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Abstract--In this paper we study a special case of the restricted n-body problem, called by us the restricted 
P + 2 body problem. The equilibrium configuration which the P + I bodies with mass form consists of 
one central mass encircled by a ring of P equally spaced particles of equal mass, the ring rotating at a 
specific angular velocity. We briefly discuss the stability of this configuration. We consider the dynamics 
of an infinitesimal mass under the influence of such a configuration. First the equilibrium points will be 
discussed, then the zero-velocity curves. We show that there are 3P, 4P or 5P equilibrium points, 
depending on the ratio of the ring particle mass to the central body mass. Next motion about the 
equilibrium points is considered. We show that if the ring particle mass is small enough there will be P 
stable equilibrium points. Also if the number of particles, P, is large enough and the ratio of the ring 
particle mass to the central body mass is large enough there will be P different stable equilibrium points. 
Finally an analysis of the dynamics of the infinitesimal mass will be performed under the restriction that 
the particle does not cross or come close to the ring and lies in the plane of the ring. Under this restriction 
an approximate potential can be found which can be made arbitrarily close to the real potential under 
some circumstances. The dynamics of the particle under the approximate potential are integrable. We find 
a periodic orbit in this case with the Poincar6-Lindstedt method using the mass of the ring as a small 
parameter. The predictions from this approximate solution of the problem compare well with numerical 
integrations of the actual system. 

1. EQUILIBRIUM CONFIGURATION 

In normalized units the equilibrium configuration is 
described as follows. Consider a central body of  mass 
1. A ring consisting of  P bodies, each with the same 
mass g, are equally spaced around the central mass 
at a radius of  1. The angle between two consecutive 
bodies is 20 where 0 = ~c/P and is the vertex half- 
angle of  the polygon formed by the P bodies. This 
ring has a specified angular velocity co defined as a 
function of  P and/~:  

# 
o 9 2 = 1 + ~ S  (1) 

P - l  

S = ~ csc(j0).  (2) 
j = l  

The configuration described is an equilibrium sol- 
ution to the n-body problem where n = P + 1 and 
P~>2.  

The linear stability of  this configuration under 
small perturbations was first considered by Maxwell 
in connection to his theory on the rings of  Saturn [2, 
pp. 310-319]. Others have returned to this problem 
using improved formulations [3-5]. A sufficient con- 
dition for the above configuration to be linearly 
stable is [4]: 

# ~< U~ng (3) 

P~>7  

tPaper IAF-91-332 presented at the 42rid Congress of 
the International Astronautical Federation, Montreal, 
Canada, 7-11 October 1991. 

where: 

16n 3 2 . 2 9 . . .  
s _ 

, l / r i n g  (4) 
7(13 + 4 x f i 0 ) l ( 3 ) P  3 p3 

+oc 1 
•(3) = Y' ~-3 = 1.20205. . .  (5) 

k = l  

If  P is less than 7 the equilibrium configuration will 
be unstable independent of  the mass of  the ring 
particles. The inequality can be improved upon, 
especially for P relatively small [4]. 

2. THE RESTRICTED PROBLEM 

In inertial cylindrical coordinates the equations of  
motion of  a particle with infinitesimal mass under the 
influence of  a potential force field are stated as: 

p .  _ pq ,2 = Up 

pzrl" + 2pp'r I' = U~ 

" =  u~ (6) 

where: 

p is the radial distance from the central 
body 

q is the angular distance from a fixed line 
is the normal distance from the 
ring/central body plane 

• denotes differentiation with respect to 
time 

U(p, q, ~) is the force potential. 
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If the particle is under the influence of the equi- 
liblium configuration described above, the force 
potential is given as: 

1 
U(p,,~, O = - -  

e 1 

+#k=a  ~ x/1 + p 2 + # : - - 2 p  cos(20k +cot - q )  

(7) 

where: 

0 = rc/P as before 
co is the angular velocity of the ring as before 
t is the time. 

This particular form of the equations of 
motion will be referenced in the final section of the 
paper. 

Now transform to a coordinate system rotating at 
the angular rate co via the transformation: 

I / =  cot + (p. (8) 

Then the equations of motion become: 

p" - p ~ ' ( 2 ~  + ~ ' )  = v,, 

p2~,, d- 2pp'(¢o + dp') = V, 

"= V¢. (9) 

The force potential V(p, t~, ~) is now: 

V(p, dp,~)=½co2pZ + U(p,~p,~) (10) 

l 
U(p, 4~, C) = - -  

X/p2 + C 2 

e 1 v~ + (1 1) /z 

where ~ is the angle measured from a line rotating 
with angular rate c0 in the plane. 

In the rotating coordinates the equations of motion 
are time invariant and hence the Jacobi Integral exists 
and is: 

½(p,2 + p2q~,2 + (,z) = V ( p , d ? , ( ) - C  (12) 

where C is the Jacobi constant. 
A simplification of the equations of motion (9) can 

be made using a certain symmetry property of the 
potential in eqn (10). We first note that the left-hand 
side of eqn (9) is invariant under the transformation 
~b --, ~b + a where a is a constant. Now observe that 
the potential V(p, dp, ~) is invariant under the trans- 
formation: 

k =0, +__1, +2 . . . . .  (13) 

Then the partial derivatives of V(p, c~, ~) are also 
invariant under the transformation (13) and thus the 
equations of motion (9) are invariant under trans- 

formation (13). We use this result to identify the two 
points 4~ = 0 and @ = - 0. This is consistent as we see 
that: 

V(p, 0 + ~b, ()  = V(p, - 0  + ~b, (). (14) 

Thus we need only consider the equation of motion 
(9) on the reduced configuration space: 

0 < p < o o  

- 0  <(p ~<0 

- o c  < ~ < oo. (15) 

This simplification is especially useful in the evalu- 
ation of the equilibrium points and zero-velocity 
curves.  

