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We use renormalization-groupmethodsto estimatethe critical temperaturefor 4i~theoryin
threedimensions.We showthat, by delineatingthe rangeof applicability of perturbationtheory,
thevalueof thecritical temperatureis rathernarrowly bounded.

1. Introduction

The natureandconsequencesof phasetransitionsin quantumsystemsat finite
temperature(T) has attractedinterestsincethe observation[1] that spontaneously
brokensymmetriesin relativisticfield theoriesare in generalrestoredabovesome
critical temperature(Ta). In particular, the phase transition associatedwith
restorationof the electroweaksymmetryof the standardmodel (SM) has recently
beenthe subjectof much attention and somecontroversy[2—4].Ever sinceit was

understoodthat baryonviolation can be copious at temperaturescomparableto
the electroweakscale [5], therehave been attemptsto determinewhether the
baryon asymmetryof the universecan be understoodas a consequenceof the
electroweaktransition ratherthan a transitionat somemuch higher temperature
[6,71.A resolutionof this questionin the context of the SM or some extension
thereofinvolves a numberof physicsissues;in particular,a ratherpreciseanalysis
of the finite-T effective potential V(4) of the Higgs field is required. This is
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renderednon-trivial by the infrareddivergences(dueto zeromodes)characteristic

of finite-T field theories.
Recentdiscussion[8] of how fluctuationsmay influence phasetransitionshas

inspired simulationsof model systemsin lower dimensions[9]. In d space-time

dimensionsfor d <4, the infrared problemis generallymore severethan in four
dimensions.On the otherhand,a theory that would be renormalizablein d = 4 is
superrenormalizablefor d <4, so that its ultraviolet (UV) divergencesoccurup to
a finite numberof loopsonly, andthe associated/3-functionsare thereforeexactly

calculable.Thus,we were invited to considerthe simplecaseof single-component
4~in d = 3 dimension~. While we agreewith previous treatments** that the
model cannotbe solvedperturbativelynearthecritical temperature,we shall argue
(contrary to ref. [10]) that renormalization group ideas enable us to reach a

reasonablyreliable estimateof T~.
Let us first digressbriefly to contrast this with the generalizationto an 0(N)

theory with N ~-fields. If a non-zero vacuum expectationvalue (VEV) for 4
breaks a continuousglobal symmetry then radically different physics (from the
N = I case)resultsbecauseof the existenceof Goldstonebosonsin the broken

phase.The 0(N) model wasanalyzedin the large-Nlimit at T= 0 in ref. [11], and
the existenceof symmetrybreaking(controlledby the sign of the scalar((mass)2

parameter)demonstrated.Now at finite T, as discussedfurther below, the effec-
tive field theoryof thezeromodesof a d-dimensionaltheoryis (d — 1)-dimensional:
in this case,two. The existenceof the Goldstonebosonsfor N> 1 makesthis
effective field theory uselessfor describingthe finite-T behavior of the d = 3
theory. Indeed,as shownin ref. [11], the d = 2 theory doesnot permit a VEV for
4, for anyvalue of the scalar(mass)2.

We therefore confine ourselvesto the N= 1 case.This 4,~model is in the

equivalenceclassof the (2 + 1)-dimensional,ferromagneticIsing model ~ Ac-
cordingly, the model is expectedto havea second-orderphasetransition at some
non-zerocritical temperatureT~,andvarious critical-point exponentsare known

either from Onsager’sexact solution or from numerical studies~. While the
precise relation for the critical temperaturein the Ising model is well known, the

specific relationof the critical temperatureto the lagrangianparametersis not to
our knowledgeknown,so we will concentrateon that. It is also interestingto see
how far analytic argumentsbasedon perturbationtheoryand the renormalization
group can be pushed,eventhough perturbationtheory must break down at the
critical temperature.As we shall see, the infrared-induceduncertaintiescan be
subsumedinto a singleparameter,K, upon which T~dependsonly logarithmically.
Consequently,we estimateT~with a fair degreeof confidence.

* We wish to thankM. Gleiserfor initiating our interestin this problem.

