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Abstract-fan analysis was performed to determine the error that results from the estimation of the wall 
shear rates based on linear and quadratic curve-fittings of the measured velocity profiles. For steady. fully 
developed flow in a straight vessel, the error for the linear method is linearly related lo the distance between 
the probe and the wall, dr,, and the error for the quadratic method is zero. With puisatile flow, especially 
a physiological pulsatile flow in a large artery, the thickness of the velocity boundary layer. 6 is small, and 
the error in the estimation of wall shear based on curve fitting is much higher than that with steady flow. In 
addition, there is a phase lag between the actual shear rate and the measured one. In oscillatory flow. the 
error increases with the distance ratio dr,/6 and, for a quadratic method. also with the distance ratio 
dr?idr,, where drz is the distance of the second probe from the wall. The quadratic method has a distinct 
advantage in accuracy over the linear method when dr,,/6$1, i.e. when the first velocity point is well within 
the boundary layer. The use of this analysis in arterial flow involves many simplifications, including 
Newtonian fluid. rigld walls, and the linear summation of the harmonic components. and can provide more 
qualitative than quantitative guidance 

INTRODUCTION 

An assessment of shear stress at the wall of arteries is 
important in the determination of whether fluid- 
dynamic factors may contribute to the initiation or 
worsening of atherosclerotic lesions. There are three 
approaches toward the evaluation of the wall shear 
rate. The first is to measure the shear rate exactly on 
the wall surface using various methods: opaque coat- 
ing layers (Adamson and Roach, 1981); electrochemi- 
cal probes (Lutz et al., 1979; Talbot and Steinert, 1987; 
Yamaguchi and Hanai. 1988); and hot-film probes 
(Bellhouse and Schultz, 1966). These make use of the 
similarity between velocity and thermal or concentra- 
tion boundary layers. With proper calibration and 
flush positioning, the measurements are accurate with 
steady or quasi-steady flow. The frequency response, 
however, with some of those methods (especially 
opaque coating), does not meet the demand required 
with pulsatile flow in large arteries (Pedley, 1980: 
Talbot and Steinert, 1987). 

The second approach is to calculate the wall shear 
rate using the velocity profile derived from a nonlin- 
ear theory or wave equation and pressures measured 
at two neighboring stations (Ling and Atabek, 1972) 
or a flow rate. It is, however, difficult to monitor 
simultaneously the dynamic pressures at two sites. It 
is also not easy to measure accurately a dynamic flow 
rate in uivo. The theoretical derivation is complex, and 
this approach is even more complex for sites other 
than those in a straight tube. In the case of a bifurca- 
tion, for example, a full-scale theoretical analysis or 
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simulation is required, using these measured data as 

the boundary conditions. 
The third approach is to calculate the wall shear 

rate using point velocity measured at desired sites. To 
accomplish this, it is required that (a) the measuring 

sites are close to the wall surface, (b) the probe has 
a good frequency response, and (c) the probe does not 
disturb the flow. The fundamental instrumentation 
employed in the first approach may be used in velo- 
city measurement (Ling et al., 1968). Laser Doppler 
Velocimeters (LDVs) have been widely used because 
of their noninvasiveness and wide bandwidth (Einav 
et al., 1975, 1990; Friedman and Deters, 1987; Fried- 
man et al.. 1981; Ku (‘I al., 1985: Mark ~‘t (I/.. 1989: 
Walburn and Stein, 1982). They have been used even 
for in viva velocity measurements (Kajiya et al., 1985). 
The near-wall spatial resolution of most LDVs is 
about 0.549 mm because of the size of the measuring 
volume and optical interference from the wall (Fried- 
man and Deters, 1987: Friedman et ~1.. 198 1 J. This is 

a large size, compared with the boundary layer thick- 
ness of pulsatile flow in a large artery, as wc will show 
in the following discussion. 

