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ABSTRACT 

The solution of nonlinear algebraic equations is a well-known problem in many 

fields of science and engineering. Several types of numerical methods exist, each with 
their advantages and disadvantages. S-system methodology provides a novel approach 
to this problem. The result, as judged by extensive numerical tests, is an effective 

method for finding the positive real roots of nonlinear algebraic equations. The 
motivation for this method begins with the observation that any system of nonlinear 
equations composed of elementary functions can be recast in a canonical nonlinear 
form known as an S-system. When the derivatives of these ordinary first-order 
nonlinear differential equations are zero, the resulting nonlinear algebraic equations 

can be represented as an underdetermined set of linear algebraic equations in the 
logarithms of the variables. These linear equations, together with a set of simple 
nonlinear constraints, determine the multiple steady-state solutions of the original 

system that are positive real. The numerical solution is obtained by approximating the 
constraints as S-system equations in steady state to yield a determined set of linear 
algebraic equations, which then can be solved iteratively. This method has been 
implemented and the experience to date suggests that the method is robust and 
efficient, The rate of convergence to the solutions is quadratic. A combinatorial 
method for selecting initial conditions has led to the identification of several, and in 

many cases all, of the positive real solutions for the set of problems tested. It does so 
without resorting to analysis in the complex domain, and without having to make 
random or problem-specific provisions for initializing the procedure. There is an 
obvious parallel implementation of the algorithm, and there are additional generaliza- 
tions and efficiencies yet to be realized. 
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1. INTRODUCTION 

In this paper I describe a new algorithm for finding multiple roots to 
equations of the following form 

fi(xl, x2 )..., a?,,) = 0 i= 1,2 )..., 72. (I) 

This is a difficult but commonly encountered problem. Some typical apphca- 
tions include finding roots of polynomials, roots of rational functions, roots of 
nonlinear algebraic equations, solution of steady-states for dynamic systems, 
solution of optimization problems, solution of chemical equilibrium equations 
(multinomial systems), solution of generalized mass-action equations. There 
are several well-known approaches to this problem; bisection, Newton, and 
continuation may be considered representative. Each approach has its advan- 
tages and disadvantages. A number of reviews can be found in the literature 

(e.g., [l, 3, 81). 
In exploring methods to solve for the steady states of nonlinear equations 

that have been recast in a canonical form (see below), I have discovered a 
simple algorithm for finding the positive real roots of nonlinear algebraic 
equations. The purpose of this communication is to provide motivation for 
this approach, to describe the method, and to present a sampling of numeri- 
caI results. The method has a number of desirable properties. Most notabIe 
are (i) it provides an upper bound on the number of positive real solutions, 
(ii) empirical evidence suggests that it finds several, and in many cases all, of 
the positive real solutions, (iii) it converges rapidly to these solutions, (iv) it 
allows solutions to be obtained in parallel, and (v) it can be extended to deal 
with a broad class of nonlinearities (although the generalized-mass-action 
form will be the focus of this report). 

2. MOTIVATION FOR THE S-SYSTEM APPROACH 

Rather arbitrary systems of nonlinear functions can be recast in the 
following canonical nonlinear form known as an S-system (for a recent 
review, see Voit [14]): 

dX,/dt = ai fi x/h - pi fi x,3, Xi(O) = x,, i = 1,. . , n (2) 
j=I j=I 

where n is the number of dependent variables, the variables Xi and the 
multiplicative parameters (Y~ and pi are nonnegative real, and the exponen- 
tial parameters gij and h,, are real. The existence of such a canonical form 
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suggests that methods developed to deal with S-systems will apply to a broad 
class of nonlinear problems. For example, a method based on this canonical 
form has been developed to solve initial value problems, and a diverse set of 
benchmark tests have shown that it is fast, accurate, predictable and robust 
[4]. The structural regularity of this canonical form suggests that it might also 
yield methods for finding the roots of rather general nonlinear algebraic 
equations. 

Furthermore, the steady-state solution of an S-system reduces to a linear 
algebraic problem in a logarithmic coordinate system [ll]. The result is given 

bY 

Y] = [Al-‘bl (3) 

where 

aij = gij - hij 

yk = In X, 

b, = ln( &/a~). 