** Seefor exampleref. [10].
The relation is derived,for example,in ref. [121.
For a review of theIsing model, see ref. [13].
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2. (~4)3 at zero temperature

We begin,however,by reviewingthe propertiesof the theoryat zero tempera-
ture. We write the treepotential as

m2 A
V

0 = ........4,2 + ~ (2.1)

where,in threedimensions,the coupling A has dimensionsof mass.The /3-func-
tion for the mass m

2 vanishesat one-loop but receivesa positive contribution
proportionalto A2 at two-loops,

1 )~\2

/3m2~ ~ , (2.2)6 4irj

so that

m2(~)=m2(~
1)+ —(~ in . (2.3)

6~4~-

In fact, in a renormalization prescriptionsuch as minimal subtraction, these

two-loop results are exact ~. It follows that we can say definitely that m
2(.t) is

positiveat sufficiently largescalesand negativeat small scales.This suggeststhat
the theory (at zero temperature)undergoesspontaneoussymmetry breaking at
somescale.This conclusioncanbe drawnwithin the contextof perturbationtheory
by working at a sufficiently small scaleso that A/I m j is small. As the argument
parallelsthe onethat we shall usebelow at finite temperature,we shallpresentit
here.Eventhoughthe exact /3-functionsandanomalousdimensionsareknown for
thismodel, it is not known how to calculateV~ff analyticallyexceptperturbatively.

The one-loopeffective potentialmay be written as

1 32

l’~ff= V
0— j-~__(m

2+~A4,2) / . (2.4)

Simple power counting argumentssuggest that a minimal requirement for a
reasonableperturbationexpansionis

A
________ .cgz 1, (2.5)

4~y~~A4,2

for m2 and 4, in the rangeof interest.Eventhoughm2(i~)is not scaledependent

* As this is a superrenormalizabletheory, the anomalousdimensiony and13A both vanish.
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at one-loop, it is at two loops, so thereis a scalechoice implicit in eqs.(2.4) and
(2.5). Let us normalizeat some small scalewhere m2 is negative.In mean-field
theory, one would conclude that the theory undergoesspontaneoussymmetry
breakingwith (4,)2 = —6m2/A.Underwhat conditionsis this conclusionjustified?
Taking into accountthe one-loop correction, we find the shift in (4,) from its
meanfield is

3(4,) V~A

(4,) = 16~ImI (2.6)

Thus, it would appearthat, simply by choosingthe normalizationscalesufficiently

small, so that —m2 is sufficiently large, the mean-field conclusion would be
correct.

On the other hand, if we choose~.t such that m2(~.t)is sufficiently large and
positive, a similar argumentin the neighborhoodof 4, = 0 suggeststhat there
would be no symmetry breaking. This is paradoxicalto say the least, since the
conclusion that the theory doesor does not undergosymmetry breakingcannot
dependon the arbitrarychoice of normalizationscale.The flaw in the reasoningis
this: considerthe situationwhenwe havenormalizedat a scalewhere m2 is large
and negative.Then, in tree approximation,(m2+ ~A(4,)2)= —2m2. At the two-
loop level, the effective potential will involve ln[(m2 + ~A4,2)/~2]. To avoid large

logarithmiccorrectionsthat might leadto a breakdownin perturbationtheorynear
the tree minimum, the normalizationscalemustbe comparableto (m2+

This may or may not be compatiblewith choosingthe scalesuch that eq. (2.5) is

satisfied ~. Similarly, simply by choosing~.t sufficiently large,onemaynot be able
to conclude that there is a local minimum at 4, = 0 becauseit may be that
perturbationtheory is unreliablein that region.

3. (~)~at finite temperature

Now let us turn to the behaviorof the theoryat finite temperature.In general,
the equilibrium propertiesof a quantumfield theory in d space-timedimensions
may bewritten as a euclideanfield theory in d euclideandimensionsin which the
imaginary time coordinateplays the role of the inverse temperatureand the
bosonic(fermionic) fields areperiodic(antiperiodic)with period /3 1/T ~‘. The

* Ourpurposehereis to show that one cannotalways reliably concludethat thereis a local minimum

away from the origin. It is also the casethat, for m2 negative, there is a range of 4 where
+ ~A42 is so small so that radiativecorrectionsbecomeuncontrollablylarge.In addition, when

m2<0, theeffectivepotential will developan imaginary part for 4 sufficiently small, so that one
cannottrust the ioop expansionin that region.

