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Semiparametric quasilikelihood and 
variance function estimation in 
measurement error models* 

J.H. Sepanski 
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We consider a quasilikelihood/variance function model when a predictor X is measured with error 
and a surrogate W is observed. When in addition to a primary data set containing (Y, W) 
a validation data set exists for which (X, W) is observed, we can (i) estimate the first and second 
moments of the response Y given W by kernel regression; (ii) use quasilikelihood and variance 
function techniques to estimate the regression parameters as well as variance structure parameters. 
The estimators are shown to be asymptotically normally distributed, with asymptotic variance 
depending on the size of the validation data set and not on the bandwith used in the kernel estimates. 
A more refined analysis of the asymptotic covariance shows that the optimal bandwidth converges 
to zero at the rate n-‘13. 

1. Introduction 

Let Y denote a scalar response and X denote a scalar predictor variable. 
Consider a heteroscedastic nonlinear regression model with 

E( YI X = x) =fi(x,p) and var( YI X = x) = o’g(x, 8, O), (1.1) 

where rs2 is a scalar parameter and B and Q are column vectors. This model is 
widely applicable, including generalized linear models and many important 
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nonlinear regression models as special cases. The key feature of (1.1) is that 
specification of the mean and variance functions is sufficient to obtain estimates 
of the parameters (p, 0, c). There is no need to specify a likelihood function. 
The quasilikelihood (also known as generalized least squares) score for fl is 
defined to be 

ii1 tyi -fi(xi¶ P)i.fl/?(Xi, p){S(Xi, j3,0)}-‘, (1.2) 

wherefIb is the derivative offi with respect to p. Quasilikelihood or generalized 
least squares estimates of the unknown parameter p for given 9 are obtained by 
setting (1.2) equal to zero. For a recent review of this problem, as well as 
a discussion of variance function parameter estimation, see Carroll and Ruppert 
(1988, chs. 2, 3). 

In many circumstances, instead of observing X, a surrogate W is observed. As 
is well known, ignoring the measurement error and simply substituting W for 
X is inappropriate because doing so leads to inconsistent parameter estimates. 
Our interest lies in the estimation of the unknown parameters based on a sample 
in which we observe ( Y, W). Under the assumption that given X, W is indepen- 
dent of Y, the mean and variance functions of the observed data are defined by . 

E(YI W= 4 = E{.L(X,p)I W= w), 

E(Y2( W= w)= E{E(Y2(X)( W= w). (1.3) 

Eq. (1.3) shows that the distribution of X given W plays an important role in the 
estimation of unknown parameters. If the distribution of X given Wis known up 
to a finite set of parameters, then (1.3) gives parametric formulae for the mean 
and variance functions of the observed data, to which quasilikelihood and 
variance function estimation techniques can be applied. 

The measurement error estimation problem has been addressed previously in 
this context. Carroll et al. (1984), Fuller (1987), and Schafer (1987) discussed full 
parametric estimation when a model for X given W is postulated. Stefanski 
(1985), Stefanski and Carroll (1985), Whittemore and Keller (1988), and Carroll 
and Stefanski (1990) considered various small error approximations to construct 
estimates adjusted for measurement error. Clark (1982), Rosner et al. (1989, 
1990), Whittemore (1989), Gleser (1990), Pierce et al. (1990), and Carroll and 
Stefanski (1990) all consider the possibility of directly replacing X in (1.1) and 
(1.2) by a linear regression for E(XI W). 

In this paper, we consider estimation of the parameters in (1.1) in 
a semiparametric context, so that no assumptions need be made about the 
distribution of X given W. In some cases, an independent validation data set 
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containing ( Y, X, W) or (X, W) is available; see Rosner et al. (1989) and Pepe 
and Flemming (1991) for examples. For this situation, it is possible to estimate 
the density of (X, W) and therefore the density of Y given IV, an idea which was 
developed independently by Carroll and Wand (1991) and Pepe and Flemming 
(1991). For discrete W, Pepe and Fleming (1991) propose to estimate the 
probability density function f (y 1 w) by its empirical distribution, which is 
constructed by replacing each observation Xi in the validation data with W = w 
by a point mass l/n;, where nt; is the number of observations in the validation 
data with W = w. They carry through this idea when X and Ware discrete, but 
not otherwise. Carroll and Wand (1991) consider logistic regression and suggest 
using kernel regression to estimate Pr( Y = 1) W = w) from the validation data. 
The use of kernel regression rather than direct estimation of the density of 
X given W greatly simplifies the calculations. In both the above two papers it 
has been shown that the semiparametric estimates are asymptotically normally 
distributed and that the efficiency of the semiparametric methods increases with 
the size of the validation data relative to the size of the primary data. As the 
validation sample size becomes large relative to the primary sample size, the 
semiparametric method becomes as efficient as in the cases where the density of 
X given W is known. 

Neither Carroll and Wand (199 1) nor Pepe and Flemming (1991) consider the 
general quasilikelihood/variance function model. In this paper, we will construct 
new estimates for this model, focusing on the continuous case. Our approach is 
as follows: 

l Estimate E( Y( W = w) and var( YI W = w) as functions of (p, 8,~) and w by 
means of kernel regression applied to the validation data. 

l Apply quasilikelihood and variance function estimation techniques to the 
primary data using the estimated mean and variance function. 

In section 2, we outline the proposed methods for the case that 0 is known, as 
well as for the case that 0 is unknown and hence variance function estimation is 
required. In section 3, we state the main results on asymptotic normality of the 
estimates. We briefly discuss bandwidth selection in section 4. Simulation results 
are given in section 5. In the discussion, section 6, we note that our results apply 
almost without change to the case of likelihood estimation of parameters, and to 
the case that (X, W) is discrete. Proofs are contained in three appendices. 

2. Description of methods 

2.1. Introduction 

Suppose that the structural variance parameter 9 is known and the variance 
depends on the mean, i.e., x and 8. This model is important because it includes as 
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special cases many GLIMs, for example, logistic regression, the Poisson model 
with g(x, p, 0) =fr(x, p), and the Gamma model with g(x, fi, 0) =f:(x, p). 
When 8 is unknown, overdispersion being the classical example, there are 
various ways to estimate 0 [see Carroll and Ruppert (1988)]; this case is covered 
in section 2.3. 

In what follows, assume that we have a validation data set containing 
( Y, X, W) or (X, W) of size n, and a primary data set containing ( Y, W) of size 
nP. Let n = n, + nP, nP/nv = %. Derivatives are denoted by subscripts. 