When the linear system is underdetermined, the solution is obtained from the 
set of linear equations with maximum rank together with a set of nonlinear 
constraints that are generated in the recasting procedure. 

3. SOLUTION BY REDUCTIVE RECASTING 

The final step in recasting a set of nonlinear equations into S-system form 
involves reducing multiple sums and differences of terms that involve prod- 
ucts of power-law functions to a single difference of terms that involve 
products of power-law functions [12]. 

3.1. One Sign with Multiple Terms 
Consider the following simple example for which the variable X, is 

assumed to approach a steady-state value with time. 

This equation can be recast to S-system form by letting X, = X,X, and 
differentiating the product. 
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The reductive step involves associating appropriate terms to yield two equa- 
tions in S-system form. 

dX,/dt = aI2 Xj112-~Xf112 Xb(0) = 1 (7) 

From this result, it is immediately apparent that X, and X, will not exhibit a 
steady state even though the original variable X, does. The variable X, 
increases continually with time because the right-hand side of its equation is 
positive definite. The variable X, decreases continually with time in such a 
manner that the product X,X, approaches the steady state of X,. 

This awkwardness is due to the manner in which the negative term was 
distributed entirely to the equation for X,. Since the manner of distribution is 
arbitrary, one can choose the distribution that will produce a true steady state 
for each of the new variables X, and X,. For example, 

where 

x, + x, = 1. (10) 

Equation (10) can be approximated by a product of power-law functions as 

DOI 

ylxzfpx,f? = 1 

where 

fi = xz 
XL? + x3 

f3 = x, 
x2 + x3 

(11) 

(12) 

ln(l/d = x =zx ln 
X2 ( I x3 + In 

X3 

X2 + X3 X2 + X3 i I X2 + X3 
(13) 

2 3 

and in steady state the set of equations (S), (9), and (11) can be w&ten in 
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linear form as 

(14) 

The variable elements in the matrix [ A] and the vector b] of (14) can be 
determined from an arbitrary distribution over the auxiliary variables X, and 
X,. This allows a solution of the linear system, including new estimates for 
the auxiliary variables, and the procedure is repeated. This iterative algorithm 
converges rapidly to a distribution over the auxiliary variables that yields a 
true steady state for the S-system equations produced in the reductive step of 
recasting. It also yields a steady-state solution for the original variable X,. 

3.2. Both Signs with Multiple Terms 
Consider the following equation for X,, which is assumed to approach a 

steady-state value with time. 

This equation can be recast to S-system form again by letting the original 
variable be replaced by the product of new variables, the minimum number 
being two. However, four new variables are needed to ensure that the 
resulting S-system equations have a true steady state. Let x, = x,xb x,x,!, 
differentiate the product, and associate appropriate terms to yield four 
equations in S-system form. 
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where 

x2 + x3 = 1 (20) 

x, + x, = 1. (21) 

Equations (20) and (21) can be approximated by a product of power-law 

functions as indicated above 

y1x,f2xp = 1 (22) 

yzxfix5fs = 1 (23) 

where 

f2 = x2 
x2 + x3 

j-3 = x3 

x2 + x3 

(24) 

ln( l/rl) = :, In 
x, X, 

+ In x 
2 3 i I x2 + x3 x2 + x3 i I 

x2”;,:, (25) 

f4 = x4 
X‘I + x5 

f5 = x5 
x4 + x5 

(26) 

ln(l/r2> = x “:, ln 
x4 

i 1 X5 + In 
x5 

x* + xs x4 + x5 i 1 x4 + x5 
(27) 

4 5 

and in steady state, the set of equations (16)-(181, (22)~(23) can be written in 
linear form as 

(&h-h) - 1 0 1 0 

(glllA12) - 1 0 0 . 1 
(g,,2&,,) 0 -1 1 0 

0 fi f3 0 0 
0 0 0 f4 f5 

_I - yI 14 h/c~~> 
yz 14 k42/all) 
Y3 = ln( &/Q) (28) 

y4 14 l/x) 
y5 - ln(l/y2) 
_ 

Note that (19) is a linear combination of (16)~(18) in steady state, and so has 
been eliminated. 
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The variable elements in the matrix [A] and the vector b] of (28) can be 
determined from an arbitrary distribution over the auxiliary variables X, and 
X,, and X4 and X5. This allows a solution of the linear system, including new 
estimates for the auxiliary variables, and the procedure is repeated. This 
iterative algorithm converges rapidly to a distribution over the auxiliary 
variables that yields a true steady state for the S-system equations produced 
in the reductive step of recasting. It also yields a steady-state solution for the 
original variable X,. 

