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We use renormalization-group methods to estimate the critical temperature for ¢* theory in
three dimensions. We show that, by delineating the range of applicability of perturbation theory,
the value of the critical temperature is rather narrowly bounded.

1. Introduction

The nature and consequences of phase transitions in quantum systems at finite
temperature (7') has attracted interest since the observation [1] that spontaneously
broken symmetries in relativistic field theories are in general restored above some
critical temperature (7,). In particular, the phase transition associated with
restoration of the electroweak symmetry of the standard model (SM) has recently
been the subject of much attention and some controversy [2—4]. Ever since it was
understood that baryon violation can be copious at temperatures comparable to
the electroweak scale [5], there have been attempts to determine whether the
baryon asymmetry of the universe can be understood as a consequence of the
electroweak transition rather than a transition at some much higher temperature
[6,7]. A resolution of this question in the context of the SM or some extension
thereof involves a number of physics issues; in particular, a rather precise analysis
of the finite-T effective potential V(¢$) of the Higgs field is required. This is
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rendered non-trivial by the infrared divergences (due to zero modes) characteristic
of finite-T field theories.

Recent discussion [8] of how fluctuations may influence phase transitions has
inspired simulations of model systems in lower dimensions [9]. In d space-time
dimensions for d < 4, the infrared problem is generally more severe than in four
dimensions. On the other hand, a theory that would be renormalizable in d =4 is
superrenormalizable for d < 4, so that its ultraviolet (UV) divergences occur up to
a finite number of loops only, and the associated B-functions are therefore exactly
calculable. Thus, we were invited to consider the simple case of single-component
¢* in d =3 dimension *. While we agree with previous treatments ** that the
model cannot be solved perturbatively near the critical temperature, we shall argue
(contrary to ref. [10]) that renormalization group ideas enable us to reach a
reasonably reliable estimate of T.

Let us first digress briefly to contrast this with the generalization to an O(N)
theory with N ¢-fields. If a non-zero vacuum expectation value (VEV) for ¢
breaks a continuous global symmetry then radically different physics (from the
N =1 case) results because of the existence of Goldstone bosons in the broken
phase. The O(N) model was analyzed in the large-N limit at 7 =0 in ref. [11], and
the existence of symmetry breaking (controlled by the sign of the scalar ((mass)?
parameter) demonstrated. Now at finite 7', as discussed further below, the effec-
tive field theory of the zero modes of a d-dimensional theory is (d — 1)-dimensional:
in this case, two. The existence of the Goldstone bosons for N > 1 makes this
effective field theory useless for describing the finite-7 behavior of the d =3
theory. Indeed, as shown in ref. [11], the d = 2 theory does not permit a VEV for
¢ for any value of the scalar (mass)?.

We therefore confine ourselves to the N =1 case. This ¢* model is in the
equivalence class of the (2 + 1)-dimensional, ferromagnetic Ising model ***. Ac-
cordingly, the model is expected to have a second-order phase transition at some
non-zero critical temperature T,, and various critical-point exponents are known
either from Onsager’s exact solution or from numerical studies “. While the
precise relation for the critical temperature in the Ising model is well known, the
specific relation of the critical temperature to the lagrangian parameters is not to
our knowledge known, so we will concentrate on that. It is also interesting to see
how far analytic arguments based on perturbation theory and the renormalization
group can be pushed, even though perturbation theory must break down at the
critical temperature. As we shall see, the infrared-induced uncertainties can be
subsumed into a single parameter, x, upon which 7, depends only logarithmically.
Consequently, we estimate T, with a fair degree of confidence.

* We wish to thank M. Gleiser for initiating our interest in this problem.
** See for example ref. [10].
*** The relation is derived, for example, in ref. [12].

* For a review of the Ising model, see ref. [13].
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2. (%), at zero temperature

We begin, however, by reviewing the properties of the theory at zero tempera-
ture. We write the tree potential as

m? 5 A .
Vo=—¢ +4_!¢ , (2.1)

where, in three dimensions, the coupling A has dimensions of mass. The g-func-
tion for the mass m? vanishes at one-loop but reccives a positive contribution
proportional to A? at two-loops,

o HAT. o
so that
() = m(,) + %(f—w) | ). (23)

In fact, in a renormalization prescription such as minimal subtraction, these
two-loop results are exact *. It follows that we can say definitely that m2(u) is
positive at sufficiently large scales and negative at small scales. This suggests that
the theory (at zero temperature) undergoes spontancous symmetry breaking at
some scale. This conclusion can be drawn within the context of perturbation theory
by working at a sufficiently small scale so that A/|m| is small. As the argument
parallels the one that we shall use below at finite temperature, we shall present it
here. Even though the exact B-functions and anomalous dimensions are known for
this model, it is not known how to calculate V,; analytically except perturbatively.
The one-loop effective potential may be written as

V.

