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In this paper, we study the existence and resonant interaction of oscillatory
wave trains in one space dimension, giving a rigorous proof of the validity of the
corresponding expansions of weakly nonlinear optics. We consider both semilinear
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of the study are the following.

(1) We prove the existence of families of exact solutions which have
asymptotic expansions governed by weakly nonlinear optics. Equations with
variable coefficients, nonconstant background fields and nonlinear phases are
permitted. Our weak transversality hypotheses allow us to justify expansions where
even a formal theory did not exist before.

(2) We make a detailed study of resonances. The geometry associated with
such resonances is related to the theory of planar webs.

(3) We study the smoothness of the profiles. Their regularity is ruled by
a sum law analogous to that describing the propagation of singularities in one
dimension.

(4) The expansions are justified up to the breakdown of the profiles which
coincides with a suitably defined breakdown for exact solutions.
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1. INTRODUCTION

The aim of this paper is to give a rigorous description of solutions to 1-d
nonlinear hyperbolic equations with highly oscillatory initial data. The
results are analogues of the expansions of linear geometric optics. If the
initial data oscillate with phase ¢°(x) then the solution takes the form

Z Uk(t’ X, (Pk(ts X)/E),
k=1

where the U,(t, x, 8,) are periodic in 6, and the @,(¢, x) are solutions of
the eikonal equation with initial data ¢°(x). The form of the amplitudes or
profiles U, reveals two distinct nonlinear effects. The periodicity takes into
account generation of harmonics but, more interestingly, profiles contain
information about resonant interaction between the different wave trains. It
is precisely to study such nonlinear effects that the expansions of weakly
nonlinear geometrics were developed and it is our goal to put a class of
these multiphase expansions on a solid mathematical footing. We consider
both semilinear and quasilinear systems, the latter before shock formation.
Some important features of the study are the following.

(1) We show that there are families u, of exact solutions which have
asymptotic expansions of the form

N
u(t, x)=3 Uglt, x, @x(t, x)/e) + o(1)
k=1
in the semilinear case and

N
udt, x)=uglt, x)+¢ Y. Uplt, x, @.(t, x)/e) + o(¢)
k=1

in the quasilinear case. The profiles U,(¢, x, -) are almost periodic. Of
particular interest is that equations with variable coefficients, nonconstant
background fields (¢, x), and nonlinear phases are permitted because the
transversality or coherence hypotheses which we impose are very weak.
The coherence assumption of J. Hunter, A. Majda, and R. Rosales [HMR ]
hold only for problems which, after a change of dependent variables, have
constant coefficients and linear phases. With out weak hypotheses we
rigorously justify expansions where even a formal theory did not exist
before.

(2) The integrodifferential equations determining the profiles U,
involve averaging operators determined by the resonance relations which
exist between the phases. The geometry associated with such resonances is
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related to the theory of planar webs, that is of pairwise transverse families
of foliations by curves in the plane. The notion of equivalence natural for
the study of resonance is weaker than that of equivalence of webs under
difftfomorphisms. An upper bound, proved by Poincar¢ [P], on the
maximal dimension of the space of all resonances is extended from the C
to the C™ category with an independent proof.

(3) The smoothness of the profiles varies from point to point and is
different for different groups of the fast variables. This regularity measures
the rate of decay of the Fourier coefficients and thereby the manner that
energy is distributed among the overtones. This regularity is ruled by a sum
law analogous to that describing the propagation of singularities in one
dimension.

(4) The expansions are justified up to the breakdown of the profiles
which coincides with a suitably defined breakdown for exact solutions. As
a consequence, the examples of R. Pego [Pe] show rigorously that shock
formation can be indefinitely postponed by resonant interaction.

There is a rich literature devoted to the construction and application of
weakly nonlinear asymptotic expansions of the type we discuss. Most of
that literature is restricted to constant background states and phase func-
tions which are linear. See the articles of J. Hunter, J. Keller, A. Majda,
R. Rosales, and Kalyakin [HK, MR, HMR, Kal] for recent results.

The first rigorous justifications that we know of are due to L. Tartar
[T1, T2] and concern semilinear equations from the kinetic theory of
gases. These results inspired J-L. Joly [J] who treated general semilinear
constant coefficients hyperbolic systems with linear phases and introduced
the technique of simultaneous Picard iteration which we adopt. In this
method, the Picard iterates u) converging to the solution u, and the iterates
U' converging to the solution of the profile equations are considered
simultaneously. One estimates (1, x) — U1, x, ¢{1, x)/¢) for each v and
0<e< 1. This is different from the standard method of finding enough
terms in an asymptotic expansion so that the residual is very small and
then appealing to continuity results with respect to data. The occurrence of
small divisor problems suggests that the latter approach is not promising
in the present setting.

Further rigorous results for semilinear problems with linear phases are
found in [Ho, McLPT]. Similar linear phases results including quasilinear
problems have been the object of much study in the former USSR, see
[Kal]. For nonconstant background and nonlinear phases there has been
no rigorous justification. The essential difficulty here is the occurrence of
oscillatory integrals with phases which may be stationary on small but
otherwise very complicated sets. An infinite number of such estimates may
occur in the justification of a single expansion.



RESONANT GEOMETRIC OPTICS 109

Finally we mention the important work of R. Diperna and A. Majda
[DM7] which contains the only rigorous results valid beyond the forma-
tion of shocks. They discuss two different sorts of weakly nonlinear expan-
sions: those which correspond to rapid oscillations and those which
correspond to bump of height and width of order & Morecover, the
oscillatory results are restricted to 2 x2 systems where resonance is not
possible. The study of the validity of oscillatory weakly nonlinear optics
beyond shock formation remain an outstanding open problem.

For multidimensional problems with just one phase, nonresonant formal
expansions were constructed by Choquet—Bruhat [CB] and justified by
J.-L. Joly and J. Rauch [JR3, JR4] and O. Gues [G].

1.1. Statement of the Problem

Let (1, x) denote the variable in R? and consider a first order system of
N equations

Cu+ At x, u) 6 .u=>5b(t, x, u) (1.1.1})

for u(¢, x) which takes its values in RY; 4 and b are smooth functions of
(¢, x, u). As usual, the system (1.1) is called semilinear if 4 does not depend
on u,

We assume strict hyperbolicity on R? with ¢ as time, that is that all the
eigenvalues of A(¢, x, u) are real and simple. We denote them A,(1, x, u) <

-+ < An(t, x, u) and they depend smoothly on (¢, x, u)e R* x R",

In this paper we first consider the Cauchy problem

ul_o=h, (1.1.2)

with families of Cauchy data of the form
h(x)= H(x, °(x)/e) + o(1) (1.1.3)

in the semilinear case, and

h,(x) = ho(x) + eH(x, °(x)/e) + o(e) (1L.1.4)
in the quasilinear case. The precise meaning of the o(1) and o(¢) will be
given later on, but one may think of them as taken in L™. The profile
H(x, 8°) is a given function on R x @ almost periodic in 0°, @° being

some finite dimensional real space. The phase ¢" is a smooth function on
R valued in ©°,
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Our goal is to prove that the exact solution u, of (1.1.1) (1.1.2) exists on
a domain independant of ¢ and has the form

ut, x)=Y Ut x, @.(t, x)/e) +o(1) (1.1.5)

k=1
in the semilinear case, and

N

u(t, xy=uo(t, x)+¢& Y Uglt, x, 9,1, x)/e) + o(e) (1.1.6)

k=1

in the quasilinear case, where u,(¢, x) is a smooth solution to (1.1.1), with
ho(x) as initial data at r=0.

Another problem we want to look at is as follows. Suppose that u, is a
family of exact solutions of (1.1.1) in the past {r <0}, of the form (1.1.5)
or (1.1.6). Then we want to extend u, as a solution of (1.1.1) to positive
times, on a domain independent of ¢, so that (1.1.5) or (1.1.6) is still valid.
For instance, this covers the case where u, is in the past the superposition
of two wave trains, U, + U, with disjoint supports that meet at times 1 =0,
and in the future u, will be the superposition of U,, U, and of all the other
waves produced by interaction, called here resonances.

The profiles U,(¢, x, ) are defined for 8, running in some finite dimen-
sional space @,, and the @, are suitable “phase” functions valued in @,.
We will find that U= (U,) must solve an integrodifferential system (see
[T1, T2, McLPT, MR, HMR, J, Ho]).

Beside existence properties for the Cauchy problem or continuation results,
we also study some qualitative properties of nonlinear oscillating waves:

(1) Propagation of the smoothness in the @-variables, smoothness
which is related to the decay of the Fourier coefficients for high frequencies.
We show in Section 8 that the strength of the new oscillations created by
interaction is ruled by a sum law. This phenomenon, though analogous to
its well-known parallel for singularities [RR ], is actually different and relies
on smoothing properties of the averaging operators (Sections 1.5 and 4.2).

(2) Life span of solutions. We will show in Section 7 that the life
span of the profiles is equal to a suitably defined life span of the family u,
which takes some uniform boundedness into account and is of course in
general different from the individual life span of each u,. This equality of
the life spans amounts to saying that the approximate solution contains
information about blow-up.

(3) The former property relies on an L™ estimate for the restriction
of almost-periodic functions on some cones. This as a by product provides
the uniqueness of the profile associated to oscillating solutions by
{1.1.3)-(1.1.6).
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Remark 1.1. Instead of considering oscillating Cauchy data, one could
create the oscillations by inserting an oscillating source term in the right hand
side of (1.1.1). For example, one could replace b(z, x, u) by b(1, x, c,, u),
where ¢, is a given control of the form (1.1.5) or (1.1.6). Moreover, one
could also allow oscillations in the coefficients of the left hand side and
consider a matrix 4 of the form A(t, x, c,, u) with ¢, of the form (1.1.6),
even in the semilinear case. The proofs given below in Sections 5 and 6
would cover these extensions.

1.2. An Example

Next, we would like to explain briefly what resonances are. Consider the
following example already used by J. Rauch-M. Reed [RR] in their study
of the singularities of semilinear waves,

X|u1=0
X2u2=0 (1.2.1)
Xyus=u,uy,

where X, X,, X; denote three vector ficlds on R? such that the associated
operator is strictly hyperbolic, the first coordinate ¢ of R? being timelike.
Suppose that u, and u, define two regular incoming oscillating waves

us(t, x)=a,(t, x) eV k=1,2ande>0 (1.2.2)

such that the amplitudes a, are supported in characteristic tubes 7', of X,
which do not intersect in the past 1 <0 and cross each other on a compact
set K that lies in the future {#>0}.

The third wave, which we assume to vanish in the past, can be explicitely
computed, using the third equation. It is supported on the forward
characteristic tube I (K) issued from K and is given by the oscillatory
integral

ul =X '(a,a,e" 0 o) (1.2.3)

the symbol X ;' meaning integration along the characteristics of X;. The
behaviour of 5 depends on the size of the set of critical points of the phase
function ¢, + @,

C:={(t,x)eR* X3(p, + 9,) =0}

in a neighbourhood of K. If C is small (the precise meaning of small will
be defined later on) then

us=o(1), e—=0

580/114:1-8
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in some L” space. In that case, the two incoming oscillations with phases
¢, and @, do not interact. They just cross each other as in the linear case.
On the other hand, if C is a neighbourhood of X, then on I' } (K)

_ pilo1+eyey —1
uy=e" ey “a, a,)

describes a new oscillation created by the nonlinear interaction of the two
incoming waves: this is resonance.

Consider next a more general interaction #(u,, u,) in the right hand side
of the third equation of (1.2.1). Approximating » by polynomials suggests
that one investigates not only ¢, + ¢, but also the set of phases ne, + me,,
neZ, me Z. Moreover, if a resonance exists, that is if ¢, =ny0, + mye, is
solution to X;¢,; =0, then in general u; will not remain a pure exponential
of ip,/e. It will also contain all the harmonics so that u; will appear as a
periodic function of ¢,/e.

Consider now the case where u; does not vanish in the past, but also
oscillates with its own phase ¢, which satisfies X;¢9;=0. Then one can
imagine several possibilities.

(1) There are no resonances and nothing happens.

(2) There is a resonance of the form ny@, + my@, = a¢; with a¢ Q.
Then u, becomes quasi-periodic, with the two Q-independent phases ¢,
and ap,.

(3) There is a resonance of the form ny@,+mep,=¢} with
X307 =0, while 97 and ¢, are linearly independent. Then u, oscillates
with the two phases ¢ and ¢;.

(4) There i1s a resonance of the form nyp,+mye,= @5+ c with
ce R\{0}. Then u, oscillates with the two phases ¢, and ¢;+c.

These remarks are important to understand the setting of the problem
that we will adopt below. Because of the nonlinearity, profiles do not
remain pure exponentials and we must consider periodic functions of ¢, /e.
Moreover, because of (2), it is natural to enlarge the class of profiles
Uit, x, (2, x)/e) to quasi, and even to almost-periodic functions of
@4(t, x)/e. In its turn (suppose, for instance, in the example above, that u,
is an almost-periodic function of ¢, /¢ for k=1, 2) this extension leads us
to investigate the resonances among all the linear combinations a, ¢, +
o,¢, wih o, € R, and to introduce the spaces @, generated by the ¢,. Now,
because of remark (3), it is natural to allow vector valued @, say in some
finite dimensional space @,, or equivalently to consider finite dimensional
spaces @, of phases associated to each mode X,. Note that these spaces are
in duality by the mapping

neOF >s5,€PD, with  s,(¢, x) = <{a, @.(¢, X)Derxe- (1.24)
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Finally condition (4) forces us to allow phase displacements. This will be
taken into account by considering profiles U, that are functions of
(1, x,0,)eR?*x O, and of an extra variable called 7. The substitution in
(1.1.5) or (1.1.6) is

U, x, @.(2, X)/z, 1/¢). (12.5)

Equivalently, one can view (1.2.5) as the introduction of the extra phase
@o=1.

1.3. Conditions on the Phases

Before stating precise results in the next section, consider a general
system (1.1.1) and let us make a few comments on the conditions that must
be imposed upon the set of phases (g,). This will serve as an introduction
to the somewhat abstract presentation given in the beginning of Section 2.
First, recall that in expansions like (1.1.5) or (1.1.6), the phases ¢, are
solutions of the eikonal equation for the linearized operator

Lo=0,+ A1, x) 0., (1.3.1)

where Aq(¢, x) = A(1, x, ug(t, x)).

Let A, (1, x)=A.(t, x, ug(t, x)) denote the eigenvalues of Ay(z, x).
Because of the strict hyperbolicity, a function s satisfies the eikonal
equation for L,

det{(8,5)Id + (&,5) Ag(t, x)} =0 (1.3.2)
if and only if
X s=0,5+ Ago(t, x)0,5=0 (1.3.2),

for some | <k <N.

The function ¢, that will enter in (1.1.5), (1.1.6), or in (1.2.5) is a solu-
tion to (1.3.2), valued in some finite dimensional space @,. With (1.2.4),
this is equivalent to the data of finite dimensional spaces @, of R-valued
solutions of (1.3.2),.

As explained in the example above, nonlinear interaction, for instance, in
the right hand side of (1.1.1), immediately yields terms of the form
B(t, x, @(t, x)/¢), where

O, X)= {01, )} i chan (1.33)

is valued in ®=6,x -.- xO@, and B is almost-periodic in the variables
8=(0,, .. 0y). Expanding B in a series of exponentials, a typical problem
(see (1.2.3)) 1s to solve equations like
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X, u(t, x)=alt, x) e (1.3.4)

with, for instance, u|,_,=0, and phases s of the form
s(t, x) = 5,(8, x) = {2, @1, X) > = (o, (1, X)), (1.3.5)

where a = (o), ., ay)EOF X - x O F.
It is well known that the magnitude of the solution depends on whether
s 1s a phase for X,, or not. If it is, that is if

X.s(t, x)=0 (1.3.6)

then the solution of (1.3.4) looks like wu,(z, x)=ad(t, x, £) e***"* with a
symbol @=0(1). In that case, the conclusion is that the phase s must
appear in the principal term of (1.1.5) or (1.1.6) so we are led to require
the following condition, which is called closedness in [HMR],

for any s of the form (1.3.5), the condition
X,s(A)=0 implies that s belongs to &,, up to a
constant. (1.3.7)

On the other hand, if
Xs#0 almost everywhere, (1.3.8)

then the solution of (1.3.4) is o(1), say in L? (in x) for all p< oo (see
Section 4 below). If (1.3.8) is strengthened in

Xis#0 almost everywhere on each integral curve of X, (1.3.9)

then the solution of (1.3.4) is o(1) in L™. When everything is real analytic,
then (1.3.6) and (1.3.8) are the only two possibilities. Otherwise, there is
still a small gap and we will assume that for each « € @*, either (1.3.6) or
(1.3.8) [resp. (1.3.9)] 1s valid. This will be called the weak [resp. strong]
transversality condition. Note that this assumption is much weaker than the
coherence assumption of [HMR7], which implies that either X,s=0, or
X, s #0 everywhere. Examples of phase spaces, natural in the context of
resonance, that satisfy either weak or strong condition are given in
Section 3.

Remark 1.2. The magnitude in ¢ of the solution of (1.15) depends
strongly on the order of vanishing of X, s on the characteristics of X,. If
X5 #0 everywhere, then the solution is O(e) (indeed it is of the form
ga(t, x, e) e*"*¥*), If X, s vanishes at the first order transversally on each
characteristic, then, by the standard stationary phase theorem, the solution
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is 0(\/;). In fact, it is not difficult in the example (1.2.1) to produce for
any p, interactions u; that are of order ¢!”?. Moreover, one has to keep in
mind that the parameter a varies in a large set (the almost-periodic spec-
trum of the function B) so that this behaviour as ¢ tends to 0, also
depends on « and there is a problem of summability in «. The conclusion
is that, unless strong assumptions are added, there will be no theory of
“the second [resp. third ] term “in an expansion like (1.1.5) [resp. (1.1.6)].
See [JMR].

1.4. Existence of Resonances

In our setting, in particular under the closedness assumption (1.3.7),
resonances occur when there are functions s,e @, such that 3 s, =
constant. More generally, given vector fields X,, one can ask whether
there exist R-valued functions s, in C*() (modulo the constants) such
that

X.5,=0 for k=1,., N and Y s, =constant, (1.4.1)

in some open set 2 — R This question, which is related to the theory of
webs in differential geometry, will be investigated in Section 3. In par-
ticular, let us mention that the space S(2) < {C*(Q)} of all the solutions
s=(s,, .., sy} of (1.4.1) has a finite dimension. Indeed, for “generic” vector
fields X,, this space is {0}. The conclusion is that, in order to have
resonances, first the vectors fields X, must be suitably chosen and second,
the phases are also to be chosen carefully. The most famous resonance
condition concerns triplets of vector fields or rather the foliations
associated to their integral curves and is called the hexagonal closure
property. See Fig. 1.

When the space @ =&, x --- x P, is specified, the resonances that will
enter in our problem are associated to the space @ n S(£2).

In Section 3.4, we will have a special interest in the existence of resonan-
ces for systems of conservation laws. If the unperturbed state u, is constant,
then the linearized operator L, has constant coefficients, as well as the
vector fields X .. In that case it is well known that resonances do occur with
linear phases x — 4, of, but we will also point out that other resonances
appear with polynomial phases. We will study the case where u, is a simple
wave, and special attention will be paid to Euler’s system of gas dynamics.
In this case, we will show that if u, is a simple wave associated to the
linearly degenerate eigenvalue there are always resonances (i.e., nontrivial
solutions to (1.4.1)), which form a space of dimension 1. On the other
hand, if u, is associated to one of the two genuinely nonlinear eigenvalues,
then no resonances can occur, except if u, is centered.
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Fig. 1. The hexagonal closure property.

1.5. The Averaging Operators

We next describe briefly the averaging operators that enter in the
integro-differential equations which determine the profile U,. For sim-
plicity we assume here that for all k&, @, =R, and that there are no phase
displacement, i.e., that

for any s=s, of the form (1.3.5), the condition
X.5,=0 implies that 5, e @, {1.5.1)

Note that this condition is stronger than (1.3.7), but in practice it is often
satisfied (see Section 2), and indeed the closedness condition is stated that
way in [HMR].

As above we call ¢, the @ -valued solution of (1.3.2),, which is now a
basis of @,. The analysis above (together with (1.5.1) leads us to introduce
the space of resonances that is the set of those s=(s,,..,sy)edP=
&, x --- xP, such that s, + --- +5,=0, or equivalently the space

N
R={aeRN; y ocJ.(ijO}. (1.5.2)

j=1
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R describes the linear relations among the ¢, and it is clear that the
function ¢, as defined in (1.3.3), takes its values in the space

Y=R'={0eR",VaeR, {a,0)=0}. (1.5.3)

Therefore, it is natural when considering functions of the form B(¢(t, x)/¢),
to think of B as a function defined on ¥.

For x e R, take B(f) =e“*?> and consider again Eq. (1.3.4). Then, with
Definition (1.5.2) and condition (1.5.1), we see that X, s, =0, if and only if
xe R®P,, where 5k = {xe R", a;=0 for all J#k}. Therefore, assuming
tranversality as in the discussion sketched above, we see that the solution
u of (1.3.4) only depends, up to o(1) terms, on the quantity

0 if a¢ ROD,

Ek(ei(a.f?))z{ei<u‘g> if 2cR®,. (1.54)

To solve (1.3.4) with a general almost periodic function B(¢(t, x)/¢) in the
right hand side, we expand B(f) in a series of exponentials, and the solu-
tion depends only, up to o(1) terms, on E (B), where E, is the natural
extension of (1.5.4) to almost periodic functions on ¥. This extension is
defined as follows. Let

W, ={0=(0,,.,0y)eW;0, =0} . (1.5.5)

Then the operator E,, which extends (1.5.4), is the projection mapping
on the set of functions which are invariant by translations parallel to
¥ . This operator is obtained by just averaging in the directions parallel to
¥y

(E(B)}0)= lim T"'f BO+y) dy, (1.5.6)
T—- +x TQ

where ¢ is the dimension of ¥, &) a Lebesgue measure on ¥, and Q a
cube in ¥, of measure one. In fact, {E,(B)}(8) is clearly invariant under
translations parallel to ¥,, and, as we shall show in the next section,
{E,(B)}(8) only depends on the variable 8, (see, for instance, (1.5.4) and
remember that 6 e ¥).

Finally, we shall see in Section 5 that the solution u, of

Xeu, = B(o(1, x)fe),  u,,_,=0 (1.5.7)

s u(t, x)=Ult, x, 0,(t, x)/e)+o(l), where U(s, x,60,) is the almost-
periodic solution of

X U=0,U+ Ay o8 U=E(B), Uj,_o=0. (1.5.8)
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This is the key point in the understanding of the problem, even if the things
are technically complicated in the quasilinear case. With formulas like
(1.5.8), it is clear why the averaging operators E, are present in the integro-
differential equations that determine the profiles. We shall make a more
detailed study of these operators in Sections 2 and 4, and in particular we
will make them more explicit in the case of a quadratic interaction which
is the only one which shows up in the quasilinear case. With this approach
we will of course recover the same equations as in [HMR] by quite
different considerations. Another way of introducing averaging operators
and equations for the profiles which is formal but more in the spirit of
geometric optics may be found in [JMR].

2. MaIN RESULTS

2.1. Notations

Consider a strictly hyperbolic system (1.1.1). In the quasilinear case, u,
is assumed to be a solution of (1.1.1). We assume that the coefficients and
u, are defined and smooth on an open set ¢’ = R?, whose intersection with
the x-axis is an interval /. As in Section 1.3, L,:=38,+ Ay(¢, x) 0, is the
linearized operator (1.3.1) and 4, (¢, x) := A,(2, x, uy(z, x)) are the eigen-
values of 4,(¢, x) := A(t, x, uy(t, x)). We assume strict hyperbolicity, that is

V{6, x)e O A, o(t, x) <Ay oty x)< - <Ayl X) (2.1.1)
As in (1.3.2),, introduce the propagation fields
X =0, + A o(t, x) 0. (2.1.2)

Their integral curves play a fundamental role. Denote by ¢ — ' (#; 1, y) :=
(¢, ye(; ¢, ¥)) the integral curve of X, passing through the point (¢, y). To
begin with, fix a possibly small interval [y_,y,]<7 and T,>0 so that
the characteristic curves ¢— I, (t;0,y) are defined for te [0, T,] and
yely_,y,] and remain in ¢. Choose T, sufficiently small, so that
7m(T050, ) <9,(To; 0,y ). Let

Qo={((t, x)eR*/O<I< Ty, yp(1;0,y ) <x<y,(0,p, )} (21.3)
Then 2, is contained in the domain of determinacy of [y _, y, ], that is

For any point (1, x)e 2,, and any ke {1, .., N}, the
backward characteristic ¢’ — I,(t'; 1, x) is defined for
t'€[0, ] and remains in Q,. In particular it inter-
sects the line {¢#'=0} at some point ye[y_,y,] (2.1.4)



RESONANT GEOMETRIC OPTICS 119

Forward characteristics may leave £, through its sides so, for
ve[y_,y. ], the characteristic curve ¢ — I',(t; 0, y) remains in Q, for 7 in
a maximal interval [0, T,.(y)] <= [0, T, ]

In contrast to being a solution of X,s=0, we say that a function
se CY () is transverse to X, [resp. weakly transverse] when

Vyely_ vyl Xis(, (50, ¥))#0  ae. on[0, Ty (y)] (2.1.5)
[resp. when
X.s(t, x)#0 ae onf£,]. (2.1.6)

Choose smooth dual bases r, (1, x, u) [resp. 41, x, u)] of right [resp. left]
eigenvectors of A(t, x, u), normalized by the condition

bore=064 (2.1.7)
Let rk.O(ts‘x) = rk(ta X, uo([, X)) [resp. (k.O(t’ x) = /)c(t’ X, uO(r9 .\'))].

2.2. Resonances

As explained in Section 1, the existence of resonances is a phenomenon
associated to the system of vector fields X,. The map taking ce R to the
constant function on Q, with value ¢ maps R into C*(Q,). Denote by
C*(2,)/R the space of functions on , modulo the constants.

DerFiNITION 2.2.1. A resonance for the system of vector fields X,,
k=1, .., Nis an N-tuple §=(§,, .., §y) € {C*(2,)/R}" such that

Vke {1, ., N}: X 5.,=0 on 2, (22.1)

and
Z d§k=0 on Qo. (2.2.2)

The set of all resonances on £, is denoted S(Q,). The support of a
resonance § is the set of indices k€ {1, .., N} such that §, # 0. The number
of elements in the support of a nontrivial resonance is called the order of
the resonance. A resonance § with support contained in J< {1, .., N}, is
called a J-resonance.

Section 3 is devoted to a detailed study of the space S(£2,). An
immediate consequence of the independence of the vector fields X is that
X; and X, for i # j, have no common solutions, except the constants. Thus
we have
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LeMMA 2.2.2. The order of a nontrivial resonance is at least 3.

2.3. Conditions on the Phases

As indicated in Section 1, for each k=1,.., N, we consider a finite
dimensional vector space @, = C*(Q,) of solutions to (1.3.2),

Vsed,: X, 5=0 on . (2.3.1)

Because constant phases do not create oscillations, we eliminate from @,
the nonzero constant solutions. Keeping in mind that we act locally, we
will assume that

Vse®,,sZ0=ds(t, x) #0 ae. in £,. (2.3.2)

Define & to be the cartesian product @, x --- x @, and &, the subspace

{0}~ "xd, x {0}¥"* <= d. We use two different notations because it is

important to distinguish between the @,’s as subspaces of C*(£;) which

may have a nondirect sum, and the &,’s whose direct sum is the space .
Then the closedness property is

If (5),82, .. sx)€®P, ke{l,.,N} and X, (T s5,)=0
on £, then the function s := 3 s, belongs to ®, ® R. (%)

When the phase displacements of (4) in Section 1.2 do not occur, this
condition can be strengthened to the restricted closedness property which is

If (51,585, ..., Sy)e®, ke {l,.., N} and X (3 s;)=0
on £, then, the function s:=3s; belongs to @,. (r—%)

As indicated in the introduction, this condition is supplemented by trans-
versality requirements

For any {s,} € ® and for any k€ {1, .., N} the condi-
tion X, > 5,20 on &, implies that the function
§=7 s, is transverse to X, ie., satisfies (2.1.5). (9)

Replacing (2.1.5) by (2.1.6) leads to the weak transversality condition
(w—9)

Note that condition (2.3.2) implies that s,€ @; is transverse to X, when
Jj# k. Indeed, because X;5;,=0, and because X, and X, are transverse to
each other, if X, 5,=0 at some point pe 2, then ds;=0 at p. Commuting
0. and X; we see that d.5,=0 and hence ds;=0 all along I;(p), the jth
characteristic passing through p. If X,s; vanished on a set £ of positive
measure on a kth characteristic, that would imply that ds;=0 on I;(E)
which has positive measure in R’
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In the quasilinear case, only quadratic interactions occur (and this is also
the case in semilinear problems with quadratic F.) We are naturally led to
the following conditions of closure under quadratic interaction.

If (ijk)e{l,.,N}’, sed, s"ed, and
X (s+5")=0then s'+s"e P, PR, (¢q)

Analogously, the condition of restricted closure under quadratic inter-
actions is.

If (j.k)e{l,.,N}’, sed, s'ed, and

Xi(s"+5")=0 then s'+s" € @,. (r—%q)
Similarly, we have transversality under quadratic interaction.

If (jke{l,.,N}’, sed, s'e®, and
X,(s'+5")#0 then s’ + 5" satisfies (2.1.5). (T q)

Similarly, weak transversality condition under guadratic interaction, (w-7 q),
is defined, with (2.1.6) in place of (2.1.5).

Remark 2.3.1. The coherence assumption of [MR, HMR] requires
that either X,s=0, or X, s(t, x)#0 everywhere on Q,. This is what
happens when the X,’s are constant and the phases linear in (7, x). This
coherence is much stronger than the transversality requirements above. In
fact coherence implies that for all £, dim ¢, <1 and if more than one &,
is nontrivial, then there exists a change of the independent variables such
that, in the new variables, the X,’s are constant and the phases linear in
(1, x). To show this, first note that, from (%) and coherence, follows that
sey &, either is a constant or satisfies ds # 0 everywhere. A first conse-
quence of this observation is that dim ¢, <1 since any two functions in &,
have colinear differentials. A second consequence is that dim(} &, /R) <2
since above each (¢, x) the differentials of three functions span a two
dimensional vector space. Assume now that, for instance, dim @, =
dim @,=1 and choose s,e®,, i=1,2, as new coordinates, which is
possible since, ds; never vanishes. From the second consequence, any
nontrivial @, is spanned, up to a constant, by a linear function of the new
variables. It follows that X, can be normalized so that it becomes a linear
combination of &, and ¢,, which completes the proof of the assertion.

Remark 2.3.2. Assuming the coefficients A(#, x, u), the unperturbed
solution u,, and the phases in @; are real analytic, the weak transversality
conditions are always satisfied.

Remark 2.3.3. Some of the spaces @, may reduce to {0}, which means
that in the expansions (1.1.5) or (1.1.6) there will be no waves propagating
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at the corresponding speed. Nevertheless, condition (%) and (7 ) (or
(r—%), (w—7)---) must be checked for all ke {1, .., N}.