Now a particular form of the potential is discussed. 
In either the inertial or rotating coordinate frames the 
contribution of the ring to the potential may be 
written in the form: 

e 1 

r=I tk=l  ~ ~/1 + p 2 + ( 2 - - 2 p  cos(20k - X )  (16) 

where X is some quantity independent of the index k. 
If we assume that the particle orbit lies in the plane 
of the ring and central body (~ - 0), then the poten- 
tial F may be expanded into Laplace coefficients so 
long as p # 1. In the following statements we have 
made use of the fact that: 

{o ,7, 
k=l c°s(2mOk-mT")= Cos(mx) m=nP.  

Then, following well known procedures [1, p. 495], we 
may state: 

f ib ]°/)2(p) + ~=, b]~/f)(p)cos(nPx) p < 1 

F=#P 

L P L  .=, d 

where 

and 

4 (',/2 sin2J(a) do" 
b~J)tct)2/2~ =-~J  I 

J0 , / 1  - sin:( ) 

p > l  

(18) 

(19) 

= 4 
/Z 

K(-- )  is the complete elliptic integral of the first kind. 
The Laplace coefficient form of the potential holds 

so long as p 4: 1. Should p - 1 at some point, a new 
formulation of the potential must be made in the 
neighborhood of this point. 

The Laplace coefficient form of the potential sim- 
plifies several computations needed later in the paper. 
Note that the force potential F is now multiplied 
by #P, which is the total mass of the ring, instead of 
just being multiplied by #, the mass of one ring 
particle. 
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3. E Q U I L I B R I U M  P O I N T S  

In the equations of motion (9) for the rotating 
system, the condit ion for equilibrium points to exist 
are simply stated as: 

V,,(p, 4,, ~) = 0 

V~(p, ~, ~ ) =  o 

V3p, ~, () = O. (20) 

We can use some symmetry properties of the poten- 
tial V(p, c#, ~) to simplify the discussion. 

First note that if some function g(x) is even about  
some point  x0, then the first derivative of the function 
g(x)  at the point x0 will be zero. It can be easily 
shown that the potential V(p, dp, ~) is even in ~ about  
0 and is even in ~b about  0. Coupled with the 
symmetry mentioned previously we see that the po- 
tential function is also even in ~b about  0. Thus we 
may make the immediate observations: 

V3p , ~b, 0) = 0 (21) 

V,(p, 0, ()  = 0 (22) 

V~,(p, 0, ()  = 0. (23) 

A simple computat ion will show that V3p, ~b, ()  is 
zero only at ( = 0, thus ( = 0 is the only equilibrium 
point in (. Numerical computations of V~ show that 
in general V~ # 0 for ~b # 0, 0. Thus we confine our 
search for equilibrium points to the problem of 
finding the roots of the equations: 

V,(p, 0, 0) = 0 (24) 

V.(p, O, 0) = 0. (25) 

We will consider each equation separately. In the 
following discussions we assume that ~ = 0 unless 
otherwise indicated. 

For  4~ = 0 eqn (24) is: 

I 
Vp(p,O)=co2p p2 

P p - cos(20k) 
- / ~  k=l ~ (1 + p2 _ 2p cos(2Ok)) 3/2" (26) 

We immediately discount the point p = l due to the 
singularity from the ring particle. See Table l for a 
list of  the function V,(p, 0) evaluated at the ends of 
the intervals (0, l) and (1, oo). 

If we state V(p, 0, 0) in the Laplace coefficient form 
we have: 

v = ½¢o~p ~ + l_ + / ~ ?  
P 

bl°/)2 b]n/~)(p ) p < l 

l ( 2 7 )  

bl°/t(1/p) l'~)(1/p p > 1. 

1 2 ^ 2  Simple computations will show that [to ~ ,  l/p, 
b~"/e)(p) and l/pb[~/~)(l/p) are all convex functions of 

T a b l e  1. L i m i t i n g  p o i n t s  o f  Ve(p, O) 

0 + - ~  
1 + o o  

l ÷ - o o  
+ o o  + o o  
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p in the appropriate intervals (0, 1) and (1, oo). Thus 
V(p, 0, 0) is a convex function in these intervals. 
Combining this with the values given in Table 1 we 
see that there is one and only one equilibrium point 
in each interval. We call the equilibrium points E l  
and E2. 

The equilibrium point E l  lies in the interval (0, 1] 
and, depending on the mass /~, may take on any 
position in this interval. Note that if/~ ~ 0 then pj ~ l 
and if # -~ oo then Pl ~ 0. For  small p we can solve 
for the position of E l :  

p, = I -- (/~/3) '/3 + ½(/t/3) 2/3 + ~(/~/3) J/3 +'-'. (28) 

The equilibrium point E2 lies in the interval 
[1, + ~ ) .  In this case an upper bound on P2 can be 
found, independent of the mass ratio #. Recalling 
that p > 1 and that co 2= 1 + #S/4 we see from eqn 
(26) that a sufficient condition for V. > 0 is: 

e p - cos(20k) 
pS t> 4k=l ~ (1 + p2 _ 2p cos(2Ok)) 3/2" (29) 

Given that: 

l l 

(p - 1) 3 t> (1 + p2 _ 2p cos(2Ok)) 3/2 (30) 

it is easy to verify that the position of  22,  P2, is less 
than the quantity: 

PM ---- 1 + - -  (31) 

and thus lies in the interval [1, PM)' See Table 2 for 
some values of PM as a function of P. 