** The Boltzmann constantkB has beenset equal to one. For a reviewof the formalism,see, for
example,the text in ref. 114].
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“energy” then becomesquantizedwith w~,= 2n~rTfor bosons(and w,, = (2n +

1)~T)for fermions.)Following Ginsparg[15] for sufficiently high temperatures(at
scalesbelow 2’~rT)one may integrateout the heavymodes to write this as an
effective field theory of the zero-energymodes of the bosonic fields in d — 1
euclideandimensions.The effective lagrangiantakesthe form

2 mT AT
= ~(a~4,) + 4,2 + ~ (3.1)

In going from d to d — 1 dimensions,we haverescaledthe parametersandfield,

V~T4—*4,, AT—*AT, so that, as usual, AT has dimensions
1~4—(d—1)where ~ is

some massscale. Thus, if we start with a four-dimensionaltheory, then AT has
dimensionsof mass,whereasif we begin with a three-dimensionaltheory, AT has
dimensionsof mass

2.TheparametersmT and AT include the virtual effectof the
heavy“energy” modes.

In thecaseat hand,wherewe havebegunwith d = 3, we are led to considereq.
(3.1) in two dimensions.In thiseffectivefield theory, theonly UV divergenceis the
one-loopcontributionto m~.,giving

AT
/3m2r~~~ (3.2)

so that

m~(p~)=m~—~ ln(~/~t~), (3.3)

exactly. It is extremelyconvenientto makep~a physicalparameterby choosingit
so that m

0= 0; thus ~ is definedas the scaleat which the renormalizedmass
vanishes.The parametersmT and AT are relatedto the original parametersof the

three-dimensionaltheoryby certain“matchingconditions” ~‘. Up to correctionsof
order m

2/T2, we may take AT = AT. To obtain the relation for mT, one may
calculatethe inversepropagatorat zeromomentumfrom the original theoryand
compareit with the resultfrom the effectivetheory. Throughtwo loops, this leads
to the relation **

AT T 1 A 2 T
m~(/.L)=m2(~a)+ —In— + — ln — . (3.4)

4~-~ 64~r

In particular,

m~(T)==m2(T). (3.5)

* Themethod of effective field theoriesis elaboratedin ref. [16].

** Termsfinite in A2 canbe absorbedby anappropriaterenormalizationprescription.
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Eqs.(3.3) and(3.4) togetherdeterminethe physicalscale~ asa functionof the
temperatureT andthe original lagrangianparametersm2 and A, to wit,

T 4irm2(T)
ln — =— . (3.6)

AT

Note that j~ is a function of temperature,andfor sufficiently largeT, ~t
0(T) T.

Although in general p~may be larger or smaller than 2irT, the presumption
throughoutis that

I m~(27rT) <<2irT; (3.7)

otherwise,the n = 0 modewill not be light comparedto the modesthat havebeen
integratedout. Eventually,this will be seento provideanupperlimit on A/T~.

Naively, the critical temperatureT~would be determinedby requiring that
mT= 0 andneglectingfluctuations(the so-calledmean-fieldvalue).It is not at all
clearwhat interpretationcouldbe given to that, since,accordingto eq.(3.3), mT is
explicitly dependenton the choiceof scale.Onemay try to determineunderwhat
conditions the physical value of the scalar massvanishes,but one encounters
infraredproblems that underminesuch an approach[10]. By carefully exploring

the limits of perturbationtheory, we will be led to makean estimateof the critical
temperaturethat,while not calculable,in fact hasrelatively small uncertainty.

To that end,considerthe one-loopeffective potential

A
Vff= .~2i(4,2.v~)+~(4,~—v~)

1 m
2+1T4,2 m~-+~Tv~

- ~ {~m~+ ~AT4,2)ln( T ) - (m~+ ~ATv~) ln( ~2

(3.8)

where v
0 is (4,) in treeapproximation,viz., v0 = 0 on scaleswherem~(~)~ 0, and

= —6m~(p.)/ATon scaleswhere m~.(/.L)<0. The termsin V~involving v0 are
field independentbut necessaryif ~ is to satisfy the renormalization group
equation through one-loop order ~. As in the zero temperaturecase, power

counting argumentssuggestthat the perturbativeexpansionparameteris of the
order

AT .‘gz 1 (3.9)
4ir(m~.+~T4,

2)

* This prescriptiondiffers from the one in ref. 117], wherewe chosev
0 = 0 on all scales.Thepresent

prescriptionavoidsspuriousimaginarycontributionsto V~.
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for scales p. and field values 4, in the range of interest.This “weak coupling”
condition may be seen to be equivalent to 1 .‘~zI ln(p.0/p.) + 2ir4,

2 J. Typically,
perturbationtheoryrequiresthat we work at largefields and/or at scalesp. either
much largeror much smallerthanp.~.

