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Abstract-Accident rates of heavy truck-tractors are model~ed using log-linear methods. The accident data used 
are a census of truck-tractor involvements in Michigan from May 1987 to April 1988. Travel data used to cal- 
culate the rates were produced by a survey of truck-tractors in Michigan covering the same time period. Both the 
accident and travel data were limited to Michigan-registered tractors operating in Michigan. Log-linear models 
of casualty and property-damage-only accident rates were developed using number of trailers, road type, area 
type, and time of day as predictor variables. Overall, differences between tractors with one and two trailers were 
not significant. Tractors with no trailers (bobtails) have significantly higher accident rates. Characteristics of the 
operating environment were found to have larger effects on the accident rate than tractor con~guration (except 
for the bobtail). Rates varied by a factor of up to 6.8, depending on the road type. Casualty accident risk at night 
was I .4 times the risk during the day. The risk of a casualty accident in rural areas was I .6 times that of urban 
areas. 

INTRODUCTION 

Truck safety issues currently command a large share 
of the traffic safety interest of policy makers and the 
general public. Vehicle inspection and commercial 
drivers licensing programs have recently been put in 
place or significantly expanded, as have programs to 
ensure more complete reporting of truck accidents in- 
volving interstate carriers. Moreover, the perception 
that truck combinations such as doubles or triples are 
inherently unsafe has resulted in proposals to restrict 
their use. 

As attention has focused on truck safety, it has 
become apparent that little is accurately known about 
the operating experience of large trucks. A recent 
Transportation Research Board special report sur- 
veyed data sources and noted that existing, publicly 
available data are so inadequate that there is no broad 
consensus on even how many trucks there are, much 
less how many miles they travel or how that travel is 
distributed across different operating environments 
(TRB 1990). On the accident side, the picture is 
mixed. The number of trucks involved in fatal acci- 
dents is fairly well established, from the Trucks In- 
volved in Fatal Accidents program at the University 
of Michigan Transportation Research Institute, 
building on the Fatal Accident Reporting System 
(FARS) from the National Highway Traffic Safety 
Administration (NHTSA). For injury and property 

damage accidents, the situation is quite different. 
Even the total number of truck accidents is uncertain, 
much less counts by truck configuration, road type, 
or other factors of interest. States have a difficult time 
correctly identifying medium and heavy trucks in 
their accident files. Estimates of total truck accidents 
from NHTSA’s National Accident Sampling System 
(NASS) vary considerably from year to year. Reports 
filed with the Office of Motor Carriers (OMC) are an- 
other possible source, but, since only about 70% of re- 
portable fatal accidents are filed with OMC, under- 
reporting is expected to be widespread for injury and 
property damage accidents, and only interstate car- 
riers are required to report to OMC in the first place. 
When the fundamental data are uncertain, it is diffi- 
cult to assess the factors that affect the relative risk of 
operating different types of trucks. 

The present study quantifies the factors that af- 
fect the probability of accident involvement for 
truck-tractors. It focuses on the traffic safety experi- 
ence of tractors registered and operated in Michigan. 
Accident and exposure data were collected. Accident 
rates were calculated for three tractor co~figu~tions, 
taking into account road type, time of day, area type 
(urban or rural), and accident severity. Multivariate 
models were developed for the accident rates. This 
paper will review some recent work in the area, de- 
scribe the data and the statistical models employed, 
and present the results of accident rate modelling. It 
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concludes with a discussion of the results and rec- 
ommendations for future work. 

LITERATURE REVIEW 

Much recent research has focused on determin- 
ing differences between the accident rates of singles 
and doubles. The Transportation Research Board’s 
1986 report on doubles evaluated existing research on 
the safety impacts of the doubles configuration (TRB 
1986). Based on the available studies, the report con- 
cluded that there was no evidence that one configu- 
ration was significantly less safe than the other. The 
report also stressed that the data available to the stud- 
ies it relied on covered only some operations of sin- 
gles and doubles. For example, Chirachavala and 
O’Day in 198 1 used OMC (then BMCS) accident 
data and travel information from the Bureau of the 
Census’s Truck Inventory and Use Survey (TIUS). In 
order to match coverage of the two files, the analysis 
focused on intercity operatiosn by ICC-authorized 
carriers. The authors found little overall difference in 
accident rates between singles and doubles, though 
there were differences for some cargo body styles. 
Glennon’s study used a matched-pair analysis of trips 
by singles and doubles, using data from a major pub- 
lic carrier. (See literature review in TRB 1986, pp. 
3 1 O-3 11). He found that accident rates for the two 
configurations were virtually identical. The study has 
been faulted because the data came from private 
sources, but it was used as part of litigation and with- 
stood the intense scrutiny a trial involves. 

In 1988, Stein and Jones employed a case-con- 
trol technique that has been used more often in clin- 
ical studies (Stein and Jones 1988). They used acci- 
dents on Interstate highways in Washington, 
sampling the control group from traffic passing acci- 
dent sites a week later. Odds ratios calculated from 
the data indicated that doubles were overinvolved by 
a factor of two to three times compared with singles. 
The study also found that bobtails (tractors operating 
without a trailer) were under-involved, as were oper- 
ations at night. The study has generated considerable 
interest both in its method and its results. Fritzler 
( 1988) in an unpublished paper, questioned the sam- 
ple sizes of the control group and the extent to which 
the conclusions could be generalized beyond the spe- 
cific accident sites. A Canadian study design for as- 
sessing the safety impact of front-axle brakes recom- 
mended use of the case-control method, but with 
important modifications on the application of the 
method and interpretation of the results (Lee-Gosse- 
lin, Richardson, and Taylor 1990). 

Subsequent studies have used more conven- 
tional methods and have arrived at different conclu- 

sions from Stein and Jones ( 1988). A study in western 
Canada used fleet data to compare singles with dou- 
bles and to determine rates for A-, B-, and C-train 
doubles (Sparks and Bielka 1987). The study con- 
cluded that differences in accident rates for singles 
and doubles were not significant. Calculated rates 
also suggested that doubles using A-dollies had lower 
accident rates than B- or C-trains, though the authors 
noted that this “flies in the face of general belief.” In 
another study, Jovanis, Chang, and Zebaneh (1989) 
asserted that no previous study “[had] been able to 
control for differences in how and where doubles op- 
erate,” that is, controlling for road type, traffic level, 
and weather. Their study used randomly selected or- 
igin-destination terminal pairs used for national less- 
than-truckload (LTL) carriage. Both singles and dou- 
bles operated over precisely the same roads at approx- 
imately the same time. They found that accident rates 
for doubles were somewhat lower than singles on 
every road type and that the differences, though small 
in some cases, were statistically significant. 

A recent study of fatal truck accident rates used 
data covering all truck types and roadways (Camp- 
bell, Blower, Gattis, and Wolfe 1988). The accident 
data consisted of a census file of all medium- and 
heavy-duty trucks involved in fatal accidents in the 
lower 48 states. The travel data came from a proba- 
bility-based sample of all trucks registered in the 48 
states, and consisted of a survey of the actual usage of 
the vehicles. The data in both files were collected at a 
level of detail that permitted calculation of rates by 
configuration, road type, area type, time of day, and 
many other factors of interest. One of the conclusions 
of the study was that the doubles fatal-accident rate is 
about 10% lower than that of singles, primarily be- 
cause doubles use interstate-quality roads for a dis- 
proportionate share of their travel. If the distribution 
of doubles travel by road, time, and area type were the 
same as that of all trucks, the doubles fatal-accident 
rate would be about 11% higher than singles. The 
bobtail configuration was significantly overinvolved 
in all conditions, regardless of whether its travel dis- 
tribution was adjusted. 

The present work employs the same approach, 
though the focus is restricted to the state of Michigan 
and the accident threshold is expanded to include all 
reportable accidents (Blower, Lyles, Campbell, and 
Stamatiadis 1990). Data used in the study cover the 
12-month period from May 1987 through April 
1988. Accident counts were developed from a census 
file of all police-reported accidents in Michigan, clas- 
sified by configuration, time of day, road type, and 
area type. The exposure data, collected by telephone 
interview on a series of randomly selected days, come 
from a survey of the travel of truck-tractors in Mich- 
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igan. The mileage data are also classified by the same 
factors as the accident data, permitting disaggregate 
rates to be calculated and multiva~ate models devel- 
oped, incorporating configuration, road type, time of 
day, and area type. 

