ll laQlsv a1 Woriais Vias il VaiiaLialy, uiae prUpOsia CoLilaib vivass

beats the parametric regression calibration estimate. A plot of X against W for
a single data set, given in fig. 1, suggests that even though the relationship

Table 3

1974 VS 3 SN R T r

LY SR7. S S S | PP T EEEY
UNUoraiy, J) ana v ~ uyuamimmadt, i}

n, =50 n, = 100 n, = 200
Param Semi Param Semi Param Semi
=100
Mean 0.595 0.142 0.560 0.171 0.550 0.220
Median 0.568 0.152 0.552 0.160 0.548 0.197
SD 0.212 0.176 0.164 0.179 0.155 0.164
RMSE 0.363 0.235 0.307 0.220 0.293 0.182
MAE 0.268 0.154 0.252 0.154 0.248 0.133
RE{%) 213 100.0 61.1 100.0 53.5 100.0
n, = 300
Mean 0.558 0.140 0.580 0.184 0.565 0.226
Median 0.533 0.138 0.568 0.182 0.555 0.211
SD 0.168 0.101 0.138 0.100 0.096 0.101
RMSE 0.307 0.189 0.312 0.153 0.281 0.125
MAE 0233 0.162 0.268 0125 0255 0.096
RE(%) 69.3 100.0 46.7 100.0 376 100.0

a2 Rased on 200 simulations in each case. Gaussian kernel with bandwidth 5/n13 whare & is an
£2aseq on AN simuiauoens in €acn Casc. aussian Kerné: w 1in oar 1G6ia &/n7'7, Wneré ¢ 1§ an

estimate of the standard deviation of W based on the validation data set.
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between X and W seems to be linear, the parametric regression calibration
estimate does not perform well.

One should not draw general conclusions from such a small study. We have
observed in our example a small loss of efficiency for the semiparametric
estimate when X given W is normally distributed with a linear mean, and a large
gain in efficiency in a case where X given W does not have a linear mean.

6. Discussion

Due to the availability of the validation data the semiparametric quasilikeli-
hood estimation proposed here does not require choice of a model for the
measurement error. Being based on variance function and quasilikelihood tech-
niques, it also makes no assumption about the underlying distribution of Y given
X and instead depends only on the first and second moments of Y given X.

Our results also apply to likelihood methods. Suppose that the likelihood
function for Y given X is denoted by Lx(Y, X, ). Our results apply by fitting
a nonparametric regression of Ly(Y, X,f) on W to obtain an estimate
Ly (Y, W, B8), the likelihood for Y given W. That is, we estimate Ly (Y =y,
W =w, B) by

LW,n(Y—_‘— Y W= W,B) = i LX(y’ Xi’ B)K (VV‘ — w)/fW(W)’ (61)

nh = h
where fy is defined in (2.1). Then an estimate ﬁ; of 8 is obtained by maximizing
[Ti=n.,+1 Lw,s(Y;, W, B), this usually being done by the method of scoring.

The semiparametric likelihood method in (6.1) generalizes the logistic model
in Carroll and Wand (1991) to a wider class of probability densities. If both
Lw(y, w, B) and Lyx(y, x, §) are in the class of generalized linear models, for
example the logistic model of Carroll and Wand, it can be shown that the
asymptotic distribution theory of 8, defined by (6.1) is equivalent to that of B.
Otherwise analogous formulae are obtained; we will forego the details.

Up until now it has been assumed that the joint and marginal densities of X and
W are continuous. For a discrete surrogate W, by choosing the density kernel
K(0) = 1, eq. (6.1) yields the empirical estimate of P( Y| W) proposed by Pepe and
Flemming. In this case, we need not worry about bandwidth selection. Let ns,
denote the number of observations in the validation data with W ="w, nf, denote
the number of observations in the primary data with W = w, and »), + nf, = n,,.

We assume that plim n,/n, = A in this paper, and if the validation data are
a selected subset of the primary data, it follows that plim nf/n}, = 4. Also, note
that n,/n is the empirical density estimate of P(W = w). It then can be shown
that, in the generalized linear model, the term in the asymptotic covariance
caused by the empirical estimation is equal to 4,(f); see (3.5).