The algorithms studied require kernel regression estimation of functions of 
X regressed on W in the validation data. As discussed by Carroll and Wand 
(1991), the range of W in the observed validation data is usually smaller than 
that in the observed primary data. If kernel techniques were used blindly, this 
would lead to extrapolation, which is a dangerous business. To overcome this 
problem, as well as to avoid technical difficulties with edge effects, all kernel 
regression estimates used here are calculated on a compact set s2 interior to the 
support of W. Sums in the primary data are taken only for those WE s2. While 
this truncation causes some loss in efficiency, it is counterbalanced by a gain in 
robustness. The truncation also leads to an easily described theory. 

2.2. Variance parameters known 

The simplest model to describe occurs when 0 is known. Write 
E(YIX=x)=f,(x,B)andE(Y*IX=x)=f2(x,B).Letu(w,B)=E(YJW=w), 
s(w, fi) = E( Y* ( W = w), and u(w, p) = var( Y\ W = w). Using (1.3), we propose 
to use kernel regression [see Eubank (1988)] on the validation data to estimate 
u(w,/?), uB(w, /I), and s(w, /I), and then to proceed with quasilikelihood estima- 
tion on the primary data using the resulting estimated quasilikelihood score. 

Let K be a symmetric density function with finite support and h be a window 
or bandwidth. Let 52 be a compact subset of the support of W. For w E 52, define 

xv (w) = A .t K (Jg, 
” 1-l 

kndw, PI = & ,z fiS(Xi, fl)K v ) 
” t-1 ( ) 

bn(w, P) = & ,$ .L(xi, PJK v . 
” 1-l ( 1 (2.1) 
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We estimate NW P) by Mw P) = k,(w B)l_& (4, u&, P) by +&, B) 

= k&w, l-W& (4 s(w, P) by s,(w B) = b,(w B)/&(w), and o(w B) by 
s,,(w, /?) - uf(w, 8). The estimated quasilikelihood score for the primary 
data is 

If Y is observed in the validation data, let Z(y, x, 8) = {{v -fi(x, fi)} x 

fis(xJNlLMx~ 8) -.G(x, P)L SO that Cyr 1 l( Yiy Xi, b) is the quasilikelihood 
score for the validation data. Of course, one could use only the validation data 
to estimate the parameters, but this would ignore the information contained in 
the prima_ry data. These considerations lead us to propose to estimate B by the 
solution fir to the equation 

0 = n-“2 f Z(Yi, Xi, p) + n-l’* f: Yu,( Yj, wj, CJ). 
i=l j=n,+ 1 

(2.2) 

When J’ is not observed in the validation data set, we estimate /I by the 
solution /IZ to 

0 = nP1’2 f: yu,( Yj, wj,B). (2.3) 
j=n”+l 

The asymptotic limit distribution of jr will be presented in section 3. Our 
limit results are proved in the appendix not for the estimates which solve (2.2) 
and (2.3), but rather for one-step versions defined in the appendix which start 
from a root-n-consistent discretized estimate of j?. By a discretized estimate we 
mean one which takes values in the set (0, _+ cn- I’*, f 2cn- ‘I’, . . . }, where c is 
an arbitrarily small constant. 

2.3. Variance parameters unknown 

Data in the economic, clinical, and biological sciences are often fitted by 
a heteroscedastic regression mohel (1.1) with unknown variance parameters c2 
and 8 which must be estimated. Examples of this situation are given in Carroll 
and Ruppert (1988). Following Davidian and Carroll (1987) and Carroll and 
Ruppert (1988) we propose to estimate the variance parameters o2 and 0 by 
weighted least squares on squared residuals and then estimate the regression 
parameter /I by quasilikelihood estimation. This method is essentially the same 
as pseudolikelihood estimation of variance parameters; see Carroll and Ruppert 
(1988, ch. 3). 
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The basic procedure is to first obtain a preliminary nl”-consistent estimate 
of (p, 0) perhaps from the validation data. In this case, the preliminary 
estimate j* might be a robust estimate or the_ unweighted least squares 
estimate based the primary data, for example, fl, is such that 0 = np I” x 

c;=,,+ I ( Yi -fi ( Wj, /3)}fip( Wj, j?). The preliminary estimate I?* minimizes 

C;=n,+l (lj2 - S(Wj, P*, e))” where rj = Yj -fi (Wj, f,) and 82, = ni’ x 

~:~,u+, { Yj -fi(Wj, 8,))/g(%, $*, e^,). Both fi* and J.+ are n’12- consistent. 

Having obtained preliminary estimates, residuals are formed and an updated 
estimate of 6’ is constructed using functions of the squared residuals. Finally, the 
resulting estimate of (fi, 0) is used to form weights, and an updated weighted or 
quasilikelihood estimate of /? is constructed. 

In model (1.U let q(w, P, 0) = E{g(XJ, 0) I W= w), t(w. PI = E(ff(X, /J) I 
W = w}, and let u and ug be defined as in section 2.1. Note that 

U(W, g2, p, e) = var( Y( W = W) 

Let K be a symmetric density function with finite support and h be a band- 
width. For w E 52, define 

rn(wT P) = A ,t ff(Xi, B)K { Wi - w)/h), 
” t-1 

gn(W1 P, e) = -& ,t S(Xi, P, e),K { Wi - WI/h), 
” 1-l 

and define f^ W, u,, and u,,~ as in section 2.1. Let 

4n(W, P, 0) = g.h B, wi++4, 

t.(w PI = r,(w BMi44 (2.4) 

u,(w, 02, P, e) = 02qn(w, P, e) + t,b, B) - u:(w, B). 

We estimate t(w, p), q(w, fi, O), and_var( YI W = w) by t,,(w, j), q,,(w, 8, d), and 
u,(w, g2, j?, 0) respectively. Let Si, f3,, and & be preliminary n”2-consistent 
estimates for cr2, 8, and p respectively, for example, the variance function 
estimates based on the ( Yi, Xi) in the validation data [see Davidian and Carroll 
(1987) and Carroll and Ruppert (1988)]. 