DATA 

The rates presented here are for Michi~n-revs- 
tered truck-tractors operating on Michigan roads. 
The mileage figures came from a survey of the actual 
travel of Michigan-registered tractors in Michigan. 
Extending the analysis to all truck-tractors on Mich- 
igan roads would have involved sampling the entire 
population of trucks operating in Michigan, regard- 
less of state of registration, which was not feasible. In- 
stead, it was decided to focus on Michigan-registered 
truck-tractors. Thus, the accident data are limited to 
accidents in Michigan involving a Michigan-regis- 
tered tractor, and the travel is limited to travel in 
Michigan by Michigan-re~stered tractors. 

The data modelled consist of contingency tables 
of accident rates, determined by the factors of inter- 
est. The contingency tables are formed by cross-clas- 
sifying vehicle configuration, road type, area type, 
and time of day. Three tractor configurations were 
considered: a tractor with no trailer (bobtail), a trac- 
tor with a semitrailer (single), and a tractor with two 
trailers (double). Road type was classified as either 
limited access, major artery (other U.S.- and state- 
numbered routes), and other roads. Time of day was 
split between day and night, with night defined as the 
period between 9 P.M. and 6 A.M. FHWA definitions 
of urban and rural were used to classify area type. 
Urban areas are those with a population greater than 
4,999. 

A~~.~dent data 
All truck-tractor accidents in Michigan were 

drawn from Michigan State Police accident files for 
the period May 1987 through April 1988.* State of 
registration is not coded in the computerized file, SO 

hard copies of all truck-involved accidents were re- 
viewed to identify the registration state. The review 
also corrected some errors of truck classification. For 
the study year, 6,002 Michigan-registered truck-trac- 
tors were involved in accidents in Michigan. Overall, 
there were 10,O 19 tractors, regardless of state of reg- 
istration, in the accident file, so about 60% of the trac- 
tors involved in accidents in Michigan were registered 
in Michigan. 

*Accident data were prepared by Richard Lyles and Poli- 
chronis Stamatiadis of Michigan State University as part of a joint 
MSU-UMTRI project sponsored by the Michigan Office of High- 
way Safety Planning. 

Michigan uses the K-ABC system of classifying 
injury severity. The threshold for reporting property- 
damage-only accidents is $200 in damage. In the 
analysis, models are presented for casualty and prop- 
erty-damage-only (PDO) accidents. Casualty acci- 
dents were defined to consist of accidents that in- 
cluded a K (fatal), A (incapacitating injury), or B 
(evident injury but not incapacitating) injury. C-in- 
jury, complaint of pain, accidents were included with 
property-damage-only for the analysis. 

Travel data 
The measure of exposure used is vehicle miles 

traveled (VMT). The source of the exposure data was 
a survey conducted by the Unive~ity of Michi~n 
Transportation Research Institute (UMTRI) be- 
tween May 1987 and April 1988. A random sample 
of 1,055 tractors was drawn from the registration files 
maintained by the Michigan Department of State. 
The operator of each truck was contacted by tele- 
phone four times over the course of the study year for 
a detailed description of the activities of the truck on 
the previous day. Information gathered about the 
truck’s use included the total travel for the day, the 
number and type of trailers pulled, the actual route 
driven by the truck, and the time of operation.* The 
route was plotted on a map and the accumulated 
travel was recorded for each combination of road type 
(three levels), time of day (day or night), and area type 
(urban or rural). Since the accident data included 
only accidents in Michigan, only travel in Michigan 
was recorded. 

Both the vehicle description and route data were 
subject to careful editing. Each truck Vehicle Identi- 
fication Number (VIN) was decoded by UMTRI ed- 
itors to identify the particular model so that the phys- 
ical description of the vehicle obtained from the 
owner could be compared with the manufacturer’s 
specifications. The editing staff has extensive experi- 
ence with and information concerning heavy trucks 
from the nationwide Trucks Involved in Fatal Acci- 
dents survey, currently in its tenth year (Blower, Pet- 
tis, and Sullivan 1990). Thus, problems with vehicle 
descriptions could be spotted and clarifying calls to 
the truck owner made. Similarly, following the route 
of the truck on maps allowed gaps in the truck’s usage 
to be identified, so that additional calls could be made 
to fill in the missing trips. 

Overall, interviews for 8,464 trips on 3,603 sam- 
ple days were completed. The truck-tractors in the 
study traveled 470,O 17 miles on those days; the routes 
for 96.1% of those miles were described in sufficient 

*Additional information, not used in this study, included 
weights and lengths of all units, cargo body type, cargo weight at 
every point along the route, driver age, and company type. 
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detail to be broken down by road type, time of day, 
and area type. 

At the vehicle level, the 1,055 trucks in the sam- 
ple cover the Michigan tractor population well. There 
were just under 35,000 truck-tractors registered in 
Michigan during the study year, so vehicle sample 
weights are relatively low. For the travel data, weights 
were calculated to inflate the daily mileage to annual 
estimates. Specific survey dates were randomly as- 
signed to each vehicle for the travel survey. When the 
vehicle was not used on its sample day, the last pre- 
vious use was taken and the weights adjusted appro- 
priately.* This technique allowed the travel estimates 
to be based on the largest amount of travel possible, 
since every completed trip interview produced mile- 
age data. A stratified sampling procedure was used 
when the population of registered trucks was sam- 
pled. Design effects calculations showed that this pro- 
cedure had virtually no effect on the variances. 

Strengths of‘the data 
Many earlier studies have relied on data that are 

more narrowly focused and less representative. The 
Stein and Jones ( 1988) case-control work sampled ac- 
cident sites located on interstates. Other work has 
used BMCS accident data, which suffer both from un- 
derreporting and from only partial coverage of the 
trucking industry. The TIUS file has frequently been 
used for travel data, but the mileage there consists of 
self-reported annual totals, which cannot be verified 
or cross-classified by many factors of interest. Other 
studies have been restricted either to particular fleets 
or particular roadways. 

The data used in this study represent a significant 

*The trip year was divided into four quarters and, optimally, 
travel data would have been collected on each truck in every quar- 
ter. The “survey day weight” to inflate the daily travel to an annual 
total is calculated by dividing 365 by the number of completed 
quarters. If a truck was not used on its selected survey date, the in- 
terview was done on the last previous use of the vehicle. Then the 
problem is to determine the weight of such survey days within the 
quarter. The survey method did not directly determine the interval 
between trucks’ uses, but only the interval between the survey day 
and the last day of use. However, once a random date was selected, 
the particular interval between uses of the sample vehicle that 
spanned the survey day was also specified. Suppose the sample ve- 
hicle were used on the 10th and the 20th. so that this particular in- 
terval, I, was ten days. Survey dates from the 10th to the 19th would 
fall in this interval (the 20th begins the next interval). The “half- 
interval” is estimated by the difference between the survey date and 
the date the truck was last used. The possible outcomes for the half- 
interval for this example are the integers 0, 1, 2, 3, ., 9. Since the 
survey date was randomly selected, the probability of each out- 
come is the same, and the interval, I, is estimated by I = 2 (half- 
interval) + 1. The frequency of use for each quarter is l/I. The re- 
sulting factor was multiplied by the survey day weight to determine 
the “annual inflation factor,” the weight used (in combination with 
vehicle weights and an adjustment for nonresponse) to determine 
annual estimates of travel from the daily trips. 

advance over most previous studies. Although the ac- 
cident and travel data come from separate sources, 
they are carefully matched in terms of the vehicle 
population and time period covered by the study. The 
numerator in the rates comes from a census file of ac- 
cidents in Michigan involving Michigan-registered 
truck-tractors. The denominator comes from the 
travel of a random sample of all Michigan tractors, 
and is based on the actual travel of those vehicles. Fi- 
nally, the data are at a level of detail that permits com- 
parison of the relative accident risk of different road 
types, times of operation, areas of operation, and ve- 
hicle configurations, or any combination. 