By the same token, we can define u,(w,f) =Y A(X, B)KW;— wy/n,,
ung (W, B) = Y1 i (X, YK (W, — wynl,, and s,(w, B) = 3.1 (X, BYK(W; — wy/ni,,
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where K(0) = 1 for discrete surrogate W. The estimates u,, ung, and s are the
unbiased empirical estimates of u, ug, and s respectively. Therefore, the method
proposed here also extends to the discrete case. Only the proof, which we will

not pursue here, will be different.

Appendix A

Appendix A gives a formal proof for Theorem 1; appendices B and C give the
caiculations for Theorem 2 and Coroliary 3.

Let K(i, ) denote K(W; — W;)/h, u(i) denote u(W;, B), and similarly for the
rest. Let derivatives be denoted by subscripts. Let E(U?) denote E(UUT). The
following is proved under the assumptions of Theorem 1. Also note that all the
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sums and expectations are taken over €, since the estimates in (2.1) are only
defined for w e Q2. We will not indicate this restriction explicitly in the calcu-
lations.

Lemma A [Mack and Silverman (1982)]. Let y, = ((1/nh)log(1/h))'/%. As-
sume that

® f, fw, and ue C2[Q], and inf,,; fw(w) > 0.

2 f; € L? and sup ,E(| fi(X, B)IP| W =w) fw(w) < oo for some p > 2.

Suppose n*""*h — oo for some n < | — 1/p and h*® = o(y,), then

v ! sup| fww) — fw(w)| = Op(1),
vt sup| ky(w) — u(w) furw)] = Or(1),
Ve ! sup| uy(w, B) — u(w, B)| = Op(1)

Under mild conditions on the bandwidth, this lemma shows that the weak
uniform convergence rate of the kernel estimator on Q is Op(y,). The result can
be applied to the rest of the kernel estimators we defined in section 2. Also note
that h? = o(y,) is equivalent to nh’/logh™* — 0.

We first require two technical lemmas:

Lemma [

nY - u (W,
L i )
Y; —u(W;, B)

n1/2 . 'lz+1 U(Wj, ﬁ) uﬁ(WJ" .B)

L5 [ 0]
v, 5 R0 - w0 |+ ot

where A = n,/n,.
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Proof. From (2.1),

1 & Y—ul) L& Yifwl) - kG .
1 j u(j)una(1)=;r,-5 b Sw(i) = k() ).

1 ba() i) — K2G)Y

n'’? jem+1 UalJ) i

By a Taylor series,

- 5 [Y gy D ) )
- f‘%}% (ko) = () S (D)
;@:) }:;:fé)) (kg () — w5 S ()}
i - (‘]‘;5{:*}(‘;‘;*“ s s (D) — ()}
_ ; (‘;’;ﬁj:*}(‘;f’)*“ L6,07) - 5G) fli)}
{ YQSE‘%}(??*U ) 2 () hat) — u(j)fw(}')}]
= Uy, + U3, — U3, + Ui, — U%, — Us, + U3, A0

where { fir, (W), u, (W), ugy (W), v, (W)} lies in between { fw(w), Un(w, B), us(w, B),
va(w, B)} and { fix(w), ulw, B), us(w, B), v(w, B)} for each we Q. Note that, for
exampile,

1

1’11/2

n Yj - u*(W) Yj — u(w) . ) ‘
x {U*(f)fw*(f) B v(j)fw(j)} kng(7) — up(7) fw ()} ”

; 1 3 1
Dy W) frg W) 0(w) fir (w)

i=ny,+1

1 n
<~ Y;llsu
n”z j=§+1 “ }“ we%

x ix:g fkup(w) — ug(w) fiv(w) |

- u,w) ()
T v a0 foe 7)) 507 frO7)
X i’ég I knﬁ(w) - uﬁ(W)fW(W) It (A.2)

T Feon-. K



244 J.H. Sepanski and R.J. Carroll, Quasilikelihood/variance function model

By Lemma A, (3.2), and E([| Y|) < o following from (3.3), we can show that
(A.2)is of order Op((1/n'"*h) log(1/h)) = op(1) as nh*/(logh™!)* > o . Therefore,
we can rewrite (A.1) as