In any given experiment, there may be various 
errors, including those from the operator, instrument. 
and methodology. Any errors in velocity and position 
also influence the estimated values of shear rate. Pre- 
cise localization of the arterial wall is not easy, espe- 
cially with distensible walls. With a finite measuring 
volume, the LDV does not measure velocity precisely 
at a point. This is a serious problem in a narrow 
region with a large velocity gradient. The current 
analysis is concerned with errors that result from 
extrapolating to the arterial wall a measured profile of 
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velocity with a curve-fitting process. This is a particu- 
lar problem under the conditions of arterial flow (Lou 
and Yang, 1992). 

METHODS TO ESTIMATE WALL SHEAR RATES 

Many methods exist for estimating the wall shear 
rate from a polynomial velocity profile that fits the 
measured point velocities in arteries. The shear rate is, 
therefore, not obtained in a truly direct fashion. The 
experimentally obtained data must be extrapolated. 
The method of extrapolation can be classified accord- 
ing to the degree of polynomials assumed in the curve 
fitting of the velocity profiles. The simplest of all, 
called the linear method, is to measure the velocity 
component parallel to the wall, at, at a point that is 
a distance dr, normal to the wall, and calculate the 
wall shear rate with the following equation (Duncan 
et al., 1990; Friedman et al., 1981; Mark et al., 1989): 

Ul 

ywf =dr,. 
This implicitly assumes a linear velocity distribution. 
This and all other methods assume that the fluid is 
nonslip at the wall and that the velocity at the probe is 
roughly parallel to the wall. 

The second method, called the quadratic method, 
assumes a quadratic velocity distribution (Duncan 
et al., 1990; Ku et al., 1985). It needs an additional 
velocity ui at another point, distant drz from the wall. 
The second point is farther away from the wall than 
the first point. The wall shear rate is then calculated as 

u,dr:-u,dr: 

Ywq=drzdr:-dr,dr~’ 

In another method, a third velocity is measured at 
a point between the two points used in the quadratic 
method (Duncan et al., 1990, Ku et al., 1985). The 
least-squares method is adopted to accommodate all 
three points, or four points if the point at the wall is 
included, in a parabolic velocity profile. The benefit of 
the extra point is doubtful because it forces the velo- 
city profile to comply more to the data in the region 
farther away from the wall than to the data closer to 
the wall. 

Higher-order polynomial velocity profiles have also 
been used in the aortic bifurcation study (Walburn 
and Stein, 1982). A higher-order polynomial, however, 
is generally less robust. As the order of the curve 
fitting increases, the result becomes sensitive to small- 
amplitude, more-or-less randomly distributed errors 
in the data (Roache, 1972). 

Analytical solutions can readily be obtained for 
simplified steady and oscillatory flows. Flow in arte- 
ries is nonlinear and complex, and it is simplified in 
the current analysis to capture the major character- 
istics of the flow. Two assumptions are made: (1) 
blood is assumed to be Newtonian; and (2) the arterial 
walls are assumed to be rigid. Blood is assumed to be 

Newtonian because its non-Newtonian behavior does 
not change significantly the wall shear stress in large 
arteries (Lou and Yang, 1993b; Perktold et al., 1991). 
The non-Newtonian effect on the error analysis will 
be, at most, of the second order. Also, most in uitro 
experiments and numerical simulations employed 
Newtonian fluids. The arterial walls are assumed to be 
rigid because the effect of the wall distensibility on the 
flow field is relatively small (Deters et al., 1986; Lou 
and Yang, 1993a). 

A steady, fully developed flow in a straight tube is 
considered first. Its velocity profile and wall shear rate 
can be described by 

u*=l-r*2 (3) 

and 

with 

(4) 

(5) 

u*=U (6) 
&nax 

where r is radial position from the axis in a cylindrical 
coordinate system, r. the radius of the vessel, u the 
velocity at r, u,,, the velocity at the center, and g, the 
shear rate at the wall. 

