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Logarithmic sensitivity coefficients were promulgated for the analysis of metabolic
regulation about 20 years ago. Interest in theit use has risen significantly since their
introduction. However, no comprehensive evaluation of the utility of these metabolic
sensitivity coefficients is available for realistic metabolic models. Tn this study,
logarithmic sensitivity coefficients calculated from three progressively simpler meta-
bolic models of red blood cell metabolism wete compared. Two simpler models were
obtained from a comprehensive red cell model by first removing volume regulation,
and second by removing two pathways, The comparisons of sensitivity coefficients
obtained for these three models showed that model complexity has significant effects
on the numerical values and interpretation of the metabolic sensitivity coefficients.
Additionally, it was found that the physicchemical volume regulatory mechanism,
namely electroneutrality and osmotic balances, play an important role in the red cell
metabolic flux control. In general, there is no proportionate relationship between
sensitivity coefficients calculated from the three different red cell metabolic models
or other simple red cell models reported in the early literature. Some sensitivity
coefficients determined by different models even have opposite signs. Thus, analysis of
incomplete metabolic models can be seriously misleading and produce inappropriate
indicators of the characteristics of a full mode! for the same metabolic network.

Introduction

Mathematical models of metabolism are of much contemporary interest and practical
importance. In particular, recent efforts to direct metabolic fluxes for commercial
production of primary or secondary metabolites have emphasized the need for a
systematic analysis of metabolic networks (Bailey, 1991; Stephenopoulos & Vallino,
1991). Efforts to model metabolism mathematically date back at least 20 years. In
the late 1960s and early 1970s various metabolic flux sensitivities and measures were
defined (Savageau, 1969; Kacser & Burns, 1973; Heinrich & Rapoport, 1974) and
they have gained widespread acceptance. These sensitivity coefficients have been
discussed extensively in the current literature (for example, Srere ef al., 1989;
Cornish-Bowden & Cardenas, 1990). All the abbreviations used in the paper are
defined in Table 1.

Although these metabolic sensitivity coefficients have been studied theoretically
and for an abstract model system, no comprehensive evaluation of their utility and
shortcomings for realistic metabolic models has been reported. This void is in part
a result of the lack of comprehensive realistic kinetic metabolic models that would
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serve as a basis for such an evaluation. However, recently a mathematical model for
red blood cell metabolism has been formulated that accounts for all major metabolic
events in this cell; including glycolysis, pentose pathway, nucleotide synthesis, trans-
membrane transport of key ions, magnesium complexation, pH dependence, hemo-
globin binding, electroneutrality, and osmotic balance (Joshi & Palsson, 1989, 1990;
Lee & Palsson, 1990). The first steps toward a similar model for yeast have also been
undertaken (Galazzo & Bailey, 1990).

The red bloed cell model thus provides a suitable forum to address elementary
questions associated with the use and interpretation of the metabolic sensitivity
coefficients. One primary issue in the formulation of insightful and useful dynamic
metabolic models is the assessment of which biochemical and physiochemical pro-
cesses need to be included in a model in order to make it realistic. It is thus important
to address the question of how the metabolic sensitivity coefficient is affected by
model complexity in order to determine if such coefficients evaluated from partial
models serve a useful purpose. This issue is particularly easy to address with the red
blood cell model, given its comprehensive accounting of all metabolic processes that
underlie the red cell function. We can simply systematically remove metabolic and
other processes from the full model to form sub-models and examine how the sensitiv-
ity coefficients change with the exclusion of known pathways or transmembrane
processes. Here, we will undertake such a study and proceed in two stages; first we
will eliminate the physiochemical processes that couple red blood cell metabolism
to the extracellular environment (namely, the balancing of osmotic pressure and
electroneutrality), and second, we will remove metabolic pathways. In the latter case,
we will simplify the models to glycolysis only so that we can compare the full model
to the first red cell models that were published in the 1970s that accounted for
glycolysis only (for example, Heinrich et al., 1977).