3.3. Generalization 

The algorithm described above in the context of two simple examples is 
readily generalized to treat systems of nonlinear algebraic equations having an 
arbitrary number of equations (variables) with an arbitrary number of positive 
and negative terms in each equation. The auxiliary variables exist as disjoint 
sets numbering at most two for each of the original equations. The number of 
auxiliary variables in each of these sets is determined by the number of terms 
of a given sign in each of the original equations. 

If one assigns an initial value of unity to one of the auxiliary variables in 
each set and zero to all the others in each set, then the number of different 
initial assignments is 

NAS 

jrj NAV(k) (29) 

where 

NAS = Number of Auxiliary Sets 

NAV(k) = N urn b er of Auxiliary Variables in the k th set. 

This product also provides an upper bound on the number of positive real 
roots. This bound is less than Bezout’s number [l, 81 in the case of 
multinomial equations with a high order but few terms per equation; it is 
greater than Bezout’s number in the case of multinomial equations with low 
order but many terms per equation. Yet another upper bound is less than 
either of these in some instances. It is calculated as follows. First, determine 
the minimum number of terms of a given sign for each equation. Second, 
double these numbers and subtract one from each doubled number that is 
greater than two. Finally, take the product of the resulting numbers to give 
an upper bound on the number of positive real roots. The search for 
additional roots can be terminated once any of these bounds is reached. 

The algorithm as currently implemented has found several, and in many 
cases all, of the positive real roots for the problems tested when one chooses 
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the initial values for the auxiliary variables according to the combinatorial 
scheme described above. The method can be generalized in a number of 
ways, as will be described below. 

4. NUMERICAL EXAMPLES 

The following examples are representative of the test problems that have 
been examined. In each case a tolerance parameter has been set at l.Oe-8. 

EXAMPLE 1. The stationary points of Himmelblau’s function [9] are given 
by the roots of the following system of equations, which exhibit both positive 
and negative real roots. 

2x; + 2X,X, + X2” - 21X, - 7 = 0 (30) 

Xf + 2X,X, + 2x23 - 13x, - 11 = 0 (31) 

The three positive real roots are found as in Table 1. These require five to 
eight iterations and the rate of convergence is approximately quadratic. The 

TABLE 1 

ROOTS WITH NEGATIVE AS WELL AS POSITIVE REAL COMPONENTS FOR THE PROBLEM 

IN EXAMPLE 1 

Roots* Iterations 

Rate of Convergence+ 

Average$ Final” 

(3.000e + 00,2.000e + OO} 

(3.385e + 00,7.385e - OZ} 

(8.668e - 02,2.884e + OO} 

(- 2.805e + 00,3.13le + OO} 

(3.584e + 00, - 1.848e + OO} 

(- 1.280e - 01, - 1.954e + OO} 

{ -2.708e - 01, -9.230e - 011 

{ - 3.073e + 00, - 8.135e - 02) 

{ - 3.779e + 00, - 3.283e + 00) 

2.33 2.04 

1.97 1.91 

2.19 1.98 

3.08 2.21 

2.68 2.01 

2.29 1.97 

3.26 2.08 

2.04 1.92 

3.16 2.31 

* The tolerance was set at e - 8, but the data are reported with four significant 

digits. 

’ Rate of convergence between two iterations is calculated as ri = log(ei/ei_r). 

*Average is the geometric mean calculated from the iteration that first produces 

an error less than 1. 

’ Rate of convergence between the last two iterations before the tolerance 

condition is met. 
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method also finds roots with a negative real component. These are obtained 
by replacing xi by -xi, which leads to a reversal of sign for odd functions of 
xi, and solving for the positive real roots of the resulting equations. This 
yields the six roots with a negative real component (Table 1). A similar 
number of iterations and a similar rate of convergence are observed for these 
solutions. Thus, the method finds nine real solutions, which is the total for 
this set of equations [6]. 