J.H. Sepanski and R.J. Carroll, Quasilikelihoodjvariance funclion model 229 

First, we obtain 8’ and t? such that 

A ^ 

0 = n-‘;2 c ?I” M(Xi, “‘r fly e, 
i= 1 SzCxi* B*ye*) [ 

{ yi -fl(X,, @*)}’ - 82g(xi, p*, 8) 1 

(2.5) 

where 

MT(X, 02, p, d) = (a2 &3(x, P. 61, $7(X? B, @), 

H,T(W, cJ2, B, 0) = (~2%dW, ho 4n(w, P, @I, 

i.e., M and H are the derivatives of g and v, with respect to (0, a2)= respectively. 
This is a generalization of pseudolikelihood estimation appropriate for the 
measurement error model. When X is measured exactly, i.e., X = W, then since 
np = 0, solving (2.5) for 0 is equivalent to pseudolikelihood estimation of 8,. 

We can now form a weighted estimate of fl, estimating it by the solution a3 to 
the equation 

0 = n-1/2 F Yi -X(xi:@J.fia(Xi, p) 

i= 1 SCxi, Dt 0) 

+n-“2 i yj- Ktwj,B) u 

j=n,+ 1 Vn(Wj, e2, fi, i) 

(w, ~1 

nD J’ * (2.6) 

If Y is not observed in the validation data, then we estimate (02, 0, fi) 
by the estimating equations (2.5) and (2.6) without the first terms and with 
n- 'I2 replaced by n; II2 That is, we estimate o2 and 8 by the solution to the . 
equation 

X [( Yj - U,( Wj, j*))’ - untwj7 02Y ‘2 8,)l’ (2.7) 
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We denote these estimates by S: and e^, . Then, estimate /? by the solution f4 to 
the equation 

As stated previously, our theoretical results apply not to the solutions to 
(2.6)-(2.8), but rather to one-step versions of them. 

3. Main results 

In this section, we state the asymptotic results for the estimators defined in 
section 2. The proof of Theorem 1 and the calculations for Corollaries 2 and 
3 are given in appendices A, B, and C respectively. The remaining results can be 
obtained by similar arguments. 

3.1. Asymptotic results with Y observed in validation 

In this subsection, we will state the main asymptotic results for the estimates 
defined when Y is observed in the validation data, specifically (2.2), (2.9, and 
(2.6). 

Let A-T denote (A-‘)T. Let f and & denote the joint and marginal densities 
of (X, W) and W, respectively. Let 52 be a proper compact subset of the support 
of W and J be an open interval containing Q. We first obtain the limit 
distribution for the one-step version of (2.2), the estimate is appropriate for the 
case that 8 is known. 

Theorem 1. Assume that 

rl (/I) is nonsingular, 

f, fw, u, up, up8, s, sg are continuous on J and 

are in the class C’ [ !2], 

inffw(w) > 0 and inf v(w, fi) > 0, 
WSJ WEJ 

(3.1) 

(3.2) 

(3.3) 
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then 

SUP E(If&(X, PI IpI W = w)Mw) < ~0 for i = LZ 
w 

sup E(lj&(X, /?) ( pI W = w)fw(w) -=c co fir some p > 2. 
w 

Suppose n2”-‘h + co for some q < 1 - l/p, (nli2 h/log(h)}-’ + 0, nh5J 
log(h- ‘) -+ 0, and nh4 -+ 0. Then, with ‘a’ denoting convergence in distribution, 

where 

+ E.‘y( y, w, P) YT( Y, w, P) + i2d 1 (P)], (3.4) 

d,(P)=cov [ i(h~x,8)-m8)]~ . 
’ 1 

(3.5) 

Similar to the results of Carroll and Wand (1991) and Pepe and Flemming 
(1991), in the case of generalized linear models the first term in (3.4) is the Fisher 
information from the validation sample and the second term is the Fisher 
information from the primary sample. The third term is the cost due to 
nonparametric regression estimation of u and v. 

Note that the condition nh4 -+ 0 forces p to be greater than 8/3. Note also that 
the asymptotic covariance in (3.4) involves neither the kernel density K nor the 
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bandwidth h. As 2 -+ 0, the estimate is also as efficient asymptotically as in the 
case where the density of X given W is completely known. 

In the next result, we present the limit distribution of estimates of (0, (r) when 
Y is observed in the validation data. 

Theorem 2. In addition to the conditions in Theorem 1, assume that (3.1) holds 
for q and t and (3.3) holds for g andf :. Let (e, 8,, /?,) be n”‘-consistent estimates 
of (o’, 8, j?). Then 

n’/2 = BIA + B;‘B3n”‘(fi, - 0) + O,(l), (3.6) 

where 

A = ,-1,2 5 M(Xi, d, By 0) 
i=l g’(Xi, P, 0) 

(Cyi -.L(xi7 LO)’ - a2g(Xi, 83 0) 
1 

+,-l/Z i H(Wj~a2~B~ e, [{ yj - U( Wj, p)}’ - U(Wj, r~‘, B, w 
j=n,+l~2(Wj,~218~~) 

A ‘” I[ H( Wi7 c2, B, e) -- 
n’/2 u2( wi7 a2, B, 0) i 

O2 (Stxi, P, 0) - q(Wi, D2 0)) 
i= 1 

+fttxi, B) - t(wi, P) + 2u(wi, P){“(wi3 PI -.L(xi5 B)) 
iI 

3 

’ E B1 =-- 
M(X, 02, B, @MT(X, g2, B, 0) 

l+J? 92(X, P, 0) 

+ R H( w, 02, P, ew( w, 02, P, 8) 
u2( w, ~2, B, 4 1 ’ 

1 
B3 = - 

E M(X, c2, B, e)g;(x B, 0) 

1+i 92(X, 8,e) 

+ n~( 
W, 02,8, 

e)r,T( 
w, fl, 0) 

rz( w, 02, P, 0) 1 . 
Asymptotic normality follows directly from (3.6). If the variance function does 

not depend on /I, then the asymptotic distribution of 8 and 8* does not depend 
on the method used to obtain the preliminary estimate /I,. In fact, it is easy to 
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check that B3 = 0 in this case. Also note that the effects of the preliminary estimates 

0, and 6: are asymptotically negligible. The asymptotic variance of the third term 
in A is the dispersion induced by the nonparametric estimation of&, U, g, and t. 

We now turn to the quasilikelihood estimate of /I when 0 is estimated and Y is 
observed in the validation data. 