For  P >> 1 we have the following asymptotic result 
[4, Appendix]: 

S - - -  log exp 7 

where y = 0 .57721. . .  and is Euler's Constant.  Thus 
for large P we have the asymptotic result: 

f 2n ]1/3 
P M  = I + - - -  - . (33) 

Table 2. Upper bound on radius of 
equilibrium points E2 and E3 vs P 

P PM 
2 3.00 
3 2.73 
5 2.54 

50 2.16 
500 2.00 

50O0 1.90 
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Note that pu is only an upper bound on P2. Also 
note that if P--* oo then PM--* 1 + independent of the 
mass /1. As before we also have that if/1--,0 then 
p2 ~ I. For  small/1 we can again solve for the position 
of E2: 

P2 = 1 + (/1/3) I/3 +-~(/1/3) z'3 - 1(/1/3)3;3 + . - - .  (34) 

For ~ = 0 eqn (25) is: 

1 
v . ( p ,  O) = ~o2p - p-~ 

p - c o s 0 ( 2 k  - 1) X" 
(35) /1 ~ (1 + p2 _ 2p cos O(2k - 1)) ~/2" 

The roots of this equation prove to be much more 
complex than the previous case. See Table 3 for 
Vp(p, O) evaluated at p = 1 and at its limiting points. 

In Table 3 the quantity So is defined as: 

P 

So = ~ csc½0(2k - 1) (36) 
k = l  

Now S0> S for all P so Vp(1, 0) < 0. For  P >> 1 we 
find asymptotically [4, Appendix]: 

S o - - - l o g -  exp7 + 3 - ~ + O ( I / P  2) (37) 

Vp(1, 0) = -/1~P log 2 + . . "  . (38) 
n 

In this case the nice convex properties of V disap- 
pear for p ~< 1 and remain for p > 1 only outside of 
a neighborhood of p = 1, the neighborhood being a 
function of P. Nonetheless, one can construct an 
argument that for p >/1 there is one and only one 
equilibrium point, called E3. Using the analysis from 
equilibrium point E2 we see that E3 lies in the 
interval [1, PM), with PM the same as in eqn (31). 
Again i f / 1 ~ 0  then p3--*l. For  small/1 we can solve 
for the position of E3: 

= 1 + ~ 2  ( S ° - S ) + ' ' "  . (39) P3 

The equilibrium points E l ,  E2 and E3 exist for all 
P~>2.  

From Table 3 we see that in the interval (0, 1) there 
are either no equilibrium points or an even number  
of equilibrium points. Inspection of eqn (35) along 
with the fact that Vp(1, 0) < 0 makes it obvious that 
we may always choose/1 small enough so that there 
are no equilibrium points in this interval. Conversely 
one might suspect that if/1 is chosen large enough 
that at least two equilibrium points may appear, this 
is indeed the case. These two new equilibrium points 
will be referred to as E4 and E5. 

Table 3. Limit ing points o f  Vp(p, O) 

p v. 
0 + - ~  
1 - # ( S  o -- S ) / 4  
+ ~  d-oo 

A necessary and sufficient condition for any equi- 
librium point to appear in the interval (0, 1) is that at 
some p* and/1"  we have: 

V~(p*,  O; /1*) = O 

V~o(p*, O;/1") = 0 

0 < p * < i  

/1" > 0. (40) 

This condition will occur at some point p* as /1 is 
increased from zero. For P = 2 the condition never 
occurs and hence E4 and E5 do not  exist for P = 2. 
The condition will always occur for P >/3 for large 
enough/1. For P />  4 it can be shown that a necessary 
condition for eqn (40) to occur is that first the 
condition Vpp(1, 0) = 0 must occur at some/1 </1".  
This condition will never occur for P = 3 but  may 
always occur for P >~ 4. For  small/1 we can show that 
Vpp(1, 0) > 0. Thus a necessary condition for the new 
equilibrium points to appear when P ~> 4 is that: 

Vpp(1, 0) ~< 0. (41) 

Evaluating the above condition yields the inequality: 

48 ~< ~1[No - 5So - 4S] (42) 

where: 

So and S are defined as before 

1 + cos2 ½0(2k - 1) 
No= 

Again for large P we have [4, Appendix]: 

No = . . . .  281(3) p3 + (43) 
7~3 

Where •(3) has been defined previously. 
Using this expansion we state that a necessary 

condition for the equilibrium points E4 and E5 to 
appear for P >1 4 is that: 

12n 3 44.2188. . .  
/1 >~ fi -- 7i(3)p3 - p3 (44) 

Comparing this to inequality (3) for the stability of 
the ring we see that E4 and E5 appear only for 
unstable rings. 

Given P it is possible to solve eqns (40) numerically 
to find p* and/1" .  We have performed the analysis 
and present the results in Fig. 1 for P >/4. Note that 
the plotted value of/1" has been normalized by/~ [eqn 
(44)]. For  P = 3 the bifurcation point is: 

/1 *//~ = 44 .411 . . .  

p* = 0.32437 . . . .  

Note from Fig. 1 that even though these equi- 
librium points appear only for unstable rings, the 
necessary mass of the ring for these points to appear 
may still be vanishingly small for large enough P. 

We label the two new equilibrium points as follows. 
E4 is the equilibrium point closest to P = 1. For  large 
P i f /1- - ,+  oo then p 4 ~ l - ,  but P4 never arrives at 1. 
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10 - -  Bifurcation values for equilibrium 
points E4 and E5 

P=4 

o - ~ P= 

"G 7 - "~, L. 

10 P = 500 C) 
z 

i 
0.500 0.625 0.750 0.875 1.000 

Radius 
Fig. 1. Normalized mass (#*/p) and radius (p *) for bifur- 

cation of E4 and E5 as a function of P. 

This is clear as Vp(1, 0) < 0. There is no convenient 
solution for 194 in terms of the mass #. 

E5 is the equilibrium point closest to p = 0. If 
g - - . +  oo then p s i 0  +. If/~ is large enough and P >i 3 
we can solve for the position of E5: 

Da 4 ]1/3 
PS = (S + 2P) + ' . . .  (45) 

Figure 2 depicts the intervals where the equilibrium 
points may be found. A more geometrical interpret- 
ation of  the equilibrium points appears in the zero- 
velocity curve discussion. 