Remark 2.3.4. Suppose that &* is a finite dimensional subspace of
C™(£2,), and take @&, to be the set of the se @* such that X,s=0. Then
the (r—%) condition is satisfied. Indeed, if s,e ®=®*, then the sum
s=3 s, belongs to @* and, by definition, the condition X,s=0 implies
that se @,.

2.4. Spaces for the Fast Variables

Let @, denote the dual space of &, and let ¢, € C “(£2,; @,) be defined
by

LxeQ,, sed,— @t x),s) =s(t x). (24.1)

Then, ¢, i1s a @, -valued solution of (1.3.2),. We also introduce the dual
space @ of @, which we identify with @, x --- x @,. We then have the
©-valued mapping ¢ = (@, ..., ).

The space of resonances in @, denoted S,, is the set of those
s=(5,,..,5y)€® such that s, + --- +5, is constant on ,. If we call
o — ¢ the mapping from C™(£,) onto C*(2,)/R, and s — § the corre-
sponding map from {C™(2,)}" onto {C " (2,)/R}", then S, is the space
of those s e @ such that se S(2,).

In order to take into account the possible phase displacements, we
introduce the space

R:= {(s, C)=(5ys s Sy, )EDPXR; Y 5,4 c=00n QO} cS,xR (242)
Note that R is isomorphic to S,,, and, there is a unique linear map s — ¢(s)
from S, to R such that

R={(s,c(5));5€ 854} (2.4.3)

Remark 2.4.1. When the restricted closedness assumption holds, for
s=(8y, .., Sy) € D, the condition }, s, =constant is equivalent, because of
(2.3.2), to 3 5, =0, so that R=S,x {0}. In this case the last component
¢ can be ignored.

Because of Definition (2.4.1), it is clear that if (s,c)e R, then
{o(t, x), 5> +c=0, so the function (¢, 1) takes values in

Y.=R'cOxR. (2.4.4)

ExaMPLE 2.4.2. Suppose that bases ¢, , (p=1, .., m,;) of &, are fixed,
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as well as a basis p, =3, , p% , 0, (2=1,.., ) of ;. Let ¢, € R be such
that (p,, ¢,) € R, ie., such that

V(1,x)eR4: 3. Pi p @k plt, X)+ ¢, =0. (2.4.5)

k. p

The dual bases identify @, = @F with R™, @& = @* with R” :=T], R™, and
¥ with the space of 8 =(0, ,, 1)e R™*' such that

Y Pk 0,10, =0 for a=1,..,pu (2.4.6)

k,p

Then, @ is the map

(ta X)—> {‘pk.p([s x)}k.p’ {247)

and, it is clear from (2.4.4), (2.4.6) that (¢, 1) is valued in ¥.

ExaMmpPLE 2.4.3. 1If there are no resonances in @, that is S, = {0}, then
R=1{0} and ¥ is simply the space @ x R.

ExAaMPLE 2.4.4 The Cauchy Problem. Consider the Cauchy Problem
for (1.1.1) with initial data (1.1.3) or (1.1.4). Suppose that a finite dimen-
sional subspace ®°c C*™([y_,y.]) is given, with ds°#0 ae. for all
s°e %, {0}. Define @, as the space of the solutions of

XkS"—‘O; S!,=0=506¢0. (24.8)

We can take T, > 0 sufficiently small so that the functions in &, are defined
and C* on Q,. Note that the condition (2.3.2) is satisfied.

Let &* be the span in C®(£2) of {J @,. Then Remark 2.3.4 applies, and
the restricted closedness condition is satisfied. Only the transversality
conditions need to be checked.

Note that (2.4.8) provides us with an isomorphism 1, from @° onto @,
taking s°e @° to the solution of X,s=0 with Cauchy data s° Therefore,
the transposed mapping p,=1F allows us to identify ©&,=d} and
©° = @°*. An equivalent point of view is to consider ¢° be the ©°-valued
function defined by {°(t, x), s°> :=5°¢, x), and to define @, to be the
©°-valued solution of

Xe0e=0;, ¢y, =0° (2.4.9)

For the Cauchy problem, it is natural to consider all the @, as copies of
@°, so that ¥ will be viewed as a subspace of {©°}" x R.
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ExampLE 2.4.5 Interaction of Waves. Suppose p+#g and that &, and
@, are finite dimensional subspaces of C*(£,), solutions of (1.3.2), and
(1.3.2), respectively, as well as satisfying (2.3.2). Let @* < C*(Q,) be the
sum of @, and @,. The sum is direct and contains no constant function
other than 0. For k=1, .., N, let @, be the space of the se @* such that
X, s=0, so that for k= p or ¢, we recover the spaces @, and @ ,,.

Remark 2.3.4 applies, and the restricted closedness condition is satisfied.
It remains to check the transversality conditions.

Note that generically the construction above yields @, = {0} for k# p
and ¢, which means that no resonances occur. On the other hand, if
the vector fields X, are constant and the phases are linear in (¢, x),
then resonances exist. We refer to Section 3 for further examples of
resonances.

2.5. Projections

It is important to understand the position of ¥ in the cartesian product
@, x --- xO@,yxR. This is linked to the existence of J-resonances.

First we introduce some notation. If J is a subset of {1, .., N}, we can
restrict our attention to the set of vector fields {X,},., and repeat the
construction of Section 2.4 for this set. This yields the space S,(£2,) of
J-resonances, the spaces

&, = [] o, 6,=[]6,
red e (2.5.1)

Se, = {se¢,; Y s,=constant},

jeJ

and, the corresponding spaces R, < Sy, xR and ¥,:=R; cO,xR.

ProrosiTiON 2.5.1.  Let m, denote the projection of @ xR onto @,x R.
Then n (W)= ¥,. In particular, n,(¥)=0,x R if and only if there are no
J-resonances or equivalently if So,={0}.

Proof. We show that ¥, and =n,(¥) have the same annihilator in
&, x R, namely R,. For ¥,, this is just the definition. On the other hand,
suppose that (s',c)e®,xR and let se® be such that s;,=s; if jeJ
and s5;,=0 if j¢J. Then (s', ¢) is orthogonal to the image =,(¥) if and
only if for all (6,1)=(0,,..,0,,7)eR* one has {s,0)+ct={(s,c),
n,(68,1)> =0, and hence, if and only if (5, c)e R** = R. With the represen-
tation (2.4.3), we see that this is equivalent to saying that ¢ =¢(s) and s is
a J-resonance, and hence to saying that (s, c)e R,.

At last we note that ¥, =6, xR if and only if R,= {0} or equivalently
Ss,= 10} (see Example (2.4.3)). The proposition is proved.
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Because of Lemma 2.2.2, S,,= {0} when J has one or two elements, so
we have

COROLLARY 2.5.2. For any k and any j+# k, the projections n,: (0, 1) —
(0, 7) and m;,:(0,7) > (0,,0,,7) map ¥ onto O, xR and ©;x 0, xR,
respectively.

We now introduce the spaces ¥,
Y.:=R*nker(n,)={(0,1)e ¥;0,=0and =0} (2.5.2)

which plays a crucial role, as indicated in Section 1.5. If keJ < {1, .., N},
one defines similarly the space ¥,,={(6,7)e¥,; 6,=0 and t=0}.
Proposition 2.5.1 implies the following corollary.

COROLLARY 2.5.3. (i) ForJ= {1, ., N}, n, (¥ )=¥,,.
(ii) If the set of J-resonances Sq,,= {0}, then for k € J the projection

(0, t)— (ei)jel.j#k (2.5.3)

maps ¥, onto [, ;4 @

Moreover, because n, maps ¥ onto @, x R by Corollary 2.5.2, we also have,

COROLLARY 2.54. m, induces an isomorphism between the quotient space
YV, and O, x R.

2.6. Mean Value Operators

Recall that the space of continuous almost periodic functions on a finite
dimensional real vector space ¥ is the closure in L™( %) of the linear span
of the exponential functions ¢/“*?> with ie ¥* (see [Kat]). We restrict
attention to real valued functions and denote by C) (%) the space of real
almost periodic functions on ¥. We recall in Section 4 the main properties
of the space C) ().

If V is a linear subspace of ¥, then the averaging operator £, is defined
as

(Eyui(@)= lim T u@+y)dy, (2.6.1)

T +w TQ

where ¢ is the dimension of V, di is a Lebesgue measure on V and Q a
rectangle in V of measure 1. For u(8) =¢“* %’ the limit in (2.6.1) exists and

0 if J¢vt
E"'“‘{u if Aev* (262)
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E, extends to C9,(¥) by density. This also shows that Definition (2.6.1)
does not depend on the choice of Q.

For ue C) (¥), E,u, as defined by (2.6.1), is a function in C} (V).
Moreover, £, u is invariant by translations parallel to V so it is also a
function in C) (¥/V).

In Section 4, we prove several properties of these averaging operators,
including the following result. If = is a linear map from ¥ into another
space ¥, then for V= ¥ and ue Cgp(q”) one has

E(u-n)={E, (u)}-n (2.6.3)

Returning to the situation described in Sections 2.4 and 2.5, we are given
the space ¥ and subspaces ¥, < ¥. According to formula (2.6.1), to each
¥,, is associated an averaging operator E,. Using Corollary 2.5.4, we
identify £, u with a function on &, x R~ ¥/¥,, and with this identification
E, maps C)(¥) to C) (0, xR).

We next make this identification more explicit. If # is a function on
O, x R, it can be lifted to @, and hence to ¥, by the formula

(0, ) :=u(n, (0, 1)) =u(l,, 7). (2.6.4)

It is an abuse of notation to denote by u« the lifted function, but it is a
convenient one. Any function ¥ on ¥ which is invariant under translations
parallel to ¥, can be factored as u =iio 7, with & defined on &, xR. As in
(2.6.4), we drop the tilda and identify » and 4.

In the same vein, we write u(6,, t) for a function on ¥ that only depends
on (8,,1)=m,(0,1), and more generally u(8,,7) a function on ¥ that
can be factored by =,, or equivalently, that only depends on
6,,t1)=mn,(6,7t)e ¥,.

Let (4, ¢)={(A, ., Ay, )e® xR (=R™*') and let u, be the restriction
to ¥ of the function et <#>*<*! Then, as in (2.6.2), we have

if (4L c)¢RO(P,xR)

if (Lc)eR® (P, xRY (265)

0
Eutu;) =
u;
Indeed ¥, is the intersection of ¥ with the kernel of n,, so that the
orthogonal of ¥, in ®xR is R+ ($, xR) and the sum is direct. This
formula extends (1.5.4).

We end this subsection with several important examples and remarks
that illustrate the definitions of the operators E, .

ExaMmpLE 2.6.1. If no resonances are present, that is R= {0}, then
everything above is simple with @=d*=d}¥x ... x D ¥, ¥Y=0 xR and
Ve=®PFx - x {0} x --- x®Fx {0} with the first factor {0} in kth slot.
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E, is then the operator which averages over all the variables different
from 6,

E.u(f,, )= lim T—ﬂf u(®, 1) doy, (2.6.6)
T—+ +x TQ

where p is the dimension of ¥, Q is a product of rectangles of measure

one in &, j#k, and 6'=(8,),.,. When resonances exist, the operators E,

describe the coupling between the different phases.

Remark 2.62. If u=u(f,, ), only depends on 8, (see (2.6.4)), then
E,u=u More generally, if u is a product of the form »(8,, ) w(8, t), then
Eku = Ek(vw) = UEk w.

Remark 2.6.3. Assume that u is a function that only depends on (6,, )
for some J< {1,.., N}, that is, u=i-n, with ﬁngp( ¥,). Then, from
Proposition 2.5.1, Corollary 2.5.3, and formula (2.6.3), we deduce that, if
ked,

Ecu=Ey, (i0) (2.6.7)

these functions being considered as functions of (8,, r). The meaning of
(2.6.7) is that, if u only depends on (6,, t), then to compute E, u, one can
forget all the vector fields X, with j¢J and all the resonances that are not
supported in J and act as if @ were &,. This fact is not as trivial as it may
seem, and it motivates the identification of u and & above.

In particular, if there are no J-resonances, then Example 2.6.1 can be
applied to the computation of Ey, ,(x) so if 4 is a function that only
depends on (8, ), one has, for ke J

E,u(0,,7)= lim T“‘J. u(@,, 7) dv’, (2.6.8)
70

T— +x

where u is the dimension of [T, ,.« ©;, d0’ a Lebesgue measure on it and
Q a rectangle of measure 1 in that space.

EXAMPLE 2.6.4. As a special case of (2.6.8), we see that if u=u(8,, 0,, 1)
is an almost-periodic function which depends only on (6,, 8,, 7). Then

E,u(0,,7)= lim T‘”’ff (6,0, 1) b, (2.6.9)
Q0

T— +

where @ is a rectangle in @, of measure 1 and m;, is the dimension of ;.

EXAMPLE 2.6.5. Suppose next that the @, have dimension 1, and that ¢;
is a basis of @;. Consider three different indices i, j, and k and a function

580:114/1-9
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u=u(b,, 8,, 0,, t) which only depends on the indicated variables. Because
of Remark 2.6.3, we can compute Eyu as if @ =D, x D, x D,

(a) If there are no resonances between ¢,, ¢;, and ¢,, then (2.6.8)
applies so

T T
E,u0,,1)= lLm T2 j u®,,0,,0,,7)d0,df,.  (26.10)
0 Y0

T— +x

(b) If there is a relation between ¢,, ¢;, and ¢,, Corollary 2.5.2
implies that it can be written as

@, =0+ fo,+c (2.6.11)
Therefore,
0,=a0,+ 0,4+ ct (2.6.12)

is the equation of ¥ in @,x @, x O, x R~ R* and the function u appears
on ¥ as a function of the variables (0,, 8, ), namely v(8,, 0,, 1) = u(af, +
Bo, +ct, 8, 0,). So, we are back to Example 2.6.4 and we have

T
Eu@,t)= lim T '} u(oas+p0,+ct,s0,,1)ds. (2.6.13)
0

T— +x

Note here the effect of the phase shift ¢ which is mixed with the 8 variables
in the integral. This example illustrates how the dependence of u on
the variables / and j affects the 6, dependence of the mean. This is an
expression of the nonlinear interaction between modes in the presence of
resonance.

ExaMPLE 2.6.6. Consider the general case where @; has dimension
m; > 1. Examples of situations where m;> 1 will be given in the Section 3.
We still assume that u=u(0,,0,, 0,,7) only depends on the indicated
variables. According to Remark 2.6.3, we again compute E u as if
b =P, x P, xP,. Now, Theorem 3.1.5 asserts that, given the three vector
fields (X, X;, X,), the space of resonances has dimension at most 1. Thus

the discussion performed in Example 2.6.5 is, in fact, general.

(a) If there are no resonances in @, x @, x ®@,, then (2.6.8) gives

Eu(0,, )= lim T-m-'%j 0, 0,,0,,7)d8,db, (26.10)
Q0

T—x

with O a rectangle of measure 1 in @,x ;.



RESONANT GEOMETRIC OPTICS 129

(b) There is one resonance, or more precisely the dimension of the
space Ry; ;, is 1, and hence ¥, ; +, has codimension 1 in @, x @, x @, xR
because of Corollary 2.5.2. One can choose coordinates (67, 0;) in ©,,
(9}), 6;) in 6, and (6, 6;) in ©,, with scalar first components (and second
component of length dim ,,— 1, for m =1, j, k) such that the Eq. (2.6.12)
of ¥,k is

0 =af? + BB + ct. (2.6.12)
Then formula (2.6.13) is replaced
E u(fy, 1)

T
= lim T‘*"’"”‘!L J‘TQ ulos + f65 + ¢, 07, 5, 07, 07, 0,) db; db ds,

9 I’
T—x

(2.6.13)

where Q is a rectangle of measure one in the space of the (6], /) variables.

The whole thing means that there may be extraneous variables 6] and 6/,
in which case what you have to do is just average over them.

Remark 2.6.7. If the restricted closedness condition is satisfied, then
R=54,x{0}, as in Remark 2.4.1, so that ¥=¥' xR, where ¥’ is the
orthogonal of S, in ©. On the other hand, ¥, = ¥’ x {0} and can be
identified with a subspace of ¥’. In that case, it is clear that if ¥ does not
depend on 1, then neither does E, u.

Note the difference with (2.6.13). If ¢ #0, even if u does not depend on
7, £,u may.

2.7. Function Spaces

We now introduce the spaces of functions we need. If £ is a closed
domain contained in Q,, we denote by €%(2; ¥):=C°(2;C} (¥)) the
space of continuous functions from Q into Cgp( ¥). This is a Banach
space equipped with the obvious norm. As usual we will consider
Ue€°(82; ¥) as a function on Q x ¥, and €°(Q; ¥) appears as a closed
subspace of L™(£2x ¥). However, let us emphasise that the condition
Ue®6°(2;¥) is much stronger than just requiring that
Ut, x, )e C, () for each (1, x)e Q. In particular, any ue €°(2; ¥) can
be represented as

u(t, x, 0, 1)~ Y a, (1, x)et ATt 27.1)
(4.c)eA

where the spectrum, 4, is a denumberable in set in ¥* which is inde-
pendent of (¢, x) (see Proposition 4.1.3 below ).
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For keN, define the space €*(Q2; ¥) of those functions Ue €%(R2; ¥)
whose derivatives in (¢, x, 0, 1), 07, U, of order || less or equal to k,
belong to €°(£2; ¥).

We also need the usual spaces C%(£2) of continuous functions on £, and
C*(£2) of functions whose derivatives of order <k belong to C%). These
spaces will be equipped with a family of norms,

Ul pi= 2 & sup |07 u(t, )l Loy- (2.7.2)

l2| < k

where Q2,={x:(t,x)eQ}. When p=+oc and k=0 this is just the L™
norm on £2.
We shall use the following terminology.

DErFINITION 2.7.1. (i) A family u, € C*(2) is bounded in C¥(Q) if the
norms |u,|, x ..o are bounded.
(ii) We say that u,=o(1) in C*Q) [resp. in L*W*7(Q)] if
|u£|s.k.oo,0_)0 [resp. 'uelz‘k,p,ﬂ—)o] as B_“’O'

Similar definitions hold for functions on [y _,y, ]

2.8. The Semilinear Cauchy Problem

Here the matrix A(¢, x) in (1.1.1) does not depend on u and we consider
the Cauchy problem

Lu=2d,u,+ A(t, x) 0 .u, = b(t, x, u,(t, x))
(2.8.1)

uc|l=0=he'

Dropping the subscript o, we denote by 4., r., /, the eigenvalues , and
eigenvectors of A(¢, x).

We fix spaces @, satisfying (2.3.1) (2.3.2), and perform the constructions
of Section 2.4.

THEOREM 2.8.1. Assume that the condition (€) and (7 ) [resp. (w — T )]
are satisfied and that

The family h, (0<e<1) is bounded in L*([y_,y,]). (282)

There exist H, e €°([y _, v, 1; O, x R) such that £,(0, x) -
h(x) — Hi(x, 9,(0, x)/e, 1/e)=0(1) in L=([y_,y.])
[resp. in L*([y .y, D] (2.83)

Then
(i) There is T>O0 such that for all €€ 10, 1] the solution u, of the
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Cauchy problem (2.8.1) exists on Q=Q,n {t<T} and the family u, is
bounded in L™ (Q).

(ii) There are functions U, € €°(R2; @, x R) such that the difference

N
ue(t’ X)— 2 Uk(t’ X, (Pk([’x)/s, I/S)I'k(t, x)

k=1

=o(1) in L(RQ), [resp. in L*LP(£2)]. (2.8.4)

(iii) The U,’s are the unique solutions of the system of N integro-
differential equations

Xk Uk(t> X, 9k7 I) =Ek{{k(t’ x) : bk(ta X, U(l! X, 97 T))}

(2.8.5),
Ukii=olx, 04, 1) = H(x, 0, 1),
where U denotes the function
N
Ut,x,0,1):= Y, Uty x,0,, 1) ri(t, x) (2.8.6)
k=1
and
N
bi(t,x, Uy:=b(t,x, U)— Y (X, r)) U, (28.7)

j=1
Remark 2.8.2. In the right hand side of (2.8.5),, E, is applied for each
(1, x) e Q to the function (8, ) — B(t, x, 0, T} =£4(t, x) - be(t, x, U4, x, 8, 1)),
and therefore E,B is a function of (¢, x,8,,7) which belongs to
€°%Q; O, x R) (see Section 4). In the left hand side, X, is applied to the
function U,(1, x, 8, t), so it makes sense to say that U, e °(2; 8, x R) is
a (weak) solution of Eq. (2.8.5),.

Remark 2.8.3. 1t is part of the theorem to prove that the system (2.8.5)
has a solution U with U, e ¢°(Q; @, x R) for all .

Remark 2.8.4. If one assumes (r — %) instead of (¥) and if the H, do
not depend on 7, that is if

4(0, x) - A (x)— H(x, 9,(0, x)/e) = o(1), (2.8.8)

then U does not depend on t either, so that », has the form

N

u(t, x)=Y Ut x, @t x)/e) ri(t, x)+ o(1). (2.8.9)

k=1

This is the classical form for the expansions of nonlinear geometric optics.
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It is worth emphasizing that the weaker closure hypothesis yields the
weaker conclusion (2.8.4) even if the Cauchy data satisfy (2.8.8).

Remark 2.8.5. Theorem 2.8.1 applies to the Cauchy problem for
Section 1.1 which data of the form

h(x) = H(x, 9°(x)/e) + o(1). (2.8.10)

Indeed, one constructs the space @ as indicated in Example 2.4.4 and
condition (r — %) is satisfied. The Egs. (2.4.9), ¢,(0, x) = ¢°(x), and (2.8.10)
imply (2.8.8) with H, =/, - H. Thus assuming (%) or (w— ) and com-
bining Theorem 2.8.1 with Remark 2.8.4 above, we obtain the existence of
u, on a domain £ independent of ¢ with an expansion (2.8.9).

Remark 2.8.6. Theorem 2.8.1 also contains a continuation result.
Let u, be a bounded family of continuous solutions of (2.8.1) on 2, =Q,n
{t< T,}, which satisfies (2.8.4) on €, with profiles U, e €%Q2,; @, x R),
for some T, < T,. Then Theorem 2.8.1 applies to the Cauchy problem with
initial data »,(T,, -) on t=T,, and there is 7> T, such that the solutions
u, and the profiles U, can be continued on Q =Q,n {r< T} so that (2.8.4)
still holds on . In particular, this remark together with Example 2.4.5,
solves the problem of the interaction of two wave trains that was stated in
Section 1.1 of the introduction.

2.9. The Quasilinear Cauchy Problem

We return to the notations introduced at the beginning of Section 2.1. In
particular €, is defined in (2.1.3) and w,e C*(Q,)} has Cauchy data
hoe C([y_, ¥ D)

For convenience, we write the Cauchy data (1.1.2) in the form A, + ¢h,
and look for a solution of the form u,+ eu,. The equations for the new
unknowns are

du,+ A% (L, x, eu,) @ u,=b%(1, x, eu (t, x)) - u,
(29.1)

ucll:()=hw

where A% (1, x, v) 1= A(1, x, uy(t, x) +v), and b* is the sum of two smooth
matrices b’ and b”

b'(t, x,v) v = {A(L, x, ug(t, x)) — A, x, ug(t, x)+ )} 0,1y
b"(t, x, v) :=b(t, x, ug(t, x) +v) — b(t, x, uy(t, x)).

Because the characteristics of 4* now depend on v we must slightly
decrease the domain £, so that it remains in the domain of determinacy
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of [¥_,y. ] for all sufficiently small functions v. Fix p >0 and introduce
Q= {(t, x) e R:0< < Ty, y (1,0, ¥ )

+pt<x<y(;0,y,)—pt}. (2.9.2)

We assume that spaces @, = C*(€,) are given and satisfy (2.3.1), (2.3.2).

The constructions of Section 2.4 yield the crucial averaging operators.

THEOREM 2.9.1. Assume that the condtion (€q) and (T q) [resp.
(w—T q)] are satisfied. Assume in addition that

the family h, is bounded in CX([y_,y,]), and, (2.9.3)
there exists H,e €' ({y_,y.,]; @ xR) such that

4 o0, x) - h(x) — Hu(x, 9,0, x)/e, 1/e) = o(1) in
CAly_,y. 1) [resp. in LW "([y ., y, D1 (2.9.4)

Then,

(i) There is T>0 and ¢,>0 such that for 0 <e<g, the solution u,
of the Cauchy problem (2.9.1) exists on Q=07 {t< T} and the family u,
is bounded in C(Q).

(ii) There are functions U, € €'(2; ©, x R) such that

N
ue(tf x)_ Z Uk(’.s X, (pk(’ax)/8> 1/8) rk,O(t.- Y)

k=1

=o0(l)in C(2) [resp.in L*W - 7(Q)]. (2.9.5)

(iii) The U,'s are the unigque solutions of the following system of N
equations

XkUk+ EI( (Z rf‘lU,(DjUJ)> :Ek(/ko ka)
L7 (2.9.6),
Ui _o(x, 0, 1)=H(x, 0,, 1)

In these equations,

N
U, x,0,1) =Y, Udt,x, 0,, 1) reolt, x), (2.9.7)

k=1

N
b U:=bU— 3 (x.r;0) Uy (2.9.8)

j=1
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the D, are vector fields in 0,
(D V)4, x,0,t) :=0,9,(t, x)- 04 V(1, x, 0, T) (2.9.9)

(note that 0.¢,(1, x)€ ©,, while 8, V(1, x,0,1)e O}), and

#

A
Ffj(t, x) :=[k,0(t’ x) < o

(1, x,O)r,.,o(z,x))r,,o(z,x) (2.9.10)

b(t, x) :=b* (1, x, 0). (29.11)

Remark 29.2. In (29.10), ((8/A*/dv)(1, x,0)r;4) is the derivative of
A* in the direction r;, of the v-space. It is a matrix and the l“fj(t, x) are
scalar.

D,U,(t, x, 6,) is also a scalar valued function so Ff{jU,.(Dj U,) is a scalar
function on Q x . Since E,{I'} ,U;(D;U,)} is a well defined scalar valued
function on Q x @, x R, Eq. (2.9.6) makes sense.

Again, it is part of the theorem that this equation has a solution.

The Remarks 2.8.4-2.8.6 which follow Theorem 2.8.1, about the Cauchy
problem, the continuation problem, and the irrelevance of © when (r — %)
holds, apply equally well in the present, quasilinear case. In addition one
can use the results of Example 2.6.6 to compute explicitely the action of E,
on U, (D;U)). In particular when the @, have dimension 1, (2.9.6), together
with (2.6.13) recover the equations of profiles that were given in
[MR, HMR] under the more restrictive assumption of coherence. The
equations for the profiles in the case of higher dimensional spaces & or
with nonrestricted closureness are new.

2.10. Life Span and Uniqueness

Consider first, the semilinear problem (2.8.1). We call T(¢) the life span
of the solution u,. T(¢) is the supremum of the Te J0, T,,] such that (2.8.1)
has a unique solution in L*(Q,~ {r< T}). It is known that, if T(e) < T,
then

lim inf Ju (2, )l peig,, = +0. (2.10.1)
t — T(e)

Similarly, we call T, the life span of U, that is the supremum of the
Te 10, T,] such that (2.8.5) has a unique solution in €°(2,n {t < T}; P).
One can prove that if T, <T,, then

lim inf | U(2, ) oo, ) = +0. (2.10.2)

t—>T,
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We will show that under the strong transversality assumption (7 ),

T, <lim inf T(¢). (2.10.3)
e—0

First we give a simple example, involving only ordinary differential
equations, showing that strict inequality can occur in (2.10.3).

ExampLE 2.10.1. Consider the system

du,= () —v,-(w,), uy,_,= 1 +cos*(x/e)
-0 (2.10.4)
(0,+3,)v.=0, Uy, o =&

The life span of u, is the domain of existence of the solution of the equation
y' =y*—ey?, p(0)=ae[1,2], so for any ¢ >0 we have T(e)= +cc.
On the other hand, the equations for the profiles are

o,U=U?  U,_,=1+cos()

2.10.5
(6,+0,)V=0, Vi.,=0. ( )

Comparing with the time of existence of the solution of the y'= y?;
y(0)=ae[l,2], we see that T, = 1.

What happens in this example is that at time ¢=1, the solution u,
develops a singularity as ¢ —0, and although the Cauchy data remain
bounded, there is no uniform control of », in L™ after time 7= 1. In other
words, there is a loss of continuity, and even of boundedness of the
mapping #, — u,. This motivates the introduction of the following more
relevant quantity.

Let T,(6) be the supremum of the Te ]0, T ], such
that (2.8.1) has a uniformly bounded family of
solutions u,, for 0 <¢ < 4. (2.10.6)

Note that T,(8) is a decreasing function of 6>0. The following
statement makes (2.10.3) more precise.

THEOREM 2.10.2. Assume (€) and (F) together with (2.8.2) and (2.8.3)
with p= +aoo. Then,

T, =lim T,() (2.10.7)

-0
and the approximation (2.8.4) is valid for all T<T,.
Remark 2.10.3. We show by example that this result and even (2.10.3)

o

fails if one only assumes the weak transversality condition (w—.7 )
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Consider the problem
du,=(u,)+20,-w,, u, ,=0
(¢,+¢,)v,=0, Uy, = COS(x*/¢) (2.10.8)
(8,—d,)w,=0, W,_, = COS(x/e).

The three phases in play given by the Cauchy problem with initial condi-
tion x? are: ¢, = x% @, = (x+t)% and ¢, = (x — t)% There are no resonan-
ces, but we have &,(¢, — ¢,) =0 on the entire characteristic {x=0} of the
vector field @,. Thus strong transversality is violated. The equations for the
profiles are

e, U=(UV+2E VW), U,,=0
(6, +0,)V=0, V. _,=cos(f) (2.10.9)
(6,— 8, )W=0, W, _,=cos(8,)

Then, V(1, x,8,)=cos(f,) and W(¢, x, 8,)=cos(f,). Since there are no
resonances, f,, #,, and 6, are independent variables, and E (VW)=0
because the mean values of V" and W are 0. Thus U=0and T, = +x.

On the other hand, u,(t,0) is solution of the ordinary differential
equation

y =y + 1 +cos(2/e), »(0)=0.

Let a(r) := [} cos(27?) dr. This function is bounded (and in fact it has a
limit as t » +00). If y is defined on [0, 7], then because 3" > 1 + cos(2t*/¢),
one has _v(t)zr+\/za(t/\/g) and if ¢ is small enough, y(1)>1. Then,
because y' = y?, it is clear that y —» +oc before time 1= 2.

Summing up, we have shown that for this example we have T, = 4o,
and that T(e) <2, if ¢ is small enough.

One has a similar result for quasilinear systems.

Let 7,(6) be the supremum of the T € 0, T, ], such
that (2.9.1) has solutions u,, such that ¢u, remain
bounded in C'(Q°n {1 <T}) for 0<e<é. (2.10.10)

Let T, be the supremum of the 7€ JO, T, ], such that (2.9.6) has a solution
in 67N {t<T}; P)

THEOREM 2.104. Assume (€q), (7 q), (2.9.3), and, (2.9.4) with p= +C.
Then,

T, = lim 7,(5) (2.10.11)

and the approximation (2.9.5) is valid for all T<T,.
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In this statement, the parameter p which enters in the Definition (2.9.2)
of 27, 1s fixed. In fact, as we will see in Section 6, the domain £, itself (or
more precisely, Q,x ¥) is a domain of determinacy for the system (2.9.6).
A refinement is possible with p tending to 0 in (2.10.11).

