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The transient responses of a heterogeneous spin system to
binomial pulses applied at the free-water resonance frequency
are obtained by solving the Bloch equations pertaining to such
a system modeled by a pair of binary coupled spin baths. Ex-
amples of such a solution are given and the validity of the theo-
retical model is tested by imaging experiments conducted on a
phantom consisted of two intact chicken eggs, one raw and the

other cooked. © 1993 Academic Press, Inc.

INTRODUCTION

The recent development of magnetization transfer ( /-5)
on heterogeneous spin systems such as tissues sheds new
light on the meaning of relaxation time for these spin-coupled
multicomponent systems and the mechanism of how this
complex interaction between RF excitation and spin relax-
ation affects tissue contrast in an imaging experiment. The
underlying principle of magnetization-transfer contrast
(MTC) is to a large extent based on the cross relaxation
between protons in motionally free water and those in the
relatively immobile macromolecules. The importance of
cross relaxation in tissues signifies that the relaxation of pro-
tons in such a system can no longer be treated as single com-
ponent.

To account for the proton relaxation in biological, or more
generally, heterogeneous spin systems, a binary spin-bath
model had been invoked (6-10). In such a model, the two
spin baths, water (spin bath A) and macromolecular (spin
bath B), are considered to be independent thermodynamic
systems, and each reaches thermal equilibrium with its own
relaxation mechanism. The cross relaxation which describes
the magnetization transfer between these two spin baths
serves as a link which, by monitoring the NMR signal of the
water protons, allows one to pry information from the mac-
romolecules which is otherwise difficult to observe. One of
the most powerful methods of achieving this goal is to se-
lectively saturate the macromolecular protons by applying
a continuous RF irradiation off the water resonance for a
long duration (tens to hundreds of milliseconds) before the
water signal is observed. While this off-resonance continuous
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irradiation technique is most effective in achieving selective
saturation, it is not an easy technique to implement in a
clinical MRI system, not to mentioned the accompanying
safety issues inherently involved at high fields. As an alter-
native to this high-duty-cycle technique, selective B-spin sat-
uration can also be accomplished by a string of periodical
binomial pulses applied on resonance (17, 12). Implemen-
tation of this pulse saturation scheme is much easier than
its continuous irradiation counterpart at the cost of indis-
criminate signal loss due to 7, decay for tissues with short
transverse relaxation times (/2).

By performing T, measurements with continuous off-res-
onance irradiation and assuming that the B-spin magneti-
zation can be constantly saturated, Grad et al. (13) stated
that fundamental relaxation rates, namely 1/ 7, or r,, the
intrinsic spin-lattice relaxation rate of the free-water protons,
and the cross-relaxation rate rx can be measured. By making
the same assumption and performing a similar experiment
except for the replacement of the continuous RF irradiation
by pulse saturation, this author also arrived at the conclusion
{ 14) that the apparent relaxation rate under such conditions
approaches the continuous saturation limit of Ref. (13) as
the interpuise delay approaches 0. However, in a more ex-
tensive study later (/5), we showed both in theory and in
experiments that the assumption of constant B-spin satu-
ration is in general incorrect and the interpretation of the
results in Refs. (13, 14) is valid only under special conditions
which do not in general apply to most tissues. In this article,
our objective is once again to extend the theory developed
for the transient response of the heterogeneous spin systems
to continuous saturation ( /5) to its pulsed analog. To dem-
onstrate the validity and its potential utility in the clinical
milieu of the theoretical result, we performed imaging ex-
periments on an egg phantom consisted of two intact chicken
eggs, one raw and the other cooked.

THEORY

In Ref. (15), we obtained the transient response of the
magnetization under continuous, off-resonance RF irradia-
tion by solving four-component Bloch equations (two trans-
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verse components from the immobile protons and the cou-
pled longitudinal components of the two-spin species) by
ignoring the effect of the saturating RF on the mobile trans-
verse magnetization. For pulsed saturation, one needs to
consider the time development of the longitudinal magne-
tizations of the binary coupled spin baths in two regimes:
one when the saturating RF is turned on and the other when
it is off. The effect of a string of binomial RF pulses with
puise duration 7, separated by an interpulse interval 7, will
be evaluated by solving the Bloch equations pertinent to
these two regimes using the end solution of one regime as
the initial condition for the next and vice versa.