4. THE ZERO-VELOCITY CURVES 

The zero-velocity curves are defined using the 
energy integral [eqn (12)] evaluated such that the total 
velocity in the rotating coordinate frame is zero: 

V(p ,  q~) = C (46) 

where C is a constant. If we imagine the energy C to 
vary, then eqn (46) defines a surface in the 3-space 
(p, ~b, C).  The zero-velocity curves are just  horizontal 
sections of this surface for a given value of C. Motion 
is possible if the particle is on or below this surface, 
impossible if above this surface. Due to the symmetry 
properties of V(p,  cb) we need only consider the 
curves defined on: 0 < p < ~ and 0 ~< ~b ~< 0. 

= 

¢ = O  
Fig. 3. Zero-velocity curves for large energy (C >> 1). Note 
that the curve shapes and sizes are exaggerated for clarity. 

For  C ~> 1 the asymptotic shape of the curves are 
known and are shown in general in Fig. 3. Note that 
the dimensions and variations of the curve are exag- 
gerated for clarity. As C is decreased the curves will 
keep the same approximate shape, the ~b = 0 point of  
the curves will "lead" the ~b # 0 points of the curves 
until the curves intersect. Every intersection of the 
curves is an equilibrium point. Note that in all 
zero-velocity curve figures the angle 0 has been 
normalized to a convenient value for plotting. In all 
the figures motion is not  possible in the hatched 
areas. 

Figures 4 -6  depict the zero-velocity curves for 
/~ < #* as the energy C decreases, thus the equi- 
librium points E4 and E5 are not present. Note that 
in this case E3 is the global min imum of the zero-vel- 
ocity surface. If C < VE3 then motion is possible 
throughout the plane. 

Figures 7-9 depict the zero-velocity curves for 
g >> #* as the energy C decreases. Thus in this case 
E4 and E5 exist, additionally they are the global 
finite maximum and global minimum respectively of 
the zero-velocity surface. 

Between the cases/t  </g* and/z  >>/z* the order in 
which the equilibrium points appear as the energy is 
decreased is shown in Table 4 for P - 25 in particu- 
lar. Note that for large P Table 4 presents the usual 
case. 

dp--O 

Bifurcation 
point (p--p*~ 

gi f 2 -  ~, = 0 

Fig. 2. Intervals on the plane where the equilibrium points 
may be found. 

E1 

Fig. 4. Zero-velocity curves for # < p*; P = 25, # = 0.003, 
C = 1.6440. 
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E2 
Fig. 5. Zero-velocity curves for # < #*; P = 25, tt = 0.003, 

C = 1.6424. 

Fig. 7. Zero-velocity curves for/~ ~> #*; P = 25, # = 0,03, 
C = 2.8295. 

Thus we see that the zero-velocity surface is a 
complicated function of/~. In Figs 4 -9  we have used 
P = 25, which is a good representation of the cases 
which occur for small P. It should be noted that for 
P relatively small the zero-velocity surface will not 
vary as in Table 4. Instead the surface will in general 
have different variations in the order of appearance 
of the equilibrium points and may not have some of 
the situations listed in Table 4. As an example, for 
P = 10 there are a total of nine variations in the order 
of appearance of the equilibrium points, as compared 
with seven variations in Table 4. For  P = 4 there are 
only five variations. 

Extending the analysis to the full problem we have 
the results given in Table 5 for P >i 3. For  P = 2 there 
are always only 6 equilibrium points. 

Note that # may increase in two ways. The individ- 
ual ring particles may increase their mass relative to 
the central body mass, thus the ring grows heavier. Or 
the central body mass may decrease relative to the 
ring mass, thus the central body has less effect on the 
ring. 

5. SMALL MOTIONS 

Small motions close to the equilibrium points are 
studied via the equations of variations formed about 
the equilibrium points. The characteristic equation of 
the variation equations provides information as to 
the stability of motion close to the equilibrium points 

Fig. 6. Zero-velocity curves for # < #*; P = 25, # = 0.003, 
C = 1.6400. 

(stability meaning harmonic motion). At a given 
equilibrium point  the equations of variation may be 
stated as: 

(Ap /po) "  - 2o~ A,/,' = v . . t o (ap /po )  

I 1 
+ - -  Zp,~l o A@ + - -  V.clo A~ (47) 

P0 Po 

1 
A ~ "  + 2og(Ap/po )' = - -  V~pjo(Ap/po ) 

Po 

1 1 
+ p-~ V~,10 A(b + ~02 V~l 0 A ( ( 4 8 )  

AC"= V~.lo At) + V¢,lo Ark + V~lo AC (49) 

where: 

IApl, IA¢I, IA£1 ~ I and are perturbations from 
the equilibrium points 

P0 is the equilibrium point 
radial coordinate 

$0 is the equilibrium point 
angular coordinate 

~0 is the equilibrium point out- 
of-plane coordinate 

As can be easily verified, Vp, lo = Vp~lo = Vp~lo = 0 at 
all the equilibrium points E l - E 5 .  

It is easy to verify that V~(p, ~, 0) < 0 for all p and 
~. Thus we see immediately that the decoupled 
motion in ~ is always harmonic and thus considered 
stable. We now consider the planar case only. 

E2 
Fig. 8. Zero-velocity curves for # ~,#*; P =25, # =0.03, 

C = 2.6561. 
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E1 
Fig. 9. Zero-velocity curves for # ~, #*; P = 25,/~ = 0.03, 

C = 2.6395. 

In the planar case we assume harmonic motion 
with a frequency 2 and form the characteristic 
equation: 

where: 

o 2 - 2 ( 2 - - , , ¢ / ) o - F g f ' = 0  (50) 

= 0 / o , )  2 (51) 

.A( = 2--~ (Vpp,o + p~ V,~,o ) (52) 

1 
.~  = o74p---- ~ V¢,~I 0 Vpplo. (53) 

For stable motion the following conditions must be 
true: 

> 0 (54) 

2 > ..W (55) 

(2 - ~02 > ~r. (56) 

From a general consideration of  the zero-velocity 
surface we can construct Table 6, which gives the 
signs of the surface curvature Vpp and V~ and of 
at the equilibrium points. 