For a flow induced by an oscillatory pressure gradi- 
ent whose amplitude is equal to the pressure gradient 
amplitude of the previous steady Poiseuille flow and 
whose angular frequency is w, the approximate ana- 
lytical solution is (White, 1974) 

a*=$ sinB-csin(B--B) 
[ Jr* 1 for a>2, (7) 

with 

(8) 

w 
u=ro J Y’ (9) 

e=wt, (10) 

where CL is the Womersley number, t the time, 8 the 
phase angle within a cycle, and v the kinematic viscos- 
ity. The exact solution for velocity is in the form of the 
Bessel function of the first kind and of zero order 
(Sexl, 1930), from which equation (7) is derived using 
the asymptotic expansion. The error in equation (7) 
itself is of the order of 1/a4. With a physiological 
o! ranging from 5 to 10 in large arteries, the error will 
be 0.16% or less. Equation (7) provides a simple 
solution to the problem, without causing any practi- 
cal error. 

The same u,,, that appeared in the steady flow is 
used in equation (7) to obtain the dimensionless velo- 
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city u*. The peak value for u* in equation (3) is 1. The 
amplitude of u* in equation (7) is generally smaller 

than one because a large portion of the same pressure 
gradient amplitude is consumed in balancing the iner- 
tia force in the oscillatory flow. 

From equation (7), the velocity gradient is derived 
as 

au* -= 
?r* -qke-B[(l-&) 

sin(&B)+cos(6-B) 1 (11) 
The shear rate at the wall, j,, can be calculated 

from the above equation with r* = 1 and B=O, result- 
ing in 

7, 
-=-+[(I--$-)sinI(+cosH]. (12) 
tl,,,!rO d 2a 

With a large tl, there is a region of high-velocity 
flow near the wall, where the mean-square velocity is 
higher than that at the center line (White, 1974). An 
overshoot exists near the wall at 8=2.284, where the 
boundary layer thickness, S. is defined and obtained 
as 

(5=r,-r,=,,,,,=3.23 J I= 3.23 r,/u. (13) 
w 

For the wall shear rate in oscillatory flow to be 
accurate, the velocity probe must be placed well with- 
in the boundary layer and as close to the wall as 
possible. The relative position of the probe within the 
boundary layer can be expressed as 

drl 
F==O.31 S. 

r0 
(14) 

Errors from curve fitting are isolated by assuming 
accurate velocity and position data. Errors from curve 
fitting are ‘hard’ errors in a sense that they result from 
the scheme itself. They do not appear randomly and 
can be analyzed systematically. Errors from velocity 
and position data are ‘soft’ in a sense that they depend 
on many random factors, including calibrations, 
measuring procedures (like seeding and focusing in 
the LDV measurement). and data filtering. They are 
random both in phase and in amplitude. If there are 
errors of + 10% and - 10% in the velocity (ul), there 
will be soft errors of + 10% and - lo%, respectively, 
in the wall shear rate resulting from the linear method 
[equation (l)]. If there are errors of + 10% and 
- 10% in the probe position (dr,), the resulting soft 
errors in the wall shear rate will be about -9% and 
+ 1 1 %, respectively, for the linear method. These soft 
errors are additive and are also additive with hard 
errors. The influences of the soft errors to the total 
errors are not as straightforward in the case of the 
quadratic method [equation (2)]. It can generally be 
stated that the total errors become more sensitive to 
the soft errors when dr, is close to dr, The random- 

ness in the velocity and position data will introduce 

a certain amount of randomness to the overall accu- 

racy. One can make multiple measurements and take 
their average to filter out the randomness in the data. 
As for the hard errors, i.e. those from curve fitting, one 
has to resort to analytical tools. 

Analytical velocities are determined from equations 
(3) and (7) for steady and oscillatory flows, respective- 
ly. With the analytical velocities, the curve-fitting wall 
shear rates, jwcfls are calculated using equations (I) 
and (2) for the linear and quadratic methods, respec- 
tively. The analytical wall shear rates, yw’s, are ob- 
tained from equations (4) and (12) for steady and 
unsteady flows, respectively. The amount of the wall 
shear rate underestimated is determined as follows: 

amount underestimated = ““‘;‘.y”” x 100%. (15) 
l’w 

RESULTS 

For steady, fully developed flow in a straight cylin- 
drical pipe, the linear method consistently underesti- 
mates the wall shear rate. The error is linearly related 
to dr, (Fig. 1). In the case of the quadratic method 
with the distance ratio drJdr, =2, the curve-fitting 
and analytical solutions are identical as expected in 
a parabolic velocity. The same should be true with 

other values of the distance ratio dr-Jdr, because of 
the parabolic nature of the velocity. 