Theorem 3. In addition to the assumptions in Theorem 2, we assume that r3 (p) is 
nonsingular. Then 

nl’% - B)*N{O, r;‘(P)rAP)r;T(P)), 

where 

r,(B)=& ECIP(Y, X, B, 0) + Aul,(Y, u/, 02, ,‘A @I, 

r,(P) = & ECQY, X, B, WY, X, B, 0) 

+ AY(Y, K g2,P, e)YT(Y, w, a2, p,ej + n’dml, 

43m = cov {fi(X, B) - 4w, B)) ,,;y~ iJO) 
[ 

. 
> 99 1 

3.2. Y not observed in validation 

Corollaries l-3 state the limit results for (2.3) (2.7), and (24, and hence are the 
analogues to Theorems 1-3 for the case that Y is not observed in the validation 
data. Since Y is not observed in the validation data, the changes in the 
corollaries are the absence of IP( Y, X, 0) in the asymptotic variances and the 
constant n/(1 + 2) due to a different normalization. 

Corollary 1. In addition to the conditions in Theorem I, we assume that r,(p) is 
nonsingular. Then 

ni”(82 - B) * VO, r; 1(B) r, P) r; ‘(P)L 

where 

r,(P) = ECY,( Y, W /31, 

r,(B) = EC’f”( Y, w, B) YT( y, w> P) + n~,(fl)l, 
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Corollary 2. Under the conditions of Theorem 2, 

*l/2 
P = CIA, +  c;‘c3n;‘2(B* - a, +  op(l), 

where 

A* =$-l/2 i H(W,’ 02’ ” ‘)({ Yj - u(Wj, b)}2 - U(Wj, 02, fl, e)) 
j=n,+l u2Cwj, f12, P, 0) 

I. HtWj, a*, P, e) 
-__ 

l/2 
nP v2( wj, Q2, B, e) 

~2{g(Xi, B, 0) - 4Cwi7 ml 

+f?(xi, p) - ttwi, P) +  2u(wi5 P)f”twi3 8) -fitxi7 P)} F 

H(W, 2, P, eww, ~2, P, 4 
~w, 6 B, 0) 1 ’ fwwm9~,wm~ 

U~W, ~2, B, e) 1 . 

Corollary 3. In addition to the assumption of Theorem 2, we assume that r,(p) is 
nonsingular. Then 

n;‘2(bh - B)=N 0, r41(B)~&W4T(P) 
i I 

, 

where 

r,(b) = JWB( K w, 02, A 011, 

Y(Y, w, c2, P, 0) = 
Y - u(w, P) 

~(w, 02, P, 0) 
u!Aw, P)? 

Ye = ECYb( K W, o=, P, 0) ‘$( Y, W, o*, P, 0) + &(P) 
I 

, 

{L(X, B) - u(w, 8)) ,,;(2 ;)@ . 
, >9 1 

3.3. Covariance estimation 

Since X is not observed in the primary data, we estimate the third term based 
on the validation data, 
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Define 

SP =; ,_i 
+Jfxi, $1 )"np(xi7 Pl) 

J-n,+1 &z(Xi, A> . 
Estimate [r(p) and Y, (j?) by S, + S,a_nd_S, f S, + J.2d^,(~,)/(l + A) respective- 
ly. Since PI is consistent, S,, S,, and A 1 (PI) are consistent estimators for r,(p), 
yr f/3), and A r(p) respectively. Similarly, we can easily obtain consistent es- 
timators for the rest of the covariances. 

4. Bandwidth 

Note that the classical optimal h with rate n-‘j5 is not allowed under the 
condition nh4 -+ 0. In order to find the appropriate rate for h and perhaps later 
to obtain an estimate of it, we generalize the bandwidth selection method in 
Carroll and Wand (1991). We focus on the estimate /?I, although the same 
considerations should apply to the other estimates. The method is based on 
a higher-order expansion of the covariance of an asymptotically equivalent form 
of nl”(& - ,8). Let n, = (n”2/h)-1 + FI~‘~/~I~. By a second-order Taylor series, 
it can be shown that ~~r”(pr - /?) = V,, + O,(q,,), with 
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A technical report containing the somewhat complicated calculations for (4.1) is 
available upon request. In the generalized linear model, the mean 
u(w, fl) = u(wrj?), and it can be shown that Ai = AZ = a(n, h) = 0 when p = 0. 
It also can be shown that the asymptotic variance of p^i is minimized at h = cc 
when /? = 0. In terms of rates of convergence for estimating the linear combina- 
tion trfl, the bandwidth h is chosen such that {<r a(n, h)}* is minimized. Except 
for the case that u(w, 1-3) = u(w’p) and fl = 0 mentioned above, the optimal 
bandwidth is h,, = y0n-ii3, for some yO. Note that the rate n-II3 satisfies the 
conditions in Theorem 1. 

The plug-in method suggests estimating y. by replacing the unknown quanti- 
ties in y. by estimates. If there exists a discretized #-estimator jjo of the unknown 
y. for some 0 < a s $ then the limit res_ult in Theorem 1 still holds for the 
estimated bandwidth ho = fOn- ‘I3 Let b(h) denote our parameter estimator . 
based upon a bandwidth h. It is easy to show that 

d’*{j(&,) - ,i(h)}e,O, 

where h satisfies the conditions in Theorem 1, if we discretize PO as we discretized 
Do in the proof of Theorem 1. From (A.12) to (A.l5), it is sufficient to show 
that for yn = y. + t,/n”, where t, -+ to is a fixed deterministic sequence and 
h, = y,n- ‘j3, and that 

n”* {A& h,) - .&(/A 4) 2‘0. (4.2) 

Since the conditions in Theorem 1 hold for h,, we can apply Lemma 1 and 
Lemma 2 to A,(/?, h,) and A,@, h) to show (4.2). 

5. Simulation 

The validation data containing (X, W) were generated such that 
X = 0.5 W + 61 WldU, where ( W, U) has a bivariate normal distribution with 
mean (4, 0) and covariances owu = 0 {and 5& = ai = 1. The primary data 
containing ( Y, W) were generated according to the Michaelis-Menton model, i.e., 
such that Y = l/w0 + pi/X) + E, where E has the standard normal distribution. 
Two hundred simulated data sets were run for each of the three validation data 
sizes 50, 100, and 200 and for each of the three primary data sizes 100 and 300. 

As in Carroll and Wand (1991), we used an ad hoc bandwidth &wn- ‘I3 which 
is easily programmed, where 6w is an estimate of the standard deviation of 
W based on the validation data. A Gaussian kernel and a grid of 21 points 
covering the range of the validation data were used. Observations W outside 
the range of the validation data in the primary data should not be used in the 
estimating equations. To avoid boundary effects, those data points in the 
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Table 1 

Michaelis-Menton model: Y = (a + p/X)- ’ + e, where e - N(0, 1) and (n. /I) = (0.2,0.3)“. 

