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1. INTRODUCTION

Let x = (x;, x5, ..} and y = (y,, ¥, ..) be two sequences of independent
variables and 4 be a partition. We denote by

$:(X1, Xyy i/ Y1y Yoy o)

the super-Schur function corresponding to 2 in the variables x and y. These
functions arise naturally in the representation theory of Lie superalgebras
[12, 13] and were also defined, independently, by Metropolis, Nicoletti,
and Rota in [197], under the name of bisymmetric functions. Since then,
they have been studied extensively and we 1efer the reader to [1, 2, 6] for
their definition (they can be defined in several equivalent ways) and further
information about them.

The purpose of the present work is to give combinatorial interpretations
to the minors of the infinite matrix

def
y(x9 Y) = (s(k)(xl’ wrey xn/yh ey yn))n.kEN‘

Qur main results (Theorems 3.3 and 4.3) are proved combinatorially using
lattice paths and are stated in terms of dotted and diagonal strict plane
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partitions, respectively. They also have many applications. As special cases
we obtain combinatorial interpretations of determinants of homogeneous,
elementary, and Hall-Littlewood symmetric functions, Schur’s Q-functions,
g-binomial coefficients, and ¢-Stirling numbers of both kinds. Other
applications include the solution of a problem posed by Iwahori in [33]
and the combinatorial interpretation of a class of symmetric functions first
defined, algebraically, by Macdonald in [18]. Many of our resuits
(including all those in Sections 7 and 8) are new even in the case g=1.
Others are g-analogues of known results. OQur main theorem also has
several interesting applications to the theory of total positivity { 14]. These
are treated in [3].

We now collect some definitions, notation, and results that will be used
in the rest of the paper. We let P='{1,2,3 ..} and N="Py {0}; for
aeN we let [a]=%"{1,2,..,a} (where [0] = d“@ The cardinality of a
set A will be denoted by [A]. For iy, .., i,eP we write {i, iy, .., 0} if
i <iy< - . For m,neP with m<n we let [m, n]=%[n]\[m-—1].
Given a (f’mte) set § we denote by [1(S) the set of all (set) partitions of
S (see, e.g., [28, p.33] for further information about partitions of a set).
For neP, we denote by S, the symmetric group on »n elements.
Throughout this work, ¢ will denote an indeterminate. For ne P we let
[(n],=*"1+q+q¢*+ - +q" ', and [0],="70. We follow [18, Chap.1]
for notation and terminology related to partitions and symmetric functions.
In particular, given a partition 4, we denote by 2’ its conjugate, by m1,(4)
the number of parts of 4 that are equal to /, for ie P, and by s, (respec-
tively e;, h,, p;) the Schur (respectively elementary, complete homogeneous,
power sum) symmetric function associated to 4. We usually identify a parti-
tion A=(4,, .., 4,) with its diagram {(i, /)ePxP:1<i<r, 1 <j<4,}.

We follow [26] for notation and terminology regarding plane
partitions. However, we often need to work with more general objects than
skew plane partitions, which we now define. Let A=(2,,.., 4,) and
u={g,, .., 4,) be two partitions such that = i. A shifted skew tabloid of
shape A\u is an array T=(T, ;)i cic, p+i<j<cisi1 Of positive integers
(we sometimes use the notation sh(T)=A\u). We call the sequence
(T 1y T, ,,) the coshape of T, and we denote by T, the i th row of
T, for i=1,..,r. We also let |T|=""% . cr T, We call T a shifted
skew plane parmzon fT, ,27,,,,;and T, ;> T, ;. whenever both sides of
the inequality are defined. We say that T is row strict (respectively, column
strict, diagonal strict) if T, ;> T, ., (respectively, T, ;>T,,, ;, T, ;>
T; .\ ;1) whenever both 51des of the inequality are defmed Given a shifted
skew plane partition 7 as above we let T=""(T, ), cicr uris1<ciri1s
Tzder(Tf,/)l i r g+ i<j<i+i- 2o and T=der(Ti.j+ 1), SISrp+i<j<i+i
(where T, , =""0, for i=1,..,r). If u= & then we call T a shifted plane
partition of shape A. Note that we do not require the parts of 4 to be
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distinct. Note that if both ¢ and 4 have distinct parts then a shifted skew
plane partition of shape A\u is just a skew plane partition of shape
(Ao ds+ 1, o, A, +r—1)N\ (g, 43+ 1, .., u,+r—1). Also note that a strict
Gelfand pattern of length r (as defined, e.g., in [29], or [7]) with given
first row, is equivalent to a diagonal strict shifted plane partition of shape
(n,n—1,..,3,2,1) and given coshape. Therefore diagonal strict shifted
plane partitions are a natural generalization of strict Gelfand patterns.
Given an infinite matrix M = (M, ,), ..~ (where M, , is the entry in the
nth row and kth column of M) and {n,, ..n.}_, {k,, ...k } . SN we let

Hyy oy N, \ def

Given an infinite sequence {a;}, 5 we let

Ry ey NN def ny,..Hn,
{ahiex (kl, k,) =4 (kl, k,)’
where 4 =%"(a, ), ve~ (Where a;=%"0if i <0).

