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Analytic calculations and particle tracking simulations are presented for a polarized atomic hydrogen beam produced by
extraction from a superfluid helium coated cell in a large solenoidal magnetic field. Compression of the beam by the solenoidal

field and subsequent focusing by a sextupole are considered.

1. Introduction

There is a strong motivation in high energy physics
to develop high intensity polarized sources and targets.
Since the recent demonstration of resonance suppres-
sion [1] in synchrotrons by the use of ‘“snakes”, the
usual difficulties that hinder the acceleration of polar-
ized beams may be largely mitigated. A high intensity
polarized source could therefore extend collider exper-
iments to include polarization physics without exclud-
ing users of unpolarized beams during periods of polar-
ized beam acceleration.

Spin effect in proton-proton collisions are now
usually investigated with solid cryogenic polarized pro-
ton targets and external polarized proton beams [2]. A
polarized proton gas jet however could be used as an
internal target in the circulating beam of a storage
ring. Since it contains only hydrogen, such a target
would eliminate the problem of discriminating against
the background from the bound nucleons in a conven-
tional solid target. This would simplify the study of
exclusive reactions, and is essential to the study of
inclusive reactions. Present techniques [3] for the pro-
duction of free atomic beams give a maximum beam
thickness of around 10'? atoms/cm?. This is too small
by two orders of magnitude to provide an adequate
event rate in many high energy experiments.

Some relatively new techniques [4] for forming po-
larized atomic beams rely on the use of stabilized
electron-spin polarized hydrogen [5]. Hydrogen atoms
with their electron spins aligned interact via the 3Zu
molecular pair potential. This potential supports no
bound states, so that recombination to molecular hy-
drogen can be effectively suppressed. At high magnetic
field (>5 T) and low temperatures (< 0.5 K) the
spectroscopic energy is much larger than the kinetic
energy, which makes possible the separation of the
four lowest lying hyperfine states into gases of elec-

tron-spin polarized high field (m = — %) and low field
(m, = + 1) seeking atoms. Lifetime enhancement of an
atomic hydrogen gas also usually requires a confining
surface that does not lead to rapid recombination. A
superfluid film of helium is ideal for this purpose, since
“He has a very small adsorption energy (e,/kg =1 K)
for hydrogen. The short dwell time of atomic hydrogen
on the helium film makes the surface largely unavail-
able for use as the third body required for energy
momentum conservation in the recombination process.
Electron-spin polarized atomic hydrogen has been ac-
cumulated to densities greater than 10'® atoms/cm’
without mechanical compression [6] in magnetic bottle
storage cells. Assuming that the extraction efficiency
can be made great enough, it is immediately clear that
ultra-cold spin-stabilized hydrogen holds the promise
of improving the density of present polarized atomic
beams.

The purpose of this paper is to analyze the trans-
port and magnetic focusing properties of a beam of
spin polarized atomic hydrogen. The initial formation
of such a beam will simply be assumed; questions of
beam formation are beyond the scope of this work. A
short review of the lowest hydrogen hyperfine states
and their motion in a magnetic field is given in section
2. In section 3 the transport of a hydrogen beam
formed in the gradient of a large solenoidal field and
subsequently focused by a sextupole field is modeled
analytically. The analytic model, useful in its own right,
also serves as a check on a more realistic particle
tracking simulation provided in section 4. Section 5 is
reserved for some final comments.

2. Motion of the hydrogen ground state spin multiplet
in a magnetic field

Two interactions that lift the spin degeneracy of the
ground state multiplet are the Zeeman and Fermi
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contact hyperfine interactions, given by
H=H;+Hy,=—(—8.upS+ & uni) B+ai-s.

(1)
The magnetic moments of the electron and nucleon
are p, = —g.ups and py = g u i respectively. g, and

g, are the corresponding g factors, whereas ug and
i, are the Bohr and nuclear magnetons. Note that u,
is oriented antiparallel to s, so that in a magnetic field
the lowest atomic energy state will have the electronic
magnetic moment parallel to the field, but the electron
spin antiparallel. The hyperfine constant is denoted by
a. In zero magnetic field the total angular momentum,
f=i+s,is a good quantum number, while in high field
(B> a/p. =507 G) the spin projections m and m,,
and thus also m,, are good quantum numbers. Diago-
nalization of the Hamiltonian (1) gives the energies