For oscillatory flow in a straight cylindrical pipe, 
the linear method produces a shear rate profile of 
a similar trend as the analytical solution (Fig. 2). 
However, the linear method underestimates the am- 
plitude of the wall shear rate. The curve-fitting shear 
rate peaks at a phase angle lagging behind that of the 
analytical solution. The phase lag causes the curve 
fitting to overestimate the shear rate at certain periods 
of a cycle, namely, at phase angles > 100”. The error in 
the amplitude (Fig. 3) increases both with dr,/r, and 
with c(, and so does the phase lag (Fig. 4). With the 

dr,/ r. 

Fig. 1. The error that results from an estimation. of the wall 
shear rate using linear and quadratic (with dr, =Zdr,) curve 
fittings of the velocity profile for steady, fully developed flow 
in a straight pipe. The linear method consistently 
underestimates the wall shear rate, while the quadratic 

method generates exact solutions. 
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Fig. 2. A comparison of wall shear rates calculated from an 
analytical solution and obtained by curve fittings with the 
linear method. Flow was oscillating (a= 10) in a straight 
cylindrical pipe. All the shear rates were nondimen- 
sionalized, by dividing by u,,,/ro. The linear method 
underestimates the amplitude of the wall shear rate. The 
curve-fitting shear rate peaks at a phase angle lagging behind 

that of the analytical solution. 
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Fig. 3. The error in the peak wall shear rate as a function of 
a (the Womersley number) and dr,/r, (the ratio of the 
distance beween the velocity probe and the arterial wall to 
the radius of the artery), obtained by the linear method, with 
oscillating flow in a straight cylindrical pipe. The error in the 

peak wall shear rate grows with both dr,/r, and a. 

8 10 12 14 

Womersley no. Cx 

Fig. 4. The phase lag at the peak wall shear rate as 
a function of a (the Womersley number) and drr/r, (the ratio 
of the distance between the velocity probe and the arterial 
wall to the radius of the artery), obtained by the linear 
method, with oscillating flow in a straight cylindrical pipe. 
The error in the phase lag grows with both dr,/ro and a. 

help of equation (14), two independent variables 
drr/r,, and rx are combined into a variable drJ6, 
which singularly determines the error amplitude 
(Fig. 5) and phase lag (Fig. 6). The relationships in 

0.4 

dr, I 6 

Fig. 5. The error in the peak wall shear rate versus dr,/6 (the 
ratio of the distance between the velocity probe and the 
arterial wall to the boundary layer thickness), obtained by 
the linear method, with oscillating flow in a straight 
cylindrical pipe. The error increases with a single variable 

dr,/6. 

0.0 0.2 0.4 0.6 

drl 1 6 

8 

Fig. 6. The phase lag at the peak wall shear rate versus dr,/6 
(the ratio of the distance between the velocity probe and the 
arterial wall to the boundary layer thickness), obtained by 
the linear method, with oscillating flow in a straight 
cylindrical pipe. The phase lag increases with a single vari- 

able dr,/6. 

Figs 5 and 6 can be algebraically summarized as 
follows: 

amount underestimated (%) 

=99.62(dr,/6)-34.40(dr1/6)* (16) 

and 

phase lag at the peak shear rate ( ” ) 

x63.98(dr1/6)-22.23(dr1/6)‘. (17) 

The closer the probe is to the wall, relative to the 
boundary layer thickness, 6, the more accurate is the 
extrapolated wall shear rate. 

A similar trend is observed in the error amplitude 
(Fig. 7) and phase lag (Fig. 8) for the results obtained 
by the quadratic method, with the distance ratio 

dr&r, set at seven different values (1.01, 1.1, 
1.3, 1.5,2.0,2.5, and 3.0). When dr2JdrI<2.0, the 
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Fig. 7. The error in the peak wall shear rate versus dr,/6 (the ratio of the distance between the first velocity 
probe and the arterial wall to the boundary layer thickness), obtained by the quadratic method with dr,/dr, 
(the ratio of the distance between the second velocity probe and the arterial wall to the distance between the 
first velocity probe and the wall)= 1.01. 1.1, 1.3, 1.5. 2.0, 2.5. and 3.0, with oscillating flow in a straight 
cylindrical pipe. At a fixed dr,/dr,, the error increases with dr,/a. At a fixed dr,/& the error increases with 

drJdr,. 