Let D=(V, 4) be a directed graph (or, digraph, for short). We always
assume that D has no loops or multiple edges, so that we can identify the
elements of 4 with ordered pairs (i, v), with u,ve V, u#v. A path in D is
a sequence T=u,, Y,, .., , of elements of V such that (¥, u,, ye A for
i=1,..,n—1, we then say that t goes from u, to u,. We say that D is
locally finite if for every w, ve V there are only a finite number of paths
from u to v. Note that this implies that D is acyclic. We say that D is
weighted if there is a function w: A — R, where R is some commutative
Q-algebra. Let D= (V, 4, w) be a locally finite, weighted, digraph. For a
path m=wuyu, - -u, in D we let

def

k
def
11'(7[) = n H'(u“,, (s ui)a

i=1

and for u, ve V we let

Po(u, v) £'Y win),

T

where the sum is over all paths = in D going from u to v. We adopt the
convention that P,(u, u)=%"1 for all we V (ie., there is only one path,
the empty path, from w to w and its weight is 1). We usually omit the
subscript D when there is no danger of confusion. Given u=°"'(u,, .., u,),
v=%(v,, ., v,)e V" we let

Nu,v) & Y oow(my, .,

(my. .o mrd
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whare w(m,, .., n,) =% T1/_, w(n;) and where the sum is over all r-tuples
of paths (7, .., n,) fromuto v (i.e., n, is a path from u, to v, fori=1, .., r)
that are non-intersecting (i.e., 7, and =n; have no vertices in common if
i#7). We say that u and v are compatible if, for every o€ S,\ {1d}, there
are no r-tuples of paths from (u,.., %) to (v4y, . Vg)) that are
nonintersecting. The following fundamental result was first proved by
Lindstrom in [17] and has later found numerous applications in
enumerative combinatorics (see, e.g., [8,9, 22, 31]). We refer the reader to
[9, Corollary 2; 31, Theorem 1.2; 17, Lemma 1] for its proof.

LemMma 1.1. Let D=(V, A, w) be a locally finite, weighted, digraph and
u=%"(u,, .., u,), v=2"(v,, .., v,) € V" be compatible. Then

N(u, v) =det[(Pp(u,, Uj))l si.,/‘sn]-

2. INVARIANT DIGRAPHS AND SUPER-SCHUR FUNCTIONS

Let D= (NxN, 4, w) be a, locally finite, weighted digraph. We say that
D is weakly y-invariant if

Pp((0, m), (n, k))=P,((0,0), (n, k —m)) (1)

for all m,n, ke N with k=m. We say that D is y-invariant if the map
S,: D — D defined by

S,((m k) E (n k+1)

is an isomorphism between D and S,(D) (as weighted digraphs). The
following result follows easily from (1) and Lemma 1.1.

THEOREM 2.1. Ler D be a locally finite, weighted, digraph on the vertex
set NxN. Assume that D is planar and weakly y-invariant. Let
{ny..onto, {ky, s k,,m} =N, and ne N. Then

0.0 Mnen (1)

=N(((0’ m_kl)’ reey (Oa m—kr))’ ((nl’ m)’ vevy (nr’ m))) (2)

and

(P00 0 ()

= N(((O, nl)’ eeey (0’ nr))’ ((n’ kl)’ ey (ﬂ, kr))) (3)
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We now come to the connection between invariant digraphs and super-
Schur functions.

PROPOSITION 2.2. There exists a y-invariant, locally finite, weighted
digraph D on N x N, such that

PD((Oa 0)’ (ﬂ, k)) =s(k)(xl’ ceey Xn/}'l > ey }"n)
Sfor all (n, k)e N xN.

Proof. We construct D as follows. We put an edge from (n—1,k)
(respectively, (n—1, k—1), (n, k— 1)) to (n, k) with weight I (respectively,
V., X,) whenever ne P and (n— 1, k) (respectively, (n—1, k- 1), (n, k—1))
is in NxN. A portion of D is shown in Fig. I. It is clear that D is
y-invariant and locaily finite.