During the period when the RF pulse with an amplitude
w, /7 is applied along the x axis of the rotating frame at the
resonance frequency of the A spins, the Bloch equations that
are pertinent to the binary spin baths once again have four
components, although not the same four as in the case of
the off-resonance continuous irradiation. In terms of non-
dimensional variables, they can be written as

LI + Bava + 07N — 2 wa) =0
dr
dUB + 6BvB + 0’1'([)(1 - 2”‘8) = O
dr
dwa + (s + ax)Wa — ax wg + t97(f)ﬁ =0
dr 2
Dy | g+ X g = Xy + 07y B =0, [1a]
ar [24: f B f A 1 5 y

where 7 = w1, and v and w are defined by
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1/ (w0, Ty), IBs = 1/(w T5),

/= molar ratio of the B spins over A spins.

473

ax = rx/w,
The function 87(7) is a uniamplitude, nth-order binomial
function of the RF excitation, i.e., 87(1) = w(1)/|w, |, where
n=1,2,...,specifies the the RF amplitude modulation by
the coeflicients of x in the binomial expansions (1 — x)”;
eg.,forn =12 itisa Il and 121 pulse, respectively, and
so on. The details of the general solution of [1a], very much
analogous to the case of off-resonance, continuous excitation
(15), which is in turn analogous to Torry’s transient solution
to the original Bloch equations (16), are given in the Ap-
pendix. If we let the column vector X = { U4, vg, Wa, Wg} "
be the solution of [1a], then the general solution X(7) is

formally identical to that of the case of the continuous sat-
uration (15), i.e.,

X(7)=Ae * + Be " + Ce “"cos(sr)

(2]

D .
+— e “sin(s7t) + E,
s

but with a totally different set of time constants a, b, ¢, and
s and a different set of coefficient vectors A, B, C, D, and
E as well. The column vector E in [ 2] represents the steady-
state solution while the other four terms represent the tran-
sient responses of the spin system. As in the case of contin-
uous saturation, the constants a, b, ¢, and s along with E
are all independent of the initial conditions of how the spin
system is prepared. The vectors A, B, C, and D, on the other
hand, depend on the initial conditions which are given by
the column vectors X (0) and its time derivative X'(0). The
expressions of all these quantities are also given in the Ap-
pendix.

In the absence of RF field, only the longitudinal compo-
nents of the Bloch equations of the spin bath in Eq. [la]
need to be considered. By setting 87(¢) to zero, the last two
component equations 1n [1a] can be written in matrix form

P =

[rA+rX —rx (3]

—rx/f retrx/f]

To solve [3], we seek a transformation to diagonalize the
relaxation matrix P. This is tantamount to finding a set of
eigenvectors which correspond to the eigenvalues of P:

1 1
)\tZE[YA‘F/'B‘*‘I‘X(]'f‘l?)]
4rk

5{ Y [(‘ 7')}7

If we let Q be a transformation such that Q" 'PQ = A, A; =
A;6;;, then we can write

[4]

U(1) = R(1)HU(0), [5]

where

.
R(r) = Qe A7Q ! = pAB](’ At
PEB

1 ”PIA
A =X {Lpsa

+ l:p;A pAB]eA}\_(} (6]

PBA PBB
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with pia = F(ra + rx) = A5, pap = 2rx,

PEa = Erx/f, pBe = H(ra t rx) F Ai = pia.

The solution of the mobile magnetization in this RF-free
period is given by

Wa(1) = ga()wa(0) + gg(2)ws(0), [7]
where
= rwt re)e M —e M)~ (he ™ - e )
gal N
[8a]
— Al - A_t
gy =e e ) [8b]

)\,—>\+

The time decay of wa(t), according to [ 7], will depend on
the boundary conditions, w,(0) and wg(0), prescribed by
the pulse sequence of the measurement. For a conventional
inversion-recovery sequence without saturation, w,(0) =
wg(0) = 1, and

Wis(t) = ga(t) + ga(t)

T R T S
Al = A, '

9]

From the above expression, we note that the decay of W (1)
is in general not monoexponential, a well-known fact which
had been pointed out in many previous studies (9, /7, 18).
This biexponentiality is especially pronounced at the initial
part of the decay. At later times, as the fast-decaying com-
ponents die down, the decay becomes exponential with an
apparent relaxation rate constant h_.