E, = —iaF a1+ (u*B/a)?, (2a)
E, = ja ¥ su”B, (2b)

where p*=g.up+g.u,=2pg, and the labeling of
the states a through d is in order of ascending energy.
The energy eigenstates in the | m m,) basis are

lay=cos 8] 1) —sin@|1]), (3a)
16) =117, (3b)
le)=cos 811 1) +sing|| 1), (3¢c)
ld>=111), (3d)
where

sin @ ={1+(u*B/a+ 1+ (n*B/a)*)?) V2
The force, due to the gradient of the field, on the
hyperfine state |h) is

F,=—-VE, =ufvB, (4)

where pSft = —9E, /8B. Specifically,

Hhu=£34 = tup, (52)
eff

pe® = +4u* Y1+ (a/u*B)?
= tup/yl+ (a/2upB)’. (5b)

Note that, modulo the distinction between u* and p -,
the effective magnetic moments of the @ and ¢ states
do not approach the constant effective moments of the
b and d states until the condition B> a/u*(= 506
G) is satisfied.

The force described by eq. (4) produces a motion of
the state |h) that can be calculated through the
Lagrangian

Ly =3m(p* +p%* —2%) - Up(p, 2), (6)
where m is the mass of the hydrogen atom, the kinetic
energy has been written in terms of the cylindrical
coordinates (p, ¢, z), and the potential energy
Uy(p, z) = E,(B) has been assumed independent of ¢.

(This independence holds for any solenoid or cylindri-
cal n-pole field.) The Lagrangian yields the equations
of motion

p,=mp, b, =mp¢* + uSt 0B /dp,
p,=mp’¢, p,=0, (7
p,=mz, p,=uSt 8B /8z.

The angular momentum D, is a constant of the motion
since the moduli of the magnetic fields considered do
not depend on ¢. Therefore, the angular velocity can
be written as a function of the radius:

¢ =k/p*=piéo/p*, (8)

where ¢, and p, are the initial values of angular
velocity and radius. Inserting (8) into (7) provides the
following second order equations of motion for the
coordinates p and z:

oB
p=k*p*+ (uiﬂ/m)g, (92)

oB
£=(p/m) o (9b)

The only notable distinction between egs. (4) and (9) is
the inclusion of the centrifugal barrier term in eq. (9a).
An examination of the equations of motion (9) and the
effective magnetic moments (5) indicates that states a
and b are attracted to, while states ¢ and d are
repelled from high magnetic field regions by the field
gradients.

3. The analytic model

The system to be modeled consists of an ultra-cold
(~ 300 mK) beam of ¢ and d state atoms effusing from
an aperture in the field gradient of a solenoid, fol-
lowed by a sextupole focal element. For simplicity, the
aperture is taken to be a point source located some-
where in the solenoid gradient. The treatment of the
solenoid field is radically simplified by considering only
regions close to the solenoid axis, and by setting the
axial gradient to a constant. Requiring that the solenoid
field be sourceless yields the components

B,=3B'p, (10)
B,=B'(z,~z), z;<z<z,.

Here, the axial gradient is B'= —dB,/d,=B,/Az,
where B, is the central field, and Az=2z, —z,. The
distances z,, zy, z,, 23, 24, and z; are measured from
the solenoid center and, in this approximation, denote
respectively the point at which the field begins to fall,
the location of the point source, the point at which the
solenoid field has vanished, the entrance and exit of
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Fig. 1. The layout of the solenoid-sextupole system. The

particular case of z;=7.5 cm, z,=1225 cm, z;=45.5 cm,

z,=755 cm, and z;=95.5 cm is modelled analytically in
the text.

the sextupole, and the final paraxial focus, as depicted
in fig. 1. Using eq. (10), the non-zero components of
VB are

aB 12 1

$=z3 Pg (11a)
3B ,2 1

E=—B (ZZ—Z)E. (llb)

In order to arrive at simple approximate solutions to
the equations of motion, it is assumed that B =B, (i.e.
B, is small near the z axis), and that the z dependence
of the radial force (eq. (11a)) may be averaged over by
replacing z with (z, + z,)/2. This procedure yields the
expressions

9B p

 ~Llpr
p P oz,—zy

9B .