The proofs of Theorems 2.10.2 and 2.10.4 are based on continuation
arguments and two inequalities. The first one is trivial and asserts that if

v (1, x)=V(1, x, @,.(1, x)/e, 1/¢), (2.10.12)
then,

“vc(t’ ')HL’(Q,)< H V([’ ')“L’qg,xg‘xa)- (21013)

The second inequality is nontrivial. It relies on theorem of Kronecker and
Baire and asserts that, asymptotically, the converse estimate is true.

THEOREM 2.10.5. Let @, be a finite dimensional space that satisfies
(2.3.2), O, its dual space and let ¢, be as in (24.1). Let Ve (2; @, x R),
and, v, be given by (2.10.12). Then,

V(e Ol L7(Q,x O x R) <lim S(l)Jp feade, L7020 (2.10.14)

This theorem has an immediate corollary which is the uniqueness of the
principal symbol in the expansion of any family v,.

COROLLARY 2.10.6. Suppose that @, are as above and that v, is a bounded
Samily in C%(Q2). Then there is at most one Ve €°(82; @, x R) such that

v.(1, x)— V(1. x, 0,(t, X)Je, 1/e)=0(1)  in L*(Q). (2.10.15)

When applied to the solutions u, given by Theorems 2.8.1 or 2.9.1, this
uniqueness result is, in the nature of the case, different from the uniqueness
of the solution to the equations of profiles (2.8.5) or (2.9.6).

2.11. The Sum Law

In this section we study the smoothness in the variables 8 of the solu-
tions to Egs. (2.8.5) or (2.9.6). We treat first the semilinear case in detail.
At the end of the section we sketch the corresponding result for quasilinear
systems. For simplicity, we assume that the restricted closure condition
(r— %) is satisfied and that the profiles H, and U, do not depend on 1, so
that (2.8.5) becomes

X, Uty %, 0,) = 4406 ) byt %, U x, 01 (2101,
Ui, o(x, 85) = Hi(x, 0,).
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In what follows 2=, {t< T} is fixed. We first give some definitions.

DerINITION. (i) For oeN, C; (6,) is the space of functions
Ue Cgp(@k) whose derivatives of order less or equal to ¢ belong to
C,,(6)

(ii) A function Ue®°Q;@,xR) is called of class ¢ in 8,, at
(19, xo) € 2, if there is a neighborhood w of (¢, x,) such that the restriction
of U to wn Q is continuous in (4, x) with values in C;(0,).

These definitions are extended to ¢ = +oc by taking intersections for all
ogeN.

Similarly, we say that He®°({y_,y,1;0) is of class ¢ at
xo€ [y_,y,]if there exists an open set w in [ y_, y, ] containing x, such
that He C°%w; C;(0)).

Suppose H, e€°([y_,y.]}; ®,) is given. The smoothness in 8, of H, is
measured by a function x — ¢}(x) from [y _,y. ] into N=Nu {0} such
that

H, is of class ¢%(x) at xe [y _,y.]. (2.11.2)

Our goal is to predict the smoothness at a point (7, x) € Q of the solution
U of (2.8.5). The result depends on the set of resonances and we are led to
introduce the

DeFiNITION.  Given ke {1, .., N}, we call J(k) the collection of subsets
J< {1, .., N} such that keJ and there is a resonance s=(s;),<,<~ER,
whose support {j:s;#0} is J.

Thus J(k) is the set of the supports of those resonances that create
oscillations in the Ath mode.
Let {6,(t, X)} <« <~ be the largest functions from &, into N such that

0,0, x) < a(x) (2.11.3)
o, is a nonincreasing function of r along the charac-
teristic curves of X. (2.11.4)
For all Je J(k), olt, x)< Y, 0,1, x). (2.11.5)
jed
J#k

This function is very similar to the one introduced in [RR] to measure the
H° smoothness of solutions. We note two differences. First the regularity
here is restricted to integer values. We believe that this restriction is not
essential. Qur proof relies on Theorem 4.2.1 which in turn is proved only for
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integers. Second, note that (2.11.5) takes into account the detailed structure
of resonances. In [RR ], all interactions were treated as if they were binary
which yields a worst case estimate.

As in [RR] the functions g, can be constructed by an iterative process
which we pause to describe. Let a3(#, x) be the extension of 6%(x) which is
constant along the characteristics of X, and, let the o,, v=> 1, be defined
inductively by

oy ' (p)=inf mm{a;(q), inf Za}(q)}, (2.11.6)

gery(p) ek ey

Rk
where I, (p) denotes the backward k-characteristic from p to t=0. Then
o) is larger than any function that satisfies (2.11.3)-(2.11.5) and decreases
with v. Therefore o, converges toward o,.

The functions ¢, can be understood in a different way. Consider the
oriented trees in Fig. 2. The branches are arcs of backward characteristics,
labelled by an index () which corresponds to the vector field. Such an arc
represents an oscillatory wave train of the oth mode. The vertex r
represents a nonlinear interaction, a resonance of order three resulting in
an outgoing oscillation of the ith mode.

The vertices, other than p, with 0 <t < #(p), are labelled by pairs (a, J),
where a belongs to Q and J is the support of a resonance. This indicates
the presence of card(J)— 1 incoming waves interacting at a. For example,
the vertex r has label (r, {m,n,i}), and an m-wave and an n-wave may

FiG. 2. The resonant tree in the sum law.
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interact to produce an i-wave. The vertex ¢ has label (g, {ij, k,1}), and
waves i, j, [ may interact to create a k-wave.

Starting from p is a backward k-characteristic. Any other vertex is
associated with the support of a resonance J. If the outgoing arc is an
a-arc, then the incoming arcs are all the f-arcs with feJ\{a}.

The intersection point, a, of an a-arc with ¢(a) =0 has label (q, o).

We do not exclude the possibility that, for successive vertices (g, J) and
(b, K), the points ¢ and b coincide. In that case, J# K, and two distinct
resonant interactions at a are possible.

For such a tree &7,

o)=Y o3a) (2.11.7)

the sum being taken over all the points (a, «) of &/ on t=0. Then,
o.(p) :=Info(s), (2.11.8)

where the infimun is taken over all the trees as above, that have p as a root
and start with a k-arc.

THEOREM 2.11.1. Suppose that H e €°([y_,y.); @) and U, e €°%(2;0,),
k=1, .., N is a solution of (2.11.1). Assume that (2.11.2) holds, with strictly
positive functions 6%, and let a(t, x) be the function defined in (2.11.8).
Then, at each point (t, x)e Q, U, is of class o,(t, x).

Remark 2.11.2. The restriction o > 0 is essential to our proof and also
to the result. Assuming the ¢ lower semicontinuous (Ls.c.), one can show
that the o, are also ls.c., provided ¢ >0. On the other hand, if one of the
6% =0 for some x, the o, are no longer ls.c. and are therefore not good
candidates to define classes of regularity. This can be seen by adapting the
example with 4 speeds of [RR]. In that case, if ¢ vanishes somewhere, the
index defined by (2.11.3)-(2.11.5) will not be Ls.c. and will not be given by
(2.11.6) and (2.11.8). A new index is likely to be defined, which is l.c.s. but
will not satisfy (2.11.6) and (2.11.8).

One could also work in Holder spaces, keeping the same restrictions
ay >0 as above.

Note that a similar restriction, ¢ > § is made in [RR].

ExampLE 2.11.3. If there are no resonances at all, then g, is just o}
propagated along the characteristics of X.

ExampLE 2.11.4. Consider the three vector fields X, =¢,—¢,., X,=0,
and X;=0,+ &, with the linear phases ¢, =x+1, ¢,=x, and ¢p;=x—1s0
that there is one resonance ¢, — 2@, + ¢, = 0. Assume that ¢)= +oc and
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FiG. 3. The sum law.

6%=+oc [resp. a9=+oc] except on the interval [1,2] [resp.
[—2, —1]], where 6%=s [resp. 0;=5]. See Fig. 3.

Finally we note that Theorem 2.11.1 extends to quasilinear systems
without essential modification. Assume (r—%), H.e €' ([y_.y,1;60,)
and let U,e%€'(2;@,), k=1, ..., N be the solution of (2.9.6). Assume that
(2.11.2) holds, with functions 1+ ¢ that are strictly greater than one.
Then, at each point (1, x)eQ, U, is of class 1 + o,(7, x), with the same
function o,(7, x) as above and J(k) involving now only third order
resonances.

3. GEOMETRICAL ASPECTS OF RESONANCE

This section is devoted to the study of the properties of the solutions of
(2.2.1), (2.2.2). For each operator L there is a finite dimensional space of
resonances, denoted by S in Section 2.2. This space has additional structure
when viewed as a subspace of the cartesian product S, x .- xS, of its
projections on the N spaces of functions invariant by the flows of the Xs.
This structure determines the averaging operators and thereby the nature
of the nonlinear interactions wich are possible. These considerations lead to
a definition of resonantly equivalent operators. This equivalence is weaker
than the equivalence of the N-web of characteristic curves under dif-
feomorphisms, at least when the space S is small.

Different operators have unequivalent interactions even when the corre-
sponding spaces of resonances have the same dimension. The most studied
case is that of constant coefficient operators and phases which are linear in
t, x. For these operators we show that additional resonant phases exist
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which are polynomials of degree de [2, N—2]. This example is anything
but typical, it has space S of maximal dimension.

Moreover, constant coefficient operators are only special examples in the
class of the hexagonal operators for which all possible resonances of order
3 exist. In Section 3.3, we study this class in detail when N =4.

Finally, at the end of the section, we study the structure of resonances
for the linearized operator of a quasilinear system, with special emphasis
on the example of gas dynamics.

3.1. The Spaces S of resonances

Assume that we are given a finite number of two by two transverse C™
vector fields X,, n=1, .., N, in ©, an open, connected subset of R We
also suppose that the differential operator

X,
L(t, x;0,;0,)=
Xy

is strictly hyperbolic, the first coordinate ¢ of R? being timelike.

DeFiNiTION 3.1.1. A resonance for L is any element (s, s,, .., Sy)€
(C=(2)/R)" solution in 2 of the system

N (3.1.1)
Y ds,=0.

n=1

The order of a nontrivial resonance (s, s5, ..., §5) is the number of non-
trivial phase functions that it contains. This order is strict if the resonance
is not a linear combination of resonances of smaller order. Recall that the
order of a nontrivial resonance is at least 3. The space of all resonances for
L is denoted by S(Q).

Remarks. (1) As was shown in [JR1, JR3], the overdetermined
system (3.1.1) is elliptic so distribution solutions to (3.1.1) are C* or real
analytic according to the regularity of the coefficients of L.

(2) The space S does not depend on the X, but rather on the
foliations defined by the characteristic curves of the X,.

Let us introduce some notations. For short drop £ and write S
for S(2). Denote by S, the image of § by =, the nth projector:
$=(54, 582, ., Sy)—+5,. The spaces S and S, :={0}""'x§,x {0} " are
linear subspaces of §; x -+ xSy.
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Regarding the way L propagates oscillations, the choice of the phase
space @=5,x --- x8y is kind of canonical. The space @ contains all
possible resonance relations for L. Nonlinear interactions occur for phases
only to the extent that the corresponding space intersect @. Thus it is
natural to discuss the closure and the transversality properties of
Section 2.3 for @&. In that setting we observe that (w7 ) is automatically
satisfied if L is real analytic while the stronger property (7 ) is not satisfied
in general. When it holds, it relies on deeper properties of L (see
Section 3.4). The closure property is automatic.

PROPOSITION 3.1.2. The space ®=S5,x% -+ xSy is closed in the sense
that it satisfies property (€) of Section 2.3.

Proof. We must show that ¥ §,n {u; X,u=0}cS,, the converse
inclusion being clear. So let (s;,5,,..,5y)€S; X --- xS, satisfy
X, (3 s,)=0. We must show that Y s, belong to S,. Setting 6=3%,..,5,
this reads (s, ..., —0, .., 5y)€S with ¢ in the kth slot. Thus ¢ and also
g+5,=2 s, belong to S,.

Remark. In fact is still closed any product &, x .-+ x @, such that
&, oS8, fork=1,..,N.

Lemma 2.5.2 shows that the transversality of the fields X, implies that
(S,,+S,)nS={0}. Thus S is a linear subspace of S,x --- xS, which
satisfies the two antagonistic conditions

n(S)=S,<>S5*AS,={0}, ~n=1...N (3.1.2)
Sn(S,+S,)={0}, mn=1---N. (3.1.3)

Let r, r, denote the dimensions of S, S,, respectively, and s' = (s}, ..., s§), .-
s’ =(s7, .., s’y) be a basis of S. Given a basis of each S,, denote by 9, the
matrix whose ith line describes the coordinates of 5% in S, and by 9 the matrix

D=[D, .. Dr] (3.14)

The rank of 9 is r, the rank of 9, is r, and (3.1.3) implies that the rank

of D, =090 Dicis 0, Divrsos D21, 0, D41, -, D] is also s for all
i, /. This follows from

ImP,+ImP,c Y ImY,=Im9YP,, (3.1.5)

ki

which is implied by Lemma 2.5.2. In fact, m, ;(S*)=S,+ S, implies that
for every a,, a; there exist o,k # i, j, such that

Z ‘Dnan=0'

580/114:1-10
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Choose in @, the dual basis of the basis of S, and denote coordinates in
@, by 0,=(0,,..,0,). Fix the operator E, as defined by (2.6.1) with
V=¥, and

‘[In={(0k)k=l,...,1v; 6,=0, Z ‘Dkﬂk=0}. (3.1.6)

k#n

DeFmNiTiON 3.1.3. Two systems L and L’ are resonantly equivalent (r.e.)
if there exists a linear isomorphism

T8/ x - - xSy->8x - xSy (3.1.7)
which, after relabelling if necessary, satisfies
(s,)=S5, n=1---N
T(S)="5"

(3.1.8)

Remark 3.14. (1) Itis not hard to show that r-equivalence is charac-
terised by the usual equivalence of the N-tuple of matrices 9, in (3.1.4)
under change of basis in the N domain spaces and the target space.
Precisely, L and L’ are r.e. if and only if there exist invertible matrices U,
V, such that

9,=UD,V,, 1<n<N

(2) Averaging operators E, defined by (3.1.6) and & =5, x --- xSy
are T-intertwined transformations for equivalent L’s. Just use the linear
change of @-variables induced by T on the space of almost-periodic
functions.

(3) Linear properties of strict resonances are preserved under r.e.

(4) A common equivalence of operators uses the following operators:
linear change of dependent variables which may depend smoothly on ¢, x;
change of independent variables; multiplication of L on the left by a
smooth invertible matrix valued function; permutation of the rows. This
relation corresponds to the equivalence of the unordered foliations
generated by the X, under diffeomorphisms in the ¢, x space. This is the
standard equivalence in the theory of webs in differential geometry.
Equivalence of webs implies r-equivalence and not conversely. For
example, two 3-webs without resonances are r.e. However, generically, two
such webs are not equivalent in the strong sense. Equivalence in the strong
sense above will be called strong equivalence (s.e.).

(5) Property () is invariant under s.e. but not under r.e.

(6) The two equivalence relations are not the same. For example
consider two 3-webs without resonance, one satisfying (7 ), the other not.
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An example with resonance can be constructed as follows. Take a 3-web
with one resonance. Add a fourth foliotion which creates no new resonance.
The validity of () depends on the choice of the fourth field. In summary,
when there are few resonance, r.e. is a weak relation and the corresponding
equivalence classes are large. On the other hand, when the resonance
relations are very rich the opposite is true. In Section 3.3 we give examples
of 4 x 4 systems for which r.e. implies s.e.

The next result shows that the space of all resonances is finite dimen-
sional and gives an explicit upper bound for the dimension. In the case of
real analytic vector fields, this result was proved by Poincar¢ [P, BB] as
part of the theory of webs. Our proof is in the C* category.

THEOREM 3.1.5. The space S of resonances has dimension not greater
than (N —1)(N —2)/2.

Proof. Let us write X,=0,+4,(1,x) 8., dividing, if necessary, the
vector field by a nonzero C™ function. The N functions A, are real, C*
in  and satisfy A,(f, x)# 4,(t, x), (t, x)e 2, m#n. The system defining
s=(s,}e(C™)" is a N+2 by N system, so we have to look at com-
patibility conditions. For a solution s of (3.1.1), J, =3 s, is constant, thus
2,Jo=0. Using the first N equations, we obtain the new condition J, =
> 4,0.5,=0. We continue the process, differentiating J,, k=1, .. with
respect to ¢ and replacing each ¢é,s, by —4,38.s, to obtain J,,,. We thus
obtain an infinite sequence of ordinary differential equations for s=(s,)
with respect to the single variable x, the time ¢ being viewed as a
parameter. The kth equation J, =0 is of order k and its leading term has
the form ¥ A%0%s,. Thus the N equations 6%~ '~ *J, =0, k=0,.., N1,
are solvable in the highest order terms 0% ~'s, the corresponding coefficient
being the Vandermonde matrix

T .. 1
Ay e Ay (3.1.9)
vafl AN

which is everywhere invertible because of the property of 4,. This new
system, which the resonance s should verify, has at most N(N — 1) linearly
independent solutions, but in order to obtain it we differentiated J, N — 1
times, ..., J,_, 1 time. Since J, is not zero but a constant this shows that
our initial system possesses at most

NN=1)—(142+ - +N—1)+1

linearly independant solutions s. Now, phases are considered only modulo
the constants, we have to substract N to obtain the final result.
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Remarks. (1) We found only an upper bound for the dimension of §
because we have not taken into account an infinite number of compatibility
conditions, namely J,=0, for n> N. Nevertheless, the upper bound is
sharp. It is achieved for all N as the following proposition shows.

(2) For an approach of the theory of webs which uses systems of
partial differential equations, see [H].

PROPOSITION 3.1.6. The space S corresponding to an N x N constant
coefficient operator has dimension (N —1)(N —2)/2.

Proof. Since the speeds 4, do not depend on ¢, x the computations in
the proof of Theorem 3.1.5 gives

N
J,=Y irdns,=0, nx0. (3.1.10)
k=1

Differentiating yields the homogeneous system of equations 8% '~ "J,=0
which has only the zero solution. We thus obtain 37~ 's, =0, I<k<N
and since s, is actually a function of x — 4, ¢, this proves that this function
is a polynomial of degree less than or equal to N — 2,

sty X) = Po(x — Ay t). (3.1.11)

Neglecting the constants, we write P, (()=Y""?a, " For a resonance
one has, 3 §,=2,,a,(x—4,)"=0. Setting the coefficients of this
polynomial equal to zero yields a system of equations for a,, ;

Ya,=0

ZAkaLk:O (3.1.12)
Y a,, =0

Y Aeds, =0 (3.1.13)
Y /l,fazy,(‘ =0
Yay 24=0
Y Aray 2,=0

(3.1.14)

Z AlyizaNizvk:O.
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The set of the solutions of the first system (3.1.12) describes the third-order
resonances which span a N—2 dimensional linear space. The succeeding
systems yield resonance space " of decreasing dimension spanned by
resonances of increasing strict order up to the last system (3.1.14) which
gives a strict Nth-order resonance. We obtain for S the direct decomposi-
tion

=S*@pcie - @V (3.1.15)

It foliows that S has dimension 1+2+ .- + N—-2=(N—1)(N—-2)/2,
which is maximum according to Theorem 3.1.5.

Remark. Note that in the above example strict nth-order resonances
involve oscillations with polynomial phases of degree n —2 and that these
resonances occur for any subset of # modes among the N.

Next we examine in more detail the space of phases and averaging
operators for this example of constant coefficient.
Denote by @7, ., 1<p<N-2, 1<n<N, the subspace of
homogeneous polynomials of degree p in the variable x — 4.t and by &7,
1<p<N-2,1<n<N, the space 34 _, D%, .

The space &7 has dimension 1, while @7 has dimension p.

Define

n,hom

PP=PIx ... x DL, [resp. ®f  =PF o x - xDPL ]

hom

Then &7 and &7

f m Clearly satisfy the closure property (%) of Section 2.3.
Note that

Bl NS=C"*2

PrNnS=3’@0S'® - S,

and that in @{ . all resonances have order greater than p + 2.
Choose the basis in @7 and &7, = formed by the monomials in x — 2,1t

and the dual basis for the corresponding @,. With the notations of
Section 2, we have

ProrosiTiON 3.1.7. The space W, corresponding to ®f, . is spanned by
the p independent vectors

(}‘k_j'l7“" A"k—;'N) (3.1-16)1

({(Ae—A0)7 s (A —2x)7) (3.1.16),
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The associated averaging operator is

(EFNO)=VT7 | o[ FOu+ (=)o, + -

+ (A=A Tps s O+ (A —ApN) T+ -
+ (A — ANV 1) dry - dt,. (3.1.17)
The space ¥, corresponding to ®” is the direct sum of the ¥,’s corre-

sponding to the homogeneous components @7, of ®F and E, the product
of the E.’s corresponding to the same homogeneous components.

3.2. Third Order Resonances

For N=3, Theorem 3.1.5 gives dim S< 1. The following examples show
that dimensions zero and one both occur.

ExampLE 32.1. X,=0,+0,, X,=0,—0,, X;=20, have the resonances
R(x—t, x+1t, —2x).

ExampLE 322, X,=0,+d,, X,=0,+x0,, X,=0, have outside
{x =0}, the resonances

R(x—t¢ Log|x]—t x—Log|x])

More generally, X, =48,+ A(x)d,, X>=0,+ u(x) d,, X;=20, have outside
the zeros of 4, u the resonances

R(—[ ady+n [ wdy—e | (=i dy).
0 0 0

ExampLE 323, X, =0,+x0,, X,=0,—xd,, X;=28,+ad, is a case in
which for a#0 no nontrivial resonance exists. For this system with
arbitrary nonlinear coupling terms, high frequency oscillating waves
propagate as in the linear case.

These examples show that

(1) Oscillations do not propagate as singularitics. Anomalous
singularities are produced for all L. Analogous oscillations are produced
only when resonances exist.

(2) The difference depends only on the principal part of the operator
which is linear.

The presence or absence of resonance is a property which is far from
obvious. It is equivalent to the existence of so-called abelian relations on
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the web, defined by the three foliations I, given by the integral curves of
the fields X, [BB].
We next describe the geometric property of the three fields or rather the
associated foliations which corresponds to the existence of a resonance.
Suppose that, as in Example 3.2.1, there is a resonance which is defined
by the relation

S3=5;+5,,

where the modification of the sign of s, is introduced for the sake of
simplicity.

We first show that s,, s, define new local coordinates in 2. Since
ds; e Char(X,) it suffices to show that ds, never vanishes in Q. Suppose for
instance that ds, vanishes at some point in Q. Applying X; to the
resonance relation leads to X;s, =0 at the same point, from which follows
that the three differentials always vanish together. In the proof of
Theorem 3.1.5 we showed that v :=¢d.(s,, 5,, 55} satisfy a first order linear
system of ordinary differential equations. This implies that v is identically
zero and thus that the s; are constant, a contradiction.

In the new coordinates, the three foliations are straightened, becoming
three pencils of parallel straight lines s,=const, s,=const. and
§y + 5, =const.

To the hexagonal figure drawn in the s,, s, coordinates corresponds a
curvilinear hexagon in the original coordinates (7, x), see Fig. 4. The lines
leaving O as well as the sides of the hexagon are integral curves of the
vector fields. Draw a curve as follows: Begin with the three characteristics
through O and a point 4 on one of them; starting at A4, turn around O
along six arcs of orbits of the three vector fields. If a resonance exists,
the curve sketched will return to A4, a property which is clear in the

8 D

sl x

Fi16. 4. The hexagonal closure property.



150 JOLY, METIVIER, AND RAUCH

s-coordinates. Conversely, it is a famous result of Thomsen [BB] that this
property, called the hexagonal closure property when it is satisfied for any
couple of points 4, B such that the above hexagonal picture lies in @,
insures there exists a resonance.

We will call hexagonal a 3 x3 operator whose characteristic web sat-
isfy the hexagonal closure property. Thomsen’s result may be settled as
follows.

PROPOSITION 3.2.4. For three vector fields to be resonant in an open set
Q, it is necessary and sufficient that they satisfy the hexagonal closure
property in §2.

Regarding resonance, the 3 x 3 operators are easy to classify.

PROPOSITION 3.2.5. There are two classes of 3 x3 resonantly equivalent
operators: the hexagonal class and the nonhexagonal class. Moreover all
hexagonal operators are strongly equivalent.

Proof. Let s,eS8,, n=1,2,3 define the third-order resonance
$;+35,+5;=0 of an hexagonal operator. Choosing s,, s, as new
coordinates shows that this operator is strongly equivalent to the constant
coefficient operator defined by é,,, ¢,, ¢,,+¢,. On the other hand, two
nonhexagonal operators are obviously resonantly equivalent, since their
resonant spaces are both trivial.

COROLLARY 3.2.6. L is a 3x3 hexagonal operator if and only if there
exist never vanishing C* functions a,(t, x) such that the vector fields a; X,
i=1,2,3 commute.

Proof. The result is a consequence of Proposition 3.2.5. It follows
from the strong equivalence of a 3 x3 hexagonal operator with a con-
stant coefficient operator, which clearly satisfies the property of the
corollary.

Remark. Two nonhexagonal operators are in general not strongly
equivalent. The properties of the curvature of a 3-web will make this clear
in Section 3.4. An operator with positive curvature cannot be s.e. to an
operator with negative curvature.

Before ending this section let us examine the transversality properties of
the phase space & =S, xS, xS, for a 3 x 3 hexagonal operator L.

PROPERTIES 3.2.7. The space ®=3S,xS,x S,y associated to a 3x3
hexagonal operator L satisfies the coherence assumption, hence the strong
transversality property (7).
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Proof. Properties of coherence and transversality are invariant by s.e.
By Proposition 3.2.5, the result follows from the coherence of linear phases
as noted in Remark 2.3.1.

3.3. Hexagonal Operators for N=4

There exist N-webs with nontrivial resonance space and without third
order resonances. Here is an example with N =4. Let y, z be coordinates in
the plane. Then, the four foliations defined by the level curves of the func-
tions y, z, y*+ 2%+ yz, y>+ 2z + yz + y + z have this property. The sum of
the first three is equal to the fourth, which gives a fourth order resonance.
There are no third order resonance in this example. For example one can
compute that the curvature, defined in the next section, is nonzero for each
3-web.

On the other hand, the proof of Proposition 3.1.6 shows that for systems
with constant coefficients all possible third order resonances occur. More
generally we now consider those operators such that every triplet of
characteristic foliations possesses the hexagonal closure property.
Following Blaschke-Bol, such systems are called hexagonal. The following
result due to Mayrhofer, Reidemeister, Bol, and Blaschke (sce [BB, B])
describes all such webs.

THEOREM 3.3.1. When N # 35, an N x N operator is hexagonal if and only
if it is equivalent, in the strong sense, to an operator whose characteristic web
consists of N pencils of lines. If N=15 there is one more possibility discovered
by Bol, four pencils of lines and one pencil of hyperbolas.

In view of Proposition 3.2.5, we already know what happens for N =3.
All 3 x 3 hexagonal operators form one class for both r.e., and s.e.

Consider next the case of 4 x 4 hexagonal operators. We show that there
exists several different classes of resonantly equivalent 4 x4 hexagonal
operators and that the corresponding classification coincide with the
projective classification.

Theorem 3.3.1 shows that after a change of coordinates, the charac-
teristic web of a 4 x 4 hexagonal operator is four pencils of straight lines in
2. Taking this first reduction into account, the classes of hexagonal
operators will be shown to correspond to three different possibilities for the
location of the four vertices of the pencils, 4, B, C, D, as sketched in the
figure. We also use 4, B, C, D to denote the four different modes of the
operator instead of 1, 2, 3, 4. For instance S, replaces S,, etc. Lower case
a, b, c, .. denote the straight lines sketched in Fig. 5. We also denote by
a, b, ¢, ... the polynomials of degree one which define the straight lines by
the equations a=0, =0, ¢ =0, .... With this convention, the equations for
the pencils are easy to describe. For example, in Case 3 the pencil I”, with
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Case 1 Case 2

Fi16. 5. Hexagonal 4 x4 operators.

vertex A, which is the characteristic foliation of the mode A, is given by
a/d = const or a/e = const. or more generally F(a/d)= const. Hence a phase
belonging to S, is a function of the form f(a/d).

In Case 1, the four vertices lie on a line. In Case 2, one vertex lies outside
the line joining the three others. In Case 3, any line in the plane contains
at most two vertices.

The open set Q is chosen connected and included in the complement of
the union of the lines connecting the vertices.

THEOREM 3.3.2. Two 4 x4 hexagonal operators are r.e. if and only if they
are s.e. which here means projectively equivalent. Cases 2 and 3 both consist
of one s.e. class. In Case 1, there is an infinite number of classes and each
class is defined by the absolute value of the cross ratio of the vertices.

Proof. The proof follows from the description of the spaces S, S,, Sz,
S¢, Sp in the different cases. In each case we will find three linearly
independent resonances. Thus in each case S is of maximum dimension
equal to (4 —1)(4—-2)2=3.

Case 1. The straight lines a, b, ¢, d are parallel. The polynomials a, b,
¢, d can be chosen as polynomials of degree 1 in one variable. They span
a two dimensional space and their squares span a three dimensional space.
Thus there exist nontrivial «,, §,, 7, such that

o ale +a,ble +osc/e=0
Babje+ Bicle+ Badie=0 (3.3.1)

71a*/e? +y,b% e +y5¢’/e? +y,d° e = 0.
The first two relations in (3.3.1) define two relations in (3.3.1) define two
third-order resonances between the modes A, B, C, and B, C, D, respec-
tively. They are therefore linearly independent. Two other third-order

resonances, involving the mode C, D, 4 and D, A, B, C, are combinations
of the first two.
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The last relation in (3.3.1) is a strict resonance of order 4 between the
modes A4, B, C, D. It is independent of the first two.

In summary, the three resonances in (3.3.1) form a basis of the
3-dimensional space S. Furthermore, S admits the decomposition (3.1.15).
In fact, in Case 1, the operator is strongly equivalent to a constant
coeflicient operator. One just has to send the line & to the line at infinity
by a projective linear transformation.

Case 2. Since the lines a, b, ¢ intersect in a single point, the
corresponding polynomials are linearly dependent. Suppose that a, b, ¢ are
normalized so that a+ b+ ¢ =0. Then we obtain a first resonance

ald+bld+ c/d=0. (33.2)

Two others are derived by using the two relations a/d-d/b-bj/a=1 and
b/d-dfc-c¢/b=1, which are linearized by taking the Log. This yields

Log |a/d| + Log |d/b| + Log |b/a| =0
Log |b/d] + Log |d/c| + Log |¢/b] =0.

(3.3.3)

The three relations in (3.3.2) (3.3.3) are independent, thus forming a basis
of S.

Since this basis consits of only third-order resonances, we have proven
that no strict fourth-order resonance is present in Case 2, in contrast to
Case 1. We note that among the 4 third-order resonances, 3 of them, the
log-one relating the mode D to any two of the three others A4, B, C, span
a two-dimensional space. The last one, relating 4, B, C, does not lie in that
space.

In other words, in Case 2, the four third-order resonance are not in
general position. This does not seem unreasonable given the location of the
vertices 4, B, C, D in the plane.