To evaluate the responses of the spin system to a pulse
saturation burst which consists of a train of binomial pulses,
with pulse duration 7,, and interpulse delay 7,, one starts
with an initial magnetization and obtains a solution in the
pulse-on regime X (7, ) according to [2]. One then uses the
last two components in X (7,,) as the initial vector for the
solution of the pulse-off regime; ie., U(7,) = {X3(7,),
Xa(7.)} 7. After the solution vector U(r,, + 7,) is obtained
from {5] and [6], it is used in turn as part of the initial
condition for the ensuing pulse-on regime; i.e., X (7, + 7,)
= {Xi(ru)e 2%, Xy(7,)e %o, U(r,, + 1), Us(1, +
7,)} 7. The time evolution of the spin system can be carried
on by this cyclic process indefinitely until the steady state is
reached after a sufficient number of cycles. At steady state,
if we let X, be the state vector at the end of the free-induction
period and X be that immediately following the binomial
pulse, then

Xigs = X,lsseiﬁmp« Xogs = X&ss(’iﬂBTP
Xise = Ry (7p) X5 + Ri2(7,) Xiss,
Xass = Rai(7p) X' + Raz(7p) Xigs.

where X = X(1,,), with the initial vector X (0) = X,.
NUMERICAL EVALUATIONS

To illustrate concretely the responses of a heterogeneous
system to the application of a train of binomial pulses, we
perform numerical calculations using, unless specified oth-
erwise, a parameter set of the cooked egg white (see under
Results and Discussion for its derivation) to illustrate the
important features of the binomial pulse saturation. To il-
lustrate the effect of cross relaxation on transient response
in the calculation, the cross-relaxation rate rx is allowed to
vary hypothetically from zero to five times its realistic value.
Also varied are the pulse sequence parameters that are per-
tinent to the transient responses. These are the RF field
strength w,, the pulse duration 7,,, and the delay between
the binomial pulses 7,.

The first example, shown in Fig. 1, shows the transient
behavior of the two longitudinal components during a 2.5
ms 11 pulse and the ensuing free-induction period, 7, = 15
ms. In this example, ry is inflated to five times its realistic
value (3.6 s !; see below) to dramatize the effect of the cross
relaxation. The response curves illustrate the main objective
of the binomial pulse: to saturate the B spins while leaving
the A spins relatively unscathed. Note also that during the
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FIG. 1. Transient response to a binomial pulse and its subsequent delay
in a hypothetical system which has the same mode! parameters as the cooked
egg white except for the cross-relaxation rate ry, which is inflated 1o five
times its realistic value. Solid line, M, of the free-water component; broken
line, M. of the macromolecular component.
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free-induction period, Mzg recovers relatively rapidly while
M, continues to decline, although only sparingly. This result
can be readily rationalized by the parameter set used in which
r« > 1/Ts, 1/T gand f< 1. The second example, shown
in Fig. 2, illustrates the cumulative effect of the pulse satu-
ration burst on the transient development of the spin system.
In this and all the subsequent plots, only the endpoints of
the pulse and free-induction intervals will be used. By con-
necting them sequentially, the response curves show a zig-
zag-like pattern. Figure 2a shows both Mz, (solid line) and
Mg (broken line) at the various end intervals during the
time course of the pulse saturation burst. The decay shown
in the A component is the result of two effects: cross relax-
ation and T, decay. To assess the separate contribution of
these two effects, we make the same plots in Fig. 2b, this
time only for the A-spin component, at different 7, values,
with the cross-relaxation effect switched on (solid lines) and
off (broken lines). Thus the solid lines show the combined

effects while the broken lines show only the T, decay. Finally,
in Fig. 2c, the same plots in Fig. 2b are repeated except for
the fact that the pulse duration r,, is halved while the RF
field strength w, is raised by a factor of 1.5. This illustrates
that the 7, effect can be decreased relative to the cross-re-
laxation effect by using shorted but stronger binomial pulses
and a longer interpulse interval.