E = —-B s (12)
so that, for a point source in particular, the equations
of motion become

Hp p
= — — B ——— | 13
P 2m z,— 2z, (13a)
m
f=—2p (13b)

In egs. (13) it was assumed that everywhere B > 506
G, so that uff = —; .. Eqgs. (13a) and (13b) can be
solved and the dependent variable eliminated, to give
the radius as a function of z:

p(2) =2z = 20) 5

m

1 z—-z
% si . .2+ 22 0 - , 14
sm[im ( Z4 zm( 22_20) zo)] (14)

where the point source at z, is located in a field
B,=Bfz,—2y)/Az. Here, Z, is the axial velocity
that might be gained in the solenoid field,

[2usB [2uB(z,—2
Z.m= B0 — B (2 0) , (15)
m m

and the maximum possible final axial velocity is

Ze= itk (16)

Note that if the radial force is neglected entirely,
the equations of motion produce parabolic trajectories.
After the solenoid field, the ¢ and d state trajectories
are straight lines that traverse a drift space, z, <z <zj,
until they enter the sextupole. A sharp edge approxi-
mation is assumed, so that no longitudinal components
of the sextupole field are considered. The magnitude
of this field depends on p only,

p?

e (17)
pe

B=B,

so that only a radial force acts on the atoms. B, and pg
denote the sextupole pole-tip field and radius, respec-
tively. The equations of motion for the d state atoms in
a sextupole field are
. —2pgBg
p="735"p,

mps
i=0, (18)

where u<f has again been approximated by — - This

can easily be solved to yield the well known result

z=z, p.l . z-z
p(z) =p, cos k| — + — sin k| — ,
b4 K b4

t !

Kk =2upBs/mp;. (19)

The initial values p,, g,, z,, and Z, refer to the trajec-
tory parameters at the sextupole entrance.

The motion of the ¢ state atoms in a sextupole field
is not as simple; the dependence of uf on the mag-
netic field can no longer be ignored since the condition
B> u*/a does not hold for a large region within the
sextupole. After the sextupole, the ¢ and d trajectories
are again straight lines.

Use of egs. (14) and (19), the fact that the trajecto-
ries are straight lines in the drift spaces, and matching
at the boundaries the various regions, allows a full
description of the d state trajectories emanating from a
point source at z, and traversing the arrangement
pictured in fig. 1. It is also useful to consider an offset
of the source by an amount p; from the z axis. The
resulting general trajectory is, for ¢, = 0,

1 z—2z
p(z) =pp cos[,—( z'§+z',2"( 0 ) _z'o)]
Zm Z2 =2y

Po
+2(z, _zo)z._

m

1 z—2z4
— |/ 23+ 22 -z,
Zm 2272y

21 <zp<z <2z,

X sin
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p(2) =p(z;) + (2 —2,)p'(2,),

2, <2 <25,
z—z,
p(2) =p(z3) cos x| —
Zy
F4 z—z
+—fp’(22)sin;<( _3),
K s
2;<z <1z,
p(2) =p(z,) + (2 —24)p'(24),
z,<z, (20)

where p’(z,)=dp/dz]| =z, 1=2,3,4.

Fig. 2 displays some d state trajectories emanating
from a point source for several different initial angles
0,. The parameters chosen for purposes of illustration
were By=6 T, B'=1 T/cm, Bi(p=8 cm)=0.94 T,
zy=16.5cm, z,=225cm, z; =455 cm, z,=75.5 cm,
and z;=95.5 cm. The initial velocity, 5, = 9360 cm /s,
was taken since it is the average velocity of atoms
effusing from an aperture in a volume containing a
300mK atomic hydrogen gas. The sextupole field was
fixed by requiring that it focus the paraxial trajectories
20 cm beyond the sextupole. Two characteristics of fig.
2 are noteworthy: the solenoid field acts to compress
the trajectories by a large amount, while the sextupole
focuses them, with a certain amount of resulting radial
aberration at the paraxial focus.

If ¢ state trajectories are considered instead, the
largest departures from those of the d state occur in
the sextupole field. The ¢ state equations of motion in
a sextupole field are, for ¢, =0,

p=—x%/Y(xp)' = (a/m)*, (21a)

7=0. (21b)

Eq. (21a) may be integrated once to yield

pP=pi+ \/(Kp,)4 + (a/m)2 - \/(Kp)4 + (a/m)2 .
(22)
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Fig. 2. The d state trajectories’ dependence on initial angle in
15° increments.

p (cm)

z (cm)

Fig. 3. The ¢ state (dotted curves) and the d state (solid
curves) trajectories’ dependence on initial angle mn 5°
increments.