1 & (Y —u| Y,
= X [ jv(jl;(j)uﬂ(j)'*' o “”” SO ) = )}
. up(J) k() — uli .
—_v(]')fw(j){ () = u(i) fw(i)}
YJ_u(j) . N .
k —

Y, —u(j j 7
- {_ja)';%%ﬂsm{fw(j) — S}
_ A= ul}uy)

G ) s )

{¥; = u(j)}ug(j)
0*(j) fw(j)

=Uin+ Usn— Usy + Usy — Us, — Ugp + Uy, + 0p(1). (A.3)

2u(j) {kn(J) — u(j)fw(j)}] + op(1)

We first want to show that U,, = 0p(1), Us, = 0p(1), Ug, = 0p(1), and
Usn = 0p(1). We only show that Uy, = op(1), because the rest can be done by
similar arguments. Let 4, = {(W)j-,, .1} and 9, = {(X;, Wiz, }. It is easy to
see that E(U,4,|9,,%,) = 0; therefore

_ L& Y—u))
COV(U4n) - [COV{H 172 j= "z:+1 U(])fW(J)

% (kng7) — s ) fir (1)} 19,9, }]

1 2 1
I:”i=§+xv(j)ffv(j){ W) =l D}

X {kng(j) — “ﬂfW(j)}T:,-
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We want to show that this last term converges to zero. Let kj, denote the ath
coordinate of the column vector k,;. For we ©,

1 ¢ @ Wi—w
E{”h ,;1 (}K( h )}
~( o )K(

u

= | B{STX) W =u} (;W)%fw(u)du

[k(a) ]

> - fwr(x, u)dxdu

"

= |uy’ (w + zh)fw(w + zh)K(z)dz.

LY

After Taylor expansions of u and fi and by the definition of the kernel K, we
obtain

= u (W) fw(w) + b jz K(z)dzug" w') fw(w*)

= U (w) fw(w) + b2 Low), (A4

where w*w' e {w — h, w + h] and [ and u’ are the first derivatives of fiy and
u with respect to w respectively. Note that under assumption (3.1),
SUPwea| La(w) < oo. Similarly, we have

E[{k )k, (w)}]

_ -__1._ e (a) (b3 W w Wk—W
-l £ st (H2 Je(25)

- f @ 0 f O )KZ( )fwoc,u)dxdu (AS5)

v

+ "~——-mn—:—9[ 5 001" () f 5 (9) + B () fr () Gy ()

+ ty (W) forw)lalw) + hzla(W)Cb(W)}]

= u’ (W) ul W) f 3 w) + {w, h),
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where {, is analogous to {, in (A.4) for kﬁ,"ﬁ’. Note that {(w,h)—=0 and
SUPwea|{(w, h}| < oo under assumption (3.1). Let R“®® be the (a, b) entry of
cov(U.,). Then by (A.4) and (A.5),

R(a,b) l'l i
LnJ ny+1 U(] fw(J)

-

x (L) — 4P L)) fwl ) — 2 (W) LW) fl }J

Since the integrand converges to zero and is bounded, by the bounded conver-
gence theorem R“® = o(1). Thus, U,, = 0s(1).

Note that by arguments similar to the above, it can be shown that

1

n

Y; —u(j)

s D) uglj) {fw(j) — Sw()} = op(1). (A.6)

Therefore,

L& u(iug()) :
U“:W,--:Zu UW"“) {fw() = fw()} + op(D)

= Uzx + 0p(1).

Lemma 2

UZn*- ——A/—- z": [M(WI’B) fl(X“B)

i=1

o(W, B)  uv(W,, ﬁ)]“ﬂ(Wi, p) + op(1).