METHODS AND MATERIALS

To empirically verify the validity of the theoretical model,
we once again follow the practice of Ref. (/5) and use cooked
egg white as an example by performing experiments on a
phantom which consists of two intact chicken eggs, one raw
and the other cooked in boiling water for 20 minutes. Three
sets of 2D single-slice imaging pulse sequences were used in
these experiments:
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The zig-zag lines are the time courses of the M, responses to pulse saturation resulting from connecting the sequential end-interval solutions

to a train of binomial pulses alternated with free delays r,. Unless specified otherwise, the model parameters are the same as those of the cooked egg white
and the RF parameters are 7, = 5 ms, w, = 2440 rad/s, and r,, varies from Q to 45 ms. (a) r, = 25 ms. Solid line, 1, of the free-water component; broken
line, M. of the macromolecular component. (b) M. responses of the free-water component at 7, of 0, 10, and 45 ms, respectively. Solid line, ry = 3.6 s7';
broken line, ry = 0. (c) Same as (b) except that the pulse width of the binomial pulse 7,, is halved and the RF field strength w, is increased by 50%.
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(a) T,imaging sequence using a 4-point, CPMG multiple-
echo technique.

(b) T, imaging sequence using a 16-point imaging version
(19, 20) of the Look-and-Locker (27}, one-shot IR tech-
nique.

(c) Standard spin-echo imaging sequences preceded by
periodic pulse presaturation (Fig. 3) with 11 binomial pulses
of various pulse strengths and widths. Also varied are the
interpulse timing 7, and the total number of pulses N which
determined the time of sampling of the transient decay.

The experiments were performed in a 0.5 T whole-body
imaging system manufactured by Picker International
(Height, Ohio). The imaging parameters were TR = 2 5; TE
= 30, 60, 90, and 120 ms in (a), 13 ms in (b) (since the
imaging sequence for this set uses a gradient echo, the TE
here is the gradient-refocused time), and 20 ms in (¢ ); num-
ber of phase-encoding data lines = 128; number of signal
accumulations = 4; field of view = |5 cm; and slice thickness
= 7.5 mm. The tip angle of the slice-selective “read” RF
pulse is 90° in (c¢) and 10° in (b). In (b), the interpulse
delay between the read pulses is 104 ms and the inversion
pulse used is a 907 —1807 —907 nonselective composite
pulse.

RESULTS AND DISCUSSION

The results of the measured proton relaxation times for
egg white of the two intact chicken eggs are summarized in
Table 1. The results of the transient decay of the longitudinal
egg white magnetization under different saturation condi-
tions as determined in sequence (¢) are summarized in Table
2. To interpret the data in Table 2, our goal is to find a set
of parameters, namely { T\, T n, T2a, 728, rx, [}, to fit
all the data in Table 2. While it is possible to use sophisticated
means of linear programming or optimization to achieve
this goal, it is, however, much easier and perhaps more grat-
ifving to rely on physical intuition. Our strategy is simply to

1 . e > @ ((
2
= fo—e|
%

| Saturation time

Recycle time TR

M\ = Events of standard imaging sequence

FIG. 3. Pulse sequence used to obtain in vive transient responses to
binomial pulse saturation. The RF duty cycle and saturation time are varied
by the adjustment of the pulse width 7, the RF amplitude w,, and the
interpulse delay 7.

TABLE 1
Apparent T, and 7, of Raw and Cooked Egg White
in an Intact Chicken Egg

Egg white T, (ms) T, (ms)
Raw 1133 = 117 199 + 24
Cooked 786 + 62 60+ 8

assume a set of parameter values based on empirical reason-
ing and then calculate the transient responses according to
theory developed above and compare them to the expen-
mental results in Table 2. We first assume that, in the raw
egg white (REW), the egg albumin molecules are too small
to be effective in bringing about cross relaxation between
the free-water and protein components. As a consequence,
it is reasonable to assume that the measured apparent T
value of the REW is the intrinsic 7, of the free-water com-
ponent which remains the same after the egg is cooked. So
for the cooked egg white (CEW ), we establish, from Table
1, ra = 1/T\rew = 0.88 57!, T4 = 60 ms. The parameters
T-g, rx, and f have been previously determined (/5) em-
pirically at 2.0 T. Among these parameters, fis a constant
and the frequency dependences of 7,5 and ry, although not
known precisely, are believed to be small for the frequency
range that concerns us here (22). Thus, it is a good approx-
imation to use the 2.0 T values of these three parameters
without modification: f= 0.09, T,5 = 60 us, rx = 3.6 s7".
Finally, rg or 1/ T g is fixed by Eq. [4] for the given ra, rx,
[ specified above and A = 1/ T cgw or 1.27 s~ ! from Table
1. Solving ry from [4] yields a value of 6.12s7".