It is clear from eqs. (3.5) and (2.3) that, at sufficiently high temperature,
m~(T)>0. At smallerscales,m~(p.)is largerand positive,so therewould appear
to be no symmetry breakingfor sufficiently high temperature.This inference is
reliable only if perturbationtheory is valid. Expanding the one-loop effective

potentialabout 4, = 0, we find the leading contributionto be

AT m~ 4,2
m~(/.L)+— In —~- +1 —i-. (3.10)

For theperturbativeexpansionto be valid, the secondterm in the squarebrackets

mustbe small comparedto the first. This constraintmay be seento be equivalent
to the dual requirementsof eq. (3.9) and

ln(p.~/m~(~a))>>1. (3.11)

Since m2
7~grows indefinitely as the scalep. is diminished, it is not certain that a

regionof scalescanbe found satisfyingbothconstraints.The consistencycondition
can easilybe shownto be

4~p.~(T)~1, (3.12)

in order that one can haveconfidence in the perturbativeconclusionthat the
symmetryis unbroken.This determinesthe high-temperaturerangewithin which
we can be confidentthat the symmetryis unbroken.

As the temperaturedecreases,m~(T)= m
2(T)eventuallybecomesnegative.In

that range,mean-field theory would lead us to expect spontaneoussymmetry
breakdown.Let us exploreunderwhat conditionswe cantrust sucha conclusion.

Let (4,) = v. It is convenientto choosethe normalizationscale p. p.~in the
effectivepotential eq.(3.8) by the implicit definition * p.~ m~.(p.~)+ ~Av2.Then
we find the simpleformula

6m2 A
1— T (3.13)

AT 83rm~

The one-loop correctionto (4,) is small only for AT/8~m~<< 1, which may be
seento be equivalentthe requirementln(p.

1,/p.0)>>1, so that the scalep.,, mustbe

* This choiceis inessential;anyother scaleof the sameorderwould be equally good.
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very largecomparedto p.0. Notice that theseinequalitiesimply that v

2>> 3/4w
so that perturbationtheory is valid only if (4,) is not too small. At the minimum,
we have

~ —2m~, (3.14)

which may in turn be shownto requirefor consistency*

4~p.~(T)>>1. (3.15)

This is the requirementthat the symmetrybe brokenandthat perturbationtheory

be valid.
In summary,we have concluded that we may reliably infer in perturbation

theory that there is no symmetry breakingundercondition eq. (3.12), whereas
thereis spontaneousbreakingundercondition eq. (3.15). Thus, the stateof the
systemandthe validity of perturbationtheory is controlledby the magnitudeof

AT A —87rm2(T)

4irp.~(T) = exp AT (3.16)

whereon the right-handside,we usedAT = AT andthe definition of p.
0 (eq. (3.6))

to expressthis in termsof the parametersof the original theory. Becauseeq.(3.16)
variesrapidly with T, perturbationtheory is valid exceptin a rathernarrowrange

of temperature.The critical temperatureis in the regime where perturbation
theory fails, viz.,

4
2(T) ~K, (3.17)

where K is somenumberof orderone.Rewriting eq.(3.17) asanimplicit equation
for T~,we arrive at an estimateof the transitiontemperature

4ITKT 8~m2(T)
~ ln( A c) = A (3.18)

Althoughthe valueof m2(p.)dependsimplicitly on the scalep. in any giventheory,

its valuevariesat fixed p. from onetheory to the next. So one should regardthe
right-handside asanindependentquantity.For the caseK = 1, we displayin fig. 1
a plot of 4~T~/Aas a function of (47r/A)2m2. The fortuitous occurrenceof K

inside the logarithm makesour estimaterather insensitiveto its particularvalue,

* It is unnecessaryto choose thenormalizationscaleto be ~, any scaleof that order will avoidlarge

logarithmsandlead to this same consistencycondition.
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Fig. 1. Thecritical temperature,eq. (3.18), for K = 1.

so one can hope that this will give a fairly reliable estimate of the critical
temperatureT~.However, sincethe transitionregion is preciselywhere perturba-
tion theory breaksdown, we cannotsay preciselyhow good until the resultsof
numericalsimulationsareknown.