Given the highly specialized nature of the red blood cell, it is llkely that the
particular results obtained have little bearing on the analysis of metabolism in com-
plex mammalian cells or in commercially important organisms. However, we can
effectively address the issue of the effects of model complexity on the numerical value
and interpretation of the metabolic sensitivity coefficients using the red cell model.

Mathematical Model and Numerical Methods

FULL MATHEMATICAL MODEL

The mathematical model of red cell metabolism used in this study is described in
Joshi & Palsson (1989, 1990) and Lee & Palsson (1990). This model accounts for
glycolysis, pentose pathway, nucleotide synthesis, transmembrane transport of key
ions, magnesium complexation with adenine nucleotides, pH dependence of kinetic
parameters, binding of oxygen, carbon dioxide, and metabolites to hemoglobin,
internal and external electroneutrality, and osmotic balance (Fig. 1). The model
accounts for 33 metabolitic balances that contain 41 enzymatic reactions (Table 1),
two physiochemical constraints (electroneutrality and osmotic balance), and several
chemical equilibria. The mathematical description of the red blood cell metabolic
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Fi1G. 1. The red blood cell metabolic model studied here included glycolysis, pentose pathway, nucleo-
tide synthesis, cation transporls, magnesium complexation, pH dependence, hemoglobin binding,
electroneutrality, and osmotic balance.

model thus consists of a system of 33 ordinary differential equations, that have 33
metabolite concentrations as the dependent vanables, and a set of coupled algebraic
equations that describe the chemical and physiochemical constraints. The metabolic
mode! can predict experimental data of the physiological steady state of red cell
metabolism (Joshi & Palsson, 1990) and dynamic response of the red cell to an
extracellular pH perturbation (Lee & Palsson, 1990). It also simulates: the red cell
metabolic response to transient changes in the extracellular environment, such as
glucose, adenine, phosphate, lactate concentrations, pH, and osmotarity; the hemo-
globin binding curves at different ligand concentrations, such as 2,3-DPG, oxygen,
carbon dioxide, chloride, and hydrogen ion. Details of the computer simulator are
described in Lee & Palsson, 1992),

Separate subroutines are used to evaluate individual kinetic rate laws, physio-
chemical processes, and chemical equilibrium constraints in the red blood cell
metabolic model. To ignore particular enzymes or processes, the corresponding sub-
routines can simply be removed from the simulator and the variables so eliminated
are given fixed numerical values that are treated as constants.

SIMPLIFIED MODELS

Two different sub-models derived from the full model just described are formulated
in order to study the effects of model complexity on the sensitivity coefficients
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TasLE |

Red cell intermediates and enzymes accounted for in the full model

Metabolic intermediates Abbreviation Enzymes Abbreviation
Glucose-6-phosphate G-6-P Hexokinase HK
Fructose-6-phosphate F-6-P Phosphoglucoisomerase PGI
Fructose 1,6-diphosphate FDP Phosphofructokinase PFK
Dihydroxyacetone phosphate DHAP Aldolase ALD
Gilyceraldehyde-3-phosphate GA-3-P Triose phosphate isomerase TPI
3-Phosphoglycerate 3PG Glyceraldehyde phosphate GAPDH