Proof. Define a, = E(U,,. — Us,|9,); then «, is given by

el & Jululy { n o }
‘E[_/‘z L {Trm K(iJ)

Jj=n,+1 oW i

LK
__wl) 1 ZﬁmKn W e,
v() fwli) Lnoh; b
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_ W)ugw) 1 W,—w
“ZU (o
-0 [ (o

_117_ :: [J i — zh)ug(W; — Zh)K(z)dz

U(W,'—‘Zh)
ug(W; zh)
= hil )JU(W._ ) )dz] (A7)

After Taylor series expansions, (A.7) is given by

2h2 2242
P {u(t) —zhw' (W) + ——u"( W*)} {u,;(i) — zhug(W;) + Tu,}’(W?)}
—T Z j 222
= v(i) — zh!(W,) + —2—1;”(W;)
2h2
{u,,(l) — zhup(W;) + —~—u,,(W*)}
x K (2)dz — f; () J s K (2)dz
v(i) — zhv'' (W) + ——2~—v "(W?)

_ A E () f0)
- /

A
i o+ 5w

™Mz

il

1

i

where y(X;, W) is given by

1
o) szK(z)dZ [U'(W)%(Wi) + %{u(Wi)u;,’(W?)

+ ug(Wo" (W) +f1(Xi)u}§(W?)}] +op(h?),
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and W*® and W° are in some neighborhood of W. Since E{y(X, W)| W}
and E{y(X, W)y"(X, W)| W} are bounded under assumptions in Theorem 1,
as nh* — 0, cov{n™Y2h2AY 1 v(X:, W)} = o(1). Thus we have

LZ u(Wi, p) f(Xi, B)
n's2 v(WiLB) oW, B)

o, =

qu,,(Wi, B} + op(1). (A.8)

i=1

Next, we will show that U,,, — Uj;, = a, + op(1) by a covariance calculation.
We have

1 A | " 1 W, —

s 1o (W, — zh)ug(W; — zh)
=1 n~l’j=§+1|:J\ v(W; — zh) K(Z)dz:l,

=

1
ni?

(A.9)

1 : u(p)ulq)ug(piug(q)”
E(Usna Una 190} = nnl kz ) E[U(P)v(q)fw(p)fw(q)

pag=no+1

Now, covV(Uszng| %) = E(Uszny Ulnse | 90) = E(Usny |9,)E(U 1 | %,). By inde-
pendence, the cases when p # g contribute 0 to cov(U,,, | %,). From (A.9) and
by arguments similar to (A.7), we have

1

ny

E[{COV(UZn*lgv)}] = nnpz Z E[E{

k=1

u? (plug(plug(p)”
op)? fw(p)?

1
x (pK(i, PIK(k, p)>‘ Wp}

(A.10)

 ufiu(kyu(iyud ()
s() :I+ o(1).



J.H. Sepanski and R.J. Carroll, Quasilikelihood/variance function model 249

The cases i = k, by the bounded convergence theorem, contribute o(1). The
cases i # k, (A.10).

_ Ml = D UZ(P)uﬁ(P)uﬂ(P)T< 2}
= nn? ? [E{ 90 fw(p)? K(z) fw(W, + zh)dz

— E? {___M(VZ%W)}] + o(1)

% cov [“(W)””(W)] + o). (A11)

1+ v(W)

Similarly, we can easily show that E{cov(Us,|%,)} and E{cov(U,,,, Us,|%,)}
are equal to {1/(1 + A)}cov{u(W)us(W)/v(W)}. Therefore,

COV(UZn* - U3n - 0(,,) = E{COV(UZn* - U3nlgv)} = 0(1)

By (A.8), we have proved Lemma 2.

Proof of Theorem 1

Assume_that we have an n!/2-consistent discretized estimate ﬁo of g, for
example, B, is a discretized version of the solutionton™ 2% (Y, X;, ) =0
Define A,(8) =n= ' {310 WY, X, )+ T2, 1 PulY;, W;, B)}. The one-step
estimate f; of § is

By = fo— { 5 (ﬁo)}— A,(Bo).