Furthermore, it follows from our definition that

Pp((0,0), (n, k)y=x,P,((0,0), (n, k — 1))
+¥.Pp((0,0), (n— 1, k- 1))
+P,((0,0), (n—1,k)) 4)
for all ne P, k e N. Therefore

Mn(t)=tngn(t)+yn’Mn——1(t)+Mn—l(t)

w47 Sy T2 Ays 4T3 Sy 45 Sys 4T
w AT Sy 152 Sy T Ay 15 Ay 4TS
(0,‘ . s e
T
v AT Sy AT Sy 1T Sy 4T s TS

00  (10)

FiG. 1. The digraph D.

60798.:1-3
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for ne P, where M,(1)="3, ., Pp((0,0), (n, k))¢*, and hence

1]
M, 0=T1 =

i=1

for neN. On the other hand, it is well known (see, eg., [27, p.271,
Eq. (9)]) that

&
h_,(x,,..., xm)ek—j(yl""’ V) (5)
=0

s(k)(xl 9 sy -’Cm/)’1 3 ey yn) =
7=

Hence, using Eqgs. (2.2) and (2.5) of Chap. I of [18], we obtain that

Z S(k](xla s xm/yl’ Rhae] yn),k= I_I (1 _xit)-] n (1 +_Vit)’ (6)

k=0 i=1 =1
and the result follows. |

From now on the letter D always denotes the weigted digraph defined in
the proof of the preceding result. Proposition2.2 and Theorem 2.1
combined already give a combinatorial interpretation for every minor of
&(x,y). However, we wish to find a more explicit combinatorial
interpretation. This is done in the next section.

3. DETERMINANTS OF SUPER-SCHUR FUNCTIONS

A dotted partition is a partition A= (4,, 4,, .., 4,) where, for each ie P
such that m,(4)> 0, the rightmost occurrence of i in A may be dotted. So,
for example, there are 8 dotted partitions of 3, namely

303 21 21 2 21 i o1

In general, there are 2“*’ ways to dot a partition A and hence there are
3., 29" dotted partitions of n, where d(1) is the number of distinct parts
of 4.

The importance of dotted partitions lies in the fact that they offer a very
convenient way to encode paths in the digraph D. Given a path 7 in D
from (a, b) to (¢, d) we let, for i=a, .., c,

m (i) Emin{j: (G, j)et),
and

M (i) 4 max{j: (i jlet}.
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Given two (possibly) dotted integers we write a = b to indicate that they
are equal as dotted integers, and a = b if they are only equal as integers (so
that, for example, 2=2, 2 =2, 2 = 2). We also write (a+ b) instead of the
more cumbersome

a+b.

ProprosITiION 3.1. Let m,b,c,deN with m>b,d. Then there is a
bijection between directed paths in D from (0, m — b) to (¢, m — d) and dotted
partitions into c+ 1 parts with smallest part =(d+1) and largest
part=b+1.

Proof. Let 1 be a directed path in D from (0, m —b) to (¢, m—d). For
each 0<i<c let

def

Ai=m+1—M(i). (7)
Clearly
b+l=Agz iz 2i 2. =d+ 1
Now let je P be a part of i, ..., 4. and let i=*"max{i:4;=/} (so that 4,
is the rightmost occurrence of j in 4) then we dot 4, if and only if either
i=c or the step of t leaving (i, M,(i)) is a diagonal one. This defines a

dotted partition satisfying the given conditions. Conversely, let Ai=(b+ 1=
Aoz A= - ZA.=(d+1)) be a dotted partition. For i=1, .., ¢ we let

d_cr{m+l—,l,_,+1, if A,_, is dotted in 4, (®)

m+1—4,_,, otherwise,

and m, =%"m — b. Note that this implies that

m<m+1-4;

for i=0, .. ¢ (since if 4,_, is dotted in A then A,<4,_,). Hence we may
define a path 1 by

defl

ila

= {(Lj):m<jsm+1—4,}.

i=0

It is then straightforward to verify that 7 is indeed a path in D from
(0, m—b) to (¢, m—d) and that the two maps constructed are inverses of
each other and this completes the proof. |
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We illustrate the above construction with an example. Suppose d=0,
b=c¢=5, m=7, and let t be the path from (0, 2) to (5,7) depicted in
Fig. 2. Then the corresponding dotted partition is 655431.

Given a partition A=(4,,..,4,) a shifted dotted plane partition
of shape A is an array of (possibly dotted) positive integers
=7, )i<i<ri<;<i+i_1 Where each row is a dotted partition and

m, ,>m;,, ; whenever n, ; and m,,, ; are both defined and n,, , is not
dotted. Note that we do rot require the parts of 4 to be distinct. For
example,

3
2 2 2
)

(VST VS R Y |

1
is a shifted dotted plane partition of shape (5, 5, 3, 1). Let = be a shifted
dotted plane partition as above. For k=1, .., A, we let

di(m)

() S Y T ks 9)

i=1
where d,(n) =" |{ieP:7n,,,,_,>0}|, and
do(m) € |{ieP:n,,,, isdotted}|.