From Table 6 we see immediately that E l ,  E2 and 
E4 violate condition (54) as they are saddle points of 
the potential surface. For these points condition (56) 
is always satisfied and motion about these points 

Table 4. Relative energy values of  equilibrium points as p varies 

Order of  appearance as C d e c r e a s e s  

Increasing E l ,  E2, E3 (E4 and E5 not present) 
p E l ,  E2, E4, E5, E3 
,l E l ,  E4, E2, E5, E3 

E4, E l ,  E2, E5, E3 
E4,  E2, E l ,  E5, E3 
E4, E2, E l ,  E3, E5 
E4, E2, E3, E l ,  E5 

Table 5. Total numbers of  equilibrium points as a function of  p 
(P ~ 3) 

Relative size o f  mass Number  of  equilibrium points 

P </~* 3P 
p •P*  4P 
p > # *  5P 

Table 6, Sign of  surface curvature at the equi- 
librium points 

e point lee V~ .,,g" 
1 + - - 

2 + - - 
3 + + + 
4 -- + -- 
5 + + + 

decouples into a pure harmonic motion and a pure 
hyperbolic motion. 

As E3 and E5 are local minima of the potential 
surface, condition (54) is always true and conditions 
(55) and (56) must be checked. We first consider E3. 

For E3 condition (55) translates into that/~ cannot 
be too large. Then, assuming that/~ is small and P 
large we substitute eqn (39) for P3 into condition (56), 
simplify and ignore higher orders of/z and 1/P to find 
that a sufficient condition for stability of E3 is that: 

U < U~3 (57) 

4n 3 0.572. . .  1 

/ ~  = 7(13 + 4x/~) l (3)P  3 - P-----Y--- ~< ~/z~ng 

where/z~g is the stability bound for the ring [eqn (3)]. 
Thus we see that it is possible for E3 to be stable if 
the mass g is small enough. Note that it is possible 
for E3 to be unstable while the ring configuration is 
stable. Figure 10 shows limiting mass for stability of 
E3 vs P. The mass is normalized by/~3" 

Now we consider E5. Remarkably, it is possible 
under some circumstances for E5 to be stable, 
although the ring configuration itself will be unstable. 
Under analysis it turns out that condition (55) is the 
controlling condition for stability in virtually all cases 
for E5. This is primarily due to the fact that Yl 
becomes vanishingly small (although positive) at E5. 
This result is easily verified using the Laplace form of 
the ring potential. 

Assuming that/z is large, we substitute eqn (45) for 
P5 into condition (55), disregard higher orders and 
find the condition: 

27 r 4 -F/3 
( # P ) 2 / ' ( S / P  - 6) > ~- L ~ - - - ~ J  . (58) 

e~ 

"o 
o 
N 

m 

z 

1.3 - -  Mass bound for stability of 
equilibrium point E3 

1.1 

1.0 o 
0 10 20 30 40 

Number of ring particles (P) 
Fig. 10. Normalized maximum mass for E3 stability vs P. 
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We can derive two necessary conditions from this 
inequality. First we need: 

S - 6P > 0. (59) 

If we assume that P is large and use the asymptotic 
expansion for S we find that: 

P > 2 exp(3n - y) = 10,928.67 . . . .  (60) 

This has been verified numerically where we find that 
condition (55) is satisfied only when P >t 10,930. 
Given that this condition is satisfied, we see that the 
mass/~ must satisfy the condition: 

4 F- 2_7 73/2 (61) 
# > ~ L4(S/P - 6)J " 

From numerical computations we see that this is only 
a necessary condition and that the actual minimum 
value of/~ for stability is greater than this bound. In the 
conditions checked the actual bound and the above 
bound have been of the same order of magnitude. 

6. A SPECIAL CASE 

NOW wc discuss a particular class of motions of the 
)article. Wc restrict the particle orbit to lie in the 

I U - ~ 4 ~  
7[ 

where we replace #P by 6, which is the total mass of 
the ring. 

A simplifying assumption wc will introduce is to 
retain only the zcroth order Laplace coefficient and 
disregard all higher order Laplace coefficients. This 
will lead to an approximate potential: 

l 2~ ~ K(p) p < l 

O(p) p 7[ K(I/p) p >1 
(66) 

where K( - - )  is the complete elliptic integral of the 
first kind. 

We note that U(p) is independent of the time t and 
of the angle r/. Thus the system with the approximate 
potential will have its energy and angular momentum 
conserved. The presence of two integrals indicates 
that the system is in fact an integrable system. We will 
investigate the motion of the system under this 
approximate potential. 

A measure of the error between the approximate 
and actual potentials and forces may be found using 
the definition of the Laplace coefficients. The errors 
are found to be bounded by: 

pP 

1 - ~  r(p) p < l 

I 1 
-~-:-7_ l-~ r(I/p) p > I 

f pe-1 p 1 __pC P - l  +p ) K ( p ) + ~ E ( p ) ]  
(l pC)2 

l 

_J 
" p e - -  1 7 

1)5 / 

r ppe 4_ 6 j (1 --"~12 K(O) p < l  

IU"-~"l~<7[ "I--PoP 1K(1/p) p > l  

)lane of the ring and we assume that the particle 
radius stays outside a neighborhood of the value 
p = I. In other words we assume that the particle 
orbit does not intersect the ring. Under these restric- 
tions wc may use the Laplace coefficient form of the 
force potential [eqn (18)] for the inertial equations of 
motion (6). Assuming ~ = 0 we have: 

p,, _ p~/,2 = Up (62) 

p2t]" Jr 2pp'tl' = U~ (63) 

u =l_ +e (64) 
P 

½bt°/)2(p ) + ~= , bl"/f)(p )cos(nP07 - oJt )) 

F=6 
~bl/2Cllp) + ~, bi/~ (1/O)cos(ne(? - ~t) )  

(67) 

p < l  
(68) 

p > l  

(69) 

where E ( - - )  is the complete elliptic integral of the 
second kind. 