1 3
U (a2 1y 12)3/2
i = Vo 2 (m + 34 ) .

(2.4)

Simple power counting arguments suggest that a minimal requirement for a
reasonable perturbation expansion is

A

4myjm® + 307

for m? and ¢ in the range of interest. Even though m?(u) is not scale dependent

< 1, (2.5)

* As this is a superrenormalizable theory, the anomalous dimension y and B, both vanish.
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at one-loop, it is at two loops, so there is a scale choice implicit in egs. (2.4) and
(2.5). Let us normalize at some small scale where m? is negative. In mean-field
theory, one would conclude that the theory undergoes spontaneous symmetry
breaking with (qb)z = —6m?/A. Under what conditions is this conclusion justified?
Taking into account the one-loop correction, we find the shift in {¢) from its
mean field is

SONRY
(¢ 16w |m|"

(2.6)

Thus, it would appear that, simply by choosing the normalization scale sufficiently
small, so that —m? is sufficiently large, the mean-field conclusion would be
correct.

On the other hand, if we choose u such that m*(u) is sufficiently large and
positive, a similar argument in the neighborhood of ¢ =0 suggests that there
would be no symmetry breaking. This is paradoxical to say the least, since the
conclusion that the theory does or does not undergo symmetry breaking cannot
depend on the arbitrary choice of normalization scale. The flaw in the reasoning is
this: consider the situation when we have normalized at a scale where m? is large
and negative. Then, in tree approximation, (m2+ A{(¢)*) = —2m>. At the two-
loop level, the effective potential will involve In[(m? + 31¢$?)/u?]. To avoid large
logarithmic corrections that might lead to a breakdown in perturbation theory near
the tree minimum, the normalization scale must be comparable to (m? + 1A{(¢)?).
This may or may not be compatible with choosing the scale such that eq. (2.5) is
satisfied *. Similarly, simply by choosing w sufficiently large, one may not be able
to conclude that there is a local minimum at ¢ =0 because it may be that
perturbation theory is unreliable in that region.

3. (%), at finite temperature

Now let us turn to the behavior of the theory at finite temperature. In general,
the equilibrium properties of a quantum field theory in d space-time dimensions
may be written as a euclidean field theory in d euclidean dimensions in which the
imaginary time coordinate plays the role of the inverse temperature and the
bosonic (fermionic) fields are periodic (antiperiodic) with period g8 =1/T **. The

* Our purpose here is to show that one cannot always reliably conclude that there is a local minimum
away from the origin. It is also the case that, for m? negative, there is a range of ¢ where
m?+ %/\d)z is so small so that radiative corrections become uncontrollably large. In addition, when
m? < 0, the effective potential will develop an imaginary part for ¢ sufficiently small, so that one
cannot trust the loop expansion in that region.

** The Boltzmann constant ky has been set equal to one. For a review of the formalism, see, for
example, the text in ref. [14].
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“energy” then becomes quantized with w, =2n%T for bosons (and w, =Q2n +
17 T) for fermions.) Following Ginsparg [15] for sufficiently high temperatures (at
scales below 27T) one may integrate out the heavy modes to write this as an
effective field theory of the zero-energy modes of the bosonic fields in d —1
euclidean dimensions. The effective lagrangian takes the form

2
1 2 Mr o, A,
Fen=32(%8) + ¢+ " (3.1)

In going from d to d — 1 dimensions, we have rescaled the parameters and field,
VT ¢ — ¢, AT = Ap, so that, as usual, A, has dimensions p*~“~D, where y is
some mass scale. Thus, if we start with a four-dimensional theory, then A, has
dimensions of mass, whereas if we begin with a three-dimensional theory, A, has
dimensions of mass®. The parameters m; and A, include the virtual effect of the
heavy “energy’”’ modes.

In the case at hand, where we have begun with d = 3, we are led to consider eq.
(3.1) in two dimensions. In this effective field theory, the only UV divergence is the
one-loop contribution to m2, giving

)‘T
Bmyz=— E’ (3:2)
so that
Ar
mi(p) =mg— 7 M /mo), (3.3)

exactly. It is extremely convenient to make p, a physical parameter by choosing it
so that m,=0; thus u, is defined as the scale at which the renormalized mass
vanishes. The parameters m; and A, are related to the original parameters of the
three-dimensional theory by certain “matching conditions” *. Up to corrections of
order m?/T?, we may take A,=AT. To obtain the relation for mg, one may
calculate the inverse propagator at zero momentum from the original theory and
compare it with the result from the effective theory. Through two loops, this leads
to the relation **