So d,(n) is the size of the kth diagonal of =, d,(n) is the number of
dots on the kth diagonal, and ¢,(n) is the sum of the parts on the kth
diagonal. Note that d\(n)>d,(n)> --- 2d,(n)>0 is the conjugate

(5:7)

02) + o  « e

FIGURE 2
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partition to A, 21,> ---=4,>0. Also, given n as above we let
=" (m;)\ ci<ri<j<is+i- 2 Note that this implies that

d(f)=d;, (n) (10)

for all ie N. We also let

def

t(m) € (1,(n), o 1,,(1), 0,0, ),
d(n) € (d\(n), ... d; (n), 0,0, ...),

and
d(m) € (d,(n), ... d,,(n), 0,0, ).

Given a set of variables x = (x,, x,, X3, ...) and a vector d=(d,, d,, ds, ...)
of integers we let

a def 4,
X' = H X

izi
and S(d)=9(d,, d,, ...). Finally, we define the weight of n to be

defl 35 5V A — S
w(n) iy ydln)xl(ni d(#) — Str(n))

For example, if 7 is

5§ 41
4 2 i (11)
i

N QO
W ~

6
5
2

then #(n)= (19, 15, 13, 10,7, 5, 1,0,0, ...),
8 8 76 5 4
fi= 6 5 5 4 2,
52
d#)=(3,3,2,2,2,1,0,0,..),
d(#)=(2,1,0,0,2,1,0,0, ...),

and
H7)=(19,15,12,10,7,4,0,0, ..).

Hence S(1(n))=(15,13,10,7,5,1,0,0, ...),
W(#) —d(®)— S(t(r))=(2,1,2,3,0,2,0,0,0,..),
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and
) — 2 2.3.2 .2 2
W(R) = X1X;X3X,X5 Vi Va Vs Ve

Shifted dotted reverse plane partitions (which are defined by reversing the
inequalities in every row and column) have already been considered in the
literature under the name of shifted P’-tableaux (or shifted circled
tableaux) in connection with the projective representations of the
symmetric group (see, e.g., [30, 21, 27]) a fact which is not surprising
since the super-Schur functions are connected to the characters of these
representations (see (29) and the comments following Theorem 5.8). It is
interesting to note, however, that they arise here from purely combinatorial
considerations.

THEOREM 3.2. Let {b,,...b,}. N and ¢,z - =c,, m, d\2 --- =
d,eN with m>max{b,,d,} (reP). Then there is a weight preserving
bijection between non-intersecting paths from ((0, m—b,), .., (0, m—b.)) to
((¢,,m—d,), .., (c,,m—d,)) in D and shifted dotted plane partitions of
shape (¢, + 1, ..., ¢, + 1) in which the ith row has smallest part = (d;+ 1) and
largest part=5b,+ 1, for i=1, .., r.

Proof. Let (1,,..,1,) be a set of non-intersecting paths in D from
((O,m—>b,),...,(0,m—>b,)) to ((¢,, m—d,), .., (c,, m—d,)) (so 7, goes from
(0,m—>b;) to (c;,m—d;), for i=1,.,r). By Proposition3.] we can
associate to 7, a dotted partition A(z;) into c¢,+ 1 parts with smallest
part = (d,+ 1) and largest part=54,+ 1. We form a shifted dotted plane
partition n by letting A(z,) be the ith row of it and shifting the resulting
array. We only have to check that the conditions on the columns of « are
satisfied. For this note that the paths 7, and 7, , are non-intersecting if and
only if

m. (j)>M.()) (12)
for each 1 <j<c¢,. But, by our definitions,

)= M, (j—1), if 4;_((r;, ) is not dotted,
) TAM, (=141, otherwise.

Hence we conclude from (12) that

M, (j-1), if2,_,(t,,,) is not dotted,

Mz,(])<{M (—1D+1, otherwise.

Ti+d
But, by (7), this means that

AT if 4, ,(t;,,)is not dotted,
lj( i) ’

13
Aot =L, otherwise, (13)
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for 1</<¢; But, by the definition of =, n, = A(t,),_, for i<j<i+c,
hence (13) is exactly the condition for n to be a dotted plane partition.
Hence (1), .., 7,) are non-interesting if and only if n is a dotted plane
partition. To prove that this bijection is weight preserving fix 1 <j<r and
observe that

W(ff-)=<ﬂ y.) [T xpoter o, (14)

ies; i=1

where §; is the set of those i€ [¢,;] such that the step of 7; leaving (i —1,
M, (z~1)) is a diagonal one. Then, by our definitions we have that
S;={ielc;]:m, ,,,_, is dotted} and, by (7) and (8), there follows that

1, if ies§,,
otherwise,

T jeiT

M. (i)— m,,(z)—{

Gei+i=1 T Ry s

fori=1, .., ¢,. Hence, by (14),

o=l

v

<
ll ”,yﬂ 1= Mj+i

.,‘.