Case 3. As above we obtain a Log resonance for each triangle. In this
case there are enough triangles so that these relations span the resonance
space S. We may choose the basis

Log |e/a| + Log |a/b| + Log |b/e| =0
Log | f7b| + Log |b/c| + Log |c/f1 =0 (3.34)
Log |e/c| + Log |c/d| + Log |dfe| =0,

thus proving the absence of strict fourth-order resonance and the general

position of the four third-order resonances, one for each triplet of
foliations.
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In summary, the different cases correspond to different r.e. classes. (see
Remark 3.1.2).

Moreover, Cases 2 and 3 both consist of one s.e. class since in each case
any set of four vertices is mapped onto any other set of four vertices by a
projective linear transformation which respects the pencils.

It remains to examine Case 1. By s.e. we may suppose X, =4,+ 4,0,,
with constant 4,. In view of the description of the constant coefficient case
in Section 3.1, the r.e. class is determined by the equivalence class of the
matrices as defined in part 1 of Remark 3.1.4. The matrices are

’_}.2_/13 O—

Y, = 0 0 (3.3.9)
L 0 o |
i,—2, 0]

Dy=|4A3—4, O (3.3.6)
| 0 o, |
[, -7, 0]

Di=|Aa—4; 0O (3.3.7)
| 0 o3 |
0 0]

D= 2—4, 0| (3.3.8)
L 0 %a_]

By right-multiplying 9,9,, we obtain any pairs of matrices of the same
form. For 9,, 9,, the equivalence leads to matrices 95, U, of the same
form, but such that the cross ratios of their coefficients satisfy [(4], 45, 43,
A =1(4y, 43, 43, 44). This last property is the condition saying the
corresponding two webs of four pencils of straight lines are projectively
equivalent.

We end this section by checking the transversality properties of the space
D=S5,xSgxS-x Sy for 4 x4 hexagonal operators.

THEOREM 3.3.3.  The space @ satisfies (w— 7). It satisfies (7)) if and
only if the hexagonal operator is equivalent to Cases 2 or 3.

Proof. As (7)) is preserved under s.e., it is enough to consider operators
of Cases 1-3 of Theorem 3.3.2. In those case weak transversality is a
consequence of real analyticity. We next consider strong transversality.

Case 1 Does Not Satisfy (7 ) Take the three vector fields of
Example 3.2.1 for three of the four constant coefficient vector fields. The
combination of phases (x+ t)? — (x — t)? = 4x¢ does not belong to any S,
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but is constant on {x=0} which is a characteristic curve of 4,. On the
other hand, (w") follows by analiticity.

Case 2 Satisfies (7). Set s(A)=Y A,s, with s,eS,n=A4, B, C, D. Tt
suffices to check the transversality properties relative to the points A, D,
the arguments for B, C being the same as for 4. We must show that if s(4)
is not in S, (resp. in S,) then its restrictions to lines of the A4 (resp. D)
pencil are never constant. We will do this in two steps. First, using the
resonances, we will eliminate terms in s(A), and this modulo @ , since these
functions are constant on the A-foliation. This will reduce the problem to
considering combinations of three instead of six independent functions.
Then a simple study of the singularities of this reduced function will end
the proof.

A-transversality. Using (3.3.7) (3.3.8) we can reduce s(41) to a combina-
tion of the three functions b/d, Log |b/d|, Log |c/d|. The restriction of this
new s(A) to any line m of the A-pencil is smooth at all point of
m\(bu cu d) the singular set consisting of at most three points. If s(4) is
constant in a nonvoid connected open set of m\(bu c U d), by uniqueness
of the analytic continuation of s(4),,,, s(4),,, is constant on each connected
component of its domain. As m always crosses either b or ¢ and s(4) has
only the corresponding Log as singular component near the intersection
point, this term is necessarily zero. The result follows since s(4) is now
reduced to b/d and the remaining Log(-/d) term.

D-transversality. s(4) can be reduced to a combination of b/d, c/d,
Log |b/d| modulo @,,. Since any m of the D-pencil crosses b, the Log |b/d]|
must not appear in s(4). Since &/c is constant on m, s(4) is proportional to
¢/d on m. As s(1) is also constant on m. The result follows.

Case 3 Satisfies (7). The proof resembles the above case. It is even
quicker. It is enough to check the X ,-tranversality. First, the elimination
step yields a reduced s(4), combination of Log |b/c|, Log |¢/f|, Log |c/d|.
Since any A-line crosses at least two of the lines b, ¢, f, this shows two out
of the three terms are not present and thus ends the proof.

3.4. Resonance for Systems of Conservation Laws

If u, is a smooth solution of the quasilinear system,
Oug+ A(ug) €,uy=0, 34.1)

e-small perturbations are governed by the equation, whose principal part is
the operator,

0,4+ A(uy) 0. (3.4.2)
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The resonances for ¢-small oscillations are those determined by this linear
operator.

What does (3.4.1) imply regarding the structure of the resonances for
(3.4.2)? If u, is a general wave, that is, if the values of u, describe locally
an open set of a two-dimensional surface in R”, then one expects for (3.4.2)
nothing simpler than a general operator with smooth variable coefficients.
On the other hand, if u, is a simple wave which means that the range of
U, 18 a curve, (3.4.2) inherits strong properties from (3.4.1). We will see that
resonance depends heavily on the properties of the eigenvalue associated
with the simple wave. If the simple wave is linearly degenerate then every
third-order resonance whose support contains the mode of the simple wave
is possible. If, on the other hand, the simple wave is genuinely nonlinear,
resonance does not occur unless an extra condition is satisfied. For the case
of gas dynamics, the simple wave must be centered.

Before giving precise statements, we need another characterisation of
third-order resonance due to Blaschke-Bol [BB]. Let 6,, n=1, 2, 3 denote
never vanishing differential forms of degree one, each of them annihilating
the corresponding vector field X, i.e. {o,(t, x), X, (¢, x)> =0, for (t, x) e 2.
Since any two of the forms is a basis we may assume that the forms are
normalized so that

Yo,=0. (3.4.3)

For convenience, we assume that summations are taken over Z/37. Define
the two-form t by

T=0,A0,,,- (3.4.4)

Then 7#0 and (3.4.3) implies that it is independent of n. Define 4, C~
and the one-form y by

do,=h,t (3.4.5)
y=hn+lon_hnan+l’ (346)

where 7 is independent of n by (3.4.3). Finally ke C™ is defined by
dy =kt (3.4.7)

Blaschke calls & the curvature of the 3-web (17, n=1, 2, 3).

To understand the geometrical meaning of the curvature, first note that,
once the o, are chosen, k is invariant under change of independent
variables and permutation of the indices. However multiplying the a,’s by
a nonzero C* factor does change k. In fact, if 6, =2 -5, e C™\ {0} then
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9" =7y —d(1/a) and therefore k' = k/a®. This is an easy computation if one
introduces the new vector fields D,e C* - X, defined by

dszn+lf'Gn_an'6n+l7 fECI (348)

Thus the sign and the zeros of the curvature are geometric properties of a
3-web. The D, verify the interesting commutation relation

[(D,,D]=hD,—h,D,. (3.4.9)
With these notations, Blaschke—Bol prove

ProOPOSITION 3.4.1. The 3-web (I, n=1, 2, 3} has the hexagonal closure
property if and only if its curvature is zero.

Proof. Suppose first that there exist (s,) solutions of (3.1.1). We may
choose o, =ds, because we have shown in Section 3.2 that these differen-
tials never vanish. With this choice, 4,=0, y=0, k=0, and the D,
commute. Conversely, if k=0, there exists ge C* with y=dg. Now,
dle %c,)=e ®(ds,—y A 6,)=0 so that the s,, defined up to a constant
by ds,=eég) - o,, are solutions of (3.1.1).

We write this result in another form, using the notation
X,=0,+4,0,. (3.4.10)

As 4> =T (4,— 2., ) is never zero, we may define K, = (4, ,, —4,.,)/4.
Then, 3 K,= 4,K,=0so

6,=K,(dx— 4, dr) (3.4.11)
satisfies (3.4.3). With this choice, we have
t=Addx A dl, (3.4.12)
and
h,=—Z,(K,)/4, (3.4.13)

where Z.(u):=0,u+é(Au)=X,u+(3,4,)-w. Thus the curvature
vanishes if and only if the following identity holds.

COROLLARY 3.4.2. The hexagonal closure property is equivalent to
Zn+ l(Zn(Kn) Kn+ 1 /A) = le(Zh’+ I(Kn +1 ) KII/A) (34 14)

Jor some {and therefore all) ne {1, 2, 3}.
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As a first example, consider the linearization of a general quasilinear
system at a k-simple wave when the mode k is linearly degenerate.

THEOREM 3.4.3. Suppose u is a k-simple wave solution of the Nx N
hyperbolic quasilinear system

Cu+Au)d .u=0 (3.4.15)

and assume the mode k is linearly degenerate. Let T,(u) denote the web
associated with the characteristic fields ¢,+ A,(u) ¢ . of the modes ne J. Then

(1) T,,.(u) is hexagonal for every i, j.

(2) 0,4+ A(u)d, is resonantly equivalent to a constant coefficient
operator if and only if for every m, n, p different from k there exist constants
o, f with a+ =1, such that

V(A = Ay =0/(hy — 2i) + B/(A, — Ai). (3.4.16)

Proof. (1) Since the mode k is linearly degenerate, A,(u) is constant,
A (w)=4,. The wave u satisfies u= U(x — A,1), thus 4,, K,,, 4, as well as
their derivatives with respect to ¢, x, which enter in formula (3.4.14), are
functions of x—4,t. Since Z, =X, and therefore Z,(K,)=0, property
(3.4.14) is equivalent to X (Z,K,)K,/4)=0, which satisfied since the
functions inside the parentheses depend only on x — 4,¢. The result follows
from Corollary 3.4.2.

The hexagonal closure property provides another short proof of the
above fact. After a linear change of independent variables, we may suppose
that i, =0. Denoting by (¢, x) the new independent variables, U depends
only on x, U= U(x). The result now follows from the fact that the vector
field @, together with any two autonomous (that is independent of ¢) vector
fields, satisfy the hexagonal closure property. Indeed, drawing the picture
as in Example 1, it is readily seen that the two curvilinear quadrilateral A4,
B, C, D and C, E, G, F coincide up to the time shift BE. We can also refer
to Example 3.2.2.

(2) Assume A,=0. Consider J={k, 1,2}. We know by 1 a
resonance exists. The corresponding phases are (see Example 3.2.2)

<p,.=U(1/,1,.(y))dy]—z, i=1,2 (3.4.17)

0= (3, —1/32) dy. (3:4.18)

They yield the resonance ¢, =@, — ¢,. Now, for (3.4.15) to be equivalent
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to a constant coefficient system it is necessary that all the phases ¢, given
by (3.4.18) for different pair of indices are equal up to a multiplicative
constant. This follows from the structure of the space of resonances as
described in the proof of Proposition 3.1.4. Thus for every n # k there must
exist constants «,, f§,, such that for every ye R

Vi,(y)=a,/A(y)+ Ba/Aa(y),  a,+B,=1, n#k (34.19)

That this condition is also sufficient is readily seen taking any pair of
phases as new coordinates in R Choosing for instance ¢,, ¢,, (3.4.19)
provides the relations

0, =a,¢0,+P,0,, n#k (3.4.20)
and using (3.4.18),

Pr=¢— @, (3.4.21)

Thus in the new coordinates the characteristic web is N pencils of parallel
straight lines, and, the phases are homogeneous polynomials of degree
one.

Returning to the original coordinates the condition in (2) is just (3.4.19),
where each A, is replaced by 4, — 4,.

Remark. It would be interesting to have a condition guaranteeing that
T, ,.(u) is hexagonal for every i,j, I This is less stringent than being
equivalent to a constant coefficient operator.

We examine next the resonance properties of the linearization at a
genuinely nonlinear simple wave. We will not consider the general case
but restrict ourselves to the example of the Euler equations of gas
dynamics. These are the conservation laws for mass, momentum, and
energy. When viscosity, body forces, and heat conduction are neglected
and the gas is assumed in thermodynamic equilibrium, this system may be
written as

op+ ax(PH) =0
dlpu)+ 0 (pu*+p)=0 (3.4.22)
d(pe+1/2pu) + 8 (peu + 1/2pu” + pu) = 0.

In these equations, p is the mass density, u the flow velocity, p the pressure,
and e =e(p, p) the internal energy density.
Introducing the entropy S by

T dS = de + pd(1/p), (3.4.23)

580:114:1-11
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where T denote the temperature, the system (3.4.22) is equivalent, for
smooth solutions, to the system

X.p+pdu=0
Xu+(1/p)o. p=0 (3.4.24)
X,5=0.

Here X,=0,+ u(t, x) 3. denotes the time derivative following individual
particles. Expressing p=p(p,S), the sound speed ¢ is given by
¢*=(0,Pp)s—cu- Note that the three vector fields, associated with the
operator (3.4.1) (with u, replaced by (u, p, S) solution of (3.4.22) or
(3.4.24)), may be defined, with obvious notations, as X, X, .., X, . the
three characteristic speeds being equal to u, u + ¢, u — ¢. The corresponding
foliations are denoted by I, I',, ., '+ ._..

We next examine whether a solution (v, p, S), of (3.4.24), gives rise to a
resonance. Using (3.4.14), it is readily seen that the web (7, I, ., I, .)
is hexagonal if and only if the following condition is fulfilled

Z,, 2 e)=2Z(Z,, (1)1/c) (3.4.25)
which, after elimination reads
02u=0,0, Log(c)+ 0. .(ud, Log(c)). (3.4.26)

Summarizing, a solution gives rise to a resonance if and only if it satisfies
(3.4.26). Together with the Euler equations, this forms an overdetermined
system, reflecting the fact that generically resonances do not occur.

After integration with respect to x (3.4.26) yields,

ou=(X,c)c+ f(1), (3.4.27)

where f is an arbitrary function of t.
Let us consider first the particular case f =0 in (3.4.27). It corresponds
to the commutation property of the three fields.

ProrosiTiION 3.44. Let (u, p, S) be a solution of (3.4.24) and assume the
gas law satisfies 20, p + p@f, p>0. Then the three vector fields X,, X, . .,
X, _ . pairwise commute if and only if the flow u is volume preserving ie.
satisfies 0, ,.u=0. In that case, the operator (3.4.2) is hexagonal.

Proof. Straightforward computations show that the three characteristic
fields commute if and only if X,c—cd,u=0, that is if the solution of
(3.4.24) satisfies (3.4.27) with f=0.
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Using (3.4.24) and the gas law, we obtain
X, c—cbu=—2c)"" (20, p+ p&f, p)é. u (3.4.28)

from which the result follows.

Flows with J0.u=0 are very special. They satisfy X,p=X,c=0,
X [0,.p)=20.X,p=0. Thus applying X, to the second equation in (3.4.24):
¢u+(1/p)d.p=0, we obtain X,0,u=03’u=0 Hence the volume
preserving flows are those which satisfy

u(t, x)y=at+ f, a feR. (3.4.29)

Remark. A general volume-preserving flow is not a simple wave. Note
however that a=0 corresponds to a solution which is a simple wave
propagating with the constant speed u = f, the speed of the mode which is
linearly degenerate. This is consistent with the previous result about
linearly degenerate simple waves.

We next examine if threre exist, for an ideal gas, genuinely nonlinear
simple waves that give rise to resonance. Consider waves with speed 1 + ¢.
Then the simple waves satisfy (see [S])

S(t, x)=« (3.4.30)

u(t, x)— c(t,x)=4 (3.4.31)

-1
with constants a, f, since (3.4.33) and (3.4.34) are the two Riemann
invariants associated with the mode u+c¢. To determine u there is one
more equation

1
a,u+( Y ) =0 (34.32)

which says that the values of u are constant along the characteristic curves
with speed w+c=u(y+1)/2— B(y — 1)/2. These characteristic curves are
therefore straight lines.

The resonance condition (3.427) and Egs. (3.4.31), (3.4.32), together
imply that the characteristic lines form a pencil. In fact, setting
Y:=0,+ 0., (3.427), (3.4.31) leads to

(Yu)/(u—pB)+ f(t)=0 (3.4.33)
so

¢ (Y(Log(u—p)))=0. (3.4.34)
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Since [ Y, 0,]1=0, (3.4.34) gives
u—p=A(x— pt)/B(t). (3.4.35)

LeMMA 3.4.5. If the level sets of a function u(t, x} = A(x)/B(t) are locally
straight lines in a simply connected open set, they necessarily belong to one
of the three pencils

{x=const.} or {t=const.} or {(x—a)/(t—b)=const.}. (3.4.36)

Proof. At least one of the functions 4 or B is not constant, since
otherwise u would be constant.

First assume that 4’ is nonzero in an open set crossed by level lines
given by A(x)=hB(t) for h a constant. The constant A4 varies in a
neighbourhood of a fixed value, which, normalizing A4 if necessary may be
taken equal to 1. Solving these equations for x, yields straight lines by
assumption. The lines have equations x=a,t+ f,, with a,#0 if B is
nonzero. Denoting by o and f§ the values of «, and 8, for A=1, we
may eliminate B to obtain a functional equation for 4 which reads
A(a,t+ ) =hA(at + B). It follows that

(apt+Br—ot—PB) " (At + ) — A(ar + B))
= A(at + B)h— D)j((a, — 2) 1+ B, — B) (3.4.37)

and, after taking the limit 4 — 1
A'(at+ B)=A(xt + B)/ (o't + B'). (3.4.38)

We have thus proved that A(x)=y|x—al?, B(¢t)=46|t— b|?, with real
constants a, b, p, y, 8. Therefore the level lines belong to a pencil of straight
lines with vertex (a, b). The other cases are left to the reader.

Return to the analysis of (3.4.35). First, if du =0, that is d4 = dB =0, the
wave is a constant state and the corresponding characteristic web consists
of pencils of parallel straight lines as in Example 3.2.1. The resonant phases
are polynomials of degree 1. Now assume du # 0. Applying Lemma 3.4.5 to
(3.4.35 with a linear change of variables that respect pencils, we see that the
characteristic curves of the simple wave satisfy either

x — fit =const. (3.4.39)

or
(x—a)/(t—b)=const. (3.4.40)

because finite speed of propagation excludes the possibility 7 = const.
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In case (3.4.39) holds, we obtain u + ¢ = f, which combined with (3.4.31),
yields ¢ =0. This case is excluded since we assumed du 0. Only the case
(3.4.40) remains. In particular the wave is centered. After a translation, we
may assume a= b =0 and choose y = x/t, s=Log |t| as new coordinates to
obtain for the three characteristic foliations

I, . dyds=0 (3.4.41)
Fodyfds=(y+1)"" (1=y)(y—B) (3.4.42)
C,_.dyfds=2(y+1)" (1 —y)y—B) (3.4.43)

The change of variables z=Log | y — f] straightens the three foliations into
pencils of parallel lines which satisfy the hexagonal closure property. Thus
we have shown there exist an infinite family of genuinely nonlinear
(u + ¢) —simple waves leading to a resonance. They depend upon the four
real parameters a, b, a, f. The corresponding resonant phases are easily
computed using the preceding changes of variables. A similar family exists
for the mode u —¢. We thus have proved

THEOREM 3.4.6. The (u+ c)-simple waves that lead to resonance are
centered. They satisfy

S=a, u—2c/(y—1)=4, u+c=(x—a)/(t—»b) (3.444)

for some constants a, b, o, B.
The corresponding resonant phases are

|x — a
@ =L —
u+c og<|t b‘ ﬁ)’

|x —al e
=L — — b -+
o og{(lt—bl ﬁ)“ | }

Q, = Log {(%%ba_ll— ﬁ) lt_b|2h" 1)/(y + 1)}‘ (3.4.46)

(3.4.45)

Remark. On the line |x—al/lt—b|=p we obtain ¢=0, because of
(3.4.31) and (3.4.44). The singularity that appears in (3.4.45), (3.4.46), is
due to the presence of a vacuum.

4. ALMosT-PERIODIC FUNCTIONS

We present in this paragraph some properties of almost-periodic func-
tions which are needed in the proofs of the main theorems. After some
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elementary facts in 4.1, we state in Section 4.2 an important regularity
result called the sum law for the averaging operators. Section 4.3 contains
some lemmas peculiar to third-order resonance. The nonstationary phase
lemma which is the keystone of the averaging method, is presented in
Section 4.4. Section 4.5 contains the proof of Theorem 2.10.5.

4.1. Algebras of Almost-Periodic Functions

Let ¥ be a finite dimensional real vector space and let @2/,(‘1’) denote
the space of almost-periodic functions, that is the Banach subspace of
L*(¥) generated by the exponentials ¢*?> for e ¥, Ae ¥*. Recall that
we denote by Cgp( %) the subspace of real valued functions.

To each m-dimensional subspace V< ¥ we associate the V-averaging
operator E, € 3(62,,( ¥)) defined by (2.6.1). If £, , denotes the operator
on the right hand side of (2.6.1), then E, , has norm | in Z(L™(¥)) and
it converges pointwise in L*(¥) (see (2.6.2)) on the dense subset of
trigonometric polynomials. Thus (2.6.1) defines E, as the limit of E, , in
the strong operator topology. Furthermore E, does not depend on Q, since
by (2.6.2), the formula is independent of Q for trigonometric polynomials.
We now prove formula (2.6.3).

Lemma 4.1.1. If nis a linear mapping from ¥ to another space V', then
Ep(uen)y=1{E  (u)}-m (4.1.1)

Proof. One can choose coordinates (8', 8”) in ¥ and (6', 7) in ¥’ such
that (8, 0”)=(6',0). Let H={6":(0,0")e V} and let W= {6":(0",0)e V},
then VnKern={0}xH and nV=Wx {0}. Therefore there exists a
linear map A4 such that V=1{(0,0"4+ A46):0'e W and 6"c H}. Taking
(6',0")e Wx H as coordinates on V, we see that the left hand side of
(4.1.1), evaluated at (€', 6")e ¥, is equal to

lim qurf u-n(0' +0,0" + p+ Ac) do dp
TOx TR

T—- +x

= lim T“’f u(8' + a,0) do,
TQ

T— 4+
where Q [resp. R] is a unit rectangle in W [resp. H] and ¢ [resp. r] is
the dimension of W [resp. H]. Now, the latter expression is also the right

hand side of (4.1.1) and the lemma is proved.
To each ue Cgp(‘l’), one associates its Fourier series

u~ Y a(A) e, (4.1.2)

ien
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where A, the spectrum of u, is the set of those Z in ¥* such that the
Fourier coefficient

G(A) = Eg(u-e "<-07) (4.13)

does not vanish. The operator Ey in (4.1.3) averages on the whole space
and thus yields a scalar. Bessel’s identity is (see [Kat])

Ey(lul?)= 3 Ja(A)? (4.14)

A€

from which it folows that A is a countable set which is empty if and only
if u=0.

It is readily seen from (2.6.2) that the Fourier series of £, (u) is the sum
of the Fourier modes of « with Ae V' If AnV*={0} (where as above
A denotes the spectrum of u), then E, (u)= E,(u) which is a well-known
result in ergodic theory.

In order to describe regularity properties of almost-periodic functions,
introduce Cj(¥)={ueL™(¥):0°ucC) (¥) whenever |x/<k}. The
members of this space are just uniformly differentiable almost-periodic
functions. Recall the following classical result.

PROPOSITION 4.1.2. If CX(¥) denotes the space of functions whose
derivatives, up to the order k, are uniformly continuous and bounded, then
C;p(‘[’)zC’;(‘[f)anp(‘I’).

Proof. Indeed, for k=1, let ¢,u be the derivative of « in the direction
a. Because d,ue CY(¥), applying the mean value theorem, we see that é,u
is the uniform limit of 7~ '{u(-+ta)—u(-)} and hence belongs to the
closure of Cgﬂ( ¥) for the L™(¥) norm. The proposition follows by
induction.

Given £, the closure of an open bounded subset of R?, we also defined
in Section 2.7 the spaces #*(£2; ¥) whose elements are functions on 2 x ¥
whose derivatives of order less than or equal to k belong to €%(Q; ¥)=
C2;C 2,,(7’) ). These spaces are equipped with the natural norms of
uniform convergence on £ with value in the Banach space C 2,,( ).

We call trigonometric polynomial a function of the form

Al x; 0)= Y A(t, x; 1) e <m0, (4.1.5)

finite

Given V< ¥, an operator on %°(£2; ¥) is defined by letting E, act
pointwise in (¢, x). Abusing notation, this operator is also denoted E .
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PROPOSITION 4.1.3. (i) For every k, €*(Q2; ¥) is a Banach algebra on
which, by substitution, C™ functions operate continuously.
(ii) For every Ue€°(82; V) there exists a countable subset A of ¥*
which contains the spectrum of all U(t, x,-), t, xe Q2

Ult, x; 0)~ Y (1, x; 4) e+, (4.1.6)
ie A
(iii) Every Ue%*(R2; ¥) may be approximated in €*(2; ¥) by a
sequence of trigonometric polynomials whose spectra are included in the set
A defined above.
(iv) For every V<= ¥ and k > 1, the linear operator E, maps €*, into
itself and for any vector field D(t, x, 8,, 0., Oq) on 2 x ¥ whose coefficients
are independent of 8 € ¥, one has D{E (u)} = E, (Du).

Proof. (1) Completeness and closure under polynomial mappings are
immediate. We turn to composition with smooth functions. Given a func-
tion F of N variables and U= (U,, U,, .., Uy) N functions in €, we first
prove that F(U) = (F(U,, .., Uy) belongs to €*. Let K denote any compact
set in C" which contains the range of U. Approximate F by a sequence of
polynomials P,, uniformly on K. Since

IE(U) = Po(U)ll oo x 9y S 1F = Py |l L)

the first part of the lemma ends the proof for k =0. The result for k> 1 is
obtained by differentiation and using the k=0 case together with the
closure property under products.

(2) Let 4 be a countable dense subset of £ and A(¢, x) denote the
spectrum of U(t, x, -). Then

A= A1, x), (4.1.7)

r,xed

has the desired properties. This follows from the continuity of the Fourier
coefficients with respect to the norm in ¢°.

(3) The usual Bohr summability process is easily adapted to our
case. Enumerate A defined by (4.1.7), A= {4}, . Let B,(6) be a Bohr
polynomial which satisfies (see [Kat], for instance, and take tensor
product if there is more than one variable)

B,20
Eu(B,)=1 (4.1.8)
B ()z1—-1/n, j=1,.,n

I
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The sequence U, defined by the convelutions
Un(t, x;0)=Eo(U(t, x; 0 — ) B,(¥)) (4.1.9)

satisfies | U,(z") — Un(2)l| L=, < 1U(2') — U(2)l| .%(y,,» hence is equicon-
tinuous from Q to C 2,,( ¥). Now, the theorem of Bohr asserts that for every
z, the trigonometric polynomials U,(z) tend to U(z) as » tends to oc. The
result for k=0 follows from Ascoli’s theorem applied on compact subsets
of £2. For k>0, we just differentiate U in the Bohr process.

(4) Tt is clear that averaging decreases the seminorms of €°. To show

that averaging operates on %* and commutes with D, just differentiate
under integral.

LEMMA 4.14. If Fe€*(2;¥) and Ue€*(Q; V), the shifted function
G(t, x;0) = F(t, x; 8+ U(1, x; 8)) also belongs to €*(Q; V¥).

Moreover, if V< ¥ and if U is invariant under translations parallel to 'V,
then

E (G)t,x;0)=E, (F)(1, x; 0+ U(t, x; 8)). (4.1.10)

Proof. This lemma is not an immediate consequence of Proposi-
tion 4.1.3 because 6 — 0 is not almost-periodic.

(a) First we check that G(1, x;-)e Cgp( ¥) for fixed (¢, x). If F(t, x; -)
i1s a finite sum of exponentials, G(t, x;-) a sum of terms of the form
fi{t, x) 540 oA US> which all belong to CJ(¥). For a general
(1, x;-)ECgp a uniform approximation of F(z, x;-) by trigonometric
polynomials yields a uniform approximation of G(t, x,-) by functions
in Co,(¥).

(b) It remains to show that the mapping (f,x)—G(t, x, ) is
continuous from 2 into C) (¥). We write |G(¢, x'; 0) — G(1, x; 0)] < 4 + B,
where

A:=|F({, x50+ U, x';0))— F(1, x; 0+ U(Z', x'; 0))|
B:=|F(t, x;0+ U(¢t, x';8))— F(z, x; 8+ U, x; 8))|.

Since Fe¥°, A tends to 0, uniformly in 8, as ¢, x’ tends to 1, x. So does
B, because F(i, x;-) being almost periodic is uniformly continuous with
respect to e ¥ and U being in €°, U(t', x; 0) tends to U(t, x; 0) as t', X’
tends to ¢, x, uniformly in 6.

(c) The result for kK > 0 is obtained by differentiation.

(d) If U is invariant under translations paraliel to ¥V, then for ce V
one has
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G(t,x;0+a)=F(t, x;0+ U(t, x;0)+ o)
and formula (4.1.10) follows by integration on V.

LEMMA 4.1.5. Assume Q= {(1, x):x€ [a,b] and 0 <t < T(x)} for some
Lipschitz function T. If Fe €%(Q2; ¥), then

(s, 1, x, 0)-»[ F(o, x; 0) do e 64(O: ), (4.1.11)

where @ = {(s,1,x):xe[a,b], 0<1< T(x) and 0< s < T(x)}.

Proof. When F is a trigonometric polynomial all we have to do is to
integrate the coefficients of the polynomial, which clearly yields another
polynomial. For general F we apply Proposition 4.1.3(iit). The result for
k > 0 follows upon differentiating and applying the result for £ =0.

4.2. The Sum Law for the Averaging Operators

Assume Ue%*(Q; ¥) and that V is a linear subspace of ¥. Proposi-
tion 4.1.3 asserts that £, Ue€*(2; ¥). On the other hand E, averages in
some directions, and behaves like convolution in some other directions (see
Examples 2.6.5 and 2.6.6). It has smoothing properties in the latter
directions. The aim of this section is to make this remark precise in the
situation described in Section 2.6. This result is the key point in the proof
of the sum law, Theorem 2.11.1.

Return to the situation described in Section 2. We are given the spaces
¢, RcdxR and Y=R'=OxR. The subspaces ¥, are defined in
(2.5.2), and E, = E,_. As in Section 2.6, E,u is invariant by translations
parallel to ¥, and so is viewed as a function on &, x R.

If Ue€’(w;0,xR) for some compact set wcQ,, then as in
Section 2.11, we say that U is of class 6eN in 6., if the derivatives
05 Ue €’ (w; 0, xR) for |o| <.

THEOREM 4.2.1.  Suppose that ¥ and E, are as above. Suppose in addition
that U,e €°(w; @, x R) is of class o;in 0, for j=1, .., N, and that F (t, x, u)
is a continuous function on w x R™, C™ with respect to the variables ue R".
Let F:=F(1,x,U,, .., Uy)€€%w; @ xR) and F:=F,,. Then E,(F) is of
class p in 8., where

=Min<o,, inf o, 4.2.1)
u { k Je k) _[E‘[Z:J‘k} /} (

Recall that J(k) is the set of the supports J of resonances in S, such
that ke J. The key point in the proof is the following lemma, which is a
variation of Lemma 2.5.1.
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LemMMAa 4.2.2. Suppose that ke {1, ., N} and J < {1, .., N)\{k} have
the property that for any subset K< J', KL {k} does not belong to J3(k). Let
n' denote the projection from @ xR onto ;. , @;. Then n'(¥,)=n'(¥,) if
¥,:={(0,1)e¥:t=0}.