dehydrogenase
2-Phosphoglycerate 2-PG Phosphoglycerate kinase PGK
Phosphoenolpyruvate . PEP Diphosphoglycerate mutase DPGM
Pyruvate PYR Diphosphoglycerate phosphatase DPGase
Lactate LAC Phosphoglyceromutase PGM
1,3-Diphosphoglycerate 1,3-DPG  Enolase EN
2,3-Diphosphoglycerate 2,3DPG  Pyruvate kinase PK
Nicotinamide adenine dinucleotide = NAD Lactate dehydrogenase LacDH
Adenosine tri-phosphate ATP Pyruvate export PYRex
Adenosine di-phosphate ADP Lactate export LACex
Adenosine mono-phosphate AMP Adenosine monophosphate AMPase
phosphohydrolase
Adenosine ADO Adenosine deaminase ADA
Adenine . ADE Adenosine kinase AK
6-Phosphoglucono-é&-lactone GL-6-P Adenylate kinase ApK
6-Phosphogluconate GO-6-P Adenosine monophosphate deaminase AMPDA
Nicotinamide adenine phosphate NADP Adenosine triphosphate ATPase
’ phosphohydrolase
Glutathione GSH Adenine phosphoribosyl transferase AdPRT
Ribulose-5-phosphate RU-5-P Glucose-6-phosphate dehydrogenase G-6-PDH
Ribose-5-phosphate R-5-P 6-Phosphogluconolactonase PGlase
Xylulose-5-phosphate X-5-P 6-Phosphogluconate dehydrogenase PG-6-DH
Sedoheptulose-5-phosphate $-7-P Glutathione reductase GSSGR
Erythrose 4-phosphate E4P Glutathione oxidase GSHR
5-Phosphoribosyl-1-pyrophosphate  PRPP Ribose-5-phosphate isomerase R-5-P-1
Inosine mono-phosphate IMP Xylulose-5-phosphate epimerase Xu-5-P-1
Inosine INO Transketolase TKH
Hypoxanthine HK Transketolase TK2
Ribose-1-phosphate R-1-P Transaldoiase TAl
Potassium K Inosine monophosphatase IMPase
Sodium Na Purine nucleoside phosphorylase PNPase
Phosphoribomutase PRM
Phosphoribosy! pyrophosphate PRPPsyn
synthetase
Hypoxanthine-guanine phosphoryl HGPRT
transferase
Hypoxanhine export HXex
Leak of potassium out of the red cell Leak K
Leak of sodium into the red cell Leak Na
Sodium/potassium pump Pump




MODEL COMPLEXITY AND SENSITIVITY COEFFICIENTS 303

TABLE 2

Three models of red cell metabolism are considered in this study.
Model 1 is the full model. The physicochemical processes are
removed in model 2, and model 3 consists of only glycolysis

Process Modet 1 Model 2 Modet 3
Gilycolysis Yes Yes Yes
Pentose pathway Yes Yes No
Nucleotide synthesis Yes Yes No
Physicochemical processes Yes No No

(Table 2). Model 1 is the full model described above and it serves as “control” or
reference to compare the sub-models to. We examine the effects of the physiochemical
constraints by removing them from the full model and from model 2. In model 3,
all metabolic pathways are eliminated except glycolysis. Model 3 serves to evaluate
interpretations of metabolic sensitivity coefficients in early red cell models {Heinrich
et al., 1977).

EVALUATION OF THE SENSITIVITY COEFFICIENTS

The sensitivity coefficients of primary interest are defined as

s O4/J _alnJ,

= . 1
B aEk/Ek d1n E;‘ ( )

This quantity is known as the control coefficient. The sensitivity coefficient C%, is a
measure of how the flux through reaction £, J;, changes as a result of the change in
enzyme concentration Ep. Thus, the coefficient indicates how sensitive a particular
flux is to the change in the amount of a particular enzyme. Therefore, the coefficient
C%, is potentially useful for the purpose of identifying which enzymes are good
choices for genetic manipulation in order to achieve the overproduction of a particu-
lar metabolite. Although these sensitivity coefficients are insightful and were origi-
nally based on intuitive arguments, they are somewhat awkward in a strict
mathematical sense (Reder, 1988).
The values of C¥, can be estimated numerically by using a limiting procedure

i _ o AT

(2)
6Ek/Ek AEp—0 AEk/Ek

where AE, = E;, — E,, is the difference of two concentrations of enzyme E;, and AJ;/
Ji is the difference between the two steady-state fluxes corresponding to the two
enzyme concentrations. To calculate C7 according to eqn (2), the value of C% is
determined with decreasing values of AE,/E,. Our experience with the red cell model
shows that the sensitivity coefficient approaches a constant value relatively quickly
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FiG. 2. Calculation of the sensitivity coefficient C%, in model 3. It converges as AE,/E; approaches 0.