Therefore
,
w(ty, ., 7,) =[] w(z))
=1
r ] V,
-, Bl
=TT (I e mm 1 2
j=1 \i=1 ies X
di(#)
= H ( l.ln)\uu(n)(V) / >
k]
i=1 X
since
di(it) d (%) d;1(m)
Z (”j,j+i7[ Jj+l Z 71'/ JHi—1— Z ]1+: t,~(7l)‘t,'+x(7l),
J=1 i=1 ji=1

by (9) and (10). Therefore

, — () — 1, — di(#),d, (7
W(Ty, o 1,) = [ X008 et = @)yt
izl
_xl(i)»z](ﬁ)—S(r(n)lyJ(ﬁ)

= w(n),

as desired. ||
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We illustrate the preceding theorem with an example. Let m=8 and =
be the shifted dotted plane partition given in (11). Then the three non-
intersecting paths corresponding to 7 are those depicted in Fig. 3.

Combining Theorems 3.2 and 2.1 and Proposition 2.2 we obtain the
main results of this section.

THEOREM 3.3. Let {n,,..n}., ki, .. k,} . SN. Then

F(x, ¥) (Zr, ws Zl) - Z xl(ijfz](ﬁ)fsu(n))yd(ﬁ)’ (15)
re s N

n

where the sum is over all shifted dotted plane partitions n of shape
(n,+1,...n,+1) in which the ith row has smallest part =1 and largest
part=k;+1 fori=1, .., r.

THEOREM 34. Let {my,..m}_., {k,, ..k} . =N and m,neP,
m>max{m,, k,}. Then

my,..m
{S(k)(xls“-’ xn/yl""9 ,vn)}keN(k k")
1y o9 Dy

=Zxr{ﬁ)fd(ﬁ)ms(l(ﬂl)yl](ﬁ) (16)
1

hid

where the sum is over all shifted dotted plane partitions n of shape ((n+1)")
in which the ith row has smallest part = (m—k;+ 1)y and largest part=
m—m,+ 1, fori=1, .., r.

{2,8) {(5,8) (6,8)

FiGuRe 3
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Since the minor on the LHS of (16} is just the skew super-Schur
function corresponding to the skew shape (m—m,+1,.,m—m, +r)/
(m—k,+1,.., m—k,+r), Theorem 3.4 gives a combinatorial inter-
pretation for these skew super-Schur functions. Other combinatorial
interpretations have been obtained by Berele and Regev [2], Balantekin
and Bars [ 1], Dondi and Jarvis [6], and Stanley [27] (regarding Stanley’s
combinatorial interpretation see also Theorem 4.4 of the present work).

4, THE COMBINATORICS OF DOTTED PLANE PARTITIONS

In this section we derive some equivalent formulations of Theorems 3.3
and 3.4 which are sometimes more convenient to use. These will be
obtained by a combinatorial analysis of shifted dotted plane partitions.
First, it will be convenient to introduce some notation.

Let T=(T, ;)i<i<ri<j<i+n b€ a shifted plane partition of shape

(M, +1,...n,+1). We call a part T, ,, of T, free if T,_, ;>T,,>T, .,
(the inequalities being vacuously satisfied if either one of T;,_, ;and T, ;. ,
are undefined). We let

F(T)E {(i, j)esm(T): T, ,is free},
and call #(T) the free set of T. Given T as above we define

A(T)E {G, jyesh(T): (i—1, j)esh(T), T,_, ,= T, },

and call #(T) the upper set of T. We also let
F(T)E (G e F(T):j<n+il,
and
(TYE (G, j)ew(T):j<n,+il.

Note that, in general, #(T)# %(T) and #(T)+ %(T). Given any subset
Scsh(T) and ke P we let

S, E (i j)eSj—i+ 1=k}l
Finally, we let

AT) E(F(T),, F(T),, ),

def

U(T) = (%(T), %(T),, ),
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and define F(T), U(T) analogously. For example, if

54 4 2
T= 4 3 21
22

then F(T)=(1,1,1,2,0,..), U(T)=(1,1,1,0,.), KT)=(1.1,1,0,.),
and 0(T)=(1,0, 1,0, ..).