Using the parameter set established above, the transient
responses of the longitudinal magnetization of the free-water
component in egg white under pulse saturation are evaluated
under the same conditions as those used in the pulse sequence
in Fig. 3 as described in (¢). The results of these calculations
along with the experimental data points in Table 2 are plotted
in Fig. 4. It 1s interesting to note that both the calculations
and the experimental data show very similar responses for
the cooked egg white (the two curves around the data points
symbolized by A’s ’s) when the saturation pulse burst has
a similar RF duty cycle. Given the fact that there is no “fit-
ting” in this comparison between theory and experiment,
the agreement, while not perfect, is good enough to justify
the adequacy of the spin-bath model, if not also the parameter
set, for the heterogeneous spin systems typified by the egg
white or other animal tissues.

To conclude, we have extended the analytical, albeit im-
plicit, solution of the transient responses of a heterogeneous
spin system to RF saturation from CW to a train of periodic
binomial pulses using a binary spin-bath model. We have
also demonstrated the validity of such a model for the de-
scription of the spin system by showing good agreement be-
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TABLE 2
Time Course of Signal Intensity of the Egg Phantom under Periodic Pulse Saturation

Saturation time (ms)

0 65 125 185 245 305 365 425
7, = 10 ms. 7, = 5 ms, «; = 2440 rad/s
Raw egg white
Signal intensity 1309 1138 1072 1017 971 929 882 849
Ratio(sat/no sat)? 1.0 0.880 0.839 0.807 0.780 0.758 0.731 0.716
Cooked egg white
Signal intensity 1272 860 649 503 405 331 279 241
Ratio(sat/no sat)® 0 0.681 0.518 0.404 0.328 0.271 0.231 0.202
0 65 155 245 335 425
7p =25 ms, 7, = S ms, w; = 2440 rad/s
Raw egg white
Signal intensity 1309 1212 1162 1126 1083 1039
Ratio(sat/no sat)® 1.0 0.937 0.915 0.905 0.891 0.876
Cooked egg white
Signal intensity 1272 982 777 636 541 480
Ratio(sat/no sat)* 0.772 0.610 0.500 0.425 0.377
0 37.5 90 142.5 195 247.5 300 3525
7p = 15 ms, 7, = 2.5 ms. w; = 3660 rad/s
Raw egg white
Signal intensity 1222 1125 1092 1065 1042 996 957 933
Ratio(sat/no sat)* 0 927 0.909 0.896 0.887 0.858 0.835 0.826
Cooked cgg white
Signal intensity 112 932 786 667 571 497 437 382
Ratio(sat/no sat)® 1.0 0.838 0.707 0.600 0.514 0.447 0.393 0.343
9 Rescaled to account for differences in recovery time for each time point.
tween results obtained from experiments and theoretical cal- The Laplace transforms of Eq. [la] in the text are
culations based on this model. By knowing the general so-
lution to the model equations, we hope that it will enable N . 8i(7')
u 4 . p . (P + Ba)0a — 20(1)Wa = Vap — ,
us to embark on the attractive, though challenging, task of D
determining find cgtalogmg the:' modgl parameters for such 7 =mod(r, 7y + 7). 7 <7, [Ala]
landmark animal tissues as brain white matter, muscle, and 81(+)
. . . R X T
hv?r and thglr field dependence through empirical means. (p + Be)Ts — 26(7' )Vig = vy — — [Alb]
It is our belief that the knowledge of these parameters is r
indispensable to the fundamental understanding of how tis- A . R
sue contrast in general and MTC in particular affect NMR Bi(r )”2" P+ antax)Wa —axip = wao  [Alc]
imaging experiments. N
012 — X+ (p+ X+ ap g = wao.  [Ald]
APPENDIX ST . Ve A

The method given here for the general solution of the
coupled equations in [1a] is analogous to the one we used
for the solution of the case of continuous off-resonance RF
saturation. This in turn followed from the procedure given
by Torrey ( 16) in his Appendix for the general solution of
the Bloch equations. For this reason, only the main steps
will be given.

where D4, Ug, Wg, and, W, are the transforms and v,, Ugg,
Wao. and wgy the initial values of v,, vg, w4, and wg, re-
spectively. If we write X = { i, D, Wg, Wa } 7. The solutions
of [A1] can be given as

?