Proof. Relabeling the variables, we may assume that k=1, J'=
{2,.../} and call (8,, 0, 8”) the variables in ©, so that n'(8)=6".

Because m;, maps ¥ onto &, xR (Corollary2.52), ¥ can be
parametrized by &, x Rx ¥,,

¥ is the set of points (8,, A6, +1h'+0', A"6,+
" +o", 1) with8,€@,,7eRand (0,0',0",0)e ¥,. (4.2.2)

with A’ [resp. A”] some linear map from &, into & {resp. @] and b’
[resp. "] some vector in @ [resp. ©"].
Since 7'(¥,) = n'(¥,), it suffices to show that {x'(¥,)}* < {n'(¥,)} .
Let 5'=(s,, .., s,)€ @'* =T]/{_, 6, be orthogonal to n'(¥,). Then,

(¥(0,0',6",0)e ¥,) {s',a'>=0. (4.2.3)
Let 5, € @F = @, be defined by
(81,0, =—<(s,40,) (4.24)
and let
c:=—(s,b>eR, (4.2.5)

If s=(s;, s,0)e®, x D' xP" then formulas (4.2.3, 4, 5) together with
the description (4.2.2) of ¥, imply that

(V(8, 1) e V) (5,0 +ct={5,,8,>+{s,0)>+ct=0. (4.2.6)

Thus (s, ¢) is orthogonal to ¥ = R*, so (5,c)e R and s€ S,. Let K< J’' be
the support of s” (i.e., the set of indices je /' such that s,#0). By assump-
tion, {1} U K cannot be the support of a resonance in S, so necessarily
s, =0. Therefore, (4.2.6) implies that {s’, 8'> =0 for all (6, 0)e ¥, so that
s'e {n'(¥,)}* and the lemma is proved.

Proof of Theorem 4.2.1. We show by induction on p<yu that for
la] < p,

O E(F)=Y E/(F"), (4.2.7)

where F'® is the restriction to ¥ of a derivative F/#'=0%'...04*F and in
the summation the indices f; satisfy |,/ <o, for all j and 3 |§;] = |«|.
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Equation (4.2.7) is trivial for «=0. Assume that it is proved for
|2| < p<p. We will prove it for order p+ 1. Applying (4.2.7) for || = p,
what we want is to differentiate (4.2.7) once more.

Consider a term E, (F®). First note that

Bl<p<p<o (4.2.8)

so that F¥ can be differentiated once more with respect to 6,.
Next let J':={j#k:[f;,| =0a,}. Then for any K<J' one has

Yo, =Y IBl<p<u (4.2.9)
K K

and by Definition (4.2.1) of u we see that Ku {k} ¢ J(k).
There is no restriction in assuming that k=1 and J'= {2, .., ¢). Let
J":={¢f+1,.., N}, then by definition of J'

(VjeJ)  IBl<a, (4.2.10)

Thus F'® is a sum of terms of the form %(t, x, V,,.., Vy) with
Vi(t, x,8;,7) of class ¢; =0,—|B,| in 6,. Moreover ;> 1 for j¢J" and J’
satisfies the assumption of Lemma 4.2.2. Call G such a term, and G its
restriction to ¥.

As in the proof of that lemma, we write @ as @, x O’ x @" and use the
parametrization (4.2.2) of the space . Let H'=n'(¥,) and let H” be the
projection on " of ¥, nKer n’ (H" is isomorphic to ¥, n Ker n’). Then
one can parametrize ¥, by H' x H”, that is ¥, is the space of points (0,
h', B +h",0)e @ xR, where B is some linear map from H’' into H”".
Taking unit rectangles Q' and Q" in H' and H", respectively, we find that

E(G)t,x, 0, 71)= lim T*"'f Gt x,0,, A0, + I + b,
To 4o TO x TQ”
h" + A0, + Bi' +b", ) di’ dh". (42.11)

By Lemma 4.2.2 (and Corollary 2.5.2), the range of 4’ is contained in H’
so that one can perform a change of variables in H’ to find that E,(G) is
equal to

lim 7-¢ G(t,x,0,,h" +1b', h"

T— +x J.TQ’x Q"
+{A"+BA'} 0, + Bi +tb", 1) dh' dh".

This expression can be differentiated with respect to 8, because G is of class
=1 in the variables (8, 8”). Moreover a 8, derivative of E,(G) is a linear
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combination for j¢ J’ of terms E,(G)"’), where G’ the restriction to ¥ of
a 6, derivative of G. Formula (4.2.7) at the order p+1 follows, and
Theorem 4.2.1 is proved.

4.3. Further Smoothing Properties

In this section, we collect several lemmas that will be needed in Section 6.
They are based upon the techniques of integration by parts and change of
variables used in the last section.

Let ¢, be the ©,-valued solution of X,¢@,=0 defined in (2.4.1).
Introduce the vector fields

Dy = 0,941, x) - By, (4.3.1)

If (6, ,)1<p<m are coordinates in @, and @,(f, x)= (@ (£, X)) i < p<myes
then

i oF
D, F= O Pr p
, El 790y,
We also introduce
N
D= Z D, (4.3.2)

so that D is a vector field on &, or on @ x R, whose coefficients depend
only on (¢, x)e Q.

LEMMA 4.3.1. For each (1, x)€ Q, D is tangent to the space ¥, so that for
Fe€'(Q;¥)and ke {l,.., N} one has

D E,(F)} = E,(DF). (4.3.3)

Proof. As in Section 2.4, (¢, 1) is ¥-valued and so is its derivative
(6.9, 0). This means that the vector field D is tangent to ¥ so that D acts
on functions Fe %'(£2; ¥). According to Proposition 4.1.3 (iv), D and E,
commute. Moreover, if U is a function that depends only on (¢, x, 0, ),
then DU = D, U, which means that if U= U-n, then DU = (D, U)>n,, and
(4.3.3) follows.

ProPOSITION 4.3.2. If A, olt, x) denote the eigenvalues of A(t, x,0),
the following integration by parts holds. If Fe%'(Q;0xR) and
F:=F|,e€'(Q; V), then

N

Y (o~ 4io) EL{(DF) 4} =0. (4.3.4)

i=1
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Proof. (g, 1) and therefore (J,9,0) take their values in ¥, which
implies that the vector field

N

D = Z é‘,(p,(!, X)- af),

J=1

is tangent to ¥. Because X, @, =0, we conclude that

N
Zi=boD=D=Y (Aho—4.0)D;

j=1

is tangent to ¥. Moreover, the kth component of Z is 0, as well as the
t-component, so that Z is in fact tangent to ¥,. Hence for Fe €' (82; ¥),
E(ZF)=0. Formula (4.3.4) follows, once it is noted that Z(F|,)=
(ZF)|y.

As a direct application of this proposition we obtain

CoRrOLLARY 4.3.3. Consider three distinct indices I, j, and k, profiles
Ut, x;0,,1) €' (2;0,xR), and V(1,x;0,,1)e€"'(2; 0,xR). Then

(Aeo—4i0) E{(D,U) V4 (Ao — 4io) EL{UMD V) =0 (43.5)

COROLLARY 4.34. If i, j, k are three distinct indices, U(t, x;0,, 1)¢e
€'(2;0,xR), and, V(1,x;0;, 1) 6°(2;0,xR), then

DE(UV)) =220 g vy v, (4.3.6)

Aro— 40

Proof. If Ve%', (4.3.6) follows directly from (4.3.3) and (4.3.5). The
result for Ve®® follows from a density argument using Proposi-
tion 4.1.3(iii).

Finally, we state a lemma which is a refinement of Theorem 4.2.1 in a
special case.

LEMMA 435, [fUe$'(2;0,) and Ve6'(2;0,) are as in the Corollary
above, then E {(D,U) V} €% (2;0,).

Proof. We can assume that k=1, i=2, and j=3, and 6=(0,,6,,8")
are the variable in @. From Corollary 2.5.2, we know that n, , maps ¥
onto @, x @, xR, and hence the projection n'(f, 1) =0, maps ¥, onto @,.
So, as in the proof of Theorem 4.2.1, one can parametrize ¥, by @, x H"
and conclude that E {(D,U) V'} is given by a formula of the form
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lim T“’f
T— +x TQ x TQ"

x V(t,x,h" + {A" + BA'} 0, + BW +tb", 1) di’ dh",  (4.3.7)

(D, UXMt, x, h', 1)

where @’ and Q" are unit rectangles in €, and H”, respectively.

This formula shows that £,{(D,U) ¥} can be differentiated with respect
to 0,.

Together with (4.3.5), it also shows that (formally) ¢, E,{(D,U) V} is
the sum of three terms

Aio—43
E{(DyU)@.V)} + E{(DyUNB" 8,-V)} = T2 E{(2. U)( D3 V) -

‘1.0~ 420
Indeed, this computation is certainly correct if U is a trigonometric polyno-
mial, and Proposition 4.1.3(iii) implies that the result is still true for Ue €.
Thus 8, E,{(D,U) V} e €°%2; 0, xR).
Similarly, for ¢ =0, or &, direct computations and (4.3.5), together with
the same density argument, showh that 0E,{(D,U) V} is a sum of three
terms

—A—Li:—%ﬂE,{(aU)(DSV)} +E,{([&, D, U) V)

Aro— 420

E,{(D,U)éV)}

and 0E, {(D,U) V}e¥%R2; 0, xR).

4.4. The Fundamental Lemma of Nonstationary Phase

We refer to Section 2.1 formulas (2.1.5) and (2.1.6) for the definition of
strong and weak transversality. In this section, we assume Qe R? is of the
form

Q={(t,x):xe[a bh]and 0< 1< T(x)! (4.4.1)

for some Lipschitzean function T. We denote by & the set of (s, ¢, x)e R®
such that xe [, ], 0<s< T(x) and 0 <t < T(x).

LEMMA 4.4.1. Suppose that ae C°(82) and y € C*™(Q). If Y is transverse
to é, [resp. weakly transverse to ¢,1, then the function

r
u,(s, t, x) ::j a(o, t, x) eV'o V" dg (4.4.2)

K

tends to O in L=(Q) [resp. in L= L?(Q) for all p< + o] as & tends to 0.
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In accordance with Definition 2.7.1, u, is said to be o(1) (or to converge
to 0) in L*L7(Z) when sup, , |u,(s, 1, )l L, , — O as ¢ — 0. Here we have
used the definition with Q_,:= {xe[a,b]: (s, 1, x)e3}.

Proof. Step 0. We may assume that g is C'.
Step 1. For any 6>0, we let 4;:={(0,x)eR:]0,¥(0,x)| <4} and

B;:={(0, x):|0,y(a, x)| >8/2}. Then there exist C™ functions on R?, y,
and yx,, such that

supp x, N R < A4s, supp y. N2 c By, and Xt x=1 on Q.
(4.4.3)

Inserting this partition of unity under the integral in (4.4.2), yields
.=u) +u?. An integration by parts shows that

lu(s, 1, x)| <&C(8), (4.4.4)

where C(J) depends only on J, and the estimate (4.4.4) is uniform in
(s, t, x).
On the other hand, if 4;(x) := {o€ [0, T(x)]: (g, x)e A5} and

hs(x) :=meas{A44(x)}, (4.4.5)

then we clearly have |u!(s, ¢, x)| < Chs(x) with a constant C independent of
(s, t, x)e Q. Summing up, we have proved that

lu.(s, t, x)| <eC(8) + Chy(x). (4.4.6)
Step 2. Integrating (4.4.6) over £, , yields
lu.(s, t, )l 1, ) < C(8) + C meas(4;). (4.4.7)

Weak transversality means that 0,y(0,x)#0 ae in € so that
meas(A4;) — 0 when 8 - 0. So (4.4.7) implies that u, = o(1) in L*L"(Q).

On the other hand, there is a trivial uniform estimate |u,(s, ¢, x)| < C so
that u, is also o(1) in L=L?(9) for all p < + .

Step 3. Assuming strong transversality means that for every xe [q, b],
o, (o, x)#0 ae. in [0, 7(x)] and hence that A2;(x} — 0 as § — 0 pointwise
for xe[a, b].

We begin by showing that /s, is an upper semicontinuous function. So
suppose that x,€ [a, #], #>0 and an open neighborhood U of the com-
pact set A4(x,) in R are given with meas(U) < hs(x,) + 5. By compactness
and continuity of &,y it is easy to show that there is p > 0 small enough
such that for |x — x| < p one has A4(x)< U and hence hs(x) < hs(xg) + 1.
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On the other hand, the family 4, is clearly decreasing with 4. Hence
the h; form a decreasing family of upper semicontinuous functions that
converge pointwise to 0. By Dini’s theorem, the convergence is uniform in
x€[a, b]. Plugging this in (4.4.6) immediately implies that u,—0 in
L*($) as ¢ > 0.

The proof is complete.

As in Section 2.3, we now assume that spaces &, are given on 2, and we
fix a domain 2=2,n {t<T} or =02, {t< T} as in Section 2.8 or 2.9.
For simplicity, we suppose here that (after a change of the x variable) the
vector field X, is equal to @,. Because of (2.1.4), 2 is contained in the
domain of determinacy of X, and hence is of the form (4.4.1). Define & as
above.

THEOREM 4.4.2. Assume (€) and () [resp. (w— T )]). Suppose that F
belongs to €°(Q; ¥), and define u, and U by

u,(s, 1, x):= J.t F(a, t, x, (0, x)/¢, 1/e) do (4.4.8)
Uls, 1,x:6,.7) = | (B F)o.1, %, 6, 7) do. (4.4.9)

Then
us, t, x)— U(s, t, x, 9. (x)/e, 1/e}=0(1) (4.4.10)

in L=(Q) [resp. in L*L?(Q) for all p< + x].
If one assumes that F has the form 3, ; F; (0,1, x,0,,0;) and (%,) and
(F) [resp. (w—F3)] then the same conclusion holds for u.

Note that ¢, is a function of x alone because X, ¢,=0,9,=0.

Proof. According to Proposition 4.1.3(ili) it suffices to prove the
estimate when F is a trigonometric polynomial. By linearity it suffices to
consider

Flo,t,x,0,t)=alo, t, x) et <+ +e7) (4.4.11)

and we are led to study integrals of the form (4.4.2) with Yy = (4, ¢) +¢,
where (4, ¢c)e@* xR=@ x R.

By properties (¥) and (F) [resp. (w—Z )], either o,y =0 and
Yed, ®R, or ¢ is transverse [resp. weakly transverse] to 2,. In the
second case, Lemma 4.4.1 implies that the corresponding integral (4.4.2) is
o(1) while the condition 8, #0 implies that (4, ¢)¢ R® (H, x R) so that
E.(F)=0 by (2.6.5). Therefore (4.4.10) is proved in that case.

580/114/1-12
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In the first case, Y does not depend on ¢ so

us, t,x)= e""""/ej a(o, t, x) do. (44.12)

5

On the other hand, because € @, ® R, there are u, € @, and ¢’ € R such
that y = .+ ¢’ Let u:=(0, .., u;, 0, ..., 0)e &, = D, the y, being in the kth
slot. Then ¢ = {4, @)+ ¢ implies that (A—pu,c—c')eR Thus (4, c)e
R® (&, x R). Therefore F is invariant under translations parallel to ¥,, so
considering F as a function of (8,, t) one has

Flo,t,x,0,, 1) = E(F)o,t,x,0,, 1)=al(o, t, x) et 0>+t (4413)

Comparing (4.4.12) and (4.4.9) we have u,(s, t, x)= U(s, 1, x, @.(x)/e, 1/¢)
exactly.
When F=3%, , F, ;(8,, 0,) only exponentials of the form

a(o_ t x)ei(i.],(b)-t-(i[,(h)
> &

appear in (4.4.11). In this cases (¥¢) and (7 q) [resp. (w— 7 g)] suffice to

apply Lemma 4.4.1.
This finishes the proof of Theorem 4.4.2.

Remark 4.4.3. With more information on the transversality (the order
of vanishing of 8,)y) one can improve the o(1) estimate of Lemma 4.4.1.
But, as mentioned in Remark 1.2, it is much more difficult to improve
estimate (4.4.10) of Theorem 4.4.2. Such an improvement would probably
require a lot of additional structure on @, and also restrictions on the class
of functions F.

4.5. An L™ Estimate

The aim of this section is to prove Theorem 2.10.5. In fact we cast the
problem in a slightly more general context. Consider an interval
[a, b] = R, with a < b, and a continuous map ¥ from [q, b] into R™ such
that

For any nonvoid open subinterval /< [a, b], the
components of ¢ are linearly independent functions
on L (4.5.1)

Given a function Ue¥%°([a, b]; R™) introduce

u(x) = Ulx, Yy(x)/e). (4.5.2)
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THEOREM 4.5.1. With the above notation, one has the estimate

VON 2 (ga.57 x mmy = lim S:p Nl Lipa, 57)- (4.5.3)

Proof of Theorem 2.10.5 Assuming Theorem 4.5.1. 1t suffices to consider

for ¢ fixed, the map y: x — (@.(2, x), 1) from the interval @, into &, x R.

Condition (4.5.1) is satisfied because if there were a nontrivial linear

relation between the components of  on /< ,, then Definition (2.4.1)

of ¢, would imply that there would exist s€ @,\{0} and ce R such that
s+ c¢=0 on I This is impossible thanks to conditions (2.3.1) and (2.3.2).

The proof of Theorem 4.5.1 is based upon the following lemma.

LEMMA 452, Suppose (a,),. 4 is a finite subset of R™ and denote by x, ,
the components of a,. Fix 8 € R™, a nonvoid open subinterval I, 4 >0, and
4o€ R. Then there exist a point x€ I, a real A= A, and integers k, ;€ Z such
that, for all v and j

lo, {6, — A, (x)} —k, | <. (4.5.4)

Proof. Step 1. For each j, consider the Q-vector space generated in R
by the {a, ;},. 4. Choose a basis, {§, ;},c 4 for this space so that one can
write

%= 2 Pouibi; (4.5.5)

HE A;

with p, , € Q. Indeed, dividing the f,; by a common multiple of the
denominators of the p, , ; we can assume that all the coefficients p, , ; are
integers.

Step 2. Consider the map x — Y(x)={f, ;¥;(X)} i< cmpuecq from I
into RY with M =3 #(4;). We claim that for any open interval /, the
image W(I) is not contained in any rational hyperplane of R".

Indeed, let p=(p, ;)€ Q¥ and assume that ¥(/)< p*. That means that

Vxel, Z( ) pu,jlgu,f) ¥,(x)=0.
JoNme A

Because the ; are linearly independent, this requires that for all j,

> pu,B,.,=0. Since the {B, ;},. 4, are Q-independent, all the coeflicients

p,.; must vanish.

Step 3. Let I be a given interval and let D <7 be the set of those xe/
such that the coordinates ¥, (x)=f, ¥, (x) of ¥, for 1< j<m, pe4d,,
are Q-linearly independent. We claim that D is dense in I
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Indeed, for pe @™\{0}, let F,={xel:{p,¥(x))=0}. ¥ being
continuous, F, is closed in 7 and it follows from Step 2 that F, has empty
interior. Therefore, by Baire’s theorem, the interior of the countable union
F=) F, is still void, which means that D =TI\F, is dense in /, as claimed.

Step 4. For any I, and any A, € R, there is x € I such that the half line
{A¥(x), A= 1o} in R has a dense image in the torus (R/Z)™. In fact, by
Kronecker theorem, it suffices to pick an x e 7 such that the reals {¥, ;(x)}
are Q-independent (see [A]).

Step 5. Let 8eR™, I, § >0, and 4, be given. Let p be the maximum of
the moduli of the integers p, , ; that appear in (4.5.5). According to Step 4
there are xef, 1> A, and integers &k, ; such that for all j and e 4;

1B, {0,— A;(x)} —k, | <6/pM. (4.5.6)
With (4.5.5) we find
o, {0, =)} = X Pk, <O (4.5.7)
HE A;

and (4.5.4) is proved.

Next we prove the theorem in the special case that U is a trigonometric
polynomial.

LemMa 4.53. IfU=Y,. 4 a,e?™ ™% |5 q trigonometric polynomial and
u, is defined by (4.5.2), then for any open interval I and any ¢, > 0 one has

1UN o@my s sUp - Nl gy (45.8)

O<e<e
Proof. Let n>0 be given. Choose § > 0 such that
( Y |ayl> sup |e*™ —1]<n. (4.5.9)
ved <é

Fix 0 e R™. According to Lemma 4.5.2, there are x€ I, A= 1/¢,, and integers
k, ; such that (4.5.4) holds. Thus

U(g) _ U(Alﬁ(x)) — Z av€2in).(:zv,|/1(x)){eZInyv _ 1 }

veAd
with y,=a, ;{6,— Ay;(x)} —k, ;. Then (4.5.4) and (4.5.9) imply that
[U0)] < UM (x) +7
and (4.5.8) follows.
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Proof of Theorem 4.5.1. Let n>0, ¢,>0, x,e{a,b] and 8 R™ be
given. Because U e €°([a, b]; R™) there is p >0 such that

Vxela, b], |x—xol<p=|Ulx, )= Ulxg, M pw@m<n. (4.5.10)
On the other hand, there is a trigonometric polynomial ¥(8) such that
(V0 e R™) |U(xq, 8')y— V(8") <. (4.5.11)

Lemma 4.5.3 implies that there exist e<¢, and xe [a, b] with |[x —xo| <p
such that

V(8) < V(g (x)/e)l +n. (4.5.12)
Adding these inequalities, yields
[U(x0, )| < |U(x, Y(x)/e)| +4n
and the estimate

Ul L%([ab]xR™) S SUD letell La, 67
O<e<ge

follows. The converse estimate being obvious, Theorem 4.5.1 is proved.

5. THE SEMILINEAR CAUCHY PROBLEM

This section is devoted to the proof of Theorem 2.8.1. The more technical
proof of Theorem 2.9.1 follows the same general scheme.

Consider the Cauchy problem (2.8.1) with the assumptions of Section 2.8
in force. First, we make a technical simplification. It is easy to check that
the statement of Theorem 2.8.1 is invariant under a change of dependent
variables u = V(t, x) @i with a smooth N x N invertible matrix V. Therefore
we can assume that the basis (r,) and () are just the canonical basis of R”,

J
or equivalently that A(¢, x) is diagonal. In that case,

The operator L of (2.8.1) is diagonal with entries X. (5.0.1)

5.1. Outline of Proof

The starting point is the construction of the solution of the Cauchy
problem by the standard Picard iteration

Lu} = b(1, x, ul(t, x))
(5.1.1)

'+ 1 —
u; II:O_ha
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with 4®=0. The following lemma is an immediate consequence of the
fundamental theorem of calculus.

LemMma 5.1.1. Forany T>0, any fe€ L™([0, T] xR) and any he L™ (R),
the problem

Lu=f
(5.1.2)
ulr=0=h
has a unique solution ue L=([0, T] x R) and
leell oo, 77 w0 S NN Logmy + T 1SN oo, 7y x ) - (5.1.3)

Because the Cauchy data A, are uniformly bounded in L™, one deduces
from Lemma 5.1.1 the following consequence (HW).

PrOPOSITION 5.1.2. There is a T>0 such that for all ¢€ 10,17} the
iteration scheme (5.1.1) defines a sequence ule L™(Q), (2=1[0, T]xR),
such that

(i) there is M such that for all v and all €: |u}| ;o <M.
(ii) the sequence u. converges in L™(82) to the solution of (2.8.1)
uniformly in ¢€ 0, 1].

The next proposition is second and main step in the proof of
Theorem 2.8.1.

ProPOSITION 5.1.3. We assume that condition () [resp. (w—T )]
holds. Then, there are profiles U} € €°(2; 0,) such that

(i) for all v, ul (1, x)—U,(t, x, 9(t, x)fe, 1/e) is o(l) in L™(L2)
[resp. in L*L?(22)] as ¢ — 0.
(ii) the U are determined as the solutions of
Xk U;;+1 = Ek(bk(t5 X, Uy(t’ X, 0’ T)))
U;+l |r=0(x’ 9k9 1) = Hk(x’ Bk’ T)'

(5.1.4),

In this statement, the subscript k for u), H, U" or b, indicates the kth
component of the corresponding vector in R" (recall that (r;) and (¢) have
been taken to be the canonical basis). Note that we do not claim in (i) that
the o(1) is uniform with respect to v.

This proposition is proved by induction on v in Section 5.3.

The third step is a study of the iteration scheme (5.1.4) for the profiles.
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PROPOSITION 5.1.4. Decreasing T if necessary, the sequence U"*=
(U})\ << is bounded in €°(Q2; V), and converges in L*(Q x ¥) towards
the (unique) solution U= (U);cr<n Of

X U, =E(b,(t, x, Ut x,0,1
kU= Ei(b( ( ) (5.15),
Uk|1=0(xa 6k’1)=Hk(x’ Ok,t)‘

Theorem 2.8.1 is a consequence of the three preceding propositions.
Indeed, point (i} of Theorem 2.8.1 is an immediate consequence of
Proposition 5.1.2. Equations (2.8.5) of point (iii), are just those stated
in (5.1.5). Finally, Propositions 5.1.2 and 5.1.4 imply that u)(7, x)—
U*(t, x, o(1, x)/e, 1/¢) converges in L*(£2) (and hence in L*L?(Q)) to
u,(t, x)— U(t, x, 9(t, x)/e, 1/¢), uniformly with respect to e¢€]0,1]. By
Proposition 5.1.3, for each v, ul(t, x)—U"(¢, x, 9(t, x)/e, 1/e)=0(1) in
L>=(2) or in L*L?(£2). Since the convergence is uniform in ¢, it follows
that u(t, x)— U(1, x, 9(t, x)/¢, 1/e)=0(1), which is just point (ii) of
Theorem 2.8.1.

Proposition 5.1.2 is a straightforward consequence of Lemma 5.1.1, and
its proof will be omitted. Proposition 5.1.3 will be proved in Section 5.2,
and Proposition 5.1.4 in Section 5.3. It is the latter section which is the
main step in the proof. Times of existence 7 given by Proposition 5.1.2 and
5.1.4 are compared in Section 7.

5.2. Equations for the Profiles

Because of the averaging operators E, the system (5.1.5) is integro-
differential. It is solved by the standard Picard iteration scheme with only
superficial modifications. Consider the scheme (5.1.4), starting from U°=0.
We note {|F|| the norm of Fin €°(2; ¥) and | F(¢)|| the norm of F(z, -, -, -}
in €%Q,; ¥). Assuming U" is defined, by Proposition 4.1.3, the function
F'(t,x,0,t)=>b(1, x, U'(t, x, 8, 7)) belongs to €°(2; ¥) and

IE (@) <d* (1T (D), (5.2.1)
where A* is an increasing function from [0, + co[ into itself. By Prop-
osition 4.1.3, the functions G =E(F}) belong to ¥°(2;60,xR) and
satisfy

IGHDI < IF I <b* (U ()). (5.2.2)
Now, Eq. (5.1.4), takes the form

X, U =G} (5.2.3)
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and its solution is found by integrating along the characteristics. With
notations as in Section 2.1, one has

Ut x, 0, 1) = H(7,(0, 1, x), 6, r)+J Gi(s, 7a(s3 1, x), 0, 1) ds. (5.2.4)
0
It follows from Lemma 5.1.4 that U *'e €¢%(2; &, x R) and that
AN GIE A +j0 G (s)]l ds. (5.2.5)

Let M =||H| + 1 and choose T> 0 such that Th* (M) < 1. Then it is clear
by induction, from (5.2.2) and (5.2.5), that |[U"| < M for all v. Knowing
that, one can write

1Gi() = G I < NIF () = FLT M OIS CIU () =0 (). (5.2:6)

Integrating along the characteristics yields
100 = Uil < Cfo 1G(s) — Gy~ '(s)ll ds (5.2.7)

and therefore

(Cry

') - U@l <M o

(5.2.8)

which implies the uniform convergence of U, to a function
U, e€°Q, O, x R). Passing to the limit shows that U is solution to (5.1.5).

Uniqueness is clear, because for two bounded solutions U and ¥ one has
an estimate similar to (5.2.7)

1) = Vol <€ [ 100s) = Vi)l ds, (5.29)

with C depending only on the L™ norms of U and V. The proof of
Proposition 5.1.4 is now complete.

5.3. Linear Propagation of Oscillations

The proof of Proposition 5.1.3 is by induction. The u} and U" are given
by Propositions 5.1.2 and 5.1.4, and they are known to be uniformly
bounded respectively in L™(£2) and L*(2 x ¥).

The first step in the proof is an application of Theorem 4.1.3.

LemMMa 5.3.1. Assume that ul(t, x)—U'(t, x, @(t, x)/e, 1/e)=0(1) in
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L*LP(Q2) (1< p<oo). Then b(t, x, ul(t, x))— F*(1, x, 9(¢, x)/e, e)=0(1) in
L*L7(8), where F*(1,x,0,t)=b(t, x, U*(t, x, 0, 1)) e €%(Q; V).

Then, in order to prove Proposition 5.1.3 it suffices to check the

following result.

PROPOSITION 5.3.2.  Assume that condition (7) [resp. (w— 7 )] holds.
Let h, be as in Theorem 2.8.1, and let f, be a family of functions in L™(Q)
such that

there is Fe®°(Q;¥) such that f,(t,x)—
F(1, x, @(t, x)/e, Y/e)=0(1} in L*(Q2) [resp. in
L=LA(Q)]. (5.3.1)

Let u, be the (unique) solution of
Lu,=f, U),—o=h, (5.3.2)
and let U, be the (unique) solution in €42, ©, x R) of
X U= E\(F), Ul co=H(x:; 0, 7) (5.3.3)
Then,
u,(t, x)— U1, x, 91, x)/e, 1/ey=0(1)
in L™() [resp. in L*L"(2)].

Proof. 1t suffices to consider one scalar equation X, u, = f,. We perform
the change of variables y— x=1y,(¢;0, y}) and we call v, (1, ), g.(2, v)
y,(t, y) the functions that correspond to u,(¢, x), f.(¢, x), ;(¢, x). In the
new coordinates, X, is é,¥, =0. Thus y, =wy,(») is a function of y only.
We have ¢, {,_,=0" (see Section 2.4).

The equation for v, is

arvn =g
(5.3.4)
000, 1) =h(3) = H(y, waly)fe, 1e) + ol 1)
Therefore
0t 1) = h(3)+ | gl ) s (535)

From (5.3.4) and (5.3.1) we obtain

v(t, y)y=H(y, wily)e, 1/e) + fo G(s, y, y(s, y)/e, 1/e) ds) + o(1), (5.3.6)
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where
G(1, y,0, 1) = F(1, 7,(1; 0, y), 0, 1) e €°(2; ¥), (5.3.7)

where @ still denotes the same open set in the new variables. We are now
in position to apply Theorem 4.4.2 to the integral in (5.3.6), and conclude
that

ve(t’ }’)= V(ta Y, Wk(y)/e’ 1/8)+0(1), (538)
where
13
V(t’ ya Hk’ ‘[) = H(y’ gk’ T) +f (EkG)(s’ Vs 91(! T) dse(go(g; @k X R)
’ (53.9)
This integral equation is equivalent to the initial value problem

al V(t’ Vs Qk, T) = (EkG)(ts Vs Oka T)

(5.3.10)
V(O’ s Oka T) = H(}’, 0k9 T)'

Now, an important point is to remark that the change of variables (5.3.7)
does not affect 8, so
(ExG)(t, . 0, ) = (ELF)(, 720850, ), 8, 7). (5.3.11)
Therefore, if U is the solution of
X Ult,x,0,,1)=(E.F)t,x,0,71)
« g “ - (5.3.12)
U, x, 8,,t1)=H(x, 0,, 1),
it follows that
V(t3 ya Gkar)=U(t5 Yk(t;oa y)s Gk’r) (5313)

and (5.3.8) shows that wu/(t, x)=U(t, x, @(t, x)/¢, 1/e)+ o(1). Proposi-
tion 5.3.2 is proved.