ProposITION 4.1. Let k> --->k,, b=z --2b,, ny=2---2n, be
positive integers. Then there is a bijection between shifted dotted plane parti-
tions ©n of shape (n;+1, .., n,+ 1) in which the ith row has largest part =k,
and smallest part = b,, for i=1, .., r; and pairs (T, S) where T is a diagonal
strict shifted plane partition of shape (n, + 1, ..., n,+ 1) in which the ith row
has largest part = k; and smallest part=b, for i=1, .., r, and S< F # (T).

Proof. Let n=(m, )<<, i<;<i+n DE a shifted dotted plane partition
as in the statement of the proposition. We let the corresponding T be the
shifted plane partition obtained by undotting 7 and

S(r) £ {(, j)e Z(T) : n, ,is dotted }.
It is not hard to see that this map n+— (7, S(xr)) is a bijection between the
desired sets. ||

Let T=(T; ,)i<i<rb+i<j<k+: 1 De a shifted skew plane partition of
shape (k,, ..., kK, )\ (b, .., b,). For ie P we let ¢,(T) (respectively r,(T)) be
the number of columns (respectively rows) of T that contain at least one
part equal to i, and m,(T) be the number of parts of 7 that are equal to
i. We then let

o T) E (e (T), ex(T), ),
HT) E (r((T), ry(T), ),
and
m(T) = (m,(T), my(T), ...).

For example, if T is

4 4 3 3 2 1
54 4 2 2
4 2 1
2 11
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then ¢(7)=(34,2,2,1,0,..), r(T)=(34,1,31,0,..), and m(T)=
(4,52,5 1,0, ..).

THEOREM 4.2. Let k> --->k,,n; = ---2n,, b= --- 2 b, be positive
integers. Then there is a bijection between diagonal strict shifted plane parti-
tions ©t of shape (n,+ 1, ..., n, + 1) in which the ith row has largest part =k,
and smallest part =b,, for i=1, .., r, and diagonal strict shifted skew plane
partitions T of shape (k,, .., k,)\(b,, ... b,) in which the ith row has largest
part <n; for i=1,..,r, and 2n,, +1 if b;=b,,, for i=1,.,r—1
Furthermore, if m and T correspond under the above bijection then

H(#) — S(t(n)) =m(T), (17)
O(n)+ F(n)=r(T), (18)
U(n)=m(T)—c(T). (19)

Proof. Let n be a diagonal strict shifted plane partition satisfying the
conditions in the statement of the theorem. We construct the corresponding
T by first conjugating each row of 7 (so as to keep the resulting array, call
it 7', shifted) and then deleting the first b, parts of the ith row of =’ for
i=1, .., r Itis then not hard to see that the resulting 7 has all the required

properties.
Conversely, given a diagonal strict shifted skew plane partition
T=(T,)icicrbricjchki+i-1 such that T, ,, <n; for i=1,.,r, and

Tiivp2n o +10f &,=0b,,,, for i=1,..,r—1, we construct the corre-
sponding n=(%; ;)i <i<,i<;<i+n DYy first adding b, parts=n;+ 1 at the
beginning of the ith row of 7, for i=1, ..., r, and then conjugating each row
(so as to keep the resulting array shifted). The only property of n that
needs some care in order to be verified is diagonal strictness. For this note
that it follows from our construction that, for 1 <i<r, i<j<i+n,,

n=l{k: T, 2j—i+ 1} +b,. (20)
Sofix 1<i<r—1andi<j<n;,,+i We show that
nl’,j>ni+l.j+l' (21)

Assume first that {k: T, , (=j—i+ 1} # Fandlets=""max{k: T, ,>
j—i+1} (note that this implies that s<k,,  +i<k,+i—1), then
by (20), w0y 01=5—(biy +1)+b,,,=s—i If s—i<b, then (21)
follows; so assume that s—i=b,, then T, ,>T,,, ,=j—i+1, hence
Wk:T, c2j—i+1}|2s—(b;+i—1), therefore =, ;>s—i+1, and (21)
follows. Assume now that {k: T, ,2j—i+1}=.1fb,>b,,, then (21)
follows; so assume that b,=5b,,,, then T, , ., 2n;,,+ 1, hence T, , , . >
j—i+1, therefore |{k:T,,=j—i+ 1} =1 and (21) follows.
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Now let n_(nlj)ISISr.t</$l+n and T=(TI.J)I<i$r,b1+i<j$k:+"‘l

correspond under the above bijection. It follows from (20) that, for 1 <i<r
and 1 <j<n,,

Mijsiot— i ,ei =1k Tie=Jj}l, (22)
and (17) follows. Also, it follows from (22) that n, ,,, >, ;,, if and
only if there is at least a part equal to j in the ith row of 7. Hence

A(n),+ F(n),=r,(T) and (18) also follows. Finally, let 2<i<r, i<j<
i+n;,—1, and max{b,_,,b,+ 1} <1<k, We claim that

n; ;