5 R AT T 1( A\ (T
mT(,u,)=m (M)+Eln;+g(ﬂ) In ; . (34)
In particular,
mi(T) =m*(T). (3.5)

*» The method of effective field theories is elaborated in ref. [16].
** Terms finite in A2 can be absorbed by an appropriate renormalization prescription.
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Egs. (3.3) and (3.4) together determine the physical scale u,, as a function of the
temperature T and the original lagrangian parameters m? and A, to wit,
T 47Tm2(T)
Inf—|=—-——"7"7. (3.6)
Mo AT
Note that g, is a function of temperature, and for sufficiently large T, u (T) ~ T.
Although in general u, may be larger or smaller than 277, the presumption
throughout is that

Im;27wT)| < 2uT; (3.7

otherwise, the n = 0 mode will not be light compared to the modes that have been
integrated out. Eventually, this will be seen to provide an upper limit on A /7.

Naively, the critical temperature 7, would be determined by requiring that
m; =0 and neglecting fluctuations (the so-called mean-field value). It is not at all
clear what interpretation could be given to that, since, according to eq. (3.3), m; is
explicitly dependent on the choice of scale. One may try to determine under what
conditions the physical value of the scalar mass vanishes, but one encounters
infrared problems that undermine such an approach [10]. By carefully exploring
the limits of perturbation theory, we will be led to make an estimate of the critical
temperature that, while not calculable, in fact has relatively small uncertainty.

To that end, consider the one-loop effective potential

m? A
Ve = TT((f’Z—U(%) + Z!Z(¢4_Ug)

8

k]

2

m2+ 1Tvd )

m
(m7+ %)\Td)z) ln(—;—) —(m7+ %/\TUS) In
(3.8)

where v, is {($) in tree approximation, viz., v, = 0 on scales where m%(u) > 0, and
v = —6m2(uw)/A; on scales where m%(u) < 0. The terms in Vg involving v, are
field independent but necessary if V., is to satisfy the renormalization group
equation through one-loop order *. As in the zero temperature case, power
counting arguments suggest that the perturbative expansion parameter is of the

order

p .
4mr(mf+ 3T¢?) =5

(3.9)

* This prescription differs from the one in ref. [17], where we chose v, = 0 on all scales. The present
prescription avoids spurious imaginary contributions to V.
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for scales p and field values ¢ in the range of interest. This “weak coupling”
condition may be seen to be equivalent to 1 < |In{u,/u) + 27 ¢?|. Typically,
perturbation theory requires that we work at large fields and /or at scales w either
much larger or much smaller than u,.

It is clear from egs. (3.5) and (2.3) that, at sufficiently high temperature,
m2(T) > 0. At smaller scales, m2(u) is larger and positive, so there would appear
to be no symmetry breaking for sufficiently high temperature. This inference is
reliable only if perturbation theory is valid. Expanding the one-loop effective
potential about ¢ = 0, we find the leading contribution to be

Ar my ¢’

For the perturbative expansion to be valid, the second term in the square brackets
must be small compared to the first. This constraint may be seen to be equivalent
to the dual requirements of eq. (3.9) and

In(uh/mi(u)) > 1. (3.11)

Since m% grows indefinitely as the scale w is diminished, it is not certain that a
region of scales can be found satisfying both constraints. The consistency condition
can easily be shown to be

/\T
m <1, (3.12)
in order that one can have confidence in the perturbative conclusion that the
symmetry is unbroken. This determines the high-temperature range within which
we can be confident that the symmetry is unbroken.

As the temperature decreases, m7(T) = m?(T') eventually becomes negative. In
that range, mean-field theory would lead us to expect spontaneous symmetry
breakdown. Let us explore under what conditions we can trust such a conclusion.
Let {¢) =wv. It is convenient to choose the normalization scale p =, in the
effective potential eq. (3.8) by the implicit definition * u2 = m2(u,) + 2Av2% Then
we find the simple formula

6m?% Ar
2= 1- . 3.13
0 A ( 8777'n2T) ( )

The one-loop correction to {¢) is small only for A,/8mwm?% < 1, which may be
seen to be equivalent the requirement In(x, /1) > 1, so that the scale p, must be

* This choice is inessential; any other scale of the same order would be equally good.
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very large compared to u,. Notice that these inequalities imply that v? > 3 /41,
so that perturbation theory is valid only if {¢) is not too small. At the minimum,
we have

u? = —2m32, (3.14)

which may in turn be shown to require for consistency *

Ar 1 3.15
—_— > 1. .
dmi(T) (3:13)
This is the requirement that the symmetry be broken and that perturbation theory
be valid.