EXAMPLE 2. The following system of equations was constructed to test 
the ability of the method to identify roots with one or more components 
having a value of zero. 

3xl-‘x”.0” + x3x6 + x - 1ox2xP - x = 0 1 2 1 2 3 1 2 4 (32) 

1ox~~03x, + x:x,“.’ + x3 - 30x,4x; - x‘$ = 0 (33) 

0.02x3 - 0.01x; = 0 (34) 

0.02x, - 0.01x; = 0 (3,5) 

The four positive real roots are found as in Table 2. In this example, three to 
six iterations are required, and the rate of convergence is again approximately 
quadratic. The method also finds all the roots with one or more components 
equal to zero (Table 2). I n some of these cases, the equations reduce exactly 
to S-systems and the solution is obtained directly without iteration. Otherwise 
three to seven iterations are required, and the rate of convergence is nearly 
quadratic. The method finds all of the nonnegative real roots. 

EXAMPLE 3. The following is a well-known problem that is often used to 
test methods of solving systems of nonlinear equations [7]. It is a chemical 
equilibrium problem, and therefore all components of the solution must be 
positive real. Furthermore, it is known from thermodynamic principles that 
there can be only one such solution [5]. 

x1x2 + x1 - 3x, = 0 (361 

2x,x, + x1 + 1.923e-6 xz + x2x: + 5.45177e-4 xgx3 

+ 3.40735e-5 x2x4 + 4.4975e-7x, - 10x, = 0 (37) 

2~~x32 + 5.45177e-4 x2x3 + 3.86e-1 xi + 4.10622e-4x,-8x5 = 0 

(38) 

3.40735e-5 x2x4 + 2x,2-40 xs = 0 (39) 
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TABLE2 

ROOTS WITH ZERO AS WELL AS POSITIVE REAL COMPONENTS FOR THE PROBLEM 

IN EXAMPLE 2 

Rate of 

Convergence+ 

Roots* Iterations Average* Final' 

{6.803e -01,6.526e -01,2.000e +00,2,00Oe +OO} 6 2.02 1.95 

(5.547e + 01,4.150e - 01,2,00Oe + 00,2.000e + OO} 3 2.52 2.27 

(2.856e +02,3.997e -02,2,00Oe +00,2,00Oe +00} 4 2.04 2.03 

{1582e -01,7.834e+00,2.000e +00,2,00Oe +00} 5 1.94 1.96 

{O.OOOe + OO,O.OOOe + 00,2.000e + 00,2.000e + OO} - 

{5.540e + 01,4.158e - Ol,O.OOOe + 00,2.000e + 00) 3 2.49 2.26 

{5.555e + 01,4.142e - 01,2,00Oe + OO,O.OOOe + OO} 3 2.49 2.25 

(2.547e -01,6.163e +00,2.000e+00,0.000e+00} 4 4.79 2.23 

(6.855e -01,9.673e -01,2,00Oe +OO,O.OOOe +00} 4 2.63 2.32 

{2.176e +02,5.892e-02,2.000e +00,0,000e+00) 5 2.28 2.09 

{6.803e - 01,6.526e - Ol,O.OOOe +OO,O.OOOe + OO} 3 2.70 2.31 

{1.582e - 01, 7.834e + OO,O.OOOe + OO,O.OOOe + 00) 3 2.75 2.32 

(2.856e + 02,3.997e - 02,O.OOOe + OO,O.OOOe + 00) 3 2.50 2.26 

{5.547e +01,4.150e -Ol,O.OOOe +OO,O.OOOe +OO} 3 2.50 2.26 

{O.OOOe + OO,O.OOOe +OO,O.OOOe + OO,O.OOOe + 001 1 - - 

*The tolerance was set at e - 8, but the data are reported with four significant 

digits. 

'Rate of convergence between two iterations is calculated as T< = logfe,/e,>. 

*Averageisthe geometric mean calculated from the iteration that first produces an 

error less than 1. 