STATISTICAL METHODS 

The fundamental hypothesis tested is whether 
the accident rate is related to vehicle configuration, 
road type, area type, and time of day. Since this is an 
observational study, it is not feasible to measure or 
control for all variables significantly related to acci- 
dent involvement. Due to the complex nature of the 
events leading up to an accident, it is expected that 
there will be some extraneous variation not ac- 
counted for by the covariates. Nevertheless, this 
should not detract from the finding of this study, that 
an association between accident rates and the covari- 
ates of interest, does, in fact, exist. 

The data set consists of a 3 X 3 X 2 X 2 cross- 
classification. The cross-classifying factors are de- 
fined as truck type (single, double, bobtail), road (lim- 
ited, major, other), time (day, night), and area (rural, 
urban). The response, or outcome, variable is the ac- 
cident rate, which is defined as the number of acci- 
dents divided by the amount of travel (in millions of 
miles) for a given classification. Each rate is therefore 
based on a different amount of travel. The saturated 
model contains 36 estimable parameters. 

Model characteristics 
The Poisson distribution is the nominal distri- 

bution for counted data. It is commonly used in mod- 
elling accident (Joshua and Garber 1990; Buyco and 
Saccomanno 1988; Saccomanno and Buyco 1988) 
and worked well in developing the models presented 
in this paper. The number of accidents for a given ob- 
servation is assumed to be Poisson distributed with 
mean CL,, and observations are assumed to be indepen- 
dent. Since the Poisson mean is required to be posi- 
tive, an additive model is usually unsatisfactory. The 
multiplicative model ensures positive fitted values 
and is plausible for interpreting factor effects as rela- 
tive risks. This is the motivation for the log-linear 
model. The model initially takes the form: 
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log(expected number of accidents) = 
(Y + log(~ve1) 
+ (effect due to truck type) 
+ (effect due to road type) 
+ (effect due to area type) 
+ (effect due to time of day). 

It is assumed that the coefficient attached to 
log(trav~1) is unity, althou~ this assumption must be 
checked. A parameter estimate that is assumed 
known a priori is sometimes called an offset. After 
this assumption is checked, and if it is satisifed, real 
interest focuses on the factor effects. One of the con- 
cerns of modelling accident rates is the in~o~oration 
of exposure (log(trave1)) into the model. By declaring 
log(trave1) as an offset, it is initially subtracted from 
the left hand side of the model equation, producing 
the log of the accident rate, and the model becomes: 

log(expected accident rate) = 
CY + (effect due to truck type) 
+ (effect due to road type) 
+ (effect due to area type) 
+ (effect due to time of day). 

Of course, impo~nt interaction terms are also 
included in the model. In generalized linear model 
terminology (McCullagh and Nelder 1989), the nat- 
ural link function, in this case the log link, provides 
for a multiplicative model that describes the relation- 
ship between the response and predictor variables. 
The statistical computer software package GLIM 
(Generalized Linear Interactive Modelling) fits Pois- 
son regression models as a standard option (Aitkin, 
Anderson, and Francis 1989). 

The parameter estimates obtained are maxi- 
mum likelihood estimates (MLE). Since the maxi- 
mum likelihood equations are generally nonlinear in 
the parameters, the MLEs are solved for iteratively. 
GLIM uses a modification of the Newton-Raphson 
algorithm to solve for the MLEs and their standard 
errors. The identifiability constraints placed on the 
parameters are such that the baseline or referent cat- 
egory is set to 0. 

Goodness-of-fit and model checking 
Two measures of goodness-of-fit are commonly 

used. One is the chi-square statistic, and the other is 
the deviance. Both are approximateIy dist~buted as 
chi-square with degrees of freedom equal to the num- 
ber of estimable parameters in the saturated model, 
minus the number of parameters fit in the model. The 
deviance also may be used to compare two nested 
models by taking the difference between their devi- 

antes and degrees of freedom. This statistic, some- 
times called the likelihood ratio statistic, is also as- 
ymptotically chi-square and can be used to test 
whether the addition of further predictor variables 
significantly improves the fit. Individual residuals 
also can be examined to determine how well each rate 
is being predicted. Analogous to the overall measures 
of fit provided by the chi-square statistic and the de- 
viance are the chi-square residuals and the deviance 
residuals. The sum of the squared chi-square residu- 
als equals the chi-square statistic. Similarly, the de- 
viance equals the sum of the squared deviance resid- 
uals. Patterns in the residuals, or large residuals, are 
not necessarily reflected in the overall measure. 

When the observed numbers of accidents are 
fairly large, the residuals can be treated as approxi- 
mately standard normal variables. A normal quantile 
plot provides a check on their assumed distribution. 

RESULTS 

Three models were developed from the Michi- 
gan accident and travel data. Two models were de- 
veloped for casualty accidents and one for property 
damage accidents. One of the casualty accident mod- 
els used all three levels ofvehicle configuration-bob- 
tail, single, and double. The second casualty accident 
model excluded bobtails. Dropping bobtails allowed 
the development of a model with fewer interaction 
terms and a better fit. The property damage accident 
model also used only two levels of vehicle configura- 
tion, single and double. 

Cslsualt~~ accidents. The 24-c& model 
The simpler casualty model will be presented 

first. The data for this model are displayed in Table 1, 
There were 24 rates or “cells” in the data matrix. Each 
cell is determined by the cross-classification of the in- 
dependent variables in the model. Road type was di- 
vided into three types-limited access, major artery, 
and “other” roads. Area was classified as either urban 
or rural, and time was divided into day and night. 
Tractor configuration was either single or double. Ex- 
cluding bobtails from the model does not neglect a 
major tractor configuration. In Michigan, singles and 
doubles account for 988% of tractor travel. Bobtails 
account for the remaining 1.2% of tractor miles. 

Table 1 also shows half 95% confidence intervals 
for each observed rate in the 24-cell rate matrix. Con- 
fidence intervals were calculated based on the esti- 
mated variances for the travel and accident numbers. 
Cells with relatively little travel or few accidents have 
large confidence intervals. Since the observations fit 
by the models are accident rates, the large confidence 
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Table I. Accidents, travel, and accident rates for the 24-cell casualty accident model 

Cell 
Truck 

type 

Road 

type Time Area 
Casualty 
accidents Travel 

Rate/ 
1 O6 miles 

Half 
95% C.I. 

I 
2 
3 
4 
5 
6 
7 
8 
9 

10 
II 
12 
13 
14 
I5 
16 
17 
18 
19 
20 
21 
22 
23 
24 

Single 

Double 

Limited 

Major 

Other 

Limited 

Major 

Other 

Day 

Night 

Day 

Night 

Day 

Night 

Day 

Night 

Day 

Night 

Day 

Night 

Rural 188 204,433,874 0.9196 0.1436 
Urban 107 177,250,749 0.6037 0.1207 
Rural 63 4 I ,949,294 1.5018 0.4130 
Urban 23 29,883,757 0.7696 0.331 I 
Rural 241 128,647,023 1.8733 0.285 1 
Urban 92 59,822,202 I .5379 0.3364 
Rural 61 17,642,35 I 3.4576 1.0507 
Urban 19 6,838,52 1 2.7784 1.3648 
Rural 200 3 1,765,363 6.2962 1.1633 
Urban 118 59,730,974 1.9755 0.3917 
Rural 22 1,289,058 17.0667 8.7425 
Urban 19 3,775,43 1 5.0325 2.5808 
Rural 21 23,163,210 0.9066 0.4345 
Urban 13 21,162,524 0.6143 0.3564 
Rural II 9,473,358 1.1612 0.7912 
Urban I 3,474,259 0.2878 0.5844 
Rural 31 I5,040,022 2.0612 0.9069 
Urban II 5,529,527 I .9893 1.2980 
Rural 5 2,400,560 2.0828 2.1343 
Urban 0 459,525 0.0000 0.0000 
Rural 26 3,207,263 8.1066 4.2706 
Urban 17 4,95 1,688 3.4332 I .9036 
Rural 2 224.036 8.927 1 13.1945 
Urban 6 340,844 17.6034 16.2369 

intervals in the observed rates are more likely to have 
large residuals from the model fitting. 