In summary, we have concluded that we may reliably infer in perturbation
theory that there is no symmetry breaking under condition eq. (3.12), whereas
there is spontaneous breaking under condition eq. (3.15). Thus, the state of the
system and the validity of perturbation theory is controlled by the magnitude of

Ag A
4qud(T)  4wT

—81Tm2(T)
AT

exp , (3.16)

where on the right-hand side, we used Ay = AT and the definition of u, (eq. (3.6))
to express this in terms of the parameters of the original theory. Because eq. (3.16)
varies rapidly with T, perturbation theory is valid except in a rather narrow range
of temperature. The critical temperature is in the regime where perturbation
theory fails, viz.,

)‘T

e _ 3.17
4y (T,) (317

where « is some number of order one. Rewriting eq. (3.17) as an implicit equation
for T, we arrive at an estimate of the transition temperature

T, ln( N 3 (3.18)
Although the value of m?(u) depends implicitly on the scale w in any given theory,
its value varies at fixed u from one theory to the next. So one should regard the
right-hand side as an independent quantity. For the case « = 1, we display in fig. 1
a plot of 47T,/ as a function of (47/A)?m?. The fortuitous occurrence of x
inside the logarithm makes our estimate rather insensitive to its particular value,

47T, ) 8mrm?*(T,)

* It is unnecessary to choose the normalization scale to be u,, any scale of that order will avoid large
logarithms and lead to this same consistency condition.
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Fig. 1. The critical temperature, eq. (3.18), for « = 1.
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so one can hope that this will give a fairly reliable estimate of the critical
temperature 7,. However, since the transition region is precisely where perturba-
tion theory breaks down, we cannot say precisely how good until the results of
numerical simulations are known.

We can now return to our consistency condition, eq. (3.7) to determine whether
that is satisfied near 7,. We find that is a good approximation provided

1 A

If this is not the case, one cannot consistently address these issues from the
effective field theory in one less dimension.

There is interest in lattice simulations of this model, in part, as a test of
numerical algorithms on a simple system [18,19]. We are not aware of a previous
analytic estimate of the critical temperature, so it would be very interesting to
compare the results; unfortunately, the results of ref. [18] have not been presented
in a manner that facilitates comparison with ours.

How sensitive are these results to the precise form of the original lagrangian?
Note that the addition of a term of the form 7¢°® to eq. (2.1) results in a term
1nT2¢° in the dimension d — 1 effective theory, eq. (3.1). Thus, for d = 4, where 1
has dimensions of u =2, this now becomes a relevant operator, though its coeffi-
cient is small for T < 1/ /n . For d = 3, the effective two-dimensional field theory
has a dimensionless field so that all terms that were originally of higher-dimension



620 M.B. Einhorn, D.R.T. Jones / ¢* in three dimensions at finite temperature

become relevant. Thus, the high-temperature expansion is only as good an approxi-
mation as the original lagrangian, which is simply to say that 7 must be small
compared to the cutoff scale at which new physics enters.

4. Discussion and conclusions

The properties of ¢* in d =2 at zero temperature have been extensively
studied in the context of constructive quantum-field theory [20]. That body of work
is primarily concerned with the existence and mathematical consistency of the
theory and is focused on the dependence on bare parameters. There has also been
considerable effort devoted to establishing the existence of a phase transition, and
whether it is first or second order [21]. Our orientation assumes that perturbative
renormalizability is adequate to define the theory and is concentrated on establish-
ing the existence of the phase transition and the dependence of the critical
temperature on the renormalized coupling constants. The work closest to ours in
spirit is that of Chang [22]; his estimate for the position of the transition corre-
sponds in our notation to the relation m2 = —A,/8x (cf. eq. (3.18)).

We note that the finite-temperature behavior of the two-dimensional theory
would be quite different. In that case, the effective field theory is in one dimen-
sion, and so is like ordinary quantum mechanics in which spontaneous symmetry
breaking cannot occur. This behavior is inherently non-perturbative. In two space-
time dimensions, soliton collective excitations {9] are essential for the dynamics or
in the one-dimensional effective theory, tunneling or instanton solutions provide a
way of describing the superposition of classically degenerate energy states *.

For field theories in d =4, (and in particular for gauge theories) it has been
generally believed that direct perturbative examination of the effective potential is
not useful because of infrared divergences. The epsilon expansion is a useful tool
to determine the order of the transition, but in the case of a first-order transition
provides little further information. Recent work on the electroweak transition has,
however, demonstrated that in a gauge theory important properties of the poten-
tial near the critical temperature can, with care, be inferred. In this paper we have
studied the (deceptively) simple case of ¢* in d = 3, where the infrared problems
are even more pronounced. We have shown that a reasonable estimate of the
critical temperature is nevertheless possible. The main ingredients of our approach
are (a) application of renormalization group ideas to the effective theory of the
zero modes, and (b) careful consideration of matching conditions. It is our view
that this sort of approach is more elegant and more reliable than that of summing
subsets of higher-order graphs in the full theory.

* See for example ref. [23).
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