==, (23)
if and only if
Ti‘t+i—l: i—l,t+i-l=j_i+1' (24)

In fact, if (23) holds, then from (20) we conclude that T, ,,,_,=2j—i+1,
and 7, _, ,,,_,<j—i+1, and (24) follows. Conversely, if (24) holds, then
this implies that |{k:n, ,>¢}|={k:m,_, ,=2t+1}|=j—i+1, hence
m,;2t and n;, , ;<¢ and (23) follows. This implies that

A(n)e=1{(i e U(T): T, =k},
and (19) follows. |

We illustrate the above bijection with an example. Suppose that

9 8 6 5 4
8 6 5 3 2
T =
6 4 3 2
3 31
then
4 3 2 21
4 3 3 2 11
T=
32 11
2 2
t(7)— S(t(m)) = (26, 21, 14, 8,0, ...) — (21, 15, 10, 6, 0, ...)
=(5,6,4,2,0,.)=m(T),
O+ Fn)=(2,2,2,0,.)+(1,2,1,2,0,..)
=(3,4,3,2,0,..)=r(T),
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and
m(T)—c(T)=1(5,6,4,2,0,..)—(3,4,2,2,0,...)

=(2,2,2,0,..)=U(n).
We can now prove the main results of this section.

THEOREM 4.3. Let {n,,...n,}., {k|, ...k, }. SN. Then

n,,.,n . .
y(x, y) (SIS | =Z ym(T)—c(T]xm(T)—r[T](y + x)r(T)+([T]f m(T)’
ky,nk) &

where the sum is over all diagonal strict shifted plane partitions T of shape
(ky, ... k,) in which the ith row has largest part <n;, and 2n;  +1, for
i=1, .. r(wheren, =% —1)

Proof. By Theorem 3.3 and Proposition 4.1 we have that

y\ T+ S,
y(’hﬂ(:” .-.,Zl)zzxuﬂsmrn Z ['[ (b)
s Ky

o T s iz1 \Y
-~ . y. S
=Zyi«T)x/(T)—S(r(Tn‘w(T) Z n (_,>
T S=F(T) izl X
N _ y N F (D
=Zy“r’x"ﬂ’s"‘m“‘mr) H (1 +,_.> ,
T izl X;

where the sum is over all diagonal strict shifted plane partitions T of shape
(n,+1,..,n +1) in which the /th row has smallest part =1 and largest
part=k,+ 1, for i=1, .., r. The thesis now follows from Theorem 4.2. ||

Reasoning as in the proof of the preceding theorem but using
Theorem 3.4 we obtain the following result.

THEOREM 4.4. Let {m,,..m,}., {ky,..k,}. SN and m,neP,
m>max{m,k,}. Then

m, .., m,
{s(k)(xl’ ey xn/yl’ T yn)}kEN ( k;, - k,—)

— Z ym1T)— c(T)xm(T)—r(T)(y + x)r(T)+c(T)vm(T),
T

where the sum is over all diagonal strict plane partitions T of shape
(m—m+1, . ,m—m+r)\(m—k,+1,..,m—k, +r) with largest part <n.

In the case that k,=i for i=1,..r, the preceding theorem first
appeared, though without proof, in [27, Theorem 5.2].



44 FRANCESCO BRENTI
5. DETERMINANTS OF SYMMETRIC FUNCTIONS

In this section we consider various determinants of symmetric functions.
We begin by considering determinants of elementary symmetric functions.
The next two results follow immediately from Theorems 4.3 and 4.4, and
the fact that, by (5),

eV is s Yu) =35 (0/p 15 s Vi)

CoroLLARY 5.1. Let {ny,..n}., {ki, ..k, }. =N. Then
M, ..,H .
(ek(ylsn-’ yn))n_keN<kr’“., kz)z ~ y (T)a

where the sum is over all row strict shifted plane partitions T of shape
(k,+1,.., k. +1) and coshape (n, + 1, ..,n,+ 1).

CoROLLARY 5.2. Let {m,..m}., {ki,.. k,} . =N and m neP,
m>max{m,, k,}. Then
my,.,m, .
{ek(yl""7yn)}keN( : =Zy ), (25)
ki,.. k, =

where the sum is over all row strict skew plane partitions T of shape
(m—m +1, ,m—m,+r)\(m—k +1,.,m—k,+r) in which every part
is <n.

The reader will recognize that the above corollary is the “conjugate”
Jacobi-Trudi identity (see, e.g., [18, p. 40, Eq. (5.5)]) since the RHS of
(25) is just the Schur function corresponding to the skew shape that is the
conjugate of (m—m, + 1, .. m—m, +r)\(im—k,+1,..,m—k,+r).