Table 2 shows the coefficients and standard er- 
rors for the parameters in the model that was devel- 
oped. The model has a scaled deviance of 18.98 with 
14 degrees of freedom, which is consistent with a good 
overall fit. That is, treating the scaled deviance as a 
chi-square with 14 degrees of freedom, the overall dis- 
tribution of accidents predicted by the model does 
not differ significantly from the observed distribution 
of accidents. Note also that the model is able to ac- 
count for most of the variation in the data with only 
two interaction terms. Twice the standard error gives 
a quick approximation of a 95% confidence interval 
for the coefficients. All are significant at the .05 level 

Table 2. Parameter estimates for the 24-cell casualty accident rate 
model 

Coefficient Standard 
estimate error Parameter 

- 13.89 0.06672 Baseline* 
0.09039 0.08857 Double 
0.7060 0.08856 Major artery* 
I.925 0.0927 I Other roads* 
0.3655 0.1154 Night* 

-0.4720 0.1025 Urban* 
0.1754 0.1666 Major-night 
0.6106 0.191 I Other-night* 
0.2826 0.1473 Major-urban 

~ 0.6347 0.1442 Other-urban* 

Scaled deviance = 18.982, 14 degrees of freedom. 
*Statistically significant at the .05 level. 

except the main effect for doubles and the interac- 
tions of major artery roads with night and urban 
areas, respectively. 

The “baseline” case is a tractor pulling a single 
trailer on rural limited access roads during the day. 
The other coefficients reflect the effect of the various 
factors relative to the baseline case. 

Overall, road type has the largest effect on the rel- 
ative risk of different operating environments in this 
model. This can be seen most directly by examining 
the coefficients for the main effects of the parameters 
presented in Table 2. The largest coefficients are as- 
sociated with major and, especially, “other” roads. 
For “other” roads, the accident rate is 6.8 times (e’.925) 
greater than the accident rate on limited access roads. 
Major arteries have 2.03 times (e’.“‘) the risk of lim- 
ited access roads. Of course, this only compares the 
baseline case of single, day, rural, limited access with 
the same case on “other” and major roads, respec- 
tively. Nevertheless, the coefficients are included in 
calculating the rates for all the “other” and major ar- 
tery cells, so the main effect of road type is clear. Of 
the factors included in the model, road type has by far 
the largest effect on accident rates. 

Time of operations and area are also important 
factors in the model. For area type. the coefficient for 
urban is -0.472, indicating that relative to the base- 
line case the risk of involvement in a casualty acci- 
dent is emo.472 = .62 of the baseline (rural) case. The 
effect of urban operations is to lower the casualty ac- 
cident rate, in general. This could be due to lower 
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travel speeds in urban areas. Night, in contrast, is as- 
sociated with higher accident risks. The parameter for 
the main effect of night is 0.3655, which means the 
relative risk is 1.44 times higher at night. 

Two interaction terms improved the fit of the 
model appreciably: road type with time of day and 
road type with area type. In the case of the “other” 
road type, the effect is quite large. The coefficient of 
the “other” road-night interaction indicates that the 
combination of “other” roads and night increases the 
risk beyond the sum of the separate effects of night 
and ‘“other” roads. Thus, the rate for singles on 
“other” rural roads at night is higher than limited ac- 
cess rural roads during the day (the baseline case) by 
e~1~925+o~36*5+o~6’06) or over 18 times. On the other hand, 
the interaction effect of “other” roads and urban 
areas is negative, with approximately the same mag- 
nitude as the “other’‘-night interaction. This indi- 
cates that the harmful effect of “other” roads at night 
is primarily in rural areas, where operating speeds are 
higher than on compamble urban roads. 

In contrast to the finding that road type, area, 
and time of day have a significant impact on the ca- 
sualty accident risk, configuration has very little im- 
pact. The coefficient for the doubles configuration is 
0.09039 or about a 9% higher risk. The standard error 
of the estimate is 0.08857, so the coefficient is not sta- 
tistically different from zero. Even if the effect is real, 

it is relatively small and far outweighed by the oper- 
ating environment, particularly road type. 

Table 3 shows rates predicted by the model, with 
upper and lower bounds of a 95% confidence interval, 
along with the rates actually observed in the data for 
each of the 24 cells in the casualty accident rate ma- 
trix. Overall, the table shows the wide variation in ac- 
cident rates for different combinations of factors in 
the model. The range is from predicted rates of0.6 ca- 
sualty accidents per million miles of travel for dou- 
bles on limited access urban roads in the daytime to 
over 18 for doubles on rural, night, “other” roads. 
The factors in the model clearly have a very large ef- 
fect on the probability of an accident. Most of the 
confidence intervals for the singles cells are reason- 
ably tight. Singles are the dominant tractor configu- 
ration so there is adequate data for most of the cells. 
Doubles account for about 10% of all tractor travel 
and sample sizes for some cells are small. For exam- 
ple, there were no casualty accidents recorded for the 
doubles combination on major arteries at night in 
urban areas and only 459,000 miles of estimated 
travel. Nevertheless, for most cells the confidence in- 
tervals are satisfactory and demonstrate clear differ- 
ences in the rates from cell to cell. 

The deviance residuals were also examined to see 
if additional independent variables were required for 
the model. The residuals are displayed in Table 4. 

Cell 

1 
2 

Table 3. Observed and predicted rates and 95% confidence intervals for the 24-tell casualty accident rate model 

Truck Road Observed Predicted Lower Upper 
type type Time Area rate rate bound bound* 

Single Limited Day Rural 0.9196 0.9273 0.8136 1.0568 
Urban 0.6037 0.5784 0.4879 0.6857 

3 Night Rural 1.5018 1.3364 1.0849 1.6462 
4 Urban 0.7696 0.8336 0.6517 1.0662 
5 Major Day Rural 1.8733 1.8785 1.6701 2.1131 
6 Urban 1.5379 1.5545 1.2957 1.8649 
7 Night Rural 3.4576 3.2264 2.592 1 4.0160 
8 Urban 2.7784 2.6698 2.0458 3.4840 
9 Other Day Rural 6.2962 6.3536 5.5848 7.2283 

10 Urban 1.9755 2.1008 1.7877 2.4688 
11 Night Rural 17.0667 16.8617 12.5417 22.6697 
12 Urban 5.0325 5.5753 4.1328 7.5214 
13 Double Limited Day Rural 0.9066 1.0150 0.8307 1.2403 
14 Urban 0.6143 0.633 I 0.503 1 0.7967 
15 Night Rural 1.1612 1.4628 1.1384 1.8797 
16 Urban 0.2878 0.9124 0.6867 1.2124 
17 Major Day Rural 2.0612 2.0563 1.6964 2.4926 
18 Urban 1.9893 1.7015 1.3373 2.1650 

:x Night Rural Urban 0.0000 2.0828 2.9223 3.5316 2.1460 2.707 1 4.6073 3.9794 
21 Other Day Rural 8.1066 6.9546 5.6853 8.5074 
22 Urban 3.4332 2.2996 1.8330 2.8849 
23 Night Rural 8.927 1 18.4568 13.2583 25.6935 
24 Urban 17.6034 6.1028 4.3614 8.5393 

*The confidence intervals for this table are calculated from the rates predicted by the model. The confidence intervals for the raw rates, 
e.g. in Table 1, are calculated from the raw accident frequencies and truck travel. 
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Table 4. Observed and oredicted freauencies. and residuals for the 24-cell casualtv accident model 

Cell 

: 