X = W+ 0.25U, where W- N(4, 1) and U - N(0, 1) 

n,. = 50 n, = 100 n,=200 

Param Semi Param Semi Param Semi 

Mean 0.320 

Median 0.308 

SD 0.124 

RMSE 0.125 

MAE 0.070 

np = 100 

0.305 

0.300 

0.118 

0.118 

0.073 

121.7 

HP = 300 

0.307 

0.309 

0.07 1 

0.07 1 

0.045 

115.1 

0.311 0.290 0.285 

0.305 0.287 0.279 

0.133 0.106 0.118 

0.133 0.106 0.119 

0.089 0.068 0.079 

100.0 115.4 100.0 RE(%) 138.3 

0.318 

0.306 

0.156 

0.157 

0.097 

100.0 

Mean 0.309 

Median 0.304 

SD 0.072 

RMSE 0.073 

MAE 0.048 

RE(O/) 114.4 

0.305 

0.306 

0.09 1 

0.09 1 

0.053 

100.0 

0.307 

0.309 

0.077 

0.077 

0.052 

100.0 

0.303 

0.302 

0.066 

0.066 

0.045 

106.5 

0.298 

0.294 

0.073 

0.073 

0.048 

100.0 

X = W + 0.5U, where W - N(4, 1) and U - N(0, 1) 

n, = 50 n,. = 100 n, = 200 

Param Semi Param Semi Param Semi 

np = 100 

0.316 

0.308 
0.125 

0.126 

0.079 

117.6 

np = 300 

0.317 
0.317 

0.079 

0.080 

0.052 

101.9 

0.282 Mean 0.330 0.312 

Median 0.317 0.290 

SD 0.129 0.162 

RMSE 0.132 0.162 

MAE 0.073 0.096 

RE(%) 130.4 100.0 

0.310 

0.305 

0.139 

0.139 

0.093 

100.0 

0.301 

0.295 

0.111 

0.111 

0.067 

0.272 

0.124 

0.125 

0.077 

113.6 100.0 

Mean 0.323 0.299 
Median 0.320 0.296 
SD 0.082 0.098 
RMSE 0.085 0.098 

MAE 0.056 0.060 

RE(%) 107.5 100.0 

0.301 0.314 0.297 
0.303 0.312 0.294 

0.08 I 0.070 0.077 
0.08 1 0.070 0.077 

0.053 0.047 0.052 

100.0 112.1 100.0 

“Param is the parametric correction for attenuation, while Semi is the semiparametric 
quasilikelihood. 
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Table 2 

X = W + 0.25) WI 0.5 U, where W - N(4, 1) and U - N(O, 1) 

n, = 50 n,=lOo no=200 

Param Semi Param Semi Param Semi 

Mean 0.323 0.312 
Median 0.307 0.296 
SD 0.126 0.159 
RMSE 0.128 0.159 
MAE 0.073 0.096 

nr= 100 

0.309 
0.301 
0.123 
0.123 
0.073 

RE(%) 130.6 100.0 125.7 

Mean 0.313 0.298 
Median 0.308 0.295 
SD 0.077 0.095 
RMSE 0.078 0.095 
MAE 0.049 0.058 

np= 300 

0.310 
0.311 
0.075 
0.076 
0.047 

RE(%) 118.0 100.0 107.8 

0.309 
0.306 
0.137 
0.137 
0.091 

100.0 

0.293 0.282 
0.291 0.275 
0.108 0.120 
0.108 0.121 
0.006 0.077 

115.9 100.0 

0.301 
0.303 
0.079 
0.079 
0.05 1 

100.0 

0.306 0.296 
0.304 0.291 
0.068 0.074 
0.068 0.074 
0.045 0.050 

110.8 100.0 

X = W + 0.5) Wjo.5 U, where W - N(4, 1) and U - N(0, 1) 

n, = 50 n, = 100 it,=200 

Param Semi Param Semi Param Semi 

Mean 0.352 0.290 
Median 0.336 0.266 
SD 0.150 0.181 
RMSE 0.159 0.181 
MAE 0.096 0.105 

np = 100 

0.335 
0.327 
0.145 
0.149 
0.087 

0.299 0.316 0.275 
0.294 0.315 0.272 
0.153 0.122 0.132 
0.152 0.123 0.134 
0.110 0.076 0.084 

RE(%) 108.7 100.0 127.0 100.0 110.0 100.0 

Mean 0.345 0.276 
Median 0.340 0.27 1 
SD 0.106 0.113 
RMSE 0.115 0.116 
MAE 0.068 0.081 

np = 300 

0.335 
0.330 
0.096 
0.102 
0.063 

0.282 0.332 0.290 
0.280 0.329 0.280 
0.092 0.078 0.088 
0.094 0.084 0.088 
0.061 0.058 0.059 

RE(%) 118.5 100.0 98.1 100.0 102.6 100.0 
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primary data which are within one bandwidth of the minimum and maximum 
values of the validation data were also deleted. 

The parametric regression calibration estimate (Param) was obtained as 
described in Rosner et al. (1989). First compute the estimate f?(X 1 W) of E(X ( W) 
by using simple linear regression, and then perform the usual analysis. The 
proposed semiparametric estimate (Semi) was computed by a full iteration starting 
from the naive estimate, which was obtained by ignoring the measurement error. 
Tables 1 and 2 give the mean, median, standard deviation (SD), root of the mean 
squared error (MSE), median absolute error (MAE), and the relative efficiency 
(RI?) in terms of the median absolute error with respect to the proposed estimates. 

For both the linear model X = W + 6U and the linear heretoscedastic model 
X = W + 61 W/‘.‘U, for 6 = 0.25,0.5, the semiparametric regression calibration 
estimates were somewhat less efficient than the regression calibration estimates, 
but not disastrously so. 