Eq. (22) can be integrated once again to give the time
or z coordinate in terms of p-dependent elliptic inte-
grals of the first and third kinds. However, for most
purposes it is simpler to solve the first order equation
(22) numerically; in this case the Burlisch-Stoer tech-
nique [7] was used. Fig. 3 displays the ¢ and d state
trajectories for the same parameters as in fig. 2, with
initial angles between 0° and 30°, in 5° increments. It
was assumed that the ¢ and d trajectories from the
source to the sextupole entrance are identical, since an
appreciable difference in the trajectories only occurs
where the field is small (B <506 G) and the gradients
large. At angles greater than ~ 30° the ¢ and d trajec-
tories nearly coincide in the sextupole, whereas for
smaller initial angles the ¢ state is more weakly fo-
cused than the d state. Some c state trajectories (6, <
5°) do not even return to cross the magnetic axis.
Provided that only the smaller angles are accepted, the
sextupole acts as a nuclear spin filter, with d state
atoms well focused in a relatively diffuse background
of ¢ state atoms.

Fig. 4 shows the radial aberration A*%(g,) of the d
state trajectories at the paraxial focus z,(0), as a func-
tion of initial angle 8, for several different values of
the initial field B,. This aberration is given by the
deviation of the crossing of the axis z,(6,) from the
paraxial crossing z.(0), times the final slope of the
trajectory:

A (85) = (24(0) —2¢(80)) 1 p'(24) |,
2:(00) =z, —p(24)/p'(24).

The slope of the solenoid field was held fixed at B’ =1
T/cm, and z, was fixed at 22.5 cm, so that the several
values of B, in fig. 4 also correspond to different
values of the initial position z, of the source. The
sextupole field was adjusted so that the paraxial focus
remained at z,=95.5 cm, regardless of the value of
B,.

(23)
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Fig. 4. The total radial aberration at the paraxial focus as a

function of 1nitial angle. The pairs of numbers indicate the

solenoid field By at the source and the sextupole field Bg(p =

8 ¢cm) required to achieve the desired focus. The fields are in
tesla.

The radial aberration introduced by the solenoid
can also be written in a similar manner:

A*N(8y) = (z0—2.(80))p'(22),
z2.(0y) =z,—p(2,)/p'(22)-
This is displayed in fig. 5 which indicates that the
solenoid aberration increases with increasing solenoid
field B,. However, fig. 4 shows that for the solenoid—
sextupole system the total aberration decreases as the
solenoid field is increased. This can be easily under-
stood by ascribing the most important source of aberra-
tion in the full system to large angle effects within the
sextupole; the higher the solenoid field, the more the
beam is compressed prior to its arrival at the sextupole,
thereby suppressing the total aberration.

In designing a target, the relevant figure of merit is
the thickness, given by the hydrogen beam intensity
divided by the height presented to the accelerator

(24)

20

05

Radial Aberration A™ (cm)

00

T L
0 20 40 60 80
Imtial Angle 8, (degrees)

Fig. 5. The solenoid radial aberration as a function of imtial
angle. The field at the source is indicated.

beam and the hydrogen beam velocity:
T=1/hv. (25)

Egs. (20) can be used to discover the optimal field in
which to place the hydrogen beam source in order to
maximize the target thickness. The result of the ana-
lytic model for d state atoms with B’=1T/cm, z,=
22.5 cm, z; =455 cm, z,=75.5 cm, z,(45°)=95.5 cm
is displayed in fig. 7. It was assumed that the hydrogen
beam effuses from a 300 mK point source, so that the
distribution of initial angles was

f(6y) =2 sin 8, cos 8, (26)

and the single initial speed used was the average speed

Ty = 2y2mkT/m = 9360 [cm/s]. (27)

The height presented to the accelerator beam was
taken as 0.5 cm, to typify a high energy proton beam.
Egs. (20) and (26) were then used to calculate the
percentage of atoms leaving the source that passed
within p = 0.25 cm of the z axis at z{(8,=45°)=95.5
cm. (8, = 45° was chosen, since this is the most proba-
ble initial angle for an atom in an effusing beam.)
Dividing by the final velocity Z; then yields the relative
target thickness. Examination of the figure indicates
that to maximize the target thickness, the source should
be placed in a field of approximately 9 T, for the
various parameters chosen. The particular choice of
parameters was influenced by the desire to keep the
overall beam transport length short ( < 100 cm), so that
intra-beam scattering and scattering from residual gas
might be minimized. Also, the field of the 30 cm long
sextupole required to focus the beam effusing from the
source at By, =9 T is comparatively modest: B(p =8
cm) = 1.2 T. This makes magnetic shielding require-
ments relatively simple, and allows for use of either a
conventional or superconducting magnet.