6. THE QUASILINEAR CAUCHY PROBLEM

This section contains the proof of Theorem 2.9.1. Consider an equation
of the form (2.9.1), in which we drop the superscripts #

Oou,+ A(t, x, eu,) 0 .u, = b(t, x, eu,) u, (6.0.1)
Ul —o=h, (6.0.2)

and we assume that the family A, satisfies assumptions (2.9.3), (2.9.4).



RESONANT GEOMETRIC OPTICS 185

Recall (2.9.2) defines the domain Q°:={(z,x)eR%0<1<T,,
a0, ¥y +pt <x<y(1;0, y,)—pt} which remains in the domain of
determinacy of [y _, y, ] for all A(s, x, v) and v small enough.

After a linear change of dependent variables, we can assume that the
matrix Ag(t, x) = A(t, x, 0) is diagonal, with entries 4, ¢(¢, x), and that the
eigenvectors r, o(f, x)=r,(t, x,0) and {, o(1, x) =1,(¢, x, 0) are the vectors
of the canonical basis in R”. In these circumstances, the operator L,=
d,+ Ay(t, x) 0, is diagonal with entries X.

6.1. Outline of Proof
The solution u, is constructed as the limit of the sequence u, which is
defined by 4% =0 and
Ol + AL, x, eu’) 0 2+ = b(t, x, eul(t, x)) u! (6.1.1)
uy ', _o=h,. (6.1.2)

The first step in the proof of Theorem 2.9.1 uses assumption (2.9.3)
which says that the sequence A, is bounded in C!.

ProrosITION 6.1.1. There are T>0 and £,>0, such that, for all
e€ 10, go] the iteration scheme (6.1.1), (6.1.2) defines a sequence u’ e C'(Q),
Q=Q°n{t< T}, such that

(i) there is M such that for all v and e <eg,, one has |u;|, | .o =
Nl oy + € VUl 1oy S M

(i) for each fixed e€ 10, &y], the sequence u converges in C'(82) to
the solution u.e C'(2) of (6.0.1), (6.0.2).

(iii) moreover \lu,— u}|l ;=5 — 0 as v — + oo, uniformly with respect
to e€]0, g5 ].

Parallel to (6.1.1), (6.1.2), is the iteration scheme for the profiles U"*
defined by U°=0 and

X U, '+ E; (Z rf_jU;'(D,U;“))=Ek (Z Bk‘,»U,‘-), (6.1.3)
0j J

with the initial conditions
U;;+l|r:0(xs Hk’r)=Hk(xs gk’r)' (6]4)k

As in (431), D;:=(0,9;)-8, and, I“f{j(t,x):———(’,co(t,x)-((aA/@v)
(1, x,0) rio(t, X)) -r;0lt, x), b2, x):=b(t, x,0) as defined by (2.9.10),
(2.9.11).
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The second step in the proof of Theorem 2.9.1 consists in proving that
this system has a unique solution.

PROPOSITION 6.1.2. (i) Decreasing T if necessary, there is a sequence
U'=(U}), <k n€ENQ; W), with U} depending only on 0, t, of solutions
of (6.1.3), (6.1.4).

(ii) This sequence converges in €'(2; ¥).

(iti)  The limit U= (Uy), <s <~ belongs to €'(2; ¥), U, depends only
on B, t and it is the unique solution of

X U—+E, (ZFfJU,(D,U,)>:Ek (ZE,(JU,) (6.1.5),
ij i
UilicolX, 0, t) = Hi(x, 0, 7). (6.1.6),
The third step is

PROPOSITION 6.1.3.  Assume that condition (7)) [resp. (w—Z )] holds.
Then for all v, u} (1, x)— U,(¢, x, @,(¢, x)/e, 1/e) is o(1) in C Q) [resp. in
L*W!hr(@2)] as e—~0.

From the three propositions above one has that

u, . (8, x)— U, x, 0,(1, x)/e, 1/¢) is o(1) in L=(82) [resp. in L*L"(2)].
(6.1.7)

In the last step we prove the approximation of the derivatives.

PrOPOSITION 6.1.4. Under the same assumptions, decreasing T>0 if
necessary, the following estimate holds

u, 1 (2, x)— Ult, x, 9.1, x)/e, 1/e) is o(1) in C1(2) as e >0 (6.1.8)
[resp. in L™ W !7(82)]. (6.1.9)

Theorem 2.9.1 is a combination of the four propositions above.

Remark 6.1.5. 1If one could prove that ) —»u, in C! uniformly in e,
estimate (6.1.8) would follow directly from Propositions 6.1.2 and 6.1.3.
Unfortunately such a uniform convergence is probably false without further
assumptions on /4, (see Remark 6.2.8 below), so we have to provide a
separate proof for the approximation of the derivatives.

Remark 6.1.6. In fact, it is not necessary to decrease T in order that
(6.1.8) holds. However, for simplicity, we will do so in the proof given
below. The study of the life span of solutions is deferred to Section 7.
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Before proceeding to the detailed proofs let us show for the simple
example of a single scalar equation how the equations for the profile U
can be formally derived from the equations for u,. For simplicity we
assume restricted closedness and that the profiles do not depend on t (see
Remark 2.8.4).

Consider the solution u, of

O, +ewt, x) 0 u,=f, (6.1.10)
U], .o=0 (6.1.11)

with oscillating coefficient and source term

w(t, x)— W(t, x, o(t, x)/e)=o0(1), (6.1.12)
fi(t, x)— F(t, x, o(t, x)/e) =o(1). (6.1.13)

We want to show that

u (e, x)— Ult, x, o {x)/e) =0(1), (6.1.14)

with U solution to
X U+ E(W) D U= E(F), (6.1.15)
Ul,_olx, 8,)=0. (6.1.16)

We have X, =0,, ¢.(t, x)=¢,(x) and D, =2,¢, -0y,
We introduce the characteristic curve of (6.1.10), s — (s, x + ey.(s; ¢, X))
defined by

dy.(s; t, x)

=w,(s, x+ey(s;t, x))
ds

(6.1.17)
y(t;t, x)=0.
Taking (6.1.12} into account (6.1.17) yields (Section 6.4)

dy,(s;t x)

2 = WG x (s X)et0.0(s, ) y) +o(l), (6.1.18)

or equivalently

vs;t, x) =JS Wiz, x, 9(1, x)/e+ ¢.9(t, x) y1;1, x))dr +o(1). (6.1.19)



188 JOLY, METIVIER, AND RAUCH
Write W(t, x,0)=3 a,(t, x) e“*% so that

ydsi ) =Y [ @yt x) e omei i gro(1), (61.20)
13

Apply to (6.1.20) the nonstationary phase result of Section 4. This
gives

ydsi %)= [ E W, x, 0u(x)/e +2,0u(x) vt X)) de+o(1),  (6.1.21)

from which follows that
Yyelsst, x)=Y(s: 1, x, @ (x)/e) + o(1), (6.1.22)
where the scalar function Y satisfies
Y(s: 1, x, ek)=f E Wt %, 0, + Y(1: 1, x, 0,) 8, 0,(x)) dr (6.1.23)
which is equivalent to
dY(s;t, x, 0
0590 (B wy(s, x, 0+ Y51, x, 0,) 0, 0u(x))

ds (6.1.24)
Y(t;1,x,6,)=0.

Next compute u,(t, x), solution to (6.1.10), by integrating along charac-
teristics

!

u,(1, x) =f Flt, x +en,(ti 1, x), o(z, X +ev,(t: 1, X))e) di+o(1).  (6.1.25)
0

Use (6.1.22) to obtain

u(t, x)= j’ F(t, x, @(t, x)/e+ Y(t: 1, x, 9, (x)/e) &, 9(1, x))dr + o(1).
’ (6.1.26)

Using again Section 4, leads to

ut, x)= f, E F(z, x, @(x)/e+ Y(T: 1, X, @4(x)/e) 0, @, (x)) dr + o(1).
4]
(6.1.27)
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This shows that u, is oscillating with profile U satisfying
utt, x, ek)=f E F(1,x, 0, + Y(1:1, X, 80,) 0.9:(x)) dr.  (6.1.28)
(V]

The result (6.1.15) follows from (6.1.24), which says that the curves
s (5, % 0, + Y(s; 1, x,0,) 0, 9:(x)), (6.1.29)
are the characteristics of
8,+ E{W) D,. (6.1.30)

The computations sketched above show how the analysis that worked in
the semilinear case handles the quasilinear one. In (6.1.26), appears a
bounded oscillating phase displacement with amplitude Y which gives rise
to (6.1.28). This shift in the phase variables corresponds to the differential
operator D, in the dual space of the 6 variables. This explains why, in the
quasilinear case, the equation for the profiles is not only integral but also
differential in the 8 variables.

Section 6 is organized as follows. Section 6.2 contains the proof of
Proposition 6.1.1 for u,. Except for minor changes due to the control in
¢, this is a review of classical facts about C'-waves. Section 6.3 deals with
the profiles and the proof of Proposition 6.1.2. The proof combines the
same classical lines with additional regularity properties of averaging
operators, that were proved in Section 4.3, in order to transform the dif-
ferential operator in the variables 6 and obtain §-smoothness and almost-
periodicity. The last five sections concern asymptotics as ¢ tend to 0. As
in the semilinear case, the result is established first for Picard iterates
than in Sections 6.7 and 6.8, for the solution itself. In fact linear C°-
asymptotics is studied in Sections 6.4-6.6 with estimates that justify
passage to the limit to obtain the nonlinear C°-asymptotics in Section 6.7.
The final C! result follows by differentiating the equations and is done in
Section 6.8.

6.2. Classical Results on Quasilinear Systems

As the 7 variable was already shown in Section S5 to act merely as a
parameter in the equations, we assume henceforth for simplicity that the
profiles are independent of r and that the phase space satisfies restricted
closedness under quadratic interactions. This section mostly reviews
some classical facts about semilinear and quasilinear systems in one
space dimension. See for instance [HW, and the Refs. therein].
Although they are well known, we recall them with some details through
the different steps of the construction of solutions, for three reasons
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(1) at several points, we must check uniformity in ¢, (2) we need to carry
out the asymptotics throughout the different steps and (3) we will follow
the same scheme of resolution, for the less classical equations of profiles.

1. C% and C' Solutions of a Scalar Equation. Consider the scalar
equation

6ru£+ik(t’ x’ svc)axuc=j‘s {621)
Ul —o=h,. (6.2.2)

Let y,.(s;t x) be the characteristic curve through (1, x} that is the
solution of

¢/c,k(s; t9 x)

d = A‘k(s’ yg,k(s; t’ x)a GUe(S, ys,k(s; ta x)))
S

(6.2.3)
ye,k(t; ta X) =X

Let p>0 be given. There exists #>0 such that for all re [0, T,], all
ve C'(Q2), 2=Q° {t< T}, such that

lev, |l Loy <N (6.2.4)
Vex(s; 1, x) is defined, belongs to C'Y(2), where Q= {(s, £, x);0<5<1,
(1, x)e 2}, and satisfies (s, 7,,(s;¢ x))eQ. In the sequel, p and the
corresponding # are fixed.

Then, for f,e L*(2) and A,e L™([y_, y,]1), (6.2.1), (622) has a
unique weak solution u, in L™(£), given by

ut ) = (o0t XD + | Sl vealsinx)ds. (625)
Lemma 6.2.1. Let T be given such that 0 < T< T,. For any v,€ C'(R2)

satisfying (6.2.4), f.e C°%(Q) and h,e C°(R), there is a unique weak solution
u, e C%(82) of (6.2.1), (6.2.2) given by (6.2.5). Moreover

0 < Wl + [ 110501 s, (6:2:6)

where || -|| denotes the norm in L™(R) and u,(t) the function u s, -).

Introduce the modulus of continuity

@(d; t; u)=sup juls, x)—u(s’, x|, (6.2.7)
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where the supremum is taken for (s, x) and (5", x’) in Q, such that s, s’ <1,
I(s, x)—(s', x")] < 4. A similar definition holds for function of xe R. In the
following statements V means V, ..

LeMMA 6.2.2. There is C such that, if e¢lvll~o <n and
1 +& Vol px0) < M, then

(33 1) < Ce™Mw(3 ) + [ CeM 1 0(8:5: £) d5+ 8 1fl o n

Proof. This is a consequence of formula (6.2.5) and the estimates
18, Vek(s3 8 X)| < CeMl = (6.2.8)

if one keeps in mind that any modulus of continuity satisfies w(Cd)<
(C+ 1) w(d).

It is clear that if # and f are C’, then the solution u given by (6.2.5) is
also C'. But an important remark in [HW ], who refer to K. O. Friedrichs
[F1], is the following fact.

LEMMA 6.2.3. If fis only C%() but of the form
.fa=p£{aroe+'{k(t’ X, Svc) axae} (629)

with p, and o, in C'(R2), then the solution u, of (6.2.1), (6.2.2) belongs to
Cl(Q).

Proof. 1f  we call  ps;t, x)=ps,7..(s:8, %)), G ls;4x)=
a.(s, v...(s; 1, x)), and A,(t, x)=h(7..(0; ¢, x)), then the solution u, is

t

u(t, )=kt %)+ [ Blsit, N0 556 x)ds (6210)
0

and integrating by parts, one can prove the existence of a continuous
partial derivative @, u, e C°(2), given by

0.ty )= 0.t )+ [ (2,553 6 X)(@.5,)(s3 , %) ds
0
+ ﬁc(arée)(ts 1, x) - ﬁ&(at&é:)(o; t’ X)
[ @853 1, x)(@.8.)(s5 1, x) d. (62.11)

Going back to the equation, one can show that d,ue C%(£2) and the lemma
is proved. As in [HW], estimates of Vu, in L* and of the modulus of

580/114/1-13
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continuity of Vi, can be deduced from the proof above, but for the sake of
brevity, we do not write them explicitely here.

2. Diagonal Linear System. Consider now a system whose principal
part is diagonal

0,u,+ A(t, x, 0,8, X)) O u, + mou, = f, (6.2.12)
Uli—o=h,, (6.2.13)

where A is the diagonal matrix whose coefficients are 4, v, is a bounded
family in C!(2) and m, is a bounded family of Nx N matrices. The
solution u, is constructed as the limit of the u that are defined inductively
by u?=0 and

0tu:+’+A(ta X, gve(ta x) a uv+]—f —m, u (6214)
u; M, —o=h,. (6.2.15)

Indeed, if |m, | =, <M, Lemma 6.2.1 and induction on v show that

!
lu ()] <eM Al + fo eM = fils)ll ds. (6.2.16)
Moreover, writing the equation for ' —u’, one obtains by induction on
v that
VIV
("' —u) ()]l < , gl 12 )- (6.2.17)

Finally, let us recall that, for 7e L™ and fe L™, uniqueness of L™ weak
solutions of (6.2.12), (6.2.13) is a consequence of estimate (6.2.6). So, we
can state

LemMMma 6.24. Assume (6.2.4) and moreover that |m,|  «qo <M for all
¢€]0, 1], and that the families h, and [, are bounded respectively in
L>([y_,y,])) and L*(R2). Then the sequences u. converge in L™(Q)
uniformly with respect to e. The limit u, is the unique L™ weak solution of
(6.2.12), (6.2.13) and

lu ()l <e™ || +J0 eMU =V | fi(s)] ds. (6.2.18)

We will also consider in Section 6.8, a semilinear system

afuﬁ + A(t’ x’ svﬁ(t’ x)) aXuE + mEuC + Qr(ue) =f6 (6'2'19)
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with initial condition (6.2.13). Here Q,(u) is quadratic form in u valued
in R", with coefficients that are uniformly bounded in L*(Q). The
corresponding iteration scheme is

St + AL x, ev, (8, x)) O ul = f,—mul—Q,(u) (62.20)

with the initial condition (6.2.15). Then, one has

LEMMA 6.2.5. Assume (6.2.4), that m,, f, and the coefficients of Q, are
uniformly bounded in L™(Q), and that h, is bounded in L*([y_, y,])
Then there is T' >0, such that the sequences u)e C°(2) are uniformly
bounded in L*(Q'), Q' =Qn{0<T'}. Furthermore they converge in
L™(Q') uniformly with respect to ¢, and the limit u,e C°(Q) is the unigue
L=(82") weak solution of (6.2.19), (6.2.13).

3. C° Estimates for a Linear System. Consider now the linear system
Ou.+ A(t, x, ev,) 0 U, + mu, = f, (6.2.21)
ul,_o=h, (6.2.22)

with v, bounded in C!(£) and m, as above.
Strict hyperbolicity implies there is a smooth invertible matrix
P(1, x, v)e C*(R, x RY), constant for |x| large, such that

PN, x, 0) A(t, x, v) P(¢, x, v) = A(t, x, v), (6.2.23)
where A(1, x, v) is, as above, the diagonal matrix with entries 4,(¢, x, v).
Because we have already assumed that A(¢, x, 0) is diagonal, we can choose
P so that
P, x,0)=1d,. (6.2.24)
One performs the change of dependent variables

u(t, xy=P(t, x, ev (t, x)) 4d,(t, x) (6.2.25)

and similarly for /, and A,. Then 4, is solution to
8,4, + A(t, x, ev,) 8 4, = f,— i 4, (6.2.26)
d,|,_o=hi, (6.2.27)

where

(t,x)=P, ' 8,P,+ AP, ' 3 . P,+ P, 'm,P, (6.2.28)
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with
P.(1, x)= P(t, x, ev(2, x)).

When m, =0, the entries #m*’ of s, have the following form

! =Y p 0,054 Ayl x, 0,) 9,01, (6.2.29)

J

with p*/ = pki(s, x, ev,(1, x)) and o' =0o’(1, x, ev (1, x)).
Lemma 6.2.4 can be applied to Egs. (6.2.26), (6.2.27) to prove

LEMMA 6.2.6. For any v,e CYQ) satisfying (6.2.4), f,e C%Q) and
h,eCo«[y_.,y,1), there is a unique solution u, e C%(Q) of (6.2.21),
(6.2.22). Moreover there is a constant C such that if 1+¢||Voll <o) +
Im, || L)< M, then

a0 < CJeer thg + [ enee 2 ipisas. (6230

4. C' Solutions of a Linear System. Consider the problem

Ou,+ A(t, x, ev,) O u, = f, (6.2.31)
ua|r=0=h£> (6232)

with v, bounded in C!(£2), but where we now assume that f,e C'(2) and
that A,e C'([y_, y.]). Then, because of the form (6.2.29) of the matrix
m,, we can apply Lemma 6.2.3 at each step of the iteration scheme
(6.2.14), (6.2.15) associated to system (6.2.26), (6.2.27), and conclude that
the corresponding #! are in C'(f2). Lemmas resembling Lemmas 6.2.2,
6.2.3, applied to Vu (see [HW]) show that for ¢ fixed, the family
{Va),ve N} is equicontinuous, and therefore 4! — 1, in C'(£2), so that
the solution #, of (6.2.26), (6.2.27) is in C'(£2). The conclusion is that for
each ¢, the solution u, of (6.2.21), (6.2.22) also belongs to C'(£2). One
could also obtain from [HW], estimates for Vu,. However, knowing that
u, is C' one can differentiate (6.2.31) to find that z, =& 0,1, is the L™(Q2)
weak solution of

v
—(8,4)(t, x, ev,) z, (6.2.33)
Ze r=0=gaxhe' (6234)

0A
alze + A(t9 X, Bve) axzs =& axfr,'_ {_ (t’ X, svs) ) (8 axve)} Ze
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One can apply estimate (6.2.30) to this equation, and with Gronwall’s
lemma, we obtain

o an (0 < C e o 0okl + [ 02 la g, fs)h s} (6:235)
V]

with C depending on 1, &€ |v,[| ;= <n and 1 +¢ [|[Vo, || ;2o < M.
Estimating next d,u, from the equation, yields

le V(0 < C{e”f' I 3l + [ofO)) + [ €402 [ V7 (5)] ds}.

(6.2.36)

Summing up, we have

LEMMA 6.2.7. Assurme that v,c C'(R2) satisfies (6.2.4), f,e C'(2) and
h.e CY{[y_, y.]). Then the L*(82) solution u, of (6.2.21), (6.2.22) belongs
to C'(R2). Moreover there is a constant C such that, if 1 +¢ |Vo|l <o, < M,
then (6.2.30) and (6.2.36) hold.

We can now proceed to the

5. Proof of Proposition 6.1.1. (i) Let R, and K, be such that
Vee ]0, 1], 1Al pory vy S Ro (6.2.37)
Vee JO, 1], ekl iy, v, 7)< Ko- (6.2.38)

Let R=R,+1. Let C, be the constant defined in Lemma 6.2.7 and
K=C\{Ky+ Ry+1}. Assume that u’e C'(2) has been constructed such
that

Vee 10, 60T, e llulll peiey <1 (62.39)
Vee 0, g4, e |Vl ooy + Nl gy < K (6.2.40)

Then, /) =b(¢, x, eu) u} satisfies
Vee ]0, &1, eIVl peiay + 131 L=y < C2K, (6.241)

where C, only depends on » and on the function b.
Lemma 6.2.7, shows that (6.1.1), (6.1.2) has a unique solution «’™*'
which satisfies

2 * M| ey < C1€MT{ Ry + TC, K} (6.2.42)
& IVu!* | poiy < CeMT{ Ky + £C, K + TC, K} (6.2.43)
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with M =C,{1+K}. Now it is clear that if 7>0 and &,>0 are small
enough, then (6.2.42) and (6.2.43) imply that the estimates (6.2.39), (6.2.40)
are also satisfied by u!*' and hence that they are satisfied for all v and

&

£ < gy. The point (i) of Proposition 6.1.1 is proved.
(ii) Next, note that u’*' —u! satisfies

L) u ™ —ul)={A(t, x,eu’ " ") — A1, x, eul)} ¢ .u’
+b(t, x, eulyul —b(t, x, el " yul—' (6.2.44)
W (o =0. (6.2.45)

€

Using the uniform bound (6.2.40) and estimate (6.2.30), a classical
induction shows that

tv— 1
! =l < C —, v22 (6.2.46)
with C independent of 1€ [0, T], ec ]0,¢,] and v. This shows that u)
converges in L>(£), uniformly in ¢ € ]0, &]. Call the limit u,.

(ii1) On the other hand, it is shown in [HW], that for ¢ fixed, the
derivatives of 1’ are not only uniformly bounded as in (6.2.40), but also
equicontinuous, so that the convergence u! — u, also holds in C'. Hence,
one can conclude that u, e C'(£2) and that u, is solution to (6.0.1), (6.0.2).
The proof of Proposition 6.1.1 is now complete.

Remark 6.2.8. We have not assume that the VA, are equicontinuous as
¢ tends to 0, and therefore the family {Vu!, v=0, £¢>0} is certainly not
equicontinuous and we cannot conclude without further assumptions on
the data that the convergence Vu — Vu, is uniform in ¢.

Given a C' solution u, and w,, we can differentiate (6.0.1) and obtain for
¢ ¢.u, an equation similar to (6.2.33), (6.2.34). In Section 6.8, we shall use
the following result.

LEMMA 6.29. Suppose that u, e C'(Q) satisfies (6.0.1), (6.0.2) and let
z.(t xyY=eP (1, X, eu (1, X)) 8 uft, X). (6.2.47)
Then z, is the unique L™(Q) weak solution of

Oz, +A(t, x, eu,) 0z, +m(t, x, eu,) z, + O(t, x, €u,, z,)
= folt, x, eu,) (6.2.48)
Zl,—o=€P 10, x, eh,(x)) 8 A (x) (6.2.49)
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with

St x,v):=P '0.b-v (6.2.50)

N 6P

m(t, x,vyz:=P {0 (AP)+d,P}z+ Y b,,0,P "
lom=1 aLf
1 db —1
— Z ziP, P —.v— P 'bPz (6.2.51)
li=1 (71),

and Q(t, x,v,z) ;=3 ,_, 01, x,v) z; z; Is a quadratic form in z, valued in

RY, whose kth component has coeffzczents Q' given by

o Y 04 , 0P, ; ;
Qi =6,, ) avj P, .+ Z P 2P, (A4,—=4), (6252)
I'4

£=1 2 m, =1

where 8, ; is Kronecker’s symbol. In these formulas, the matrices P,
0 (AP), 8,P, OP/0v,, b, and 0, b as well as the eigenvalues 1; are evaluated
at (1, x,v).

6.3. Equations for the Profiles

In this section, which parallels the last section, we study the different
equations of profiles which we will encounter in the sequel. Recall that we
assume (r—%,) and that the profiless do not depend on 7. Of course,
¥Y< @* and E, maps CO(S”) on C° (0,). We consider the scheme
(6.1.3), (6.1.4), and to begm with, make an important remark on the
linear system

XkUk+Ek<ZFk V,.D, U) E(F) (6.3.1),

Uili—olx, 0,) = H(x, 0,). (6.3.2),

The data V=(V,,.., Vy) and F=(F,, .. Fy) are given functions of
(1, x,0)e 2 x ¥ valued in R". The vector fields D, are those introduced
in (4.3.1). The kth components U, and V, of U=(U,,.., Uy) and
V=(V,,.., Vy) depend only on (¢, x, 8,).

Split the sum X E {I"'} ;V,(D,U;)} into three parts.

The terms where j =k yield an expression of the form y,(V)(D, U,) with

(V) :=E, (Z kaVf). (6.3.3)

Next, for j#k and i=k, Remark 2.6.2 shows that E, {V,(D,U)}=
ViE(D;U))}=0.
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Eventually, when j#k and i#k Corollary 4.3.3 shows that, for €'
functions, the sum

&V, U):= Ek< Z Ffij,.(D,Uj)> (6.3.4)
itk Ak ’
is equal to
&V, U) :=Ek< Z Hffj(D,.V,.) U,) (6.3.5)
itk jEk
with
Aro—4;
1% .=k ko TE0 3.6
i iJ }-j_o—ik,o (63 )

With these notations, we have

PROPOSITION 6.3.1.  For €'(82) solutions, Eq. (6.3.1) is equivalent to
X Ui+ 9.(V)D U+ &8V, Uy=E.(F,). (6.3.7)

These computations achieve a new diagonalization of the principal part
of the system (6.3.1) in the (¢, x, 8) variables. Together with Lemma 4.3.5,
Proposition 6.3.1 is crucial for the analysis which follows particularly in
Lemma 6.3.7 and in the proof of Proposition 6.1.2.

Although the method of resolution for (6.3.7) is straightforward, we must
pay attention to the almost-periodicity and so, we will go through the
different steps of the construction.

1. €' Solutions of the Scalar Equation. Consider the scalar equation

X, U+y,D,U=F, (6.3.8)
Ul,_o=H,. (6.3.9)

Below, as in Section 6.2 we denote by Q the set 2 {t< T} and by O =
{(s5,, x);0<s5<¢, (¢, x)eQ}.

LEMMA 6.3.2. Assume that 7, €€'(2;0,), F.c%%Q;0,) and that
Hee€%[y_, y.], 6,). Then (6.3.8), (6.3.9) has a unique weak solution U
in L=(22 x @,). This solution belongs to €°(2; ©,), and denoting by |U(t)|
the L™ norm of U(t, -, -), we have

FUo < 1 Hlo+ || 1F(s)] ds. (63.10)
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Proof. By integration along the characteristics of X, +v, D, it is clear
that there is a unique L™ solution U on £ x @, which satisfies (6.3.10) (see
Lemma 6.2.1). It remains to check that it is almost periodic.

Without loss of generality, we can assume that X,=d,. Note that if
0<s<rand (¢, x) is in £, then (s, x) is also in Q. The characteristics of
d,+ v, D, are the curves s — (s, x, 0 + u(s; ¢, x, ), where u is the solution
of

du(s; 1, x, 0
WL (5,3, 0+ (53 1,3, 0)) 0, 04(0)
(63.11)
u(t;t, x,6)=0.

We claim that, because y,€%'(2;6,), u also belongs to €'(3;8,).
Indeed, u is the limit of y*, where u°(s, x, 8)=0 and u* is defined for v 1,
by the inductive formula

wrlis;t x, 0)= J.S vt x, 0+ p(1;t, x, 0)) 6,.0,(x)dr. (6.3.12)

It follows from Lemma4.14 that if p'e%°3;6,), then v.(1;1¢ x,
0+u'(1;1;x,0))e€%(2;6,) and by Lemma 4.1.5 that > * ' e €%(3; 6,).

Moreover, the scheme (6.3.12) is known to converge in L*( x ©,) and
therefore, because €°(2; ©,) is closed in L*(£2 x 8,), the limit x belongs
to €°($; @,). From the equation, it is clear that d,u also belongs to this
space.

On the other hand, it is known that ye C'(@x©,), and that any
derivative u’ of p with respect to ¢, x or 8 is solution of an ODE of the
form

d ’
gﬂs—=a(s, x, 0+ pu)+ Bls, x, 0+ p) '

wt;t, x, 0)=p(1,x0)
with « and B and p in ¥°(2; ©,). Again ' is the limit in L™ of the y'* that
are defined by

s, x, 0)=p +r {oft, x, 8+ p(t; 1, x, 8))

+B(t, x, 0+ p(t: 1, x,0))-u" (751, x, 0)} dr.

Making use once more of Lemmas 4.1.4 and 4.1.5, shows that the u'* are
in €%(Q; @,) as is their limit 4’. The conclusion is that pe¥'(3; ©,) as
claimed. We also have the following estimates
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sup [Vu(s; 1, x, 8)] < Ce™" 4, (6.3.13)

(x,8)

where C depends only on the L™ norm of y,, and M on the L™ norm of
V7, where Vmeans V,, _,.

Now the end of the proof of Lemma 6.3.2 is easy, because the solution
U of (6.3.8), (6.3.9) is given by

U1, x, 0) = Hy(x, 0+ u(0; 1, x, 8)) +j Fuls,x, 0+pu(s;t,x, 0))ds  (63.14)
0

and the lemmas of Section 4.1 imply that Ue%°(2; ©,). Note also that
estimate (6.3.10) is trivial from (6.3.14).

For Ue C%Q x ¥), denote by w(J; ¢; U) the modulus of continuity of U
on O, x¥={(5,x)eQ;0<s<t}x¥

w(d;t; U)y=sup |U(s, x,0)— U(s', x', 6')] (6.3.15)

the supremum being taken over the (s,x,0)eQ,x¥ and (s, x',8)e
2, x ¥ such that |(s, x, 8)— (s, x', 8')| < 4.

LEmMa 6.3.3. With assumptions as in Lemma 6.3.2, we have

1
w($;t; U)K Ce™w(5; Hy) +f Ce“™ =338, 5; F,) ds
0

+ 0 N Fell L2, % 04y (6.3.16)

where C depends only on the L™ norm of v,, and M on the L™ norm of
Vye.