By a Taylor series,

n (B —ﬁ)=[{a—aﬂ—f1n(ﬂ*)}_ {a/f‘ (ﬁo)}— ]

1/2 1/2
BA o(BaIn'* (B — B) - {aﬂA (ﬂ)} A(B)

! 1/2

(A.12)
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250
where B, lies in between B, and B. By the central limit theorem, n™'/2 x
Y Y;, W;, B)

Yt (Y X, B) = Op(1),and by Lemmas 1 and 2,n~ 2 Y0 |

= Op(1), as nh?/(logh ') -» oo and nh*/logh™! — 0. Therefore, n'/2 4,(B)

= 04(1).
Define A(B)=n"'{¥/, (Y X0, )+ 3 e, o1 P(Y;, W, B)). First, we

o show that

want to
L) =2 48) = on(1) (A.13)
aﬁ 7 aﬂ \r/
as nh?*/(logh™')* - oo and nh’/logh™! - 0, i.e., show that
; z WnB(Yj’ Wj’ B)—'; z WB(YJ Wj’ ﬁ)ZOP(l)
T ET MDY AT NE
The left-hand side of eq. (A.13) is
& Jul) r Y —u(j) Y, —u(jy .
2 2w — 5 uge(j)
2 Lo - S et -
k) 7 Gl —kli), oo

e ko(j
_Yfw (é) . (J)kw(j)}

here d (,)_ {b () fw i) — k2(j)}, ugp = Quy/0B, and k,gp = Okyy /OB Note

L5 [l gy kawl)r ) ||
nll =1 L) d,(J) il
<1 \1 up ”uﬂ(w)..ﬂ.‘.\ k"ﬁ(w)kT ’W“”’ZO ) = op(1}
—nj=ﬁ+1 we%“ (W) p dn(W) npl }.l Piin) pLL)
Thus,
2 d
éEAn(B%a—ﬁA(ﬁ) = op(1),
M(M—&i uwxm+#ewxmml
14+ A )

op
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Next, we want to show that

A w(Bo) — ﬂ An(B) = op(1). (A.14)

Because J, is discretized, it is suffices to show if ¢, — ¢, is a fixed deterministic
sequence and f, = f + ¢,/n'/?, then

)

ﬁ Anp) = 55 AB) = 0r(1)
By a Taylor series,
1
B (ﬂn)'— ﬁA (ﬁ) 1/2 azﬂA (ﬂ*)c*
By arguments similar to those for (A.13) and (A.6), we have
1 n 62 1 n 62
2 X G0 =L Y mp A = osl)

Since 02A(f)/0B* is continuous, it then follows that

02 02
ﬂAn(ﬂ*) - 575A(/>’) = op(1).

By (A.12), (A.13), and (A.14), we have
n'2(fy — By = — {A(B)} " 'n24,(B) + op(1). (A.15)

Now apply Lemma 1 and Lemma 2 to finish the proof of Theorem 1.

Appendix B: Proof of Theorem 2

We will prove this for the estimators in (2.7). From (2.4) and (2.7), we have

L& QuW.6%F,.0)
0:‘”1_/5 Z 2 :
hp j=n,+1 dn(W’o';wﬂ*’H )

x[{Y;fw_k"(%’ ﬁ*)}z—d"(m, 2, ﬁ*’é):l’ B.1)
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where
du(w, 6%, B, 0) = 6%g,(w, B, 0) fw(w) + ru(w, B) fw(w) — ki (w, B)

and

od, od
T 2 _ [ X n
Qn (W’G 9ﬁ’0) (50 ’60'2>.

We will assume that the solution to (B.1) is n'/2-consistent. Alternatively,
a one-step argument can be developed precisely as in appendix A. Drop the
dependence on W, o2, 6, and B. By a Taylor’s expansion and by arguments
similar to those of Theorem 1,

" QW82 By, 0)

1 N
nP/ i= "v+1d _)5 2 ﬁ*s *)

X[{ YJ?fW—kn(VVj’E*)}z—dn( 0*’ﬁ*’ ):l

1 n
- ;1;7 '=Z+1 [dz {(Ysz dn}
Q) 0-96
{ {(Ysz “dn}—Qd? }(6’2—6>
2 .
l:( Qd"3 = Qd';ﬁ>{(Y12fW - kn)z - dn}

"—%{Z(Yj*er» ng nﬂ}:l(ﬁ*

- [ZQ"WfW —d,}dw(0, - 0)
- % (T~ k) - ] s (32 — aZ)] + opl(l)
= A, — Bx,.(ff - 92) ~ (Byn — Ban) (i — B)
g — 0

~ Bay(0y — 6) — Bs, (62 — a*) + 0p(1), (B.2)
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where Q,, is the derivative of Q, with respect to (6, 62)7. By a Taylor’s expansion,
(B.2), and arguments similar to those for (A.3),

6-6 5 j
ny'? (62 _ az) = Bi,' {4, — (B2a — B3,)(Bx — B) — Bun(6, — 0)

— Bsa(65 — 0)} + op(1).