35 

0 
0.0 0.2 0.4 0.6 0.8 

dr, I6 

Fig. 8. The phase lag at the peak wall shear rate versus dr,/d (the ratio of the distance between the first 
velocity probe and the arterial wall to the boundary layer thickness), obtained by the quadratic method 
with dr,/dr, (the ratio of the distance between the second velocity probe and the arterial wall to the distance 
between the first velocity probe and the wall)= 1.01. 1.1, 1.3, 1.5.2.0, 2.5, and 3.0. with oscillating flow in 
a straight cylindrical pipe. At a fixed dr,/dr,, the phase lag increases with dr,/J. At a fixed dr,/6, the phase 

lag increases with dr,/dr, 

quadratic method is generally more accurate both in 
the shear rate amplitude and in the phase, especially 
at small dr,/6, than the linear method. When dr, 
approaches 6, however, the accuracy of the quadratic 
method deteriorates much faster and, for cases with 
large dr,/dr,, may become worse than that of the 
linear method. At drJdr, =2.0, 

amount underestimated (%)x60.72(dr,/6)* 

and 

(18) 

phase lag at the peak shear rate ( ’ ) 

z29.61(drI/6) 

+21.84(drI/6)*. (19) 

At a fixed dr,, errors increase with dr,. When the 
distance ratio dr/dr, =2, the three points including 
the no-slip point at the wall are equally spaced. It is 
feasible to have drJdr, ~2 because the distance be- 
tween the two measuring points, dr, -dr, , is limited 
only by the spatial resolution of the LDV, and dr, is 
restricted by the optical interference from the wall as 
well as the spatial resolution of the LDV. As the 
distance ratio dr,/dr, approaches unity, the curve- 
fitting error decreases. However, additional errors (or 
‘soft’ errors) caused by inaccurate velocity and posi- 
tion data will increase substantially as dr,-dr, 
approaches zero in equation (2). 

The results indicate that errors are much higher 
with oscillatory flow than with steady flow. Errors 
from the linear (with dr,/6=0.1) and quadratic (with 
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dr, /S = 0.1 and dr,/dr, = 2) methods for oscillatory 
flow with CI= 10 are 28 and 6%, respectively, and 
those for steady flow are only 5 and O%, respectively. 
The errors are different by an order of magnitude 
between the two flows. 

Around arterial bends and bifurcation, one cannot 
directly apply the above results, which are derived for 
a straight pipe. The boundary layer thickness in hu- 
man arteries varies because of the bends and bifurca- 
tions. At the aortic bifurcation, the boundary layer 
thickness around the vertex is thin, resulting in much 
higher errors than those in the asymptotic regions. 
Estimates of the boundary layer thickness can be 
made as follows for some conditions such as plug flow. 
Plug flow is typical in pulsatile flow in large arteries. 
A simple plug flow model is used to estimate the 
variation in boundary layer thickness from other 
parameters. The velocity in the core of the flow is 
assumed to be uniform at uO. The velocity in the 
boundary is approximated with a parabolic velocity 
profile with the following boundary conditions: (a) no 
slip at the wall; (b) u = ue at the edge of the boundary 
layer; (c) zero velocity gradient at the edge of the 
boundary layer; and (d) a shear rate of & at the wall. 
The resulting boundary layer thickness is 2u,/j,. If 
one assumes u0 to be approximately equal to the 
mean velocity and if the flow rate does not change 
with the axial location in a continuous artery (i.e. no 
bifurcation in the arterial segment of interest), ue is 
approximately proportional to the inverse of the cross 
section, A. Then one has 

a+ 
w 

The velocity profile at a branch entrance is not as 
uniform as that in the asymptotic regions, and a mi- 
nor deviation is expected when equation (20) is used. 
The local boundary layer thickness can be estimated 
as follows: 