Proof. This is a consequence of (6.3.13), (6.3.14).
LEMMA 6.3.4. Assume that y,€€'(Q2;0,), F,.ec€'(2;0,), and that

H e ([y_, y.];0:). Then the solution U to (6.3.8), (6.3.9) belongs to
€'(2;0,) and

IO < Ce™ | H I, + “Fk(O)HO""jO Ce ™= ||Fy(s)lly ds,  (63.17)

where C only depends on the L*(2x 0,) norm of y, and M= |Vy| .=,
while VU denotes the gradient of U, and |U(t)||, = U)o+ |VU(2)|,.

Proof. 1Tt is a consequence of the explicit formula (6.3.14) and of the
estimates (6.3.13).
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2. €° Estimates for a Diagonal System. Consider the linear system

XU+ 2 (V) D U + MW, U) = E(F,) (6.3.18),
Urli—o=H(x, 6,), (6.3.19),

where A (W, U)=E (X, rﬁfj W.U;) with coefficients rhf.fje C™(£2). Note

J
that .#, is a continuous bilinear map from ¥°(Q2; ¥)x€°(R2; ¥) into

€°(2; @,), so that it makes sense for U, e €%(2; 0,), to say that U is a
weak solution of (6.3.18).

LEMMA 6.3.5. Assume that Ve €' (Q2; V), Fe€°(2; V), W,e€°%RQ; 0)),
and that H.e€°([v,y.]), O:). Then there is a unique solution
Ue¥(Q; W) with U, depending only on 6,, to the problem (6.3.18),
(6.3.19). Moreover, for all te [0, T]

1V o< e [Hlo+ [ e [Fo)lods  (63.20)

with M = ||W|| ;xp, and C a bound in L*(Q) for the ﬁszj.

Proof. As usual, the solution U is the limit of the U" that are defined
by U°=0 and

X U2+l + (V) Dy UZH =E(F)— MW, U}) (6.3.21),
Uit Y —o= Hil(x, 0,). (6.3.22),

These equations are solved inductively, with the help of Lemma 6.3.2 and
the estimate

AW, UYt)llo < C W) I1U()]lo- (6.3.23)

Lemma 6.3.2 shows, by induction, that U*e®°(2; ¥), that |U(¢)|, is
bounded by the right hand side of (6.3.20), and that

“Uv+1(t)_Uv(,)HOS(CM)"_:_'||U‘||Ll, vl (6.3.24)

Therefore U* converges in CYQRx ¥) to Ue®°(2; ¥) a solution of
(6.3.18), (6.3.19) which satisfies (6.3.20).
For the moduli of continuity we have

LeEmMMmA 6.3.6. With assumptions as in Lemma 6.3.5, we have the
Jollowing estimate
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(53 1; U) < Ce™'eo(d; H)+ [ Ce“™=90(5; 53 F) ds
0
+j Ce™MU~9)5(8; 53 W) ds + 6C, (6.3.25)
4]

where C depends only on the L™(2 x¥) norm of U, V, W, and F, and M
on the L*(Q2 x ¥) norm of VV.

Proof. Pass M (W, U) to the right hand side of (6.3.18) and apply
Lemma 6.3.3, noting that the modulus of continuity of .4, (W, U) satisfies

@(6;5) < Co{o IWI U + IW] (3555 U)+ [ Ull (8555 W)} (6.3.26)

with C, depending only on the coeflicients /#, and ||-|| denoting the norm
in L=(Q x ¥). The modulus of U is absorbed from the right to the left
thanks to Gronwall’s lemma.

3. €° Solutions of a Semilinear System. 1In Section 6.8, we will consider
a semilinear problem of the following form

X Ui+ v (V) D U+ (W, U)+ 2(U)=E(F,)  (6.3.27),

together with the initial condition (6.3.19), where 2, is quadratic in U,
2U)=E(Z,,;0:°U,U;) with coefficients 0};’e C™(2). As above, we
consider the associated iteration scheme, starting from U°=0

XU (V) D ULt = E(F) — M(W, U ) — 2(U%)  (63.28),

with the initial condition (6.3.22). Making use of Lemma 6.3.2, it is not
difficult to prove the following lemma.

LEMMA 6.3.7. Assume that Ve€'(Q; ¥), Fe6°%(Q, V), W, e€%Q; 6),
and that He€°([y, y,.1; ©°). Then there is T' €10, T] such that the
sequence U converges in L*(Q2'x ¥) to the unique solution Ue€°(Q'; ¥)
of (6.3.27), (6.3.19), where Q' denotes the domain Q~ {t<T’}.

4. Derivative Estimates for the Linear System of Proposition 6.3.1. In
this fourth step, we consider the system (6.3.7) with (6.3.2) as initial
condition. This system is of the form (6.3.18) with W=DV (ie,
W.,=D,V,) and M#(W,U)=&(V,U). Thus for Ve¥®YQ;86,),
Fe®%Q;V¥), and H,e¥°([y_, y.); @) one can apply Lemma 6.3.5
and conclude that there is a unique solution Ue¥%°(2; ¥), with U,
depending only on §,.
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LEMMA 6.38. Assume that Ve¥'(Q;0,), Fe€'(2;¥), and that
H.eb ([, v,]; ). Then the solution U to (6.3.7), (6.3.2) belongs to
€NQ; ¥ and

1U() | < Ce“™ (| HIl, + | F(0)llo) + C L e M\ F(s)ll ds,  (6.3.29)
where C only depends on the L*(2x8,) norm of V and M =1+ |VV| ,«,

while [U), == U)o + IVU(t)l, as in Lemma 6.3.4.

Proof. From Lemma 6.3.5, we know that U is the limit of the U" that
are defined by

XU 47 (V) DU = ELF,) =&V, U)) (6.3.30),
and the initial condition (6.3.22). From Lemma 4.3.5, we know that
1€V, U, < Co VO 1T (6.3.31)

and we deduce from Lemma 6.3.4 that U* e €'(£2; ¥) for all v. Moreover,
with estimate (6.3.17), we see by induction on v that |[U*(¢)|; remains
bounded by the right hand side of (6.3.29), if the constant C is suitably
enlarged. Finally, (6.3.17) also implies the estimates

. , . t\'»l
1o 1) = Ul < (CM) 'THU'HwLn, v=1 (6332)

and therefore U'— U in W!'=(Q2x ¥) so the limit Ue%'(2; ¥) and
satisfies (6.3.29).

Before leaving the problems with a linear principal part, we need to
control the modulus of continuity of VU.

LEMMA 6.3.9. With assumptions as in Lemma 6.3.8, the following
estimate holds

t
w(é; t;V’U)SKe"'w(é;V’HH—J KeXU =96, 5, V'F) ds
0
+j KeXKt=90(8: 5: V'V) ds + 5Ke*, (6.3.33)
0

where K depends only on the W' (Q x ¥) norm of U, V and F, and V'
denotes the gradient in the (x, 0)-variables.
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Proof. Differentiate (6.3.7), taking Lemma 4.3.5 into account when
dealing with the terms & (V, U). We obtain an equation of the form

X, VU 7. D VU =2(VV,VU + FNV'V,U)+VE(F,)  (6334)

with Z,(V'V,V'U) [resp. #(V'V, U)] being the image under E, of a
bilinear expression in V'V and V'U [resp. in V'V and U]. Furthermore, the
initial value of V'U, is clearly V'H,. We remark that the modulus of
continuity of the right hand side of (6.3.34) satisfies

w(8;5) S Kw(d;5;VUY+ Kw(d;5;V'V)Y+ K+ Kw(b;s; F). (6.3.35)

We are now in position to apply Lemma 6.3.6 and estimate (6.3.25). We
obtain

(6, V'U) < KeVeo(d; VH) + | KeX D065, V) ds+ | KeX'
0 0
x{@(8;s;VU)+w(d;5;V'V)} ds+ 5 KeX (6.3.36)

and (6.3.33) follows.

5. Proof of Proposition 6.1.2. We now consider the iteration scheme
(6.1.3), (6.1.4), and using Proposition 6.3.1 we write it

XU + 90U DU + 86U U ) =F(UY)  (63.37),
Uit HooolX, 0) = Hi(x, 0,) (6.3.38),

with F,(U)=E (3, Ek‘le-). These equations are solved inductively thanks
to Lemma 6.3.8 and to the trivial estimate

IFUYON < C U@ (6.3.39)

From estimates (6.3.29) and (6.3.39), one deduces the existence of a
T>0 such that the sequence U’ is bounded in €'(2; ¥), with Q=
Q7 ~ {1 < T}, (see for instance the proof of Proposition 6.1.1, point (i) at
the end of Section 6.2).

Knowing that, one can write down the equation satisfied by
Uv+ 1__ Uv,

X AU = U 47U DU = U} + &0, U+ = UY)
=F(U")=F (U™ )+ {3U" ) =3(U")} DU,
AR AN ) (6.3.40),
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Because of Corollary 4.3.3, the last term & (U*~'—U", U”) is equal to
(U= U, U") (see formulas (6.3.4) and (6.3.5)). Furthermore, F, and
7« are linear function of U, so the right hand side G} of (6.3.40) satisfies

IG(Do <K N{U*=U" "X 1), (6.3.41)

where K only depends on the uniform bound for [[U"|| y1<q .y, Hence
Lemma 6.3.5 shows that

v—1

100 - U< K (63.42)

and U” converges in L*(2x ¥) to a function Ue®%(Q;¥) with
components U, depending only on §,.

Since the norms [|U"|| y1. <o « w, are uniformly bounded, we deduce from
Lemma 6.3.9 applied to Eq. (6.3.37) that

a(8; ; VU YK KeXw(8; VH) + I KeXU'=9(8;5;V'U") ds + 6 Ke™.
° (6.3.43)

In fact, in the derivation of (6.3.43), we have used that w(d;s; F (U)) <
Kw(6; s; U). Therefore, it is clear by induction on v, that, with a new
constant K, one has a uniform estimate

o(8; 1; VU 1Y < KeX'on(8; V' H) + 6 KeX". (6.3.44)

Estimating w(5;¢;0,U**") from Eq. (6.3.37), we find that the derivatives
of the U" are uniformly equicontinuous on Qx ¥. Therefore, the
convergence U*— U holds in C' on any compact subset of Qx ¥, and
U is C'. Moreover the derivatives of U are uniformly continuous on
Q2 x ¥. Thus almost-periodicity of the derivatives of U follows from
Proposition 4.1.2 showing that Ue ¢'(Q; ¥).

It remains to show that U is solution to (6.1.5) by passing to the limit
in (6.3.37). Because U* converge to U in %9, it is clear from Defini-
tion (6.3.3) that y,(U")—7,(U) in L*(2xO,). On the other hand,
VU, - VU, in LZ(2x6,), so there is no difficulty in taking the limit in
LE(Qx8y) of X, Uyt ' +y,(U*)D U, Similarly, F (U")— F,(U) in
L>(2 x ¥). Finally, to pass to the limit in the &’ terms we write

EWU U Y)Y =8 (U, U)=&(U", Ut '~ U)+ E(U— U, U).  (6345)

Since DU” is uniformly bounded in L*(2x ¥) and {U**'—-U} >0 in
L*(Q2x V), formula (6.3.5) clearly shows that &, (U, U**'—U)—0
in L*(2x V). Since we know that all the functions are in ', we can
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transform &, (U"— U, U) to &(U*— U, U) and with Definition (6.3.4) it
is now clear that & (U"'— U, U)=6(U"'— U, U)—0 in L*(2x ¥). The
conclusion is that &,(U", U*T!) - &(U, U) in L*(2x 0,).

Thus the limit in L7 (2 x &) of Eq. (6.3.37), is just (6.3.7),, and by

loc

Proposition 6.3.1, U is solution to (6.1.5), (6.1.6).

6.4. €° Asymptotics: The Scalar Case

In this section we consider the scalar problem and make precise the
arguments sketched at the end of Section 6.1. The main tool will be
Theorem 4.4.2, under the quadratic assumptions (4,) and (%,). Let u, be
the solution of

Su,+ AL, x,ev,) 0 u, = f, (6.4.1)
uull=0=ha’ (642)

where
v, f, and h, are bounded in C}(Q), C°%(2) and C%[y_, y,]) (6.4.3)

We also assume that there are RY-valued Ve®'(Q;¥), R-valued
Fe€°(Q; ¥), and R-valued He%%[y_, v, 1; ©,), such that ¥, depends

only on 8,, Fis of the form ). F*/(1, x, 8,, 8,), and
v.(t, x)— V(t, x, @(t, x)/e) = 0o(1) in L*L” (6.4.4)
1t x)— F(t, x, @(¢, x)/e) = 0(1) in L*L? (6.4.5)
h(x)— H(x, 9°(x)/e)=o0(1)  in L, (6.4.6)

where p= +oc [resp. p< +o0] if condition (7 q) [resp. (w—F ¢q)] of
Section 2.2 holds. Recall we assume that (r —%,) holds.

Because of (6.4.3), we know from Lemma 6.2.1 that the solution u, of
(6.4.1), (6.4.2) remains in a bounded set of C%Q). In addition, we know
from Lemma 6.3.2 that there is a unique solution Ue%°(Q2;®,) to the
equation of the profiles

X, U+yV)D,U=E(F) (6.4.7)
Ul,_o(x, 0,) = H(x, 0,). (6.4.8)

The aim of this section is to prove the following result.

PROPOSITION 6.4.1. With the above assumptions

u(t, x)— U1, x, @,.(1, x)/e)=0(1) in L*L”. (6.4.9)
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First we make some simplifications. We can change the coordinate
x in & in such a way that X, becomes d,, and @, = ¢,(x) only depends
on x. In these coordinates, 4,(#, x,0)=0. Moreover, there is a C*
function A'(t, x, v) such that A,(¢, x, v)=A,(t, x, 0)+v-A'(¢, x, v), and with
Lemma 5.3.1 we see that

Aty x, ev,(2, x)) = A,(t, x, 0) + ew,(t, x) = ew (1, x), (6.4.10)

where the family w, is bounded in C!(£), and such that

w,(t, x)— W(t, x, @(t, x)/e) = o(1) in L*L* (64.11)

with
Wit x, 0)= Z (1, x,0;) (6.4.12)
W(tx())——a (t, x,0) Vi(t, x, 6)). (6.4.13)

In these circumstances, Eq. (6.4.1) takes the simpler form
du,+ewt,x)o . u,=f,. (6.4.14)
The corresponding equation for the profiles is
8,U+ E (W) D,U=E,F. (6.4.15)

We solve explicitly Eq. (6.4.14) by integration along the characteristics. The
first step in the proof of Proposition 6.4.1, is to study the system defining
the characteristic curves s — (s, x + &y,(s; t, x)) of 8, + ew, 0,.

d
75 Yelss 1, x)=w(s, x +ey,(s; 1, x))
d (6.4.16)

y.(t;1, x)=0.

The characteristic curves of (6.4.15) é,+ E (W) D,, are s— (s, x, 0, +
Y(s;t, x, 8,) 0,0,), where the scalar function Y is solution to

4 ¥(s:4,x,00 = (B W6, %, 0+ ¥is:1,x,0,) 2,04(x)
y (6.4.17)
Y(t; t, X, 0/()=0'

Recall @ = {(s, 1, x);0<s5<1, (1, x)eQ}.

580/114/1-14
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PROPOSITION 6.4.2.  With notations as above, the family y, is bounded in
Ccif), Ye€'(B;0,) and

y(s; 8, x)—=Y(s;t, x, @(s, x)/e)=0(1) in L=(s,t; L?(x)). (6.4.18)

First, we need a lemma.

LEMMA 6.4.3. Assume that y, is a bounded family in CNQ), that
Ye¥4'(Q;0,) and that (6.4.18) holds. Also assume that 1+¢(0y,/0x) is
bounded from below by a positive constant. Let v, be a bounded family in
L>=(R), such that there is Ve €°(Q; W) satisfying (6.4.4). Let w,(s;t, x)=
vs, x + ey, (s; t, x)) and let Wi(s;t, x,0)=V(s, x, 0+ Y(s; ¢, x, 6,) -
8.9(s, x)). Then w, is bounded in L*(3), We€°(3; ¥) and

w,(s; 6, x)— W(s; t, x, @(s, x)/e)=0(1) in L*L?. (6.4.19)
Proof. Write v,(s, X)=5,(s, X)+a,(s, x), p(5; &, x)= J.(s5 1, X)+2,(5: 1, x),
where y.(s; 7, x)=Y(s; 1, x, ¢,(x)/e) and 0,1, x)= V(s x, @(1, x)/e). We
obtain
O(s, x +ey,(s; 8, x))=0@(s, x) +ey.(s; 1, x) 0,0(s, x) + ee,(s; 1, x)  (64.20)
with
le.| < O(ley,|?) + O(|z,]). (6.4.21)

With these notations, we obtain

wis, t, x+ey,)— W(s;t,x, 9(s, x)/e)=a,ls, x+ey.(s; 1, x))+ B+ C,
(6.4.22)

with

B :=V(s, x+ey,0(s, x+ey,(s; t, x))e)— V(s, x, 0(s, x + &y.(s; 1, x))/¢)
and
C:=V(s,x,0(s, x+ ey (s;4,x))/e)— V(s, x,0(s,x + ey.(s;1,x))/e —e.(s;1,x))

(1) Suppose p= + .

Since a,=o0(1) in L™=, b, :=a,(s;t, x+¢ey,)=0(1) in L™. The term B is
O(¢) because y,=0(1) in L™ and Ve ®°. From (6.4.21), e,=o0(1) in L™.
By uniform continuity of ¥V in 8, C=0(1) in L*. Lemma follows from
(6.4.22).

(2) Suppose p< + .
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Since the Jacobian of x — x +¢y, is bounded from below, we have
16.(s; )l o< cfas; 1)l o= 0(1). The term Bis still o(1) in L™ and the term
C is bounded in L™. Furthermore, because of (6.4.21), for any ¢ >0,
meas({x; (s, x)€ , |e,(s, x)| >3} tends to O as ¢ goes to 0, uniformly in
s€ [0, T]. Because of uniform continuity of ¥ in 0, there is a positive function
é — w(38), converging to 0 when J tends to 0, such that for any s, ¢ we have

{x;|Cl>w(d)} < {x; |e,|>d}. (6.4.23)
From this follows that C=o0(1) in L™=(s, t; L?(x)).
Proof of Proposition 6.4.2. By Picard’s method, y, is the limit as
v— 400 of y!, where y2=0 and

P st x) =f Wiz, x +ey2(T3 1, X)) dr. (6.4.24)

The proof is in four steps.

(a) Since w, is bounded in C'(£2), (6.4.24) implies that the y® are
uniformly bounded in C (). Moreover y — y, in L=(3) uniformly in e.

Formula (6.4.24) also implies that if |t —s| is small enough, say smaller
than some § >0, then 1 +¢&(dy,/0x) > 3.

(b) On the other hand, an induction on v shows that if |1 —s| <9,
then

Yis; 6, x)—=Y'(s; t, x, @i(x)/e)=o(1) in L*L?, (6.4.25),

where the Y are defined by Y°=0 and
Y Usitx 0 = [ (EWNE 45, 0k V(50,500 2,04())
(6.4.26)

Indeed, if (6.4.25), holds, then by Lemma 6.4.3 we see that
w (T, x+epi(t; 1, x))—G'(1; 1, x, @(1, x)/e) =0(1) in L¥L? (6.4.27)
with

G'(t;t, x,)=W(t,x, 0+ Y*(1; 1, x,0,)-3,.0(7, X)) (6.4.28)

Now, with (6.4.26), (6.4.13), we can apply Theorem 4.4.2 to the integral
(6.4.24) to find that (6.4.25), ., holds with

Y (st x, 0,) = j (E.G")t:1, x, 0,)dr. (6.4.29)



210 JOLY, METIVIER, AND RAUCH

Because Y depends only on 6, Lemma 4.1.4 implies that
(E,G)t;t, %, 0,)=(E W)t 8, x,0,+ Y151, x,0,) 0,0,(x)) (6.4.30)

and formula (6.4.29) is (6.4.26), as claimed.

(c) As shown in the proof of Lemma 6.3.2, the sequence Y is
bounded in ¥'(&;0,), and converges in L*(Z;0,) to the solution
Ye¥%'(3;0,) of (64.17).

(d) Because y! — y, uniformly in ¢, and because Y*(s; ¢, x, ¢.(x)/e) —
Y(s;t, x, @u(x)/e) in L™, estimate (6.4.18) for |t—s| < follows from
(6.4.25). Taking into account the semigroup properties of the solutions of
the ODE’s (6.4.16) and (6.4.17), estimate (6.4.18) for general ¢ and s in
[0, T] follows.

Proof of Proposition 64.1. The solution of (6.4.14) with the initial
condition (6.4.2) is given by the formula

ult, x)=hix+ey(0;1, x))+ fl fr, x+ey(t;t,x))dt. (64.31)
0

Making use of Proposition 6.4.2 and Lemma 6.4.3 (we know that the
mapping x — x +&y,(s; f, x) is invertible with inverse x — x +e&y,(; 5, x})
we obtain the asymptotics for f. (1, x+ey(t;¢t x)). Next, applying
Theorem 4.4.2, we obtain the approximation (6.4.9) with

U(t7 X, Bk) = H(x’ 9/{ + Y(O’ 1 X, Bk) 6x‘pk(x))

+ j (E F)t:1,x, 00+ Y(2: 1, x, 0,) 0,.0,(x)) dr.  (6.4.32)
0

Now, s— (s, x, 8, + Y(s; 1, x, 8,) 0,.0,(x)) are precisely the integral curves
of 0, + (E.W)(t, x,8,) D, (see (6.4.17)) and thus (6.4.32) is the explicit
form of the solution U of

X, U+ E(W)D U=E/F,) (6.4.33)
Ul,-olx, 8,)= H(x, 6,). (6.4.34)

It remains to check that E (W)=7y,(V) and Proposition 6.4.1 will be
proved. Taking into account formulas (6.4.12), (6.4.13), and Defini-
tion (6.3.3), this is a consequence of the following lemma, whose second
part will be needed later on.

LEMMA 6.4.4. Recall the Definition (2.9.10) of the coefficients I'* -
Then
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(1) One has I'f, = (04, /dv,)(1, x, 0).

(ii) If P(t, x, v) denote a matrix which diagonalizes A as in (6.2.23),
(6.2.24), then for k +# j, one has Fffj= (A0 Ar0)(OP ;/0v.)(t, x, 0).

Proof. Differentiate relation (6.2.23) and evaluate at v=0, taking
(6.2.24) into account.

6.5. €° Asymptotics: Linear System with Diagonal Principal Part

In this section, we study the semilinear system
du,+ A, x, ev,) 8 u, +m(t, x, ev,, w)u, + Q(t, x, ev,, u,) = f, (6.5.1)
us|t=0=he’ (65‘2)

where we assume that m is a N x N matrix which depends smoothly on the
variables (¢, x, v) and linearly on w

m(t, x, v, W)=Y m'(t, x, v) n (6.5.3)

and Q(1, x, v, u) is a quadratic form in the variables v e R”, valued in R?,
with coefficients depending smoothly on (7, x, v)e R x Rx R". We denote
by Q, the kth component of Q

Oult, x, v, u) =) Qu/(t, x, v) uu,. (6.5.4)

First we assume that

v,, w,, f. and h, are bounded in C!/(Q), C%Q),
C°£), and Co([y,, v, respectlvely (6.5.5)

We also assume that there are R™-valued Ve®%Y(Q;¥) and
He%“([y_, y.]; ¥), such that V,, H, depend only on 8,, F is of the
form 3. F, ;(, x,6,,6,) and

v.(t, x)— V{1, x, @(t, x)/e)=o(l) in L*L? (6.5.6)
f(t, x)— F(1, x, @(t, x)/e)=o(1) in L*L? (6.5.7)
h(x)— H(x, o0, x)/e)=0(1) in L?, (6.5.8)

where p= + oo [resp. p < + o] if condition (Z ¢q) [resp. (w — F ¢)] holds.
Finally, we suppose that there is a function We%%Q; ¥) of the form
> Wt x, 8,) such that

w,(t, x)— W(t, x, ¢(t, x)/e) = 0o(1) in L*L7, (6.5.9)
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Corresponding to (6.5.1), (6.5.2), there is the following system for the
profiles

X Ui+y.(V)D, U+ E, (Znﬁ};’jW,-Uj)

iJ
+E, <Z Q-;;jUin):Ek(Fk) (6.5.10),
iJ
Uilizo=Hilx, pi6y) (6.5.11),

with m} (1, x)=m; (1, x,0) and Q;/(1, x)=Q};’(1, x, 0).

In the linear case (Q =0), we know from Lemma 6.2.4 that there exists
a unique solution u, € C°(82) of (6.5.1), (6.5.2) which is the limit in L*(Q)
of the solutions u, of (6.2.14); moreover the limit is uniform in & On the
other hand, there exists a unique solution Ue #%(2; ¥) of (6.5.10), (6.5.11)
which is the limit in L™(£2 x ¥) of the solutions U"* of (6.3.21).

In the semilinear case (Q #0), Lemmas 6.2.5 and 6.3.7 imply that there
exists 7' >0, independent of ¢ such that the same conclusions hold on
Q=2n{1<T'}.

PROPOSITION 6.5.1. With notations as above, one has on 2 in the linear
case, or on ' in the semilinear case

u(t, x)— UL, x, ¢(t, x)/e)=0(1) in L*L”*. (6.5.12)

Proof. Since u, is the uniform limit in L>=(£2) of the u! and because U
is the limit in L=(2 x ¥) of the U" it suffices to show that for each v

u, (t, x)=U (1, x, @,(1, x)/e)} + o(1) in LL7, (6.5.13),

For v=0 the estimate is trivial. If we assume (6.5.13),, then with
(6.5.6)-(6.5.9) we see that the right hand side f of (6.2.20) satisfies (6.4.5)
with the profile F*

J

Fy=F—Y m, WU =Y 0iUU:. (6.5.14)

i j ij
Equation (6.2.20) [or (6.2.14) when Q=07 is a decoupled system of N
scalar equations and Proposition 6.4.1 implies that (6.5.13), ., holds with
the profile U”,' which is the solution of

XU+ V) DU = BE) - B (Sl W03 -5, 01010
iJ [

(6.5.15)
Ut i—olx, 06) = Hy(x, 0). (6.5.16)
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Here we recognize Eq. (6.3.28) [or (6.3.21}] with initial condition (6.3.22).
Thus U*;f'=U"*" and (6.5.13),,, holds, and Proposition 6.5.1 is proved.

6.6. €° Asymptrotics: Case of a General Linear System

In this section, we study the following linear system, which is of the form
(6.2.21), (6.2.22) and which corresponds to taking @ =0 in (6.5.1)

O,u,+ A(t, x, ev,) 0, ,u, + m(t, x, ev,, w,) u, = f, (6.6.1)
u,l,_o=h,. (6.6.2)

We still assume that m is a N x N matrix of the form (6.5.3), which depends
smoothly on the variables (z, x, v) and linearly in w.

We assume (6.5.5) and that there are RM-valued Ve¥%'(Q; V),
Fe€%Q;¥), We€¢°2;¥), and He%*([y_, y.]; ¥), such that V, H,
depend only on 6,, Fis a sum of terms F*/(z, x, 8,, ;) and W is a sum of
terms W, (¢, x, 0;). We still assume (6.5.7), (6.5.8), and (6.5.9) but we now
strengthen (6.5.6), assuming that

v,(t, x)— V(t, x, 9(t, x)/e) = 0(1) in Lw!?, (6.6.3)

where p= + oo [resp. p< + o] if condition (Z q) [resp. (w — 7 ¢)] holds.
From Lemma 6.2.6, we know that there is a unique solution u,e C%Q)
of (6.6.1), (6.6.2) which is bounded in L*(Q).
On the other hand, we know from Lemma 6.3.5 that there is a unique
R"-valued solution Ue¥%°(Q; ¥), with U, depending only on &,, of the
system

X Uy +7.(V) DUy + 8V, U) + E, (z W, u,) _E(F) (664,
)

Uil o= Hy(x, 6;) (6.6.5)
with riz;'w.(t, x)= m;'c‘j(t, x, 0).
PROPOSITION 6.6.1. With notations as above, one has

u(t, x)— U(t, x, @(t, x)/e)=0(1) in L*L?

loc*

(6.6.6)

Proof. As in (6.2.25), we introduce #.(t, x)e C°(2) the solution to
(6.2.26), (6.2.27). Because of (6.6.3), we have estimates of the form

60,0, .(t, x)=D,V,(t, x, 9,(¢, x)/e) + o(1) in L*L?.  (6.6.7)
Because X;9,=0, we also have

£0,v, (1, x)=—2,(t, x) D, V.(¢, x, @;(¢, x)/e) + o(1) in L*L?.  (6.6.8)
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With notations as in (6.2.28), one has for ¢ =7, or @,

N

z txO )& v, ;+ Ole).

Thus we deduce from (6.6.7) and (6.6.8), that 1, as defined in (6.2.28)
satisfies

m (1, x)=M(t, x, (¢, x)/e) + o(1) in L*L? (6.6.9)
with a matrix M whose entries are

Gu

N
Mk,txf):Z (o= Ai0) DV, +m, W, (66.10)

i

In this formula, 8P, ,/0v; is evaluated at (¢, x, 0).
Apply Proposition 6.5.1 to the system (6.2.26) to find that

ﬁc,k(t’ x) = Uk(t’ X, (Pk(t’ X)/EJ + 0(1) in L%LP, (661 ])
where U is solution to
XkUk+yk(V) DkUk+Ek (Z Mk_('Uf>=Ek(Fk) (6612)
4

Uel,=o(x, 00) = H(x,0,).  (6.6.13)

Using formulas (6.6.10), (6.3.5), (6.3.6), and Lemma644, a
straightforward computation shows that

E, (ZM,(’,U,)=(3°;((V, U)+ E, (Z r?zjw,W,UJ)
'3 Ly

+ E, (Z (Ako— .o)

i

(D V)) U,. (6.6.14)

Because E, {(D;V;)} =0 when i#k, the third term of the sum vanishes.
Therefore, U is indeed the solution of (6.6.4), (6.6.5) and, because P(¢, x, 0) =
Id, formula (6.6.11) implies (6.6.6) and Proposition 6.6.1 is proved.

6.7. Asymptotics of Derivatives for a Linear System. Proof of Proposition
6.1.3

Consider the system
Ou,+ A(1, x, ev,) O, u, = f, (6.7.1)
u£|l=0=hs’ (672)
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where

v, and f, are bounded in C () and 4, is bounded in
CUly -y D) (6.7.3)

Assume that there are R"-valued Ve®'(Q;V¥), Fe%'(2;V¥), and
He€'([y_,y.);0%, such that V,H, depends only on 8, F=
Z Fi,j(ta X, 0:’7 91) and

vt x)— V{1, x, (1, x)/e)=0(1) in L*w!» (6.7.4)
f.(t, x)— F(t, x, 9(¢, x)/e) = 0o(1) in L=W'»r (6.7.5)
h(x)— H(x, ¢%(x)/e) = o(1) in whe, (6.7.6)

where p= + o0 [resp. p< + oo ] if condition (7 ¢) [resp. (w— 7 ¢)] holds.

From Lemma 6.2.7 we know that under these assumptions, the solutions
u, are bounded in C(£2). On the other hand, we know from Lemma 6.3.8
that the solution U of (6.3.1), (6.3.2) belongs to €'(2; ¥).