(see examples in Fig. 2). Some steady-state metabolic fluxes J;'s in the red cell model
have magnitudes as small as 107°. To obtain reasonable accuracy for the evaluation
of the difference between two small fluxes, AJ/s, the error criterion for the fluxes,
Ji's, must be set to at least three or four orders of magnitude lower than their own
values. In our calculation, convergence of the sensitivity coefficients to 0-1% error is
achieved by setting the absolute error criterion for J’s to 107'°, To gain a better
accuracy of the sensitivity coefficients, the error criterion for the Newton’s routine
must be lower in order to prevent numerical instability. ‘

Since 41 enzymatic reactions are involved in the red cell metabolic network, there
are 41 x 41 sensitivity coefficients that characterize the full model. A useful ver-
ification of the accuracy of the calculation is to check if the summation theorem
(Kacser & Burns, 1973 ; Heinrich & Rapoport, 1974):

41 .
Y Cé=1 3
k=1

holds. Alf such summations for individual J;'s are within 1% derivation from unity,
with one exception only (Table 3). HGPRT in the full model gives a slightly larger
deviation from unity, because HGPRT is a very low flux reaction.

Results

We will now describe the effects of model simplification on the numerical values
of the sensitivity coefficients. It is important to point out that the enzyme kinetic rate
laws used for a particular enzyme are identical in every model.
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MODEL | V§. MODEL 2

Osmotic balancing and electroneutrality significantly influence the values of the
sensitivity coefficients, and consequently the interpretation based on these
coefficients. The difference between the two models is that model 2 lacks the physio-
chemical constraints of electroneutrality and osmotic balance. The physiological
function of these constraints is to balance ionic charges and osmotic pressure across
the cell membrane and thus to regulate the cell volume and the Donnan ratio.
Comparisons between the sensitivity coefficients CZ, calculated from model 1 and
model 2 are shown in Fig. 3. In each diagram, one enzyme concentration is varied,
and the resulting change in the 41 metabolic fluxes is calculated and plotted in the
form of Cj,.

The following interpretations of red cell metabolic dynamics are based on the
control coefficients calculated from model 2. The same conclusions are not derived
from model 1, implying that misleading information may be obtained from simpler
models :

(i) fluxes through pentose pathway enzymes are not affected by the concentration
of any enzyme in glycolysis, oxidative and non-oxidative pentose pathway,
or nucleotide synthesis; the pentose pathway fluxes are only affected by the
GSHR enzyme concentration in model 2; on the other hand, pentose pathway
fluxes are controlled by all other enzymes in model 1;

(ii) the oxidative pentose pathway enzyme concentrations themselves show no
influence on any fluxes in the metabolic network; on the other hand, non-
oxidative pentose enzyme concentrations affect, to some degree, fluxes
through glycolysis and nucleotide synthesis enzymes, but do not affect the
fluxes through the pentose pathway enzymes themselves;

(iii) interestingly, the sodium and potassium leaks, and Na/K pump have little
effect on any other fluxes except themselves in model 2, because they regulate
red cell metabolism mainly by controlling the cell volume; but in model 1;
These cation transmembrane processes show control over all enzyme
activities.

(iv) there is no proportionate relationship between the sensitivity coefficients
determined by model 1 and model 2; the absolute numerical values for some
of the control coefficients Cx, are higher in model 1 (for example: Ex=
ATPase, leak K and Na/K pump), some are higher in model 2 (for example:
Ex=ALD and GSHR), and some even change sign (for example: Ex=
DPGase, ATPase).

Although the flux sensitivity coefficients in model 1 are not in proportien to those
in model 2, their difference has a direct correlation with volume sensitivity (Table
4). If the volume sensitivity Cx, is positive with respect to an enzyme E,, then cell
volume increases with increased enzyme concentration. Qwing to the volume increase
when raising E,, all metabolite and enzyme concentrations as well as all metabolic
fluxes drop, which resuits in lower absolute flux sensitivity coefficients in model 1
and model 2. For a similar reason, if the volume sensitivity Cy, is negative, the
absolute values of flux sensitivity coefficients with respect to E, will be higher in
model .
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Fig. 3. Compatison of sensitivity coefficients CfL of model 1 and model 2 for selected Ey. In each plot,
an enzyme concentration is varied and the corresponding changes in 41 fluxes are calculated. In the
horizontal co-ordinate, | =HK, 2=PGI, 3=PFK, 4=ALD, 5=TPI, 6=GAPDH, 7=PGK, § =DPGM,
9=DPGase, 10=PGM, 11=EN, 12=PK, 13=PYRex, 14=LACDH, 15=LACex, 16=AMPase,
17=ADA, 18=AK, 19=APK, 20=AMPDA, 21 = ATPase, 22 = AD-PRT, 23=G-6-PDH, 24=PGLase,
25=PG-6-DH, 26=GSSGR, 27=GSHR, 28 =R-5-P-1, 29=Xu-5-P-1, 30=TKI, 31=TK2, 32=TAl,
33=IMPase, 34=PNPase, 35=PRM, 36=PRPPsyn, 37=HG-PRT, 38=HXex, 39=leak K, 40=Ieak
Na, 41 = NK pump. (J, model 1; M, mode! 2.
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FiG, 3—continued.