It is clear in all cases that if P - ,  oc all the errors go 
to zero. We also see that the further p is from 1 the 
smaller the errors are. Finally, if p - ,  + 1 the errors 
will become arbitrarily large. We note that if wc 
restrict to a stable ring, the total mass 6 must satisfy 
6 < 2.29/P 2 [eqn (3)], and thus goes to zero as P --, oo. 

The approximate potential may also be derived in 
a non-rigorous fashion. Assume that a continuous, 
uniform, circular, one-dimensional ring exists around 
a central body. The ring has total mass 6 and is 

p < l  

p > l  

(65) 
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situated at a radius of  I from the central body. Then 
the potential energy of the ring on a test particle in 
the plane of the ring is expressed as the integral: 

_ 6 ~2~ dO . (70)  

P(O)-2"~ ~o x / l _2pcosO +p: 
Introducing the Laplace coefficients and considering 
the cases p > 1 and p < 1 separately we find: 

26 ~ K(p) p < 1 
F ' (P)=--~l lK(1/p  ) p > 1. (71) 

This corresponds exactly with our approximate po- 
tential due to the ring. 

With the approximate potential the equations of 
motion become: 

p" - pt1,2 = Op (72) 

d 
dt  ( p 2r/') = 0. (73) 

Thus the quantity p2~/, = h, the angular momentum, 
is conserved. Substituting for r/' in the above 
equation yields the one degree of freedom system: 

p" h2 Up. (74) = p--3 + 

This system has an energy integral: 

h2 
1 ;2 - - - -  C (75) 
~p =O(p) 2p 2-  

where the constant C corresponds to the previously 
found constant C in eqn (12) when the same approxi- 
mating assumptions are introduced into that system. 

Eliminating the time in favor of the inertial angle 
r/, we can reduce the solution of the system to the 
quadrature: 

f f  -t- h/p 2 dp 
r / -  t/0 = 0 x/2(tT(p) - h2/2p 2 - C) 

(76) = 

We will, instead, use a perturbation method to find 
the periodic orbit of this system to the first order in 
6 using the Poincar6-Lindstedt method. 

We are interested only in those orbits of the 
particle which do not intersect the ring. By consider- 
ation of the energy integral (75) we may narrow our 
focus of the types of motion considered and develop 
a necessary and sufficient condition for when non- 
intersecting orbits exist. 

Considering the energy integral, we see that given h 2 

and C the position p of the particle must be such that: 

h: 
- -  I> C (77)  G(p) = O(p) - 2P 2 

where G(p) is the zero-velocity energy function. If, 
for a given h 2, w e  plot G(p),  then for any given C 
motion will be possible on all parts of the graph of 
G(p) which lie above the line C. Furthermore, where 
the line C intersects the graph of G(p) the velocity p '  
is zero, if C is tangent to the graph of G(p)  then there 

is an equilibrium point present. If  we let 6 = 0 the 
graph assumes the general shape as shown in Fig. 11. 

Considering Fig. 11 we see that if C ~< 0 then 
p--,oo, and if 0 < C ~< 1/(2h 2) then the radius p will 
vary between two bounds, we note especially in this 
case that p will always pass through the point p -- h 2. 

To consider the effect of the ring, let 6 be very 
small. Then the main effect is a pole at p = 1 extend- 
ing to + oo, the rest of  the curve will not be appreci- 
ably affected except in this neighborhood. Then some 
general types of orbits may be shown to intersect with 
the ring. I fh  2 = 1 all bounded orbits will intersect the 
ring. If h 2 > 1 then all orbits with p < 1 initially will 
intersect the ring. If  h 2 < 1 then all bounded orbits 
with p > 1 initially will intersect the ring. Thus for 
non-intersecting orbits to exist we must enforce the 
following restrictions: h 2 ~ 1, if h 2 > 1 then p > 1, if 
h E < 1 then p < 1. These restrictions are only necess- 
ary conditions for a bounded orbit to not intersect the 
ring. 

For  6 not necessarily small, under the above 
necessary conditions we can develop necessary and 
sufficient conditions for the existence of orbits which 
do not intersect the ring. Given h 2 > 1 (h 2 < l) and 
p > 1 (p < 1) a necessary and sufficient condition for 
bounded non-intersecting orbits to exist is that there 
is either a local maximum and local minimum or a 
saddle point on the p > l  ( p < l )  portion of the 
graph of G(p). 

It is easy to see that given 6 small enough the above 
necessary and sufficient conditions will be met and 
there will be a local minimum and a local maximum 
on the graph of G(p). As 6 is increased there is a 
point (6") at which the local maximum and minimum 
will merge and become a saddle point on the curve. 
For  6 > 6" all bounded orbits will intersect the ring. 
Associated with 6" is the position of the saddle point 
p*. Both of these are a function of  h ~. We are 
interested in 6", as 6 ~< 6" is a necessary and sufficient 
condition for non-intersecting bounded orbits to 
exist. To compute 6" we must solve the equations: 

Go(p*;  6" ,  h 2) = 0 (78) 

Gpp(p *; 6 *, h 2) = 0. (79) 

In  these equations h 2 is a parameter. We are inter- 
ested in expressing the relat ion 6 *  vs h 2. Thus we 

6 (p) 

1 /2h  2 

I 
I 

h 2 

Radius  (p)  

Fig. l l .  Zero-velocity curve (G(p) vs p) for t~ =0. 