By Lemma A and arguments similar to those for (A.6), we have BZ,,—P—+O,

By, ——0, and Bs,——0. Also,

1 ! HHT 1 n H
Bin—— % =o0p(1), By —— Zvs=o0p(1). (B3)

2
Mpj=n,+1 U Npj=m+1?

Since ﬁ*, é*, and 62 are assumed to be n'/*-consistent, from (B.2) and (B.3), we
have

6—6 _ B .
n’l,/z <&2 _ 02) = Bl l/‘1,, + Bl lB3n;/Z(ﬁ* - ﬁ) + Op(l). (B4)

Apply a Taylor series expansion to A4, and use a similar argument to (A.3) and
(A.6). We then have

1 o [H
A"=W > [;z[{ Y; —u(j)}? — v(j)]
P j=n,t1
H . 2 . . ~ . .
+ ——vsz{z{ Y, —u(j)} Y; — o?q(j) — 1)} {fwl)) — (i)}

+ ;,%{ C20Y, = )} + 20D} (Ra) = wCi) i)
w

H
770 9) — 4 )}

H _, . .
- ;z—f;{rn(n - t(])fW(J)}:l + op(1)
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1 " H

==z X ;Eli[{ Y; —u(j)}? —v(j)]
+ [2{ Y, — u()} Y; — o2q() — t()] fw())
+ 2u(j)k,(j) = 629,(7) — r‘nu)]

= Vln + V2n + V3n - V4n - V5n + OP(1)>

Next, by calculations of covariances similar to the arguments in appendix A, we

can show that

L ™ H(W; a8, O)ff(Xi, B) + op(1). (B.5)

V = —— —_—_——
T nl? S v (W, 02, B, 0)

Similarly, we can show that

A & H(W, 0'2, B’ 0)
Van= o X i o2 ) O 9o B0+ 1V ) = 22V )]

+ OP(l)a

A & H(W, 2 B,0)
V3n=5?i=1ﬁfj%’—(_ﬁ{zu(Wuﬂ)ﬁ(xisﬁ)}+0P(1),
A M~ H(W, 62 8,0
V=it & o oy 9 R 0) 4 ol 9

np

By (B.4), (B.5), and (B.6), we have proved Theorem 2.

Appendix C: Proof of Corollary 3
Here we merely sketch the arguments, as they differ in no substantial way

from previous calculations. From (2.8),

n ijW(Wj) - kn(Wj, |BA4) k ﬂ(W' B‘4)

1
0=—3 —
n}’/z JI:E“'l dn(Wj’ OA.%’ ﬁ4, 01)
(C.1)

‘ _

N

1/
'™

Z T”( Yj’ Wj’ 6%’ﬁ4’ él)
=n,+1
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Drop the dependence on W, ¢, 6, and B. After a Taylor’s expansion of (C.1), we
obtain

nl2(B, — Bs) = Di,' G, — D1, {Dynl (6 — 02) + Da,nb? (B, — 0)}
+ op(1), (C.2)

where

1 n
G" = _1_/-2_ Z lpn(Yj’ Wj’ 027 ﬁ» 6)9
Np'™ j=n,+1

1 n
Dy, = n— z anﬂ(Yj’ Wj’ 02’ ﬁ’ 6)’

P j=ny+1
1 " dnaz 2
Dan=r- 2 g Vo3 Wi 0% 5,6,
P j=n,+1 n
1 & d,
D3n = Z E; lI/n(Yj’ Wf’ 62’ ﬁ’ 9)'
fp j=no+1 %n

By Lemma A, we can show that DZ,,—P—+O and D3n—P—>0. Since 62 and 8,

are n'/?-consistent and use similar arguments to (B.5), we obtain (C.2):
= D;,'G, + op(1).

Now by arguments similar to those of appendix A, we finish the proof of
Corollary 3.
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