Next, we study the model W = XU, where X has uniform distribution on (0,5) 
and U has a gamma distribution with mean 1 and variance 1. The results are 
given in table 3. In terms of bias and variability, the proposed estimate clearly 
beats the parametric regression calibration estimate. A plot of X against W for 
a single data set, given in fig. 1, suggests that even though the relationship 

Table 3 

W = XU, where X - Uniform(0, 5) and U - Gamma(1, l).” 

n, = 50 ?I,=100 n, = 200 

Param Semi Param Semi Param Semi 

np = 100 

Mean 0.595 0.142 0.560 0.171 0.550 0.220 

Median 0.568 0.152 0.552 0.160 0.548 0.197 

SD 0.212 0.176 0.164 0.179 0.155 0.164 

RMSE 0.363 0.235 0.307 0.220 0.293 0.182 

MAE 0.268 0.154 0.252 0.154 0.248 0.133 

RE(%) 21.3 100.0 61.1 100.0 53.5 100.0 

np = 300 

Mean 0.558 0.140 0.580 0.184 0.565 0.226 

Median 0.533 0.138 0.568 0.182 0.555 0.211 

SD 0.168 0.101 0.138 0.100 0.096 0.101 

RMSE 0.307 0.189 0.312 0.153 0.281 0.125 
MAE 0.233 0.162 0.268 0.125 0.255 0.096 

RE(%) 69.3 100.0 46.7 100.0 37.6 100.0 

a Based on 200 simulations in each case. Gaussian kernel with bandwidth 8/r1”~, where C? is an 
estimate of the standard deviation of W based on the validation data set. 
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between X and W seems to be linear, the parametric regression calibration 
estimate does not perform well. 

One should not draw general conclusions from such a small study. We have 
observed in our example a small loss of efficiency for the semiparametric 
estimate when X given W is normally distributed with a linear mean, and a large 
gain in efficiency in a case where X given W does not have a linear mean. 

6. Discussion 

Due to the availability of the validation data the semiparametric quasilikeli- 
hood estimation proposed here does not require choice of a model for the 
measurement error. Being based on variance function and quasilikelihood tech- 
niques, it also makes no assumption about the underlying distribution of Y given 
X and instead depends only on the first and second moments of Y given X. 

Our results also apply to likelihood methods. Suppose that the likelihood 
function for Y given X is denoted by L,( Y, X, fl). Our results apply by fitting 
a nonparametric regression of L,( Y, X, b) on W to obtain an estimate 
L,( Y, W, /I), the likelihood for Y given W. That is, we estimate &( Y = y, 
W = w, P) by 

wherefw is defined in (2.1). Then an estimate /?p of /J’ is obtained by maximizing 

rL”+ 1 L,,,( Yj, Wj, fl), this usually being done by the method of scoring. 
The semiparametric likelihood method in (6.1) generalizes the logistic model 

in Carroll and Wand (1991) to a wider class of probability densities. If both 
L&y, w, 8) and &(y, x, 8) are in the class of generalized linear models, for 
example the logistic model of Carroll and Wand, it can be shown that the 
asymptotic distribution theory of fip defined by (6.1) is equivalent to that of pZ. 
Otherwise analogous formulae are obtained; we will forego the details. 

Up until now it has been assumed that the joint and marginal densities of X and 
W are continuous. For a discrete surrogate W, by choosing the density kernel 
K(0) = 1, eq. (6.1) yields the empirical estimate of P( YI W) proposed by Pepe and 
Flemming. In this case, we need not worry about bandwidth selection. Let n”, 
denote the number of observations in the validation data with W = w, nP, denote 
the number of observations in the primary data with W = w, and nt, + nP, = n,. 

We assume that plim n&z, = 1. in this paper, and if the validation data are 
a selected subset of the primary data, it follows that plim n”,/n”, = 1. Also, note 
that n,,,/n is the empirical density estimate of P( W = w). It then can be shown 
that, in the generalized linear model, the term in the asymptotic covariance 
caused by the empirical estimation is equal to A 1 (fi); see (3.5). 

By the same token, we can define u,(w,p) = Cyh(Xi, /5’)K(Wi - w)/n& 
u$(w, P) = C~h(xi9B)K(Wi - w)/53 and s,(w,B)=C~"~~(X~,B)K(W~ - WY& 
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0 5 10 15 20 25 

w 
Fig. 1. Multiplicative model W = XU, where X 

where K(0) = 1 for discrete surrogate W. The estimates u,, u,~, and s are the 
unbiased empirical estimates of U, up, and s respectively. Therefore, the method 
proposed here also extends to the discrete case. Only the proof, which we will 

not pursue here, will be different. 

0 5 10 15 20 

w 

- Uniform (0, 5) and U - Gamma (1, 1). 

Appendix A 

Appendix A gives a formal proof for Theorem 1; appendices B and C give the 
calculations for Theorem 2 and Corollary 3. 

Let K(i,j) denote K(Wi - Wj)/‘h, u(i) denote u(Wi, p), and similarly for the 
rest. Let derivatives be denoted by subscripts. Let E(U2) denote E(UUT). The 
following is proved under the assumptions of Theorem 1. Also note that all the 
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sums and expectations are taken over 0, since the estimates in (2.1) are only 
defined for w E 0. We will not indicate this restriction explicitly in the caicu- 
lations. 

Lemma A [ Mack and Silverman (1982)]. Let y,, = ((l/nh)log(l/h))“*. As- 
sume that 

l f, fW, and u E C’[Q], and inf,,Jfw(w) > 0. 

3 fr E Lp and sup,E( jfr(X, fl) Jp ( W = w) &(w) < co fir some p > 2. 

Suppose n 2q-1 h -+ co for some q -c 1 - l/p and h2 = o(yn), then 

Ynl El I fww - fw(w) I = O,(l), 

ynl ~g I k,(w) - u(w)&(w) I = O,(l), 

Y,’ 2; I %l(w B) - u(w, B) I = O,(l). 

Under mild conditions on the bandwidth, this lemma shows that the weak 
uniform convergence rate of the kernel estimator on s2 is O,( y,,). The result can 
be applied to the rest of the kernel estimators we defined in section 2. Also note 
that h2 = o(y,) is equivalent to nh5/loghK1 + 0. 

We first require two technical lemmas: 

Lemma I 

&i 
yj - un(wj, P) 

unfl(wj9 PI 
j=n,+ 1 un(wj, P) 

=$ i Yj - UCwjf P) 
j=n,+ 1 

u(wj, fl) UdWjp P) 

where A = n,,/n,. 