, g

== A2
pA(p)’ [A2]
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where the components of vector g are

g (7. p) = [BBaA f‘f + (an + ax)(1 + apBa)
+p[%(aA +Ba) + 1 + aplan + ax)

+ Bplas + ag + ax)] + pilaa + ag + ax(1 + 1/f)

+ Bg] + P3”PUA0 —87(7') — ax[pvgy — 07(7)]

+ 207(7"Wag + ax/f)Bs + | + plag + ax/f+ Ba)

+ pz]pw,\o +207(7")ax(p + Be)pwse  [A3a]

g7, p)= [(ﬁf)S + CYB)(l + aafa) + apaxBa

‘*’Pl:gffx(a,\ + Ba) + 1 + aglas + ay)
+ Balap + apg + ax)] +pan +agt+ax(l+ 1//)

+8A1 + p3][poO —07()] — % [PV — 07(7)]

- f"/—" [P0 — B7()] + 205(")
X [9;—)( (P + Ba)pwap + (p + Ba)as + ax)

+ Bap t+ PZ}PWB() [A3b]
g(r.p) = — 9‘; (p + Ba) [PO7(7")0mo — 1]

+{6B(a8+ﬁf’i)+ 1 +(a3+9%+65)p+p2]

1
X [(p + Ba)pwao — 3 [67(7)pva0 — l]]
+(p+ Ba)lp + Bp) axpwey [A3c]

&7, p)=1[1+ Balaa + ax) + plaa + ax + Ba)

87(7')pvgo = 1
—'%Pi—~+ (p+ 33).0‘4’30} +9‘f—"

1
X(p+ BB){(P + Ba)pwag — 3 [07(7)pvao — 1]}; [A3d]

+p2][—
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FIG. 4 Comparison of transient M, decay of egg whites evaluated by
the theoretical model to experimental data:

Legends for

RF parameters Type of
(time in ms, w, in rad/s) egg white Theoretical curves Data
7w = 5,1, = 10, w, = 2440 Raw (=+--) O]
7w = 5,7, = 10, w, = 2440 Cooked —) )
Tw= 5,7, = 25, w = 2440 Cooked (==---- ) A
Tw = 2.5,71, = 15, w, = 3660 Cooked [CEEEREE ) L 4

where
Ap)=p*+plaa+ ag + ax(1 + 1/f) + Ba + Bs])

+ pZ[i}‘.—"ﬁ + 2+ aplan + ax) + (Ba + Bp)

X [oa + ag+ ax(1+1/f)] + 5ABB] +P[(l + BaBs)

X [aa + ag + ax(1 + 1//)] + (84 + Bs)

X [1 + aplan + ax) + “"fa"” +1+ B‘;”‘(l + aaBa)

+ Balas + ax)(1 + apBs) + apfp  [A4]

is the determinant of the coefficients in [A1]. Physical reality
dictates that the quartic equation A(p) = 0 have at least two
negative roots. Let these roots be —a, —b; then A(p) can be
factored into

Ap)=(p+a)p+b){(p+c)+s7}. [A5]

Equation [A2] can now be expanded in partial fractions:

A B
+

Cp+D E
+ =
p+a p+b

(p+c)+s* p’

X(p)= [A6]

The inverse Laplace transform of [A6] yields the desired
general solution:
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X(7)=Ae @ + Be " + Ce “"cos(sr)

D
+ " e “sin(s7) + E. [A7]

It is clear from [A7] that E yields the steady-state solutions
while A, B, C, and D determine the transient behavior of
magnetization. The constants ¢ and s are determined by
equating coefficients of the terms in same powers in p of the
wdentity

Ap)=(p+a)p+b){(p+c)+57}

or, from [A3] we obtain

§{QB+GA+ax(1 + l/[)
[A8a]

+(Ba+ Bp) —(a+ b)}
s ={[Balaa + ax)(1 + apBp) + apfs

+ (Bpax/ (1 + apBa)/ab — c2}1/2. [A8b]

The coefficient vectors A, B, and E are given, from [A6]
and [A4], by the relations

i (o — B0
E—lepX(p) A(0) [A9]
i Sy —g(—a)
A—Llir;(era)X(p) 2= ((c=a)+s7] [A10]
—g(—b)

B:m(p+b)x(p):b(a_b){(c_b)2+sz} - [All]

Once A, B, and E are fixed, the vectors C and D are readily
obtainable from the initial conditions on X and on its time
derivative; i.e.,

(&)

C=X{0)-A-B-E and

D = aA + bB + ¢C + X'(0). [A12]
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