Truck type 

Single 

Road type 

Limited 

Time 

Day 

Area 

Rural 
Urban 

Observed 
frequency 

188 
107 

Predicted 
frequency 

189.570 
102.521 

Deviance 
residual* 

-0.114 
0.439 

4 

6 
7 

i 
10 
II 
12 
13 Double 

Major 

Other 

Limited 

Night 

Day 

Night 

&Y 

Night 

Dav 

Rural 
Urban 
Rural 
Urban 
Rural 
Urban 
Rural 
Urban 
Rural 
Urban 
Rural 

63 56.06 1 
23 24.9 I 1 

241 
92 
61 

*z 
118 
22 
19 
21 

24 I .674 
92.99 1 
56.922 
18.257 

201,824 
125.484 
21.736 
2 1.049 
23.5 I1 

0.909 
- - 0.388 
-0.043 
-0.103 

0.534 
0.173 

-0.129 
-0.675 
0.057 

-0.454 
-0.527 

14 Urban 13 13.398 ‘” 0.109 
IS Night Rural II 13.858 -.-0.797 
I6 Urban 
17 Major Day RUEQ 3: 

3.170 - 1.426 
30.927 0.013 

ix Urban 11 9.409 0.505 
19 Night Rural 8.47% - 1.294 
2.0 Urban ?I 1.343 - 1.639 
21 Other Day RUEi 26 22.305 0.762 
22 Urban 17 11,387 1 s49 
23 Night Rural 2 4.135 -1.168 
24 Urban 6 2.080 2,201 

--~ 

*The deviance residuals are scaled. 

Overall, there does not seem to be any pattern that 
would indicate systematic lack of fit. Generally, the 
cells with large residuals also have large con~dence in- 
tervals in the observed rates. The large residuals are 
primarily in the doubles cells, where sample sizes are 
small, Another test for unspecified variables that are 
co~elated with the residuals is to examine the novae 
plot of the residuals. The plot of the residuals should 
show a straight line through the origin. The plot of the 
residuals for this model (not shown) has some upward 
curve in the tails, but for the most part, the data satisfy 
the requirements of the GLIM method. Similarly, the 
method assumes that the offset variable, in this case 
travel, is linearly related to the dependent variable, 
such that when the oKset is inco~orated into the 
model as an independent variable, the coefficient is 
one. When that is tested in this model, the travel co- 
e~cient is 0.6096 with a standard error of 0.2977, Al- 
those the coefficient is somewhat less than one, one 
is well within the 95% confidence interval. 

Adding bobtails (tractors o~rating without a 
trailer) as a third category in the vehicle-type variable 
increased the number of cells by 12 and resulted in a 
more complicated model. The final model develo~d 
used all the same parameters as the 24-cell model dis- 
cussed above, but several additional parameters were 
required to achieve a good fit. The additional param- 
eters were for two sets of interactions involving vehi- 

de type. The first is between vehicle type and road 
type, the second between vehicle type and area type. 
Even with the additions parameters, the fit of the 
model is not quite as good as the previous model. The 
36-cell model has a scaled deviance of 30.928 with 19 
degrees of freedom. Treating the scaled deviance as a 
ch~-square, this is within the critical value at the -10 
level, and just over the critical value at the .05 confi- 
dence level. Thus, overall, the model does not quite 
achieve significance at the 95% level. 

Table 5 shows the additional bobtail data for the 
36cell model. The data for the singles and doubles re- 
main the same as in Table 1. Since many ofthe results 
and most of the data are the same for both the 24-cell 
and the 36cell casualty model, only the additional 
data and results associated with bobtails will be pre- 
sented. 

The model derived using the GLIM package had 
17 parameters (see Table 6). All the parameters in- 
cluded in the 24-cell model were used, and in addi- 
tion there were terms for the interactions between ve- 
hicle type and road type, and between vehicle type 
and area type. The effect of adding obse~ations for 
bobtails is to add variance that requires additional 
terms in the model. The ad~tional terms are all in- 
teractions between vehicle type and other indepen- 
dent variables. It seems that adding another level to 
vehicle type complicates the relationship among ve- 
hicle, road, and area because bobtails interact differ- 
ently from singles or doubles with those two factors. 
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Table 5. Accidents, travel, and accident rates for bobtail cells of the 36cell casualty accident model 

Cell 
Truck 
type 

Road 
type Time Area 

Casualty 
accidents Travel 

Rate/ 
1 O6 miles 

Half 
95% C.I. 

2.5 
26 
27 
28 
29 
30 

:: 
33 
34 

Bobtail Limited 

Major 

Other 

Day 

Night 

Day 

Night 

Day 

Night 

Rural 
Urban 
Rural 
Urban 
Rural 
Urban 
Rural 
Urban 
Rural 
Urban 
Rural 
Urban 

As in the 24-cell casualty model, the baseline dard error of 0.2204. Even if the standard error were 
case is a tractor pulling a single trailer on rural, lim- much smaller, the effect of the interaction would still 
ited access roads during the day. The other coefli- be slight. In other cases, the failure of some of the co- 
cients measure the effect oftheir respective factors rel- efficients to attain significance is associated with the 
ative to the baseline case. For most parameters that relative lack of data concerning bobtails, rather than 
appear in both the 24-cell and 36-cell models, the co- the size of the effect. For example, in these data the 
efficients and standard errors are very similar. interaction between bobtails and major artery roads 

The largest standard errors for the terms in the is -0.5508, which is substantial. The standard error 
model are associated with bobtails. This is a result of of the coefficient is 0.353 1, which means, using twice 
the relatively small amount of data for the bobtails. the standard error to approximate a 95% confidence 
Three of the bobtail cells have zero casualty accidents. interval, the coefficient is not statistically different 
The bobtail configuration also has less travel than from zero. The interactions are in the model because 
doubles or singles. Since the rates are based on less they improve the fit substantially, though not every 
data, the variance is greater. term is significant. 

More of the terms in the 36cell model were not 
statistically significant than in the 24-cell model. In 
some cases, the lack of statistical significance is due to 
the small size of the effect. For example, the double- 
major artery roads coefficient is 0.1324 with a stan- 

Table 6. Parameter estimates for the 36cell casualty accident rate 
model 

Coefficient 
estimate 

Standard 
error Parameter 

- 13.87 0.06758 baseline* 
-0.1726 0.1708 double 

1.701 0.2542 bobtail* 
0.7024 0.0908 major artery* 
1.907 0.09434 other roads* 
0.3732 0.1141 night* 

-0.4631 0.1026 urban* 
0.1324 0.2204 double-major 
0.4494 0.2166 double-odes 

-0.5508 0.353 1 bobtail-major 
0.5211 0.2955 bobtail-other 
0.1561 0.1655 major-night 
0.5926 0.1811 other-night* 
0.245 I 0.1890 double-urban 

-0.6448 0.2642 bobtail-urban* 
0.2628 0.1443 major-urban 

-0.7167 0.1401 other-urban* 

Scaled deviance = 30.928,19 degrees of freedom. 
*Statistically significant at the .05 level. 

Including bobtails in the vehicle type variable al- 
lows the rates for the three major tractor configura- 
tions to be compared directly. The coefficient esti- 
mates in Table 6 show that the risk of the bobtail 
configuration is quite large, with a coefficient second 
oniy to the coefficient for “other” roads in magni- 
tude, and, despite the small amount of bobtail data, 
highly significant. Compared with the baseline case, 
the rate for bobtails on limited access, rural roads dur- 
ing the day is e’.70’ or 5.5 times higher. The rates for 
bobtails are higher than the singles or doubles config- 
urations in every cell in the data matrix. The impor- 
tance of this model is to show that the bobtail is the 
most unsafe of the tractor configurations. The coeffi- 
cient for the doubles configuration is small and not 
statistically significant. 