Without physiochemical volume regulation (model 2), enzymes leak K, leak Na,
and Na/K pump, which are responsible for cation transport, have little influence on
other parts of the metabolic network (Fig. 3). However, with the inclusion of volume
regulatory mechanism (model 1), these cation transport processes become significant
in red cell metabolic regulation. For example: the negative volume sensitivity Ck
with respect to the carrier of potassium (leak K) results in positive flux sensitivity
C#, for all fluxes with respect to the carrier. When the cell volume shrinks owing to
an increase in the potassium carrier concentration, all metabolite concentrations
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F1G. 3—continued.

increase. As a result, activities of all enzymes accelerate and all metabolic fluxes rise.
Similarly, the sensitivity for all fluxes with respect to sodium leak (leak Na) and
Na/K pump -are negative as Cy, with respect to these enzymes has positive values.

MODEL 2 VS, MODEL 3

Metabolic model complexity significantly influences the sensitivity coefficients,
which is illustrated by the comparisons of sensitivity coefficients between model 2
and model 3 in Fig. 4. Model 3 is a sub-model of model 2, both of which consist
only of enzymatic reactions, and neither accounts for the physiochemical constraints.
Model 3 51mp1y describes glycolysis, which is one of the three pathways included in
model 2.

A companson between the two models shows that the absolute sensnw:ty
coefficients C #, are higher in mode! 3 when E, is HK, DPGM, GAPDH, or LACex;
are higher in model 2 when E), is ALD; and change sign when E, is PFK. In other
cases, such as F,=DPGase and PK, the sensitivity coefficients calculated from the
two models are relatively close to each other in magnitude. In yet another two
cases, i.e. GAPDH and LACex, the sensitivity coefficients in model 2 are negligible -
compared to those in model 3. Both models show that most glycolytic enzymes have
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F1G. 3—continuved.

smaller influence on fluxes through 2, 3-DPG bypass, DPGM and DPGase than on
themselves.

A major difference between model 2 and model 3 lies in the number of branch
points in the glycolytic pathway. As expected the flux sensitivity coefficients C¥ are
the same for enzymes that are linearly connected in the pathway without the interrup-
tion of branch points (Figs 3 and 4). For example, the fluxes through PGM, EN,
and PK in model 1, model 2, and model 3; and the fluxes through G-6-PD, PGLase,
and 6-PGD in model 1 and model 2. Most of the glycolytic enzymes in model 3 are
linearly connected, with the only branch points occurring at 13-DPG and 3-PG;
therefore, most flux sensitivity coefficients with respect to an enzyme in model 3 have
the same value except for the fluxes around the branch points. However, the glycolytic
pathway is separated by additional branch points in model 2 at G-6-P, F-6-P, GA-
3-P, ADP, and ATP. As a result, the whole pathway is divided into many segments
in the more complex model. The flux sensitivity coefficients are identical for all fluxes
within the same segment with respect to the change in an enzyme concentration. Since
more branches divert from or condense to glycolytic fluxes in the more complicated
metabolic model (model 2), the realistic behavior of metabolic regulation cannot be
accurately predicted by the simpler model (model 3), which considers most enzymes
in the glycolysis sequentially connected without the interruption of branch points.
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TABLE 3