In the above analysis, neither finite source size
effects (aperture aberrations) nor chromatic aberra-
tions were considered. Because of the difficulty of
producing an image to source magnification much less
than one without increasing unrealistically both the
length and diameter of the transport system, a source
no larger than the desired image size ( ~ 0.5 cm) will be
investigated. The magnification may be estimated by
calculating dp(z;)/dp, using eq. (20). For the set of
parameters used earlier, a trajectory leaving a source
placed at B, =9 T, at an initial angle 8,=45°, has a
“magnification” dp(z;)/dp,= —0.91, which indicates
the source is imaged nearly one to one, and inverted. It
therefore appears that the aperture size in this exam-
ple is not a serious source of aberration. However, for
a finite size source the centrifugal barrier in the radial
equation of motion (eq. (9a)) must also be taken into
account. (Both aperture and chromatic aberrations, as
well as a realistic solenoid field, are fully included in
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the particle tracking simulation described in the next
section.)

To investigate chromatic effects, the velocity spread
of the beam must be included. The Maxwell distribu-
tion of speeds, modified for effusion, is

F 9 3
(=77
5 = \3kT/m , (28)

where # is the most probable speed. The full width at
half maximum for this distribution is approximately
Avy =095 §. To estimate the extent by which the
velocity spread shrinks due to acceleration in the

solenoid field, one notes that v;= \vj + 22, so that

Avy = Avy/y1 +z’,%1/u(2, . (29)

For a 300 mK source placed at B;=9 T, one finds
vo=0=2857 m/s, Avy=815 m/s, v;=327.5 m/s,
and Avg=21.3 m/s, so that the velocity spread has
shrunk by almost a factor four, resulting in a very
nearly monochromatic beam. The chromatic aberration
at the focus can be estimated by noting that
dp(z;)/dvs = dp(zs)/d Z;, and again using eq. (20). A
straightforward calculation yields, for a trajectory start-
ing at By=9 T, p, =0, with initial angle 8, = 45° and
the parameters used before, a chromatic aberration of
Ap(z;)/Az; =47 X 10 *s. Setting Az, equal to the
half-width at half-maximum (A Z; = 1065 cm/s) gives a
displacement Ap(z;) =0.5 cm. Therefore, one can
conclude that the velocity spread of the beam remains
a fairly serious source of aberration at the focus, even
though the chromaticity was greatly improved by accel-
eration in the solenoid gradient. This suggests that
perhaps a field somewhat greater than 9 T at the beam
source aperture might be required to maximize the
target thickness.

—3,2 n2
e 30° /28 ,

4. The simulation

Populations of atomic trajectories in the solenoid—
sextupole system were computed with a tracking simu-
lation that numerically integrates the equations of mo-
tion using the Adams—Bashforth—Moulton “predic-
tor-corrector” method [7]. The solution computed for
the initial steps, via Runge-Kutta, is used to polynomi-
ally extrapolate (predict) the solution one step ad-
vanced; the extrapolation is then corrected using
derivative information at the new point. An adaptive
step size algorithm was used to keep the error within
specified bounds. A substantial part of the tracking
routine is based on a program written by EIlila,
Niinikoski, and Penttild [8].

— I T r— :
15— — 118
L \ 4
| - @
b [
A ] ®
3 g
— \ 4 a
%10— \ . ~{10 g
3
v \ 1 &
2 \ 5
B A\ -~
g \ )
g L \ | &
Kt \ ~
2
(25'— A\ “05;:\
L \ 13
\ B
L \ 1 8
\
\ 1
F \ B
bl ST
0 10 20 30 40

z{cm)
Fig. 6. The field and gradient along the axis of an infinitely
thin solenoid of 30 cm length and 15 ¢m diameter. The
dashed curve is the linear field used in the analytic modelling.

A realistic solenoid field and its derivatives can be
produced numerically on a predetermined mesh by any
number [9] of computer codes, and used as input to the
tracking routine. However, to avoid any possible ambi-
guity in communicating the solenoid field adopted, we
used instead the analytic expression {10] for the field of
an infinitely thin solenoid of finite length. Local values
of the field and its derivatives were provided by spline
interpolation. To compare with the results of the ana-
Iytic model, a solenoid field was chosen whose lowest
order approximation is identical to the linear field
employed earlier. The coil configuration consisted of
an infinitely thin uniformly wound solenoid of 30 cm
length and 7.5 ¢cm radius. The axial field profile and its
first derivative are displayed in fig. 6.