We cannow return to our consistencycondition,eq.(3.7) to determinewhether
that is satisfiednear T~.We find that is a good approximationprovided

~(4~I~TI)<<1. (3.19)

If this is not the case,one cannot consistentlyaddressthese issuesfrom the

effectivefield theory in onelessdimension.
There is interest in lattice simulations of this model, in part, as a test of

numericalalgorithmson a simple system[18,19].We are not awareof a previous
analytic estimateof the critical temperature,so it would be very interesting to
comparethe results;unfortunately,the resultsof ref. [18] havenot beenpresented
in a mannerthat facilitatescomparisonwith ours.

How sensitiveare theseresults to the preciseform of the original lagrangian?
Note that the addition of a term of the form s~çb6to eq. (2.1) results in a term
~T24,6in the dimensiond — 1 effectivetheory, eq. (3.1). Thus,for d = 4, where ~
has dimensionsof p. 2 this now becomesa relevantoperator,though its coeffi-
cient is smallfor T ~‘sz~1/ ~ For d = 3, the effectivetwo-dimensionalfield theory
hasa dimensionlessfield so that all termsthat wereoriginally of higher-dimension
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becomerelevant.Thus,thehigh-temperatureexpansionis only as good anapproxi-
mation as the original lagrangian,which is simply to say that T must be small
comparedto the cutoff scaleat which new physics enters.

4. Discussionand conclusions

The properties of 4,4 in d = 2 at zero temperaturehave been extensively

studiedin the contextof constructivequantum-fieldtheory [20].Thatbody of work
is primarily concernedwith the existenceand mathematicalconsistencyof the
theoryandis focusedon the dependenceon bareparameters.Therehasalso been
considerableeffort devotedto establishingthe existenceof a phasetransition, and

whether it is first or secondorder [21]. Our orientationassumesthat perturbative
renormalizabilityis adequateto definethe theoryandis concentratedon establish-
ing the existenceof the phase transition and the dependenceof the critical
temperatureon the renormalizedcoupling constants.The work closestto ours in
spirit is that of Chang [221;his estimatefor the position of the transition corre-

spondsin our notationto the relationm~= —AT/
81r (cf. eq.(3.18)).

We note that the finite-temperaturebehaviorof the two-dimensionaltheory
would be quite different. In that case,the effective field theory is in one dimen-
sion, andso is like ordinaryquantum mechanicsin which spontaneoussymmetry
breakingcannotoccur. This behavioris inherentlynon-perturbative.In two space-
time dimensions,soliton collective excitations[9] areessentialfor the dynamicsor

in the one-dimensionaleffectivetheory, tunnelingor instantonsolutionsprovidea
way of describingthe superpositionof classicallydegenerateenergystates~.

For field theoriesin d = 4, (and in particular for gaugetheories)it has been
generallybelievedthat direct perturbativeexaminationof the effectivepotential is
not usefulbecauseof infrareddivergences.The epsilonexpansionis a useful tool
to determinethe order of the transition,but in the caseof a first-order transition
provideslittle further information.Recentwork on the electroweaktransitionhas,
however,demonstratedthat in a gaugetheory importantpropertiesof the poten-
tial nearthe critical temperaturecan, with care,be inferred. In this paperwe have
studiedthe (deceptively)simplecaseof 4,4 in d = 3, where the infraredproblems
are evenmore pronounced.We have shown that a reasonableestimateof the
critical temperatureis neverthelesspossible.The main ingredientsof our approach
are (a) applicationof renormalizationgroup ideasto the effective theory of the
zeromodes,and (b) careful considerationof matchingconditions. It is our view
that this sort of approachis more elegantandmore reliablethan that of summing
subsetsof higher-ordergraphsin the full theory.

* Seefor exampleref. [23].
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