J.H. Sepanski and R.J. Carroil, Quasilikelihood/variance function model 243 

Proof. From (2.1), 

+Ei 
yj - %(j) 

v (j) 

j=n,+l n 

By a Taylor series, 

= u,, + u,*, - us, + u& - u:, - u& f uTn, (A.1) 

where (./k(w), u,(w), Q*(W), V,(W)] lies in between f&(w), u,(w, p), U&W, p), 

%(w, b)} and {hdw), u(w, P), up(w, fi), u(w, f?)> for each w E St. Note that, for 
example, 

5 & i II yjll suP 
II 

I 1 

j=n,+ 1 WE R v* (w)&*(w) - 4w)“Mw) Ii 

x “,‘;tg II k&w) - ~~(w)~~(w) II 

i, + n112_--- 
1+A% II u*(w) U(W) 

fj*(W)fw* (WI - v(w)fw(w) II 
x sup II kn,&) - ~~(w)~~(w) II. 

wef2 
(A.21 
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By Lemma A, (3.2) and E( (/ Y [I ) < co following from (3.3), we can show that 
(A.2) is of order Op((l/nl”h) log(l/h)) = o,,(l) as nh2/(logK 1)2 -+ CC . Therefore, 
we can rewrite (A.l) as 

1 n 
=p 

I[ 

yj - n(j) 

u(j) 

up(j) + 
j=n,+l 

$“$l) {j;,(j) -J%(j)) 

- I yj - Wldj) s(j) if (j) _ 

W2Mj) W 
f 

W 
cj,f 

_ { yj - 4)Mj) {b (j) _ s(j)1 

v2Wfi(j) n W 
(j)} 

+ { yj - 4dlq(jl 
u2(j)fw(j) 

2u(j) {k,(j) - u(j)fw(j) > 
1 

+ ~(1) 

= u,n + U2n - US” + Ubn - UJll - ufj, + u,, + op(1). (A.3) 

We first want to show that U4,, = o&l), Us,, = op(l), U,, = op(l), and 
UT,, = op(l). We only show that U,, = op(l), because the rest can be done by 
similar arguments. Let 9Jp = { ( Wj)l=n, + 1 } and 9, = {(Xi, Wi)~~ 1 }. It is easy to 
see that E( Ubn ) 9Jp, go) = 0; therefore 

x tkdj) - ddj)~T 
1 

. 
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We want to show that this last term converges to zero. Let k$ denote the ath 
coordinate of the column vector k,,. For w E Sz, 

= 
s 

tia)(w + zh)&(w -t zh)K(z)dz. P 

After Taylor expansions of u andf, and by the definition of the kernel X, we 
obtain 

= uk”)(w)fw(w) + h2 
s 

z2 K(z)dz ~~“(w’)~~(w*) 

where w*,w’ E [w - h, w + h] and f Z and U’ are the first derivatives of fw and 
u with respect to w respectively. Note that under assumption (3.1), 
sup,,, ] 5,(w)/ < co. Similarly, we have 

= $%‘) ulP’(w)f;(w) + i(w, h), 
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where lb is analogous to [, in (A-4) for k$. Note that i(w, h) 4 0 and 
sup,,,) [(w, h) 1 < co under assumption (3.1). Let I@**) be the (a, b) entry of 
cov(U,,). Then by (A.4) and (A.5), 

R(d) = E ! 
n j-C+ 1 u(j);' (j) ” W 

X {ttwj) - U~'L(wj)fw(j) - $‘(~j)ib(~j)fw(j)j 
1 

1 

Since the integrand converges to zero and is bounded, by the bounded conver- 
gence theorem R@,*) = o( 1). Thus, Uq,, = op( 1). 

Note that by arguments similar to the above, it can be shown that 

Therefore, 

u2”=-& i u(jh(J) { fw(j) - fw(j)) + oP(l) 
j=n,+ I W./U 

=U 2n* + OP(l). 

Lemma 2 

ProoJ Define tl,, = E(U2,, - U3,, 12Tn); then CL, is given by 

(A.61 

43(j) 
- WfwW 

-!- 5 _h($K(j,j) 
4.h i= I 
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UW$W 1 

u(w) 77 

247 

;I 
=p 

U( Wi - Zh)Z4p( Wi - Zh) 

V( Wi - Zh) 
K(z)dz 

-h(i) s US( Wi - Zh) u(W, - zh) K(z)dz , 1 (A.7) 

After Taylor series expansions, (A.7) is given by 

I. mu VI 
[ 

i 
u(i) - zhu’( Wi) + $$( q, 

- Ii up(i) - zhug Wi) + Fu;(w;) i 
nl12 

i=l 
u(i) - zhu’( Wi) + p (w;) 

s up(i) 
x K(z)dz -fi (i) 

- zhz$( Wi) + F$(Wf) 
v(i) - zho”( Wi) + F ,,( w;) 

K(z)dz 

I 

A n” 4) h(i) =- 
nll2 

i=l uci) Ii - v(i) uS(i) + 5 F h2Y(Xi, wi)f 

I i=l 

where y(Xi, Wi) is given by 

&I2 L Z K(Z)dz U’(w)Uh(Wi) + ${U(Wi)Ui;(Wp) 

+ u/j(W)““( wF) +fiCxi)U$( wF)) 
I 

+ 0p(h2), 
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and W’ and W” are in some neighborhood of W. Since E{ y(X, W) 1 W) 

and E{dX, W)f(X, W)l W} are bounded under assumptions in Theorem 1, 
as nh4 3 0, cov { n- l/2 h22 Cy”l y(Xi, Wi)} = o(l). Thus we have 

(‘4.8) 

Next, we will show that UZn* - Usn = CI, + oP(l) by a covariance calculation. 
We have 

(A.9) 

x $w’P)K(k, 9) 9” 
i II 1 

Now, cov( UZn.+ 13,) = E( U2,,* UT,, I S!Yty) - E( U2n* ]gO)E( U &,, j 9”). By inde- 
pendence, the cases when p # q contribute 0 to cov( U2n* ) 3”). From (A.9) and 
by arguments similar to (A.7), we have 

x $w'P)K(k PI wp ( )I I 
WWu,W,T(k) - 

Nib(k) 1 
+ o(1). (A. 10) 



J.H. Sepanski and R.J. Carroll, QuasilikelihoodJvarianee function model 249 

The cases i = k, by the bounded convergence theorem, contribute o(l). The 
cases i # k, (A.lO): 

(S K(d_hwW’p + zh)dz 

(A.ll) 

Similarly, we can easily show that E { cov( Wan ] 3”)) and E { cov( U2,,*, U 3n I go)} 
are equal to {A/( 1 + A)} cov { u( W)us( W)/u( IV) >. Therefore, 

CM U2n* - U3,, - CI,,) = E{cov(U2,,* - UxnI3J) = o(l). 

By (A.S), we have proved Lemma 2. 