Table 7 shows the accident rates per million 
miles predicted by the model for the bobtail cells in 
the data matrix, along with the lower and upper 
bound of the 95% confidence interval and the rate ob- 
served in the data. As expected, confidence intervals 
(C.I.) for bobtail cells are relatively wide. For exam- 
ple, the rate for the baseline case is 0.94, with a CL 
from 0.83 to 1.08. The bobtail rate for the same cell 
is 5.2, 3.2-8.4 C.I. The bobtail rates are based on less 
travel and fewer accidents because bobtails are used 

; 
2 
0 

12 
4 
0 

2; 

4 

2,096,174 3.3394 
2,627,142 3.4258 

236,833 8.4448 
371,614 0.0000 

2,099,07 1 5.7168 
929,995 4.3011 

67,400 0.0000 
68,364 0.0000 

258,223 85.1977 
1,439,44 1 4.8630 

58,385 119.8938 
92.94 1 43.038 I 

2.8188 
2.4602 

19.3254 
0.0000 
4.0829 
4.4500 

8:E 
52.5523 

3.788 f 
L83.7319 
48.0053 
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Table 7. Observed and predicted rates and 95% confidence intervals for the bobtail cells of the 36cell accident rate modei 

Cell 
Truck 
type 

Road 
type Time Area 

Observed 
rate 

Predicted 
rate 

Lower 
bound 

Upper 
bound 

25 
26 

;;: 
29 
30 

:1 
33 
34 
35 
36 

Bobtail Limited 

Major 

Other 

Day 

Night 

Day 

Night 

Day 

Night 

Rural 3.3394 
Urban 3.4258 
Rural 8.4448 
Urban 0.0000 
Rural 5.7168 
Urban 4.3011 
Rural 0.0000 
Urban 0.0000 
Rural 85.1977 
Urban 4.8630 
Rural 119.8938 
Urban 43.038 1 

5.1635 3.1627 8.430 I 
1.7053 0.9408 3.0910 
7.4994 4.441 I 12.6639 
2.4767 I .3256 4.6275 
6.0087 3.6491 9.8940 
2.5808 I .325.5 5.0252 

10.2017 5.9163 17.5914 
4.3818 2.1697 8.8494 

58.5525 40.022 L 85.6626 
9‘4440 6.0956 14.6319 

153.8151 101.8391 232.3185 
24.809 1 15.2517 40.3555 

much less than the other tractor configurations. Bob- 
tails had three cells with no accidents. Nevertheless, 
the bobtail rates are still clearly much higher than sin- 
gles or doubles. 

The data were checked to see if they satisfy the 
assumptions of the model. A check of the residuals 
(not shown) show that the larger residuals are concen- 
trated in the bobtail and double cells. In general they 
appear to be related to lack of data rather than to any 
systematic pattern. The normal plot of the residuals 
also showed them to be normally distributed. When 
travel is introduced into the model as an independent 
variabie, the coefficient is 0.77 1 with a standard error 
of 0.2 197, which is well within bounds. 

Property damage accidetzrs. The 24-celI model 
Initial models included a variable for accident se- 

verity, broken down as casualty and property-dam- 
age-only (PDO). The models developed with accident 
severity as an independent variable required many 3- 
and 4-way interaction terms, which use up most of 
the degrees of freedom and are very difficult to inter- 
pret. The large number of interaction terms involving 
accident severity made clear that there were essential 
differences in the relationship of the other factors to 
accident risk for casualty as compared with PDO ac- 
cidents. It was decided to separate casualty accidents 
from property damage accidents and to model each 
individually, 

Table 8 shows the property damage accident 
data that were modelled. The travel numbers are, of 
course, the same as in the previous two models. Note 
that only singles and doubles are considered. Confi- 
dence intervals for the PDO rates are somewhat 
tighter due to the larger sample sizes in the numera- 
tor. For example, the half-width of the confidence in- 
terval for the baseline cell is about 15% of the casualty 
rate, as compared with 10% of the PDO rate. 

Table 9 shows the coefficients and standard er- 
rors for the parameters. The model has a scaled de- 
viance of Il. 183 with 8 degrees of freedom, which is 
a very good lit. Unfortunately, achieving that fit re- 
quired five two-way interactions and one three-way 
interaction. This model is more complicated than the 
previous ones. Its inte~retation is more complicated 
as well. 

As in the previous models, the main effect of 
doubles is negligible and not statistically significant. 
However, note that the vehicle type variable appears 
in interaction terms with road type and with time of 
day. For both the double-“other” and the double- 
night terms, the coefficient is negative, which means 
that the interaction serves to lower the relative risk 
compared to singles for the same conditions. For 
example, the rate per million miles for doubles on 
“other” roads at night in rural areas is 
PC. 12.?81-04898+2.134+.1113-4497~.5114*.6593) x 10" = 

e'-'0.78752' X IO6 = 20.6786. For singles in the same 
environment, the rate is 61.485 I. (See Table 10.) 
What is the explanation for this result? One possibil- 
ity is that doubles pulling van trailers, which account 
for about half the travel of doubles, more often op- 
erate at night along regular routes. Such operations 
have the advantage of pe~itting a schedule that al- 
lows the driver to adjust to night work, as well as the 
familiarity of a regular route. 

Just as in the casualty models, the largest coeffi- 
cients are associated with road type. In fact, the effect 
of “other” roads is larger for property damage acci- 
dents than for casualty accidents, although among 
PDOs the effect is greater for singles than doubles. If 
we just vary road type to “other” roads for the base- 
line case, the relative risk increases by almost 8.5 
times (eZ.‘34). For doubles, the increased risk is 5.4 
times (e2.134-.4497 

). Leaving aside these differences by 
configuration, the overriding point is that road class 
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Table 8. Accidents, travel, and accident rates for the 24-cell property-damage-only accident model 

Truck Road PDO Rate/ Half 
Cell type type Time Area accidents* Travel IO6 miles 95% C.I. 

: Single Limited Day Rural Urban 580 348 204,433,874 177,250,749 2.8371 I .9633 0.2839 0.2329 
3 Night Rural 137 41,949,294 3.2658 0.6639 
4 Urban 40 29,883,757 1.3385 0.4462 
5 Major Day Rural 730 128,647,023 5.6744 0.6229 
6 Urban 353 59,822,202 5.9008 0.7396 
7 Night Rural 121 17,642,35 1 6.8585 I .6775 
8 Urban 45 6,838,32 1 6.5804 2.2763 
9 Other Day Rural 748 3 1,765,363 23.5477 3.287 I 

10 Urban 808 59,730,974 13.5273 1.3774 
II Night Rural 67 1,289,058 51.9759 19.4676 
12 Urban 49 3,775,431 12.9787 4.7527 
13 Double Limited Day Rural 65 23,163,210 2.8062 0.8907 
14 Urban 53 21,162,524 2.5044 0.8089 
15 Night Rural 14 9,473,358 I .4778 0.9186 
16 Urban 3 3,474,259 0.8635 1.0417 
17 Major Day Rural 81 15,040,022 5.3856 1.8179 
18 Urban 30 5,529,527 5.4254 2.3984 
19 Night Rural 12 2,400,560 4.9988 3.8179 
20 Urban 5 459,525 10.8808 10.7835 
21 Other Day Rural 60 3,207,263 18.7075 8.1617 
22 Urban 36 4,95 1,688 7.2702 3.1123 
23 Night Rural 4 224,036 17.8543 19.4321 
24 Urban 2 340,844 5.8678 8.6718 

*Accidents that involved only C injuries, complaint of pain, are included with property-damage-only accidents. 

has a very large influence on the probability of a prop- 
erty damage accident, just as it does with more serious 
accidents. 

The main effect for urban is - .3383, indicating 
that the general effect of urban in all relevant cells is 
to lower the accident risk compared with rural areas. 
This is similar to the finding in the casualty accident 
models, though the urban effect for PDOs is some- 
what less, which could be due to an association be- 

Table 9. Parameter estimates for the 24-cell property-damage- 
only accident rate model 

Coefficient 
estimate 

Standard 
error Parameter 

- 12.78 0.04066 baseline* 
0.04898 0.0955 1 double 
0.6952 0.0546 1 major artery* 
2.134 0.05412 other roads* 
0.1 113 0.09295 night 

-0.3383 0.06360 urban* 
-0.05986 0.1307 double-major 
-0.4497 0.1379 double-other* 
--0.5114 0.1772 double-night* 
0.09939 0.1304 major-night 
0.6593 0.1536 other-night* 
0.3757 0.08884 major-urban* 

-0.2382 0.08042 other-urban* 
-0.5 163 0.1844 night-urban* 

0.4868 0.2555 major-night-urban 
-0.2808 0.2647 other-night-urban 

Scaled deviance = 1 I. 183,8 degrees of freedom. 
*Statistically significant at the .05 level. 

tween property damage accidents and traffic density. 
Note also that the coefficient for the night-urban term 
is strongly negative. Urban traffic is typically slower 
than rural, and urban areas are also more likely to be 
lighted at night. Moreover, traffic densities are lower 
at night. 