The summution theorem as a test for the con-
vergence in the evaluations of the flux sensitiv-
ity coefficients

L CH,
Sl
5 Model 1 Model 2 - Model 3
HK 1-001 1-000 0-999
PGI1 1-001 1-001 0-999
PFK 1-001 1-000 0-999
ALD 1:001 1-600 0-999
TPI 1-001 1-000 0-999
GAPDH 1-001 1-000 0:999
PGK i-002 1-001 0-999
DPGM 0-999 0-999 0-999
DPGase 0-999 0-999 0-999
PGM 1-001 1-000 0-999
EN 1-001 1-000 0-999
PK 1-001 ~ 1000 0-999
LacDH 1-001 1-000 0-999
Lacex 1-009 1-000 0999
AMPase 1-007 {-006
ADA 1-009 1-006
AK 1-007 1-005
APK 1-006 1-006
AMPDA 1002 1-004
ATPase 1-006 1-:001
ADPRT 1-001 1-006
G-6-PDH 1-00t 0-999
PGLase 1-001 0-999
PG-6-DH 1-001 0-999
GSSGR 1-001 0-999
GSHR 1-001 0-999
R3P-1 1-001 0-999
Xusp-l 1-001 0-999
TKI1 1-001 0-999
TK2 ~1-001 0-999
TAl 1-001 (-999
IMPase 1-001 1-004
PNPase 1-006 1-006
PRM £-007 1-006
PRPPsyn 1-007 1-006
HGPRT 1-014 1-009
HXex 1-006 1006
Leak K (-999 0-999
Leak Na 0-999 0999
NK Pump 0-999 0-999
Conclusions

Three models of red blood cell metabolism with different degrees of complexity
have been used to calculate the flux sensitivity coefficients. We found that the meta-
bolic model complexity has significant effects on the evaluation and interpretation
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TABLE 4

The difference in flux sensitivity coefficients of model
1 and model 2 has a direct correlation with volume
sensitivity
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of flux sensitivity coefficients. Flux sensitivity coefficients based on one model are
not always consistently proportional to those based on another model. In some cases
they have opposite signs in two different models, for example: C7, with respect to
E,=DPGase and ATPase in modet 1 and model 2. Therefore, the simplified models
cannot provide an accurate prediction of the realistic behaviors of metabolism.
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F1G. 4. Comparison of sensitivity coefficients C¢, of model 2 and model 3 for selected E,. In each plot,
an enzyme concentration is varied and the corresponding changes in 15 glycolytic fluxes are calculated.
In the horizontal co-ordinate, 1 =HK, 2=PGI, 3=PFK, 4=ALD, 5=TPI, 6=GAPDH, 7=PGK, 8=
DPGM, 9=DPGase, 10=PGM, 11 =EN, 12=PK, 13=PYRex, 14=LACDH, 15=LACex. [, model
3; H, model 2.

The differences in the results from model | and model 2 are a result of the physio-
chemical processes, which regulate the cell volume and affect metabolite concentra-
tions and enzyme activities. When the cell volume expands following the increase
in an enzyme concentration, metabolite concentrations drop and metabolic fluxes
decrease. Accordingly, model 1, considering volume regulation, predicts lower abso-
lute flux sensitivity coefficients than model 2. The enzymes involved in cation trans-
port, such as leak K, leak Na, and Na/K pump, show significant influence on
metabolic fluxes in model 1, but show negligible effect on the metabolic fluxes in
model 2. This discrepancy is because cation transport processes affect the metabolism
through the volume regulatory mechanism. The conclusion that one arrives at based
on this comparison is that the consideration of transmembrane processes is imporiant
in theoretical studies of metabolic regulation.