246 D.J.  SCHEERE$ and N. X. VINH 

instead view p as a parameter in the equations and 
find the parametric curve for h .2 and 6*: 

(1 _p2)2 

p[2E(p)  -- (2 -- p2)(1 -- p2)K(p)] p < 1 

6" = 5 1  (p2 _ 1)2 

(80) 

f (1 + p 2 ) E ( p ) -  (1 -- p2)K(p)  
2E(p)  - (2 - p2)(1 - p2)K(p)  P < 1 

h*2= p 
(p2 + 1)E(1/p) - (p2 _ 1)K(1/p) 

2E(1/p)  - (p2 _ 1)K(l /p)  P > 1. 

(81) 

See Figs 12 and 13 for the plot of  the above curve. 
Asymptotically we have the following relations. If 
h*2--,0 then 6"-}oo,  if h*2~oo then 6 " ~ o o  and if 
h * 2 ~ l  + then 6*--,0. 

To actually find the non-intersecting orbits we 
follow the following procedure. Given h 2 compute 
6". Then, if 6 < 6" find the local maximizer P~x and 
the local minimizer Pm~ of the zero-velocity energy 
function and the corresponding zero-velocity energy 
values C ~  and Cmin. Then the non-intersecting 
bounded orbits will be those whose energy C is such 
that C~,  ~< C ~< Cm~x and whose initial position P0 is 
such that P0 t> P ~  if h 2 > 1 or P0 ~< Pm~ if h 2 < 1. If 
3 = 6" then the only non-intersecting bounded orbit 
is the circular orbit at p*. 

Guaranteed of the existence of non-intersecting 
orbits under the above conditions, we now compute 
the periodic orbit to the first power of 6 using the 
Poincart-Lindstedt  method. 

Introduce the following well known transform- 
ations to the system: 

p2 
dt = -~- dr/ (82) 

p = l/u. (83) 

Mass bound for existence of 
non-intersecting orbits 

12 -- 

co 8 
t~ 

..= 
t., 

¢o 
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I 
0 0 . 2 5  0 . 5 0  0 . 7 5  1 . 0 0  

Angular momentum squared 

Fig. 12. Curve defining where non-intersecting orbits may 
exist: 6* vs h .2 (p < 1). 
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Mass bound for existence of 
non-intersecting orbits 

co 8 

.=. 
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[.., 
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Angular momentum squared 

Fig. 13. Curve defining where non-intersecting orbits may 
exist: 6* vs h .2 (p > 1). 

Then the system assumes the form: 

d2u 1 
dr/2 I- u = ~-i Ou (84) 

where U is now viewed as a function of u: 

O(u) = u + 6 ~ u )  (85) 

2 ~K( l /u )  u > 1 
P(u) =-~ ( ,KO,)  u < 1. (86) 

Note that we have redefined the ring potential ,P so 
that it is now factored by 6. 

Now introduce the new angle variable ~ via: 

d r / = k  = 1 + @ 1 + . . .  • (87) 
dr 

So that the equation of motion becomes: 

k 2 
ii + k2u = ~ [ 1  + 3F.] (88) 

where ( - - )  denotes differentiation with respect to z 
and k is the modified frequency of the system, and is 
defined by the unspecified constants p l , p 2 , . . . .  

Now we assume a solution of the form: 

u(z ) = Uo(~ ) + 6ul (~ ) + " "  (89) 

where the ut(z) are to be found as periodic functions 
o f ,  with period 2n. 

Substitute this solution into eqn (88) and equate 
powers of 6 to find the sequence of equations: 

1 
ao + Uo = ~ (90) 

ti~ + u, = 2 p , ( ~ - U o ) + ~ 1 ~ . ( U o )  (91) 

with the imposed conditions at an apsis: 

uo(O) = Uo rio(O) = 0 (92) 

ut(O)=O tit(O)---O i = 1 , 2  . . . . .  (93) 
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The zeroth order solution is: 

u0(z) = ~2 [1 + (h2u0 - l)cos(z)]. (94) 

We introduce two new constants a and e via: 

h 2 = a(1 - -  e 2) (95 )  

1 
(96) 

u°-- a(l - - e ) '  

These are normally defined as the semi-major axis 
and the eccentricity in the two body problem. The 
initial condition u 0 is then the inverse of the periapsis 
of the initial orbit. We will use h 2 and a ( l -  e 2) 
interchangeably in the following discussions and 
equations, depending on the context. Thus we have 
the familiar form for the zeroth order solution: 

Uo(Z) = ~ [1 + e cos(r)]. (97) 

The first order equation now becomes: 

-2p ie  1 _ 
61 + u I = ~ cos(z) + ~-i Fu(uo)" (98) 

The forcing term F,(u0) is now periodic in z and can 
be expanded into a cosine series: 

I ~oAkC°s(kz) u < l  
F, (u0) = k (99) 

L E Skcos(kz) u > l .  
k=0 

See the Appendix for the derivations and forms of 
these coefficients. In the following results we use the 
notation: 

= : A  k u < 1 
G (100) ( Bk u > l .  

Then the first order periodic solution becomes: 

U 1 (Z)  = ~2 C0[1 - -  c o s ( r ) ]  

1 ~ Ck 
k~2 ~ [COS(kz) -- cos(z)] (101) g: 

The first order term in the frequency is obtained by 
casting out the cos(z) term in the forcing function in 
eqn (98): 

Cl 
P' = 2e" (102) 

We have performed numerical simulations of or- 
bits for the full equations of motion (6). Integrations 
start at periapsis and proceed to the next periapsis. 
This corresponds to a one period motion in the 
Poincar6-Lindstedt form of the approximate 
equations with the above initial conditions. The 
following quantities are easily extracted from the 
simulation: advance of the argument of the periapsis, 
period of  motion, change in periapsis radius and 
change in the instantaneous angular momentum h at 
periapsis. 