"Rate of convergence between the last two iterations before the tolerance condi- 

tion is met. 

x1x2 + x1 + 9.615e-7x: + x2x: + 5.45177e-4 x2x3 

+ 3.40735e-5 xZxq + 4.4975e-7 x2 + 1.930e-1 x3” 

+ 4.10622e-4 xg + xi-1 = 0 (40) 

The one physically realizable solution in this case is {3.114102e - 03, 

3.459792e + 01, 6.504177e - 02, 8.593780e - 01, 3.695185e - OZ}. This is 

the only solution obtained; it is obtained repeatedly with an average of nine 

iterations. The averages for these repeated solutions are the following: the 

average rate of convergence is 1.85, and the final rate of convergence is 1.92. 

This problem exhibits the major drawback of the current implementation; 

namely, the same solution is obtained repeatedly. Of course, when one knows 
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that for physical reasons there can only be a single solution, as in the case of 
chemical equilibrium, one could stop the procedure after obtaining the first 
solution. 

5. DISCUSSION 

The method, as currently implemented, finds nonnegative real roots for 
systems of generalized-mass-action equations (generalized polynomials) 

5 (Yik fi xp - 5 Pik fJ xp = 0 i = 1,2,...,n (41) 
k=l j=l k=l j=l 

where n is the number of equations and variables, p is the maximum number 
of terms of a given sign in each equation, gijk and hijk are real, crYik and Pik 
are nonnegative real, and Xj are nonnegative real. 

In the special case (multinomial systems) where 
the method also finds negative real roots (Example 

gi .k and hijk are integers, 
1 3 . Complex roots can be 

obtained by allowing the multiplicative parameters and variables to have real 
and imaginary parts, expanding the resulting equations, collecting real and 
imaginary parts, setting each part equal to zero, and then applying the 
method to this expanded set of equations as before. I have found the complex 
roots for a few simple test problems by performing the expansion manually 
and applying the method. Thus, this method also can be used to find complex 
roots. 

The current implementation has two principal limitations. In some cases, it 
misses specific roots and in others it finds some roots repeatedly. To date, the 
method has found all of the positive real roots for approximately 100 test 
problems. However, there also are a few (and perhaps many more) problems 
for which it finds several but not all of the positive real roots. It remains to be 
determined whether or not the method can be modified so as to guarantee 
that it will find all of the positive real roots. On the other hand, the method 
typically finds some solutions repeatedly. The method provides information 
that can be used to suppress this redundancy, although at present it does not 
completely eliminate it. This also is a key area for further development. 

The current implementation also exhibits a number of desirable proper- 
ties. The rate of convergence is typically quadratic, even when far from a 
solution. We are exploring methods to accelerate this rate. The speed of 
solution also is dependent on the size of the system. The method tends to 
generate arrays that become increasingly sparse as the number of variables 
increases, e.g., compare (14) and (28). Thus, a new implementation that deals 
efficiently with these sparse arrays will improve efficiency of both memory 
management and speed. Increased speed also could be obtained by means of 
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an obvious parallel implementation based on the combinatorial selection of 
initial values. Each of M machines can be initialized to seek a different 
solution, and then they can be run independently. Finally, the method can be 
applied to systems of more general nonlinear functions than those described 
in this report. Recasting such equations as S-systems and setting the deriva- 
tives to zero leads in general to a set of underdetermined linear equations in 
logarithmic coordinates. In order to solve these equations one must add the 
nonlinear equations that define the recast variables [12]. Decomposing these 
nonlinear constraints into disjoint sets of convex constraint relationships, as in 
the case of the auxiliary variables above, will reduce these problems to a form 
that the method already can solve efficiently. 

Generalized-mass-action equations in addition to being recast exactly as 
S-systems, as described above, also can be represented locally by S-system 
equations [IS]. This is true of other nonlinear equations as well. Voit and 
Irvine [15] have solved iteratively for the steady states of such equations by 
using Newton’s method in a logarithmic space although only tentative imple- 
mentations of this approach were developed. Bums and Locascio [2] have 
recently developed a method that involves the same principles; namely, 
aggregating terms with the same sign, locally approximating each aggregate 
about the current values by a product of power-law functions, converting to a 
linear system, and solving the system iteratively. These authors have charac- 
terized the basins of attraction for the various roots and have shown that the 
method is often more robust than is the conventional Newton method. 
Indeed, they have shown that this method has a number of desirable 
properties, including invariance to various features of problem representa- 
tion. Their method is different but obviously related to the method described 
in this paper. Comparisons of these methods are now in progress. 
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