Night, in contrast to the effect for casualty acci- 
dents, is not associated with a large increase in the 
PDO rate. The main effect of night is 0.1113, which 
means that when day is replaced with night for the 
baseline case, the risk is only about 12% higher. More- 
over, the coefficient is no longer significant. The effect 
of night is primarily in interaction with other factors 
in the model. The coefficient for the night-“other” 
road type interaction is 0.6593, indicating that this 
combination increases the relative risk beyond the 
separate effects of night and the “other” road type. On 
the other hand, the coefficient for night-urban is al- 
most as strongly negative (-0.5 163). This is consis- 
tent with the interpretation that the night-“other” 
road problem is primarily in rural areas, where the 
lack of lighting compounds the problems associated 
with “other” roads. Urban roads are more commonly 
lighted at night. 

Table 10 shows the property damage accident 
rates predicted by the model, the lower and upper 
bounds of the 95% confidence intervals for those 
rates, and the rate actually observed in the data. Table 
11 presents the deviance residuals from the model. 
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Table IO. Observed and predicted rates and 95% confidence intervals for the 24-cell property-damage-only accident rate model 

Cell 
Truck 

type 

Road 

type Time Area 
Observed 

rate 
Predicted 

rate 
Lower 
bound 

Upper 
bound 

I 
2 
3 
4 
5 
6 

8 
9 

IO 
I I 
I2 
I3 
I4 
I5 
I6 
17 
I8 
19 
20 
21 
22 
23 
24 

Single 

Double 

Limited 

Major 

Other 

Limited 

Major 

Other 

Day 

Night 

Day 

Night 

Day 

Night 

Day 

Night 

Day 

Night 

Day 

Night 

Rural 
Urban 
Rural 
Urban 
Rural 
Urban 
Rural 
Urban 
Rural 
Urban 
Rural 
Urban 
Rural 
Urban 
Rural 
Urban 
Rural 
Urban 
Rural 
Urban 
Rural 
Urban 
Rural 
Urban 

2.837 I 
I .9633 
3.2658 
I .3385 
5.6744 
5.9008 
6.8585 
6.5804 

23.5477 
13.5273 
5 I .9759 
12.9787 
2.8062 
2.5044 
I .4778 
0.8635 
5.3856 
5.4254 
4.9988 

10.8808 
18.7075 
7.2702 

17.8543 
5.8678 

2.8196 2.6036 3.053 
2.0103 1.8188 2.222 
3.1514 2.6718 3.717 
I .3407 0.9935 I .809 
5.6506 5.261 6.069 
5.866 5.3006 6.492 
6.9757 5.8728 8.286 
7.03 I3 5.3279 9.279 

23.8252 22.21 I8 25.556 
13.3867 12.503 14.333 
5 I.485 1 40.7464 65.054 
13.0357 9.9039 17.158 
2.96 I I 2.4629 3.56 
2.1112 1.7406 2.561 
I .9846 1.4136 2.786 
0.8443 0.5454 I .307 
5.5895 4.6704 6.689 
5.8025 4.765 I 7.066 
4.1376 2.8395 6.029 
4. I706 2.6706 6.513 

15.9585 13.0574 19.504 
8.9666 7.3253 10.976 

20.6786 13.5052 31.662 
5.2357 3.3069 8.289 

Overall, they look very good, except for some of the 
doubles cells. The largest residual is for the double- 
major-night-urban cell, where the model predicted 
1.9 accidents, but five actually occurred. In such a 
small cell, a very few accidents either way can make a 
large difference. Overall, the model is quite successful 
in fitting the data, particularly for the singles cells. 

DISCUSSION 

Recently there has been a growing controversy 
over the relative safety of singles and doubles. A series 
of studies has found either no differences or that dou- 
bles present a significantly greater risk of accident in- 
volvement than singles. Most previous work has been 
limited to a particular road type or to a restricted 
range of operations. The data used in this analysis 
broadly cover the uses of truck-tractors in Michigan. 
Though there are regional variations in the typical 
usage of some tractor configurations, the Michigan 
experience should not differ greatly from the national 
experience. Almost 70% of the Michigan trucks are 
operated by interstate carriers. Almost 50% of the 
travel of Michigan-registered tractors is accumulated 
out of state. The Michigan truck population differs 
from the rest of the nation primarily because of Mi- 
chigan’s generous weight laws-combination vehi- 
cles can be licensed to operate at gross weights up to 
164,000 pounds. Nevertheless, for the level of analy- 
sis presented here, the Michigan truck population ad- 

equately represents trucking nationally. To the extent 
that the Michigan truck population differs from that 
elsewhere, it is that Michigan allows combinations up 
to 164,000 pounds. This fact would hardly be ex- 
pected to result in a safer tractor population or to re- 
duce differences between configurations. Moreover, 
none of the factors included in the models are directly 
related to gross weight. 

The data presented here show that the differ- 
ences in relative risk between singles and doubles are 
small compared to other factors. In the 24-cell casu- 
alty accident model, the coefficient for the main effect 
of doubles is 0.09, which implies about a 10% higher 
risk for doubles. That difference is not statistically sig- 
nificant, since the standard error of the estimate is 
about equal to the estimate. In property damage ac- 
cidents, the size of the effect is even smaller, with an 
increased risk of about 5%. In each model, the risk for 
doubles is not significantly different from singles. If 
the doubles configuration does pose a higher overall 
risk of accident involvement, the increased risk is 
about 10%. An interpretation of no overall difference 
in accident risk is also consistent with the models. 

There are some differences between singles and 
doubles when road type is taken into account. It has 
been argued that the similarity in the overall rates of 
singles and doubles can be explained by the fact that 
doubles travel more than singles on limited access 
roads, which are significantly safer than other roads 
in the highway system (Carsten 1987; Campbell et al. 
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Cell 

Table i i . Observed and predicted frequencies and residuals for the 24-cell pro~~y-damage-only accident model 

Observed Predicted Deviance 
Truck type Road type Time Area frequency frequency residual 

1 
2 
3 
4 

; 

; 
9 

IO 
II 
12 
13 
14 
15 
16 
17 
18 
19 

E 
22 
23 
24 

- 

Singie 

Double 

Limited 

Major 

Other 

Limited 

Major 

Other 

Day 

Night 

Day 

Night 
Day 

Night 

Day 

Night 

Day 

Night 

Day 

Night 

Rural 580 576.412 0.149 
Urban 348 356.322 -0.443 
Rural 137 132.2 0.415 
Urban 40 40.067 -0.011 

Rural Urban 730 353 726.934 350.9 15 0.114 0.111 

Rural Urban 121 45 123.067 48.084 -0.187 - 0.450 
Rural 748 756.8 17 -0.321 
Urban 808 799.6 0.297 
Rural 67 66.367 0.078 
Urban 49 49.2 15 -0.03 1 
Rural 65 68.588 -0.437 
Urban 53 44.678 I .209 
Rural 14 18.8 - 1.160 
Urban 3 2.933 0.039 
Rural 81 84.066 -0.336 
Urban 30 32.085 -0.372 
Rural 12 9.933 0.635 

Rural Urban 60 5 51.183 1.916 I.850 1.199 
Urban 36 44.4 - 1.304 
Rural 4 4.633 -0.301 
Urban 2 1.785 0.158 

1988). The greater number of low-risk miles tends to 
balance out the higher risk of doubles on nonlimited 
access roads. The models presented here lend some 
support for that inte~retation. In the casualty acci- 
dent model that includes bobtails (36-cell), there is a 
signficant term for the doubles-“other” road interac- 
tion. The coefficient is 0.4494, which means that the 
effect of the doubles-“other” road interaction is to in- 
crease risk by 56% compared with singles on that road 
type. Note, however, that in this model the main ef- 
fect of doubles is -0.1726, so the net result is that 
doubles rates on “other” roads are 32% higher than 
the baseline case on “other” roads. The interaction is 
also weak. It does not appear at all in the simpler ca- 
sualty accident model, and it just barely attains sig- 
nificance in the 36cell model. 