Proof of Theorem I 

Assume that we have an n112 -consistent discretized estimate & of p, for 
example, j$ is a discretized version of the solution to n-1’2C~r 1 I( Yi, Xi, /I) = 0. 
Define A,@) = n-r{CF:, I( Yi, Xi,@) + CJln,+r Y”,( Yj, Wj, S)}. The one-step 
estimate PI of /I is 

By a Taylor series, 

(A.12) 
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where fl, lies in between fro and /?. By the central limit theorem, n-l” x 
Cl:, l(Yi, Xi, 8) = O,(l), and by Lemmas 1 and 2, a-1/2 CJzn,+, !J’,( Yj, wj, 8) 
= O,(l), as nh2/(logh-1)2 -+ co and nP/logh-’ -+ 0. Therefore, r~“~A,,(fi) 
= O,( 1). 

Define A(/?) = n-l {Cl:, I( Yi, Xi, B) + xJ=,,,+l Y( Yj, V’j, p)}. First, we 
want to show that 

(A.13) 

as nh2/( logh- 1)2 + CC and nh”/logh-’ + 0, i.e., show that 

The left-hand side of eq. (A.13) is 

%?(j) T . 
-qp(“) + 

yj - u(j) 

u2W 
qdj) 

b(j) T 
- d k&) - 

n 

J&4) - kUk 
-- 

W) nSP ’ 

(j) 

1 

where d,(j) = {b,,(j)fw(j) - k:(j)), upp = au,/ap, and k,,, = ak,,/afl. Note 
that, for example, 

Thus, 
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Next, we want to show that 

251 

$A,&) - &@) = OP(f). (A.14) 

Because PO is discretized, it is suffices 
sequence and /& = p + c,,/n1’2, then 

to show if c, -+ co is a fixed deterministic 

By a Taylor series, 

By arguments similar to those for (A.13) and (Ad), we have 

; j_$+I &Up,) -t j;f+I $A@*) = op(l). 

Since a2A(/3)/aa2 is continuous, it then follows that 

$w*) - &p(P) = OP(l). 

By (A.12), (A.1 3), and (A.14), we have 

n”‘(B1 - p) = - {A(/?))-1n”2A,(B) + op(l). (A. 15) 

Now apply Lemma 1 and Lemma 2 to finish the proof of Theorem 1. 

Appendix B: Proof of Theorem 2 

We will prove this for the estimators in (2.7). From (2.4) and (2.7), we have 

x (Y~f'w-k"(Wj~8,)}2-d,(Wj,~2,~*~') 2 

1 
P.1) 
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where 

d,(w, g2, 0, 0) = 029,(K P, @.&w) + r,(w, B)&(w) - G(W, P) 

and 

We will assume that the solution to (B.l) is n”2-consistent. Alternatively, 
a one-step argument can be developed precisely as in appendix A. Drop the 
dependence on W, 02, 8, and p. By a Taylor’s expansion and by arguments 
similar to those of Theorem 1, 

x ( YJf_AW - ka( wj, P*)}’ - 4CWj, &‘*, PI*, $1 1 

- (B2n - &A&c - 8) 

- B&6* - 0) - B&T: - 0’) + Op(l), 03.2) 
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where Q,, is the derivative of Qn with respect to (8, u’)~. By a Taylor’s expansion, 
(B.2), and arguments similar to those for (A.3), 

l/2 e^- (3 
nP 

( ) 
(32 - 02 

= B,‘{A, - (B2” - &NJ* - 8) - ue, - 0) 

- &,(e; - u’,> + OP(l). 

By Lemma A and arguments similar to those for (A.6), we have B2n”0, 

B 4nA0, and B 5n 2 0. Also, 

B1, -; j y = OP(l), B~ln - + ,_i PJ_n +1 $8 = OP(l). (B.3) 
PJ-n,+l ” 

Since /?*,, t?*, and 8; are assumed to be nli2 -consistent, from (B.2) and (B.3), we 
have 

= B;‘A, + B;‘B~I;‘~(~* - j3) + op(l). (B.4) 

Apply a Taylor series expansion to A,, and use a similar argument to (A.3) and 
(A.6). We then have 

A=-$ i 
p j=n,+l 

$[{ Yj - u(j)>” - WI 

+ -&{2( yj - u(j)) yj - 02dj) - t(j)) tidj) -f&)1 

+ &t - 21 yj - u(j)> + 2uW) {L(j) - u(jkh&j)) 

- &Ii.(i) - ici,rWCj~l] + OP(~) 



254 J.H. Sepanski and R.J. Carroll, Quasilikelihoodlvariance function model 

= +J=F+l $[ [{ yj - u(j)>’ - WI 
” 

+ C2{ yj - U(j)> yj - 02s(j) - Wl.ii4.d 

+ 24j)bj) - 02M.i) - r*,(j) 
1 

= v,, -I- I/,, + v,, - v,, - v,, + o*( 1). 

Next, by calculations of covariances similar to the arguments in appendix A, we 
can show that 

!I” v5n=$ 1 H( wi, 02, fl, e)ff(xi, 8) + op( 1). 

a i= 1 112 ( Wi, 023 P, e, (B.5) 

Similarly, we can show that 

{~2q(wit B, O) + ttwi, B) - 2uz(wi, PI) 

+ OP(l), 

v3, _ n;,2 2 H(Wi, 02, BT e) 
i=l u2(wi~02~~5e) 

{2u(wi5 B)fi Cxi3 a)) + 0Pt1)7 

n” v4”=+ c H( Wit a2, B, 0) 
i=l ~2(Wi,02,P,e) 

{c’S(Xi, P, w + 0~41). 03.6) 

By (B.4), (BS), and (B.6), we have proved Theorem 2. 

Appendix C: Proof of Corollary 3 

Here we merely sketch the arguments, as they differ in no substantial way 
from previous calculations. From (29, 

(C.1) 
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Drop the dependence on W, d, 8, and /I. After a Taylor’s expansion of (C. l), we 
obtain 

PZ;‘“(& - f14) = Dl,‘G, - Dl,l {D21rn;‘2(a.: - a’) + Djnn;” (& - 6)) 

+ o&41), (C.2) 

where 

G!l = $ i yn(yj, wj, 02, j, 0), 
j=n,+l 

Dzn=f i !!!bf Y,( Yj, Wj, CT’, /I, e), 
p j=n,+l d,2 

Dsn=f f 2 Y,( Yj, wj, 02, P2 O). 

p j=n,+l 

By Lemma A, we can show that D2,L0 and D 3n-%0. Since 6: and 8, 

are n”2-consistent and use similar arguments to (B.5), we obtain (C.2): 

= D;; G, + op( 1). 

Now by arguments similar to those of appendix A, we finish the proof of 
Corollary 3. 
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