6 
6 asymptotic 

‘oca’XJ;ocationv 
(21) 

where dasymptotic is from equation (13) and fioeation, the 
location correction factor, is defined as 

(A3w),a=ar 
vocation z( A~w)asymptotic’ 

(22) 

Obtaining fiocation from equation (22) demands the 
knowledge of fw, whereas an accurate estimation of & 
requires fiosation. A complete solution may need sev- 
eral iterations between j&ion and &,.. For the branch 
of the aortic bifurcation, the average value of j&ion is 
about 2-3 (Lou and Yang, 1991). 

Physiological flow waves are not sinusoidal al- 
though the oscillatory waves used thus far in the 
analysis were sinusoidal. A physiologically pulsatile 
flow has a mean flow and many harmonic compon- 
ents. In a linear case, the total velocity is the summa- 
tion of the mean and individual harmonic compon- 

ents. The sum of the first eight harmonics includes at 
least 99% of the variance of the original curves (Bergel 
and Milnor, 1965; McDonald, 1974), and the sum of 
the first two harmonics alone contains 50-70% of the 
total variance (Milnor, 1989). A complete error ana- 
lysis for a physiological flow has to include both the 
mean and individual harmonic components. 

An omission of the mean flow does not influence 
substantially the quality of the error analysis in large 
arteries. For a velocity profile around the aortic bifur- 
cation, for example, the amplitudes of the mean and 
the first four significant harmonic components, nor- 
malized by the amplitude of the fundamental (or first) 
harmonic component, are 0.40, 1.00,0.97, 0.47 and 
0.14 (McDonald, 1974). The amplitude of the mean 
flow is relatively small in larger arteries. The portion 
of the shear stress contributed by the mean flow, 
a steady flow, is even smaller. For a typical aortic 
bifurcation, the shear stress induced by the mean flow 
alone is an order of magnitude smaller than that by 
the total physiological flow (Lou and Yang, 1991). 

The Womersley number of the fourth harmonic is 
twice the fundamental Womersley number. The rela- 
tive error of the fourth harmonic is slightly less than 
twice that of the fundamental harmonic obtained by 
the linear method, but higher than twice that of the 
fundamental harmonic obtained by the quadratic 
method. All the four harmonics show a peak value 
near the peak of the flow pulsation. The second, third, 
and fourth harmonics contribute more than their 
shares of error at the peak because of their high 
Womersley numbers. Therefore, the estimation ob- 
tained from the fundamental Womersley number is 
a conservative one. An effective Womersley number, 
u effective9 may be used and is related to the funda- 
mental Womersley number, CL~““~, by 

kffective - wave”fund. -f (23) 

Here _L, is a wave correcting factor that is the 
summation of the square root of the wave number 
weighted by the amplitude: 

Around the aortic bifurcation, one obtains 

f WBYe 

x 
1+0.97 X Jz+o.47 x$+0.14$= 1 343. 

1+0.97+0.47+0.14 

(25) 

This linear summation is accurate in a linear case, 
but provides only an approximation in a general case. 
Considering the effects of the location and wave pat- 
tern, drJ6 becomes 
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For a typical branch of the aortic bifurcation that 
has a branch radius of 5 mm, a kinematic viscosity of 
4.5 centistokes, a fundamental frequency of 1 Hz, 
a fundamental Womersley number of 6, a Jocation of 
2.5, and a fw,,, of 1.343, the linear and quadratic 
methods demand dr, to be less than 0.04 and 0.24 mm 
(with dr,/dr , = 2), respectively, for the curve-fitting 
errors to be less than 5%. 

With dr, =O.S mm, a typical value in the current 
literature, dr,/6 is equal to 0.624. In estimating the 
peak shear rate at the aortic bifurcation, the linear 
method may yield a curve-fitting error of 49% with 
a phase lag of 32”, while the quadratic method, with 
drJdr, =2, produces a curve-fitting error of 23% 
with a phase lag of 26’. 