On the other hand, for property damage acci- 
dents, doubles actually show significantly lower rates 
than singles in some circumstances. The interaction 
term for double-“other” roads in the PDO model is 
- .4497. The interaction term for doubles on major 
arteries is also negative, though small and not statis 
tically significant. Doubles also do better at night, 
with an interaction term of -0.5 114. The predicted 
and observed PDO rates in Table 10 show that dou- 
bles have lower rates than singles in every “other” 
road cell. This does not imply that doubles are safer 
than singles on all road types. The good showing of 
doubles off limited access roads for property damage 
accidents is probably because, given an accident, dou- 

bles have a somewhat higher probability of producing 
a casualty. But the data presented here are not consis- 
tent with large differences in the relative risk of singles 
and doubles. 

The tractor configuration for which there are 
substantial differences in relative risk is the bobtail. 
The main effect for bobtails is among the largest co- 
efficients in the models, almost as large as the coeffi- 
cient for “other” roads. Bobtails appeared in some in- 
teraction terms that mitigated their high relative risk 
in some situations, but tractors operating without a 
trailer had much higher accident rates than singles or 
doubles in every cell of the data matrix. In terms of 
the absolute number of bobtail accidents, bobtails are 
less of a problem than singles or doubles. There were 
74 bobtail casualty accidents in the study data file, 
144 doubles, and 1,153 singles. But, clearly bobtails 
are a much less safe configuration than singles or dou- 
bles. There is much more room for safety improve- 
ment in terms of reducing bobtail rates to bring them 
into line with the rates for singles and doubles. 

While the sin~e/doubles question has generated 
the most interest, operating environment is much 
more important than vehicle configuration in deter- 
mining the relative risk of an accident (except for 
bobtails where it is comparable in magnitude). 
Among the en~ronmental variables that could be in- 
corporated into the models, road type had the largest 
impact. The safest roads in the highway system are 
limited access roads. Compared with limited access 
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roads, other classes of roads present much higher op- 
erating risks for truck-tractors. For example, in the 
casualty model, the main effect of major artery roads 
is to increase the risk by about a factor of two, while 
the risk on “other” roads is almost seven times as 
high. These are substantial effects, far greater than the 
singles-doubles difference. 

The effect of the different types of road is not the 
same in all operating environments. Urban areas tend 
to lower the risk on “other” roads. This may be be- 
cause operating speeds are lower on urban “other” 
roads than on rural ones. On the other hand, night 
tends to raise the risk on “other” roads, beyond the 
risk that night has overall. For casualty accidents, this 
interaction has about the same magnitude as the 
“other’‘-urban interaction, but it is in the opposite di- 
rection. Thus, in urban areas at night, the higher risk 
of night on “other”roads is canceled out by the lower 
risk of urban areas on “other” roads, leaving just the 
main effect of night. The explanation could be that 
urban roadways are typically lighted at night. The 
higher risk of “other” roads at night is manifested pri- 
marily in rural areas, where operating speeds are 
higher and where the roadway is typically not lighted. 

Area type is also significant in the accident risk 
model. Urban areas have lower rates than rural areas. 
The effect is large and significant, for both casualty 
and PDO accidents. Urban areas have higher traffic 
densities, but they also have generally lower operating 
speeds. These two factors pull in opposite directions 
and express themselves in complex ways. Lower 
speeds doubtless contribute to a lower probability of 
injury or death, given an accident. The lower speeds 
also may contribute to fewer accidents overall. In the 
casualty accident model, the main effect of the urban 
factor is to lower the accident risk by about 60%. The 
effect is not uniform, however-the “other” road- 
urban interaction term is also strongly negative, in- 
dicating that the risk of “other” roads is much higher 
in rural areas, where speeds are higher, than in urban. 

With regard to PDO accidents, traffic density 
seems to play a greater role in the accident rate. Op- 
erating speeds on urban roads are lower than on rural 
ones, which should lower the accident rate, but traffic 
densities are higher, which has the opposite effect. 
The net result is that while urban areas tend to reduce 
the risk relative to rural areas, the effect is not as 
strong as in the casualty accident models. The 
“other” road-urban interaction is still negative but 
also iess strong, and the major-urban interaction is 
strongly and significantly positive. The association 
between increased risk of PDO accidents and traffic 
density probably explains these results. The interpre- 
tation is strengthened by the fact that the coefficient 

for night, when densities are lower, is small and not 
statistically significant. 

The influence of time differs between casualty 
accidents and property damage accidents. In casualty 
accidents, night is associated with a large increase in 
the relative risk. Clearly, it is not night itself that 
“causes” accidents, but factors associated with night. 
For example, the likelihood of driver fatigue is higher 
at night, the propo~ion of dunking drivers is higher, 
and the ability to see and react to hazards in unlighted 
areas is reduced. The result of these and other factors 
associated with night is to increase substantially the 
relative risk of accident involvement. The main effect 
of night increases the risk of casualty accidents by 
about 45% compared to day. On lower-quality roads, 
the combination of the factors associated with night 
and the more restrictive geometry of “other” roads 
results in much higher rates, beyond the separate ef- 
fects of night and the “other” road type. That is, the 
interaction term for the “other” roads-night combi- 
nation is positive and substantial, amounting to an 
additional 85% increase in risk beyond the effects of 
night and “other” roads alone. 

For property damage accidents, the main effect 
of night is small and not statistically significant. Traf- 
fic densities are lower at night, which may account for 
the weak effect of night. There are some interesting 
interactions, however. The “other” roads-night inter- 
action is large and positive, while the night-urban in- 
teraction is large and negative. This indicates that 
PDO rates at night on “other” roads in rural areas are 
substantially higher than in urban areas, which are 
generally lighted. “Other” roads in rural areas are typ- 
ically not lighted which, along with the lower quality 
of “other” roads, results in substantially increased ac- 
cident risk despite the lower traffic density. In urban 
areas, PDO rates for singles on other roads are about 
the same at night as they are during the day. 

CONCLUSION 

Overall, operating environment is much more 
important in determining the risk of accident in- 
volvement than vehicle ~on~guration, except for 
bobtails. For singles and doubles, road type, area 
type, and time of day have much more impact on the 
probability of an accident than whether the vehicle is 
a single or double. Many questions remain, of course. 
The categories for singles and doubles combine dis- 
tinct populations of trucks. Among doubles, a sub- 
stantial fraction of the population consists of opera- 
tions by the large interstate LTL freight haulers using 
twin 28-foot van trailers. Another segment of the 
doubles population comprises intrastate operations, 
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such as the doubles used by agriculture in California, 
logging doubles in the Northwest, and the heavy dou- 
bles that operate in Michigan. This latter population 
probably has a quite different accident experience 
from long haul van doubles. Clearly distinguishing 
the two groups would help clarify the issue. Similarly, 
the influence of size, weight, cargo body type, and 
many other factors would heip narrow the focus to 
areas where a signi~ca~t con~bution to improving 
safety could occur. 

Data remain a problem, The level of analysis of- 
fered here could not have been undertaken without 
special data collection. There are no existing, publicly 
available sources of truck accident and exposure data, 
other than the travel and fatal accident files main- 
tained by UMTRI, that permit the calculation of ac- 
cident rates at the level of cargo body style and gross 
vehicle weight. Nor will any such files be available in 
the foreseeable future. The program outlined by the 
Transportation Research Board offers hope of incre- 
mental improvement, though exposure data will 
apparently remain inadequate. The National Gover- 
nor’s Association-encouraged truck accident supple- 
mental data form is a step in the right direction. In the 
meantime, data inadequacies are a substantial im- 
pediment to understanding the truck safety problem. 
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