ProrosITION 6.7.1.  With notations as above, one has
el ut,x)—DU(1, x, 9(t, x)/e)=o(1) in L*L”. (6.7.7)
Proof. The proof is in two steps.
Step 1. Approximation of ¢ é,u,. Let
z,=ed . ue CUQ). (6.7.8)

As already noted in Section 6.2, z, is the unique L*(2) (weak) solution
of (6.2.33), (6.2.34) which is of the form (6.6.1), with ¢, f, on the right
hand side, m(t, x, v, w) = (8A4/0x)(¢, x, v) wo + LN (8A4/5v,)(1, x, v) w; and

i=1

wo=1, w,=¢d, v, for i=1. We deduce from (6.7.5) that
£d,.fo— F'(t, x, 0(t, x)/e)=0(1) in L*L° (6.7.9)
with
F'(t, x,8)=DF(t, x, 8) (6.7.10)

which is still of the form Y {D,+ D,} F*/(1, x, 8,,6,). Similarly, (6.7.6)
implies that

€0, h, . — Hi(x, (0, x)/e)=0(1)  in L? (6.7.11)

with H,(¢,0,)=D,{H,(x, 6,)}.
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Using (6.6.7), we see that the assumptions (6.5.7), (6.5.8), (6.5.9) are
fulifilled for the equation satisfied by z,. Thus Proposition 6.6.1 yields

z,(t, x)— Z(t, x, ¢(t, x)/e)=0o(1) in L*L” (6.7.12)

with Z, depending only on 8, satisfying

X Zi +1V) Dy Zi+ 8V, Z) + Ey, <Z mi (D, V) Z,-)

i

+Ek<Zm,U ,) E,(DF,) (6.7.13),
Zilico=DiHy(x, 6,), (6.7.14),
where
r?zf(’j(t,x)=agki‘j(t,x,0)=1"ffj for 1<i<N  (6.7.15)
and
ms = agx"'f (1, %, 0) =8, ; 0, Arolt, X) (6.7.16)

the last equality being a consequence of the fact that A(s, x, 0) is assumed
to be diagonal.

We next perform several simplifications in (6.7.13). First we can discard
the terms i E,{(D,V,) Z;), where j=k, i#k, since E,(D;V,)=0. Only
the term I ’,j (D Vi) Z, remains. Next, we consider the terms where j# k
and i=k. They yield a term we denote by 4 (DV, Z)

H(W,Z)=3 T'i ;WiE(Z). {6.7.17)
i#k
Finally, we group the remaining terms i #k, j# k with the corresponding
ones from &;(V, Z) and we obtain a sum denoted #(DV, Z), where

F (W, Z)=Ek< Y, (I +T%) W,.Zj>

itk jrk

=Ek< y Mf"WZ) (6.7.18)

itk jrk ;0 Ao
With these notations, we can rewrite Eq. (6.7.13) as
X, Z,+0 (VYD Z, + F(DV, Z)+ H(DV, Z)
+ {T (D Vi) + 8,40} Zi = E(DF,). (6.7.19)
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Step 2. We show that Z, =D, U,.

By uniqueness, if suffices to show that Z’'= D, U, satisfies the system
(6.7.19), (6.7.14). The comparison of the initial conditions is trivial. On the
other hand, because we know that Ue %' one can differentiate (6.3.7) with
respect to D,.

(a) The commutator [D,, X+ 7,(V)D,] is
[Dy, Xi+ 7 Did = {(Diyi) + 8 Ak} Do (6.7.20)

where we have used that X, ¢, =0 so that X,(3,.9,)= —0.4¢0 0. 0.
Moreover, from the Definition (6.3.3) of y.(V),

(V)= E; (Z Virfk)'
We claim that
D.y.=E, (Z (D; V) Fﬁk>=F’,§,k(Dk V). (6.7.21)

Indeed, if i=k%, then E.(V,)=V, and the commutator of E, and D, is
zero. If i # k, then by Example 2.6.4, because V', depends only on 8,, E.(V,)
does not depend on 6, and D, {E,(V,;)} =0. On the other hand, it also
follows from (2.6.9) that E,(D,V,)=0.

{(b) By Corollary 4.3.4, we obtain that

"

Aio— A
D&V, U= Y ——-—lﬁ"“i»" 5 E{(D,V)(D,U,)}
itk jek k0 L0

Ao—Aio ,
= Yy 22 E{(DV)Z])

itk jEk ;‘j,O - }'k,O

=F(DV,Z), (6.7.22)

where & is defined in (6.7.18).

(c) Taking (6.7.20) and (6.7.22) into account, we deduce from (6.3.1)
that

XeZi+ 7 DiZi+ FDV, Z') + (Dyyi) Zic + (8 4k0) Zi= Di{ EL(F) .
(6.7.23)
By Lemma4.3.1, we know that D, {E,(F,)}=E(DF,). Furthermore,

because Z/=D,U,, then E,(Z/}=0 when j#k, and from the Definition
(6.7.17) we see that H#(V, Z’) =0, so we can freely add this term to the left
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hand side of (6.7.23) and it is now proved that Z’ satisfies (6.7.19), (6.7.14).
By uniqueness, Z’'= Z and the proposition follows.

PROPOSITION 6.7.2. With assumptions as in Proposition 6.7.1, one has
u(t, x)— Ult, x, 0(¢, x)/e)=o0(1) in LW, (6.7.24)
Proof. Thanks to Proposition 6.7.1, it remains to show that
ed,ul(t, x)—D'U(t, x, o(1, x)/e) =0o(1) in L*LP,  (6.7.25)

where D' :=3,¢ - d,. Consider the kth equation in system (6.7.1). Because
A(t, x, 0) is diagonal and u,, v, are bounded in C,!, one has

£0, U+ Ar o€ Ot = 0(e) in L*7(0).

Therefore (6.7.25) is a consequence of (6.7.7) and of the eikonal equations
(1.3.2).

Proof of Proposition 6.1.3. Under the assumptions of Proposition 6.1.3,
we have shown that there exists a 7> 0, such that the sequence u! is well
defined and bounded in C!(Q) (Section 6.2) and that the sequence U" is
defined and bounded in €'(Q; ¥) (Section 6.3). We prove by induction on
v that

w(t, x)— U1, x, @(t, x)/e)=0(1) in LWhe  (6.7.26),

Assume that (6.7.26), holds. We check that f)(t, x)=5b(t, x, eul)u’ is
bounded in C!(£2), that (6.7.5) holds for /! and that

F'(1, x, 8) = b(1, x, 0) U"(1, x, 6). (6.7.27)

Therefore one can use Proposition 6.7.2, and comparing the corre-
sponding Eq. (6.3.1) with (6.1.3), we obtain that (6.7.26), , , is also satisfied.
The proof of Proposition 6.1.3 is now complete.

6.8. Asymptotics of Derivatives for a Quasilinear System: Proof of Proposi-
tion 6.1.4

Let u, be solution to (6.0.1), (6.0.2). We have just checked that
u,e C'(2) and that the u, form a bounded family in C!(2). Propositions
6.1.1-6.1.3 imply that there is Ue €'(2; ¥) with U, depending only on 8, ,
such that

u,(t, x)— U(t, x, 9(t, x)/e)=0(1)  in L*L”. (6.8.1)
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PROPOSITION 6.8.1. There exists T'>0 such that the following estimate
isvalidon Q' =Qn {t<T'}.

g0, ut,x)— 0,9 -0,U(t, x, ¢(t, x)/e)=0(1) in L*LF . (6.8.2)

loc*

Before starting the proof, we remark that this result implies Proposi-
tion 6.4.1. Indeed, using Eq. (6.0.1) one can estimate ¢ J,u, and deduce from
(6.8.2) that

ed,ult, x)—D'U(t, x, @(¢t, x)/e}=0(l)  in L*L” (6.8.3)
with D’ :=3,¢-3,. Then (6.8.1)-(6.8.3) imply that
u(t, x)— U1, x, ¢(t, x)/e) =0(1) in L*Ww}» (6.8.4)
which is the conclusion of Proposition 6.1.4.

Proof of Proposition 6.8.1. (a) Because we know that u, is C', one can
differentiate (6.0.1), and more precisely, if we introduce z.(t, x)=
eP (1, x, eu,(t, x)) é,u(t, x) € C°£2), then, as in Lemma 6.2.6, z, is the
L™ solution of the semilinear equation (6.2.48), (6.2.49).

This system is of the form (6.5.1), with Q and Q;}” given by (6.2.52) while
m(t, x, eu,) z is defined by formula (6.2.51). Moreover

fo=filt,x, eu) =P 1(0,b)-¢cu,. (6.8.5)

We note that f,(z, x,0)=0 and because ¢,P(t, x,0)=20,P(t, x,0)=0, we
also have

w=m(t, x,0)= —b(t, x,0) + 8, A1, x, 0). (6.8.6)

Similarly, we see that

0= k,gl] +(},0—/"L,-,0)%jl. (6.8.7)
Moreover, the initial condition (6.2.49) clearly satisfies
z,(0, x)— H'(x, (0, x)/e) = o(1) in L? (6.8.8)
with
Hi(x, 8,)=D,H(x, 0,). (6.8.9)

(b) Because we know that u, is bounded in C!(£2) and that (6.8.1)
holds, we can apply Proposition 6.5.1 to show that

z,(t, x)— Z(1, x, o(t, x)/e) =o(1)  in L=L” (6.8.10)
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with Ze €°(Q; ¥), Z, depending only on 8, satisfying

XeZ+y7.(UYDZ+E, (Z I’hk'jzj) +E, (Z Q;';)'ZiZI) =0 (6.8.11)
i i
Zyl,—o=H,. (6812)

Because of (6.8.6), the third term on the left hand side is #.(Z)+
(8xAr.0) Zi, Where

Bd2)= —E, (z 1;k,jz,). (68.13)

Next, we split the last term of (6.8.11) into three parts. The first one
corresponds to the indices i=j=4k

04
5 (6%, 0NZ0)* = TEk(Z) (6.8.14)
k

the last equality being a consequence of Lemma 6.4.4(i).
The second part corresponds to the indices j#k and i#k. With
Lemma 6.4.4(1i), it can be written
Aio=2io .
10 E(Z,Z})=F(Z, Z), (6.8.15)
ik jrkt0 A0
where we recognize the functional # that was introduced in (6.7.18).
The third part corresponds to the indices j=4k and i#k or j#k and
i=k. We denote it by A, (Z, Z).

H(Z,Z)=) QVZE(Z)+ ), Q/ZiENZ). (6.8.16)
itk jEk
With these notations, Z is solution to
X Zi+ 7 U)DZy + (8 Ay o) Zi + r:.k(zk)z
+ F(Z, Z)+ A (Z,Z)+ B(Z)=0. (6.8.17)

(c) On the other hand, we know that Uec €' ($2; ¥) satisfies (6.1.5),
(6.1.6), and we can differentiate these equations. Introduce Z'=DU =
(Zi)1<k<n With Z; =D, U,.

Equation (6.1.5) is of the form (6.3.1) or preferably of the form (6.3.7),
with V=U and F=»bU. We make use of the computations made in
Section 6.7 (second step of the proof of Proposition 6.7.1). Because
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DV=DU=Z' from (6.7.21) we see that Dkyk(V)=l“L“kZ,'( and formula
(6.7.23) shows that Z' satisfies

X Zi+ 9 U)DeZ3 4+ (0,440 Zi A T (21 + PAZ', Z') = D, { E((F) .
(6.8.18)

Since F=5U it is easily checked (see Lemma 4.3.1) that D, {E.(F,)} =
E (D(bU))= —%,(Z'). On the other hand, because i #k and j#k in the
sum of (6.8.16), #,(Z’', Z')=0 and (6.8.18) shows that Z" is solution of the
same equation (6.8.17) as Z. Furthermore, (6.1.6) shows that the two
solutions are equal to H' defined in (6.8.9) at t=0. By uniqueness (see
Lemma 6.3.7) we can conclude that Z=Z"= DU.

(d) Since P(t, x,0)=1d and z,=0(1) in L*(Q) then ¢d ,u,—z,=
O(g) in L™(Q). Estimate (6.8.10) together with the fact that Z= DU,
implies (6.8.2), and Proposition 6.8.1 follows.

7. L1IFE SPAN OF SOLUTIONS

This section is devoted to the proof of Theorems 2.10.2 and 2.10.4.

7.1. The Semilinear Case. Proof of Theorem 2.10.2

Let 2, be a domain of the form (2.1.3) and consider the Cauchy problem
(2.8.1) with Cauchy data A, which satisfy (2.8.2) and (2.8.3) with p = + 0.
We assume that conditions (%) and (7 ) hold. Moreover, as in Section 5,
we assume that L is diagonal. Recall the definition (2.10.6) of T (&) as well
as the definition of T, . The proof is in two steps.

Step 1. We use

Lemma 7.1.1. T, <lims o T,(8) and the approximation (2.8.4) is valid
in AT):=QoN{t<T} forall T<T,.

Proof. To begin with we make a remark. Theorem 2.8.1 provides us
with a time 7 such that (2.8.4) holds on Q,. Moreover the proofs of
Proposition 5.1.2 and 5.1.4 show that this time T can be estimated from
below by inf{ Ty, t(m, u(e,))}, where t is a positive function of

m=1Hl gy yyew  and e =sup lhl e,y (211
e ey

Fix T<T,<Tyand let M := | U|| ;<o)< v and t :=1(M, M + 1). Because

of (2.8.3), there is ¢, >0 such that u(e;) <M+ 1 and therefore we have

T.(e)=t, =inf{T,,t}. Suppose now that t<7. At time t we have

TU, -, M 1» < M, by definition of M. Furthermore, because estimate
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(2.8.4) is valid up to time t, there is &, > 0 such that [Ju,(t, - )|« <M+ 1 if
e<¢,. So we can now apply Theorem 2.8.1 with Cauchy data on the line
t=t to conclude first that T (e,)>t,=Inf{T,, 2t} and second that the
approximation (2.8.4) is valid on Q(t,). An easy induction shows that, after
a finite number of steps, we obtain an ¢,>0 such that T, (¢,})>t,=
Inf{T,, pt} > T and the approximation (2.8.4) holds on 2(t,). The lemma
follows.

Step 2. It remains to prove

Lemma 7.1.2. For all $>0, T, > T ().

Proof. Assume that for some >0, T, <T,(6)<T,. Then by defini-
tion, the u, are defined and uniformly bounded, say by M, on (T,). For
any t<T,, we know from Lemma 7.1.1 that the approximation (2.84)
holds on Q(z). Making use of Theorem 2.10.5, we obtain that

Vi<T,, Ut )< M. (7.1.2)

Consider now, for T < T, the Cauchy problem (2.8.5) for the profiles, with
Cauchy data U(T, -, -) on the line ¢t= 7. This problem has a solution as
stated in Proposition 5.1.4 on an interval [ 7, T+ ] with 7> 0, and 7 can be
bounded from below by some positive function t of the L*-norm of the
Cauchy data. Because of (7.1.2) we get that 7 is larger than t(M) which is
independent of T<T,. Therefore, choosing T close enough to T, this
shows that the solution U of (2.8.5) can be continued after T, which
contradicts the definition of T,,. Hence T, > T,(J) and the lemma is proved.

7.2. The Quasilinear Case. Proof of Theorem 10.2.4

Fix p>0 and a domain 2* as in (2.9.2). Consider the Cauchy problem
(2.9.1) with Cauchy data A, which satisfy (2.9.3) and (2.9.4) with p= + c0.
We assume that the strong conditions (¥¢) and (7 ¢) hold. Moreover, as
in Section 6 we assume that L, is diagonal. Recall the Definition (2.10.10)
of T,(J) as well as the definition of T,.

Theorem 2.9.1 provides us with an ¢,, and a time T such (2.9.5) holds on
Q(T):=82°n {t< T}; but the proofs of Propositions 6.1.1, 6.1.2, and 6.1.4
show that this time 7 can be estimated from below by inf{ T, t(m, u(g;)) },
where t is a function of

m = ”H” L¥([yv_.y)x¥) + IIVH” L [y_.y:])x¥) (721)

and

#(80) = Sup { ||hc|| L™ [y—,y+]) +eé lthEH L5({y- vy ])} (722)

€< o0
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LemMa 72.1. T, <lim;_ o T,(d) and the approximation (2.9.5) is valid
in T) forall T<T,.

Proof. 1t is quite similar to Step 1 in Section 7.1. Fix T< T, < T, and
let M := (Ul txiryxw) + IVUll Lxir) « ). Let t:=t{(M, M +1).

Because of (2.9.4), there is &, >0 such that m(s;) <M + 1 and therefore
Theorem 2.9.1 implies that there is ¢, € ]0,6,] such that T,(¢)=t;=
inf{T,, t} and (2.9.5) is valid on (t,). Suppose that t < 7. At time t we
have ||U(, -, )|l .= + VU, -, -)|| .= < M, by definition of M. Furthermore,
because estimate (2.9.5) is valid up to time t, there is 4, >0 such that
N (t, M=+ lVut, Mx<M+1 if e<8,. So we can now apply
Theorem 2.9.1 with Cauchy data on the line =1 and we can conclude that
there is &, € 10, 8,] such that T,(e,) >t,=1Inf{T,, 2t} and the approxima-
tion (2.9.5) is valid on Q.. The lemma follows by the same induction as
in Section 7.1.

Before proving the analogue of Step 2 in the last section, we need a
refined estimate of the life span of solutions of the equations of profiles. It
is based on the following remarks. First, the only nonlinear terms involved
in (6.1.5) are of the form U,(D,U,). Second, the vector fields D, nicely
commute with the equations as was shown in (6.7.20). Therefore the life
span of the solutions to (6.1.5) is governed by the blow-up of DU and not
by the blow-up of the full gradient VU.

LemMma 7.2.2.  Consider the Cauchy problem (6.1.5) for the profiles U,.
There exists a positive function t(-) such that the solution U exists on
Q(T)x ¥ and belongs to €' (Q(T); ¥) for T=1Inf{Ty; t(m)} with

m:i= ”H” Lo([y_,y:+1x ¥) + ||DH|| L& [y-.¥y+1x¥) (7'2-3)

Proof. Step 1. Consider the iteration scheme (6.1.3), that we write in
the form (6.3.37). Let m(¢) == 1U"| 1 auyx ) T DU | L2211 x - From
Lemma 6.3.2, we deduce that

MUY o S | H| = + Cfo m {1+ U ()]} ds,  (7.24)

with a constant C which is an upper bound of the various coefficients
which only depend on the given unperturbed solution u,.

Next, we can differentiate (6.3.37), with respect to D, as we did in
Section 6.7, Step2 of the proof of Proposition 6.7.1. We obtain that
Z=DU">*! is solution to (6.7.19) with V'=U" and F=5hU" and satisfies

580/114/1-15
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the initial conditions Z,|,_,= D, H,. Therefore, Lemma 6.3.2 also implies
that

IDU* (1)l L= < |1 DHl = + CL’ m(s){1+ DU (s)] -} ds.  (7.2.5)
Adding (7.2.4) and (7.2.5), we obtain
mv+1(t)<m+CLl my(s){1+m,, (s)} ds (7.2.6)
and therefore

m, , (1) < me“FW 4 R 1 with J(0)=| m(s)ds. (7.2.7)
* 0

By induction on v, we conclude that for

1 1 1
< =—1Ln(1 — 2.
t<t(m) 3¢ n( +2m+1><Ln(1+m> (7.2.8)
one has
meCr
my(t) < <2m. (7.2.9)

X7 . X
m+1—me®

Step 2. We show that for t=t(m), the sequence U’ is uniformly
bounded in €'(2(t)x ¥). In fact, we already know that U'e%' and
if we differentiate (6.3.37) with respect to (x, 8, 1) we see that Z**!=
O(x.0.,U" " satisfies a system of the form

X Z " 4y (U) D Z} =Gy

where G**! is the sum of a linear term in Z” and of a bilinear term in U”
and U”*! and their derivatives. Now, because of the form (6.3.3) and
(6.3.5) of y, and &7, it turns out as in the proof of Corollary 4.3.4 that this
bilinear term only involves expressions of the form

ZV‘DUV+I, DUv_zv+l or Zv_U\'+1
Taking (7.2.9) into account, Lemma 6.3.2 yields the estimate

1Z"* () 1= < [VH]| po + C(1 +m) j UZH ) e + 1 Z0(8)] 1 ) ds
0 (7.2.10)
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which implies that |Z**!(¢)||,~ is uniformly bounded for r<t. The ¢,
derivatives are estimated from the equation.

Step 3. The moduli of continuity of VU* *! are uniformly estimated for
t<t. Indeed this is a consequence of Lemma 6.3.9.

Step 4. We now repeat the end of the proof of Proposition 6.1.2. Step |
suffices to ensure that U"— U in L*(Q(t) x ¥); Steps 2 and 3 imply that
the convergence also holds in C' on any compact subset of Q(t) x ¥ and
therefore, using Step 3, that VU is uniformly continuous on (t) x ¥. Then
by Lemma 4.1.2, Ue€'(82(t); ¥), U is solution to (6.1.5) and the lemma is
proved.

LemMa 723. For all >0, T, 2T ,(d).

Proof. Assume that for some 6>0, T, <T,(6)<T7,. Then by defini-
tion, the u, are defined and uniformly bounded in C!}, say by M, on (T ).
For any t<T,, we know from Lemma 7.2.1 that the approximation (2.9.5)
holds on Q(¢). More precisely, we know that u,(t, x) = U(t, x, 9(1, x)/e) +
o(l) and, as stated in Proposition 6.8.1, that &d.u/t, x)=
DU(t, x, ¢(t, x)/e) + o(1). Hence Theorem 2.10.5 implies that

Vi<T,, U@ W=+ DU, -, ) = S M. (7.1.11)

Lemma 7.2.2 shows that the Cauchy problem (2.9.6) with Cauchy data
U(T, -, -) on the line t=T<T, has a solution on an interval [T, T+1]
with t =t(M) independent of T < T, . Therefore, choosing T close enough
to T, we obtain the solution U of (2.9.6) can be continued after T, which
contradicts the definition of 7,. Hence T, > 7,(5) and the lemma is
proved. This finishes the proof of Theorem 2.10.4.

8. THE SuM Law

This section is devoted to the proof of Theorem 2.11.1. The extension to
quasilinear systems is discussed in section 8.2.

8.1. The Semilinear Case

Let 2, be a domain of the form (2.1.3) and Q=Q,n {< T} a fixed
domain on which the solution U to (2.11.1) is defined. For simplicity we
assume that the restricted closure property (r—%) holds and that the
profiles do not depend on 1. The operator L is supposed diagonal with
entries X,. Recall the definitions of Section 2.11.

The first step in the proof of Theorem 2.11.1 is a modification of
Proposition 5.1.4 about the profile equation when the data are assumed
C,,in 0.
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PROPOSITION 8.1.1.  Assume the Cauchy data H, are of class 60> 1 in 6,

on[y_,v. ] Then the solution U to (2.11.1) is of class 1 in 8 at every point
of L.

Proof. Start with the Picard iterates (5.1.4), which, as shown in
Proposition 5.1.4, converge in €°(Q; ¥) to U. Assuming U" of class 1 in £,
we have to show that U**! is of class 1 and that U* converges to U in
CoQ;C ().

Fix k and differentiate (5.1.4), with respect to any constant coefficient
vector fields 04, tangent to ¥. Such operators obviously commute with X,
and also with F, as noted in Proposition 4.1.3(iv). Note also that these
operators involve differentiations with respect to 6, variables with n#k,
reflecting the abuse of notation (2.6.4), that is the fact that the
isomorphism between &, and ¥/%¥, is not the identity.

We are led to equations of the form

X, 0,ULY ' =E bi(t,x, U") 0, U"
kUl Ok 0 (8.1.1),
69U2+]|r=0=aer-

It follows that the J,U} converge to d,U, in $°(Q’; ¥), Q' corresponding
toa T'< T. Second, the right hand side in (8.1.1) is linear in ¢, U, thus the
life span of 9, U is, by the classical argument of continuation, the same as
the life span of U, thus proving Proposition 8.1.1.

The second step in the proof of Theorem 2.11.1 involves an induction on
the values of the indices of regularity of U. It relies on the following
Proposition 8.1.2 which is more than an improvement of Proposition 8.1.1.
The key argument is the sum law lemma of Section 4.2 about averaging
operators, which allows us, following [RR] to gain step by step the
regularity up to the index g. Proof of Theorem 2.11.1 is an immediate
consequence of the two Propositions 8.1.1, 8.1.2.

For 6 =(0,,..,0,) and /e N, the notation ¢ A / is used to denote the
N-tuple (o, Al .,o5Al) We say that U(t, x,8)= (Ut x,8,), ..,
Uy(t, x,84)) 1s of class 6 = (g, ..., ) in 8 at some point (¢, x) if for every
k=1,.., N, U, is of class ¢, in 8, at the same point (¢, x).

PROPOSITION 8.1.2.  Assume the Cauchy data H, are of class a2 > 1 in 0,
on [y_,y.]) Assume also that the solution U is of class ¢ n £ at every
point of Q, where o is the N-tuple of indices o, defined by (2.11.3,4,4) or
(2.11.6) and £ is an integer greater than or equal to 1. Then the solution U
to (2.11.1) is of class o A (£ + 1) in @ at every point of Q.

Proof. We have to show that for any &, U, is of class o, A (£ +1),
assuming U to be of class o A £. Fix k=1 and p a point in Q.
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We have to find a neighborhood @ of p such that U, is, on this
neighborhood, a continuous function valued in C"“*'(8,). Let
Po€ly_,y,] denote the intersection of the backward 1-characteristic
starting from p with {r=0}. Let (w,) denote a finite covering of the
characteristic [p,, 7] by open sets in Q such that for some

gn€w, N [Po, p] the assumed regularity of U leads to
UjeCO(w,,;C;;,‘q"’”(‘I’)), J#k. (8.1.2)

We suppose p is one of the g,. Next we choose w to be any open
1-characteristic tube containing [ py, p] and contained in | w,. If p is in
w the whole 1-characteristic segment [ po, p] lies in w.

We solve the equations for U, by writing the iterative scheme which
starts from O and reads

U ()= Hipo) + | T @)L Esb(U'g), U(@)1dg.  (8.13)
PO pn

In the above formula, p is a point in w, x, a partition of unity subordinated
to w, and U’ denote the collection of U, for j# 1. The key idea is to apply
Theorem 4.2.1 to the integrand in (8.1.3) to achieve a gain of one
derivative.

Lemma 8.1.3. Assume 0,21, j=1,..,N. For every n, we have the
estimates

1 LEV DU U Mooy n 0+ 5 SCUU N oy a ) MU iy o4 1y> (8:1.4)

where || .||, denotes the norm in C%w; C oo\ ¥)) and ¢’ the regularity index
of the U’ variables.

Proof. For every n, we have by Theorem 4.2.1
IxalEVBU L UN WS CUU N gy n ) WU M oiy e 1y (8:1.5)

with u defined by

/1=Min(al(ﬁ)/\(/+l);lnf( Y O'j(q,,)Af;JES(l)). (8.1.6)

e {1}

The lemma follows from the observation that for any Je J(1),

Y o(g)AlZolg) A+ 1)Za,(P)A (L +1) (8.1.7)

je {1}
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The second inequality is a direct consequence of (2.11.4). ¢, does not
increase along the l-characteristics. Let us prove the first one, distin-
guishing three possibilities.

Case 1. For all jeJ, 6,</. Result follows from (2.11.5).

Case 2. For all jeJ, o,>¢ We obtain Z,EJ.,}a(q,,)/\/—
(=1 =2/ =¢+1, since, ﬁrst the order of a resonance is at least 3,
second, 7 > 1.

Case 3. There exist jg, j, in J such that 1<g, <7/, £ <g0,. The sum is
still greater than or equal to #+ 1 since o, 1 for every j.

Lemma 8.1.3 is applied to the source terms in (8.1.3). Application of the
lemma is possible since the assumption ¢®> 1 implies that 6> 1. As the
constants C which appear in the lemma do not depend on v, standard
arguments show the iterates converge in C%(w; C 7\~ *1)(¥)). Proposi-
tion 8.1.2 follows.

8.2. The Quasilinear Case
Write (6.1.5) in the form

XU +ylU) D, Uy = Ek(b v+ Y rk, UDU> (8.2.1)

ij#Ek

where
1 (U)=E, (fo{,\,Ui). (8.2.2)

Denote by €, : 5 (s, Ei(s; 1, x), 0, + (s 1, x, 6;)) the characteristic curve
of X + y.(U) D, through the point (¢, x, ). It was proved in Lemma 6.3.2
that u, belongs to €'(22; @,) provided that Ue €'(2; @). It is not hard to
see that further regularity of U, in 8, leads to corresponding regularity of
ue i 0, This follows from differentiable properties of ordinary differential
equations, noting that &, does not depend on 6,, and Proposition 4.1.2.
Using this we obtain

PROPOSITION 8.2.1. Let Fre4'(2;0,), U,e€'(2;0,), j=1,.,N. If
F, and U, are of class 6 =1 in 0 in Q, the solution Ve €' (2;0,) to

X V+y,U)DV=F,
Vlt:OZO

(8.2.3)

is of class ¢ in 0, in .
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Proof. From (8.2.2) we deduce that y,(U)e%'(R2;0,) is of class o
in Q. The solution V to (8.2.3) reads

V1, x, 6,) = JO F(C(s)) ds. (8.2.4)

Proposition 8.2.1 follows from the chain rule, differentiation under the
integral and Proposition 4.1.2.

As in the preceeding section, we first establish regularity of the solution
to (8.2.1) from which the induction will proceed.

PROPOSITION 8.2.2. Assume He €' ([y_, y,]1x @) to be of class 2 in 0
on[y_,vy,]) Then U, the solution to (8.2.1) with H as Cauchy data, is of
class 2 in 0 in 9.

Proof. Consider the Picard iterates defined by

X Ut ' +9(U)D U P =E, (5-U“+ Y Fff_,U,YDjU_;) (8.2.5)
ijrk

with H, as initial condition. Proposition 8.2.1 shows that U" of class 2
implies that U**! is of class 2 if one shows that the right hand side of
(8.2.5) is of class 2. But this follows from (4.3.8) as in the proof of
Lemma 4.3.5. With arguments as in Section 6.3, one can then show, that
the moduli of continuity of the second derivatives in 8 of the iterates are
bounded, thus proving that their limit U is of class 2.

The last step in the proof of Theorem 2.11.1 for quasilinear systems is
analogous to Proposition 8.1.2.

PROPOSITION 8.2.3. Assume the Cauchy data H, of class 1+ 63> 2 in 0,
on{y_,y, ] Assume also that the solution U to (8.2.1)isof class 1 + o A £
in 0 at every point of 2, where o is the N-tuple of indices o, defined by
(2.11.3)-(2.11.5) or (2.11.6) with only third order resonances and ¢ is an
integer greater than or equal to 1. Then U is of class 1+ o0 A (£ + 1) in 8 at
every point of §2.

Proof. We write the solution as the limit of the iterates defined by

I -
U;“(:,x;ek)=Hk(¢v(0))+jo E, (b-U“+ Y I"fij,-D,-U,) (€(s)) ds,
i itk

(8.2.6)

where € is the charactenistic curve through (¢, x, 8,) of X, +y(U") D,.
We then use arguments analogous to those in the proof of Proposi-
tion 8.1.2 except that one replaces ¢ by 1 + ¢ and just has to add 1 to the
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inequality (8.1.3) to take into account the fact that the bilinear terms are
products U, D, U,.

An induction in ¢ yields quasilinear analogue of Theorem 2.11.1 stated at
the end of Section 2.11.
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