The sextupole field was generated analytically within
the tracking program, and a sharp edge approximation
used. For simplicity, the sextupole field was assumed to
be entirely shielded from dilution by the solenoid field.
Its length and location were the same as those of the
analytic model example of section 3.

The initial data for the trajectories were generated
by taking a random uniform deviate and, where feasi-
ble, applying the transformation method [7] to produce
a random deviate with the desired distribution func-
tion. Otherwise, the rejection method [7] was em-
ployed. Specifically, the initial positions lay randomly
and uniformly within a disc or rectangular area at a
fixed axial position corresponding to the beam source
aperture. The initial directions were chosen such that
the azimuthal angles ¢, were distributed uniformly
between 0 and 2, and the polar angles 8, according
to eq. (26). The initial speeds were distributed as
described by eq. (28), with T =300 mK. The resulting
trajectories (typically 1000 per simulation) simulate an
effusing beam of hydrogen atoms.

The isolate the effects of the various sources of
aberration for a d state beam, and to make an effective
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Fig. 7. The d state target thickness as a function of the field
at the source. The result of the analytic model, assuming a
point source, effusive distribution of initial angle, and a single
initial speed, is given by the curve. The points are the results
of the tracking simulations using the solenoid field of fig. 6.
Diamonds - point source, effusive distribution of initial angle,
a single initial speed. Circles — point source, effusive distribu-
tion of both initial angle and speed. Squares — 5 mm diameter
source, effusive distribution of initial angles and speed. Crosses
- 10x2.5 mm? rectangular source, effusive distribution of
initial angles and speed.

comparison to the analytic model, the simulation was
run succesively with

1) a monochromatic (v, = 9360 cm/s) point source
with the angular distribution of eq. (26),

2) a point source with an effusive distribution of
angles and speeds,

3) a 5 mm diameter source with effusion, and finally

4) a rectangular 10 X 2.5 mm? source with effusion.

The desired target region in all cases was a 5 mm
diameter disc positioned 20 ¢cm beyond the sextupole,
except for the rectangular aperture, in which case the
target was a 20 X5 mm? rectangle. The transverse
distributions were examined on target planes at various
distances from the source aperture, and the sextupole
field subsequently chosen to focus the beam in the
target region.

Fig. 7 displays the results of the simulation for the
four cases considered. The disparity between simula-
tion 1) and the result of the analytic model is probably
due to the crudeness of the linear approximation to the
solenoid field. However, both show the expected maxi-
mum in target thickness because of the competition at
higher solenoid field between increased transport effi-
ciency from source to target and larger final beam
velocity. Simulation 2) verifies the seriousness of the
chromatic aberration that was found with the analytic
model, while simulation 3) shows that the 5 mm diame-
ter source size is not particularly troublesome for this
example, as was also found in the analytic modelling.
Simulation 4) demonstrates that some gain in thickness

can be achieved by modifying the source and target
sizes.

5. Comments

The target thickness units in fig. 7 are given by the
fraction of the d state beam transported to the target,
divided by the final beam velocity in units of cm/s,
multiplied by 10°. Therefore, for an initial d state
beam intensity of 10'® atoms /s, and a target height of
0.5 cm, the simulations suggest that a target thickness
of about 3 x 10" atoms/cm? could be obtained, if the
placement of the source in the solenoid gradient is
optimized. (Assuming effusive flow from a 5 mm diam-
eter source at a temperature of 300 mK, a d state
intensity of about 10'® atoms /s is expected if a density
of 2x 10" atoms/cm® is accumulated behind the
source aperture.)

Simulations for ¢ state atoms indicated that the
transport efficiency was typically about one-half that of
the d state.

No attempt was made in either the tracking simula-
tions or the analytic modelling to include the accep-
tance of the sextupole or solenoid, i.e. no skimming of
the beam by the finite diameter of the solenoid or
sextupole was considered. It is clear that for a solenoid
field at the source less than about 6 T (see fig. 2), and
with reasonably dimensioned magnets, such considera-
tions become increasingly important.

It is also possible to improve somewhat the trans-
port efficiency from source to target by modifying the
solenoid field with the introduction of a bucking coil at
one end of the solenoid. This would increase the
gradient and thereby the compression of the beam, and
also remove the bulk of the unwanted field at large
distances.
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