In the approximate equations of motion the periap- 
sis radius and the angular momentum remain con- 
stant. In the numerical integrations we see that both 
the periapsis radius and the angular momentum at 
periapsis remain constant to a high degree of accu- 
racy. These results become less true if P is small or 
if p is close to 1 at some point in the orbit. In general 
the angular momentum does vary in time, although 
for larger P the variations may become vanishingly 
small. 

The advance in the argument of the periapsis, Ao~ o 
(not to be confused with the angular velocity of the 
ring co), and the period of motion, T, can be extracted 
from the approximate solution just found to the first 
order in 6. 

The advance in the argument of the periapsis is 
easily computed by comparing the total inertial angle 
r/the orbit travels through in one period of motion 
with 2~, the total inertial angle the orbit would travel 
through if 6 = 0. From eqns (87) and (102) we see 
that the advance in the argument of the periapsis to 
the first order in 6 is: 

A~o o = nC----2 6. (103) 
e 

above to the order of 1/h s or a 4 we 

p > l  (h2 > 1) 

A¢o o = ~ 6  1 + g ~ ( 1  +~e 2) 

31 1 ] 
+ ~ ( 1  +~e2 +~e4) + . . .  (104) 

p < l  ( a <  1) 

aO,o = ~ a  , /1  - e:a3/l + ~ a2(1 + ~e ~) 

175-4,'1 5 2 + - ~ u  t~+~e + ] e  4 )+ . ' ' ] .  (105) 

The period of motion must be computed by com- 
bining eqns (82) and (87) and then integrating over z 
from 0 to 2~ using eqns (89), (97) and (101) to express 
p = l/u as a function of z. The resulting expression is 
a complicated formula. Keeping terms to the order of 
1/h 4, a 3 and e 4 we have: 

p > l  (h2 > 1) 

T=2ga m 1-T- -~_  e 2 + e + 4 - - ~ ( 3 + 3 e  

+ 2 e : +  e3/2))+ .. .]  (106) 

p < l  ( a < l )  

6a 3 
T= 27ta 3/2 1 + . / 1  

"V 

5 2 17 4~  . . ) ]  (107) x ( - ~ + 3 e + ~ e  - ~ e  . .  . 
3 

If we expand the 
have: 
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Table 7. Comparisons between numerical and analytical results 

6 h 2 e Ao~ Aco~ % Error AT ¢ AT ~ % Error 

0.01 10 0.02 4.832 E-4 4,730 E-4 2.11 -4.021 -4.144 -3.06 
0.01 25 0.5 7.639 E-5 7.545 E-5 1.23 -57.745 -60.607 -4.96 
0.01 0.5 0.1 1.070 E-2 1,055 E-2 1.36 8.639 E-3 8.942 E-3 -3.51 
0.0001 10 0.1 4.918 E-6 4.730 E-6 3.81 -4.725 E-2 -4.762 E-2 -0.78 
0.0001 0.5 0.1 1.061 E-4 1.055 E-4 0.54 8.568 E-5 8.942 E-5 -4.37 

Table 7 gives some comparison values between the 
approximate solution predictions and the numerical 
solution. The superscript c denotes the numerically 
computed values and the superscript a denotes the 
analytically computed values. The notation AT is 
defined as A T  = T -  27~a 3/2. The percentage error is 
computed by 100[(,) ~ - (,)~]/(,)% 
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A P P E N D I X  

The force term for eqn (98) is expressed as: 
u 

2 K ( 1 / u ) - ~ E ( 1 / u )  u > 1 
F.(~) = - ' ~  1 - ~  (108) rc E(u) u < 1. 

Using power series representations we have: 

7Z 
K(~) = -  ~ a]c¢ 2" (109) 

2n=o 
o~ ~2n 

z , =  0 2n - 1 (110) 

d, 2(22:n); 2 . (111) 

Using the above we find that: 

-- ~ ( 2 n ) d ] - g T  I u > 1 
2 J  "=~ u 

=0(2n + l)d~u ~' u < 1. 

Substituting the zeroth order solution u0(z) into the above 
series makes ~'~ an even periodic function in ~. Thus, it may 
be expressed in terms of a cosine series. To do that it is 
necessary to develop the following cosine series: 

(1 + e  c o s t )  2~= ~ a~cos(mz) (113) 
m=O 

l 
(1 + e cos z)2~+ . - b~+lcos(mz) (114) 

m=O 

where the coefficients are defined as follows: 

" -  " (115) a o - c o 

= - c" (116) a~ 2 k 

V/i-e2 n 
b g = ( l  _ e 2 ) j o  (117) 

[e\ k-~v - _ ~ ,, 

b~ = ( - 1 )  2 ~ )  ~fk" (118) 

The coefficients c~, and f~ have the general definitions: 

c~=~Ot[ ~=o l ! ( l + k ) ! ( n - k - 2 l ~ .  2 n<kn>~k (119) 

I t(, ~)/2} (n -k ) ! (n  +k)! / e"~ 2t 

n - - k  2 n n+l  ( 1 - e ) f k + 2 f k - )  n+l<~k 
n 

(120) 

f x  - ( 1  2 k + ~ )  (121) 

where [a] denotes the integer part ofa.  Note that to compute 
f~+t  for n + 1 <~k we must solve the recursion relation 
stated above. 

Inserting these coefficients into eqn (112) and rearranging, 
we find the form: 

f ~ 0  Bk cos(kz) u > 1 

r~(~o) = 1 ~0 (122) Akcos(kz ) u < 1. 
n 

Where the coefficients are defined as: 

A -  ~ (2n + l )d~  2, 
o - .=2., ° h- ~ c o (123) 

Bo = x/1 _ e  2 ~ ..,./2~2.+,:2~+I (2.,m.- so (124) 
n=l 

A k = 2 t~l h4~ c~' (125) 

B k = ( _ l ) k 2  l _ e  2 2 z~+l •+l (2n)d.a f k • (126) 

Or in terms of  order of  magnitudes: 

A k = O((e/h2) k) (127) 

B k = O(ek), (128) 