Model 2 and model 3 also give different values for flux sensitivity coeflicients
because of the differences in the number of branch points. In model 3, all sensitivity
coefficients of glycolytic fluxes with respect to the change in an enzyme concentration
are identical except for the fluxes through PGK, DPGM, and DPGase, since all
enzymes are linearly connected with the only branch points occurring at 13-DPG
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and 3-PG. On the other hand, the sensitivity coefficients with respect to an enzyme
vary in different segments of the glycolytic pathway in model 2 as the pathway is
divided by many branch points in the model. Model complexity thus significantly
influences the numerical values of the sensitivity coefficients and the interpretations
derived from them, even if the rate laws used in full and sub-models are identical.
With these conclusions in hand, it is instructive to look back over the history of
metabolic control coefficients and red blood cell metabolic models. The sensitivity
coefficients for red blood cell glycolytic fluxes have been estimated from a number
of simple red cell metabolic models (Rapoport ef al., 1974, 1976; Heinrich ef al.,
1977; Schuster et al., 1988 ; Heinrich, 1989). A comparison of the results obtained
from these models are listed in Table 5. The simpler models ([1] and [2] in Table 5)
predict the importance of hexokinase in controlling the glycolytic flux. However,
with the help of more complete models ({3], [4], [5], and model 1), it becomes clear
that the influences of cation transport, ATPase, and 2,3-DPG bypass on the glycolytic
fiux are more significant than hexokinase as measured by the control coefficient (Table
6). This comparison further demonstrates that incomplete metabolic models can

TABLE 5
Sensitivity coefficients calculated from different red cell metabolic models

Model {1 [2} [3] [4] 5] Model 3 Model 2 Model 1
No. of enzymes 41 +
considered 5 5 5 9 20 15 41 Vol. reg,
HK +PFK 137 024 113
HK 0-69 0-076 0-82 0-40 0-t4
PGI 0-00 0-00 0-00
PFK 0-31 0-023 0-08 —0-01 —0-017
ALD -0:02 —0-04 —0-018
TP! 0-00 0-00 0-00
GADH —0-02 0-00 0-00
PGK —0-31 0-00 0-01 0-005
DPGM 00 004 Q02 031 -0-074 —0-52 =030 —015
DPGase 00 —-004 021 ~0:30 0-221 0-52 0-37 0-29
PGM 0-00 0-00 0-00
EN 0-00 0-00 0-00
PK 0-0 004 —0-02 00 0015 0-18 0-27 0-i4
LDH 0-005 0-00 0-00 0-00
ATPase 055 016 0700 0-11 0-23
Na/K pump —0-05 007 —0-63
Leak K —4-19 0-00 1-7
Leak Na 4-30 0-06 -0-79
G-6-PDH 0-0 0-00 —0-004
PG-6-DH 0-0 0-00 0-003
GSSGR 0-0 0-00 0-00
GSHR 0-005 0-73 041
PRPPsyn 0-028 0-22 013

The sensitivity coefficients shown are variations of HK flux with respect to the enzyme indicated
dln J"K/ﬁ In E;(.

Source: {1]=Rapoport et al. (1974); [2}=Rapoport et al. (1976); [3] =Heinrich ez al. (1977); {4] =
Heinrich (1989}, [5) =Schuster er al. (1988).
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TABLE 6

Hexokinase flux controlling enzymes predicted from red cell metabolic models of differ-
ent camplexzty The enzymes are listed in the order of decreasing importance for each

model
Model [ [2] [3]
No. of enzymes
considered 3 5 ' 5
HK flux controlling HK >PFK HK +PFK > ATPase ATPase > HK + PFK > DPGase
enzymes :
Model 4 [5] Model 1
No. of enzymes . ‘
considered 9 . .20 . 41
HK flux controlling Leak Na>Leak K> ATPase>DPGase Leak K> Leak Na> .
enzymes _ HK+PFK>DPGM > ] Pump>GSHR >TAl >
’ PGK > DPGase > ATPase DPGase> ATPase > DPGM >
. HK >PK >PRPPsyn >
AK>ADA

Source: [1]=Rapoport et al, (1974} [2]=Rapoport et al. (1976); [3]—Hemnch et al. (1977); [4)=
Heinrich {1989); [5] =Schuster et af. (1988),

result in misleading interpretations. Finally, based on the results presented here, it
seems unlikely that metabolic control coefficients will be useful in guiding metabolic
engineering in the absence of comprehensive metabolic models.

This work has been supported by the Nationa! Institute of Health (grant no. DK 39256).
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