DISCUSSION 

The above results show that the spatial resolution 
of a conventional LDV may not be adequate for the 
study of arterial flow. By designing a special device to 
focus laser beams into a small measuring volume 
(2 x 2 x lOpm), Einav et al. (1990) were able to 
measure the shear stress along the cusp of a tri-leaflet 
prosthetic valve. Velocity was measured at several 
points, in 1 pm intervals, in the vicinity of the cusp. 

Brech and Bellhouse (1973) found that the meas- 
ured wall shear stress (using thin-film heated ele- 
ments) was always higher than that extrapolated (us- 
ing linear method) from the measured velocity data 
(using a thin-film velocity probe), by l-45% depend- 
ing upon the position within a bifurcation. In 
a branch of a diameter of 19 mm, wall shear stress was 
measured at 0.2, 1.6, and 3.7 diameters downstream 
from the apex. The velocity probe was placed 1.25 mm 
away from the wall, resulting in a drl/ro of 0.13. Brech 
and Bellhouse (1973) did not specify when in a wave 
cycle, at which of the three locations, and under which 
flow (steady or unsteady) they obtained the 45% er- 
ror. Also, no time history of flow was given for the 
unsteady flow. The fundamental Womersley number 
for the unsteady flow in the branch was 6.56, using the 
definition in equation (9). One obtains dr,/6 =0.66 
from equation (26) if the peak error was obtained in 
a branch at a location that was 0.2 diameters down- 
stream from the apex of the bifurcation, where one 
assumes a location correction factor (Jocation) of 2.5, 
and if the wave correction factor (fw,,,) is equal to 
unity (i.e. a sinusoidal flow). With dr,/6=0.66, the 
amplitude of the error from equation (16) is 50.8%, 
which is reasonably close to their experimental value 
of 45%. 

In several studies of arterial bifurcations, the probe 
distance dr, was relatively large, e.g. 0.58 mm (Fried- 
man et al., 1981) and 0.51 mm (Duncan et al., 1990). 
Duncan et ai. (1990) observed that the mean shear rate 
from the linear method, y/, and that from the quad- 
ratic method, jq, were approximately related in the 

following manner: 

jq= -79.6+ 1.873,. (27) 

In a study of the carotid bifurcation using a quadratic 
curve-fitting method (Ku et al., 1985), the distance dr, 
(whose value was not available) was subject to an 
uncertainty of approximately one-half the optical 
sample volume (1.08 x 0.12 mm). The error for steady 
flow was within 15% according to their own estima- 
tion (Ku et al., 1985). The analytical tool proposed in 
the current study can be utilized to make a careful 
evaluation of errors in related studies. 

Precautions should be taken in numerical simula- 
tions of arterial flows. There are two sets of variables: 
primitive variables (velocity and pressure); and the 
stream function and vorticity. With the primitive vari- 
ables, the wall shear rate is evaluated indirectly using 
velocity data resulting from the simulation, and dr, is 
equivalent to the distance between the first computa- 
tional node and wall. Assuming velocity itself to be 
accurate, the error analysis should be the same as that 
just carried out. With the stream function and vortic- 
ity, the wall shear rate is directly equal to the wall 
vorticity. The error will come only in the process of 
solving system equations, and the error analysis will 
be different. The principle, that nodes should be as 
close to the wall as possible, is the same. 

The use of this analysis in arterial flow involves 
many simplifications, including Newtonian fluid, rigid 
walls, and the linear summation of the harmonic com- 
ponents. It can provide more qualitative than quantit- 
ative guidance. Quantitative results of this analysis 
may not be as relevant in the region of permanent low 
shear stress, e.g. near the outer wall of the carotid 
sinus, where nonlinear phenomena (like flow separ- 
ation) prevail. 

In conclusion, linear and quadratic curve-fitting 
techniques for extrapolation of velocity to the vessel 
wall, under conditions of steady flow in straight rigid 
vessels, permit an accurate or reasonably accurate 
assessment of wall shear. With pulsatile flow, parti- 
cularly around bifurcations and bends, errors are in- 
troduced, causing the shear rate to be underestimated. 
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