We now consider determinants of complete homogeneous symmetric
functions. By (5),

Re(Xps o X,) = S00(X 45 ey X, /0),

hence the following two results follow immediately from Theorems 4.3 and
4.4, respectively.

CoRrOLLARY 5.3. Let {n,,..n}., {ki, ..k}, =N. Then
- m
(Me(X 1y s X)) g ke <k,, N k‘l> =ZT‘X D,

where the sum is over all column strict shifted plane partitions T of shape
(k;+1, .., k,+ 1) and coshape (n,, .., n,).
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COROLLARY 54. Let {m;,..m,}_, (ki ..k} SN and m,neP,
m>max{m,, k,}. Then

my,..m,

{hk(xly reey x")}keN ( kl’ . kr ) =;xm(T)’

where the sum is over all column strict skew plane partitions T of shape
(m—m +1,.  m—m+r)\(m—k +1,..,m—k,+r) with largest part <n.

The preceding result is the well known Jacobi-Trudi identity (see, e.g.,
[18, p. 40, Eq. (5.4)]).

We now want to interpret combinatorially the minors of the matrix
(h, _i{xy, ooy X)) xen- For this we find it convenient to use Theorem 3.3
instead of the more elegant Theorem 4.3

THEOREM 5.5. Let {n,,..n.}., {ky... k,} . SN. Then

L 1 24T
(hn—k(xl’"') xk))n,keN<k , kl)z;ﬁ)_ ZX )
re T

where the sum is over all row strict shifted plane partitions T of shape
(k,, .. k,) and coshape (n,, ..., n,).

Proof. 1t follows from (5) that

1 1
hn—k(xl""’ xk)z[yl"'yks(n) <x1""’ xk/T’ Bt _):I 3 (26)
}l ,Vk ly=0

for all n, k e N. But, by Theorem 3.3 we have that
r g My e 1y
I vp 2oy (70

r
=11 » ---yk,)Z X (R) — () = Stetm)y — d7)
i=1 n
=y y D = di)y (8 = d(R) = (), (27)

n

where the sum is over all shifted dotted plane partitions n of shape
(k,+1, .., k,+1) in which the ith row has smallest part = 1 and largest
part=n;+1, for i=1, .., r. Letting now y =0 in (27) we see that the only
n which give a non-zero contribution are those for which d,(7) = d;(#), for
i = 1. These are exactly those n for which every part of # (and hence of =)
is dotted, and hence those n which are row strict. The result now follows
from (26). |
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Reasoning as in the proof of the preceding theorem, but using
Theorem 3.4, we obtain the following result which, though less elegant than
the equivalent Corollary 5.4, will be needed in Section 8 (see Theorem 8.2).

THEOREM 5.6. Let {m,..m} ., {k,,..k,}.EN and mkeP,
m>max{m,, k,}. Then

my,..,m, 1 7 su(r))
(R0 X 15 ey X0 )) e ( ):___7 x/ (-
¢ l * N kl’ vers kr (.x xk) Z

where the sum is over all row strict shifted plane partitions T of shape
((k+ 1)) in which the ith row has smallest part=m—k,+ 1 and largest
part=m—m;+ 1.

We now consider determinants of certain symmetric functions that are
essentially, the Hall-Littlewood symmetric functions. Let aeR and
P,(x,, .., x,; o) denote the Hall-Littlewood symmetric function corre-
sponding to the partition A (we refer the reader to [18, Chap Iil] for the
definition and further information about Hall-Littlewood symmetric
functions). Following [18, p. 106] we let, for ne P,

def
Gol X1y e X5 0) E 1

and

def
GelX1, s Xps ) = (I1=a)Puy(xy, .., x,; )

for ke P.

THEOREM 5.7. Let {ny,..n,}., {ki, ...k, }. SN. Then

(X1, et X5 0)), ken <n,, " nl) =Z X" — )TN (| _g)F DI (28)
k,, ..k, =

where the sum is over all diagonal strict shifted plane partitions T of shape
(ky, ... k,) in which thg rith row has largest part <n; and 2n;_,+ 1, for
i=1,..,r (wheren, , , = —1)

Proof. 1t is known (see [18, p. 106, Eq.(2.10)]) that

Z qk xl,... n; )tk=

k=0 i

Hence, we conclude from (6) that

(X, oy X5 0) =S (X oy X,/ — 00Xy, oy —aX,). (29)
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Therefore

R Hyon il
(Gu(X1, ooy X3 0D ge N (k,, kl) =L (X, —xX) <k,, ki)

and the thesis follows from Theorem 4.3. ||

Reasoning as in the proof of the preceding theorem but using
Theorem 4.4, we obtain the following result.

THEOREM 5.8. Let {m,,..m,} ., {k,, ..k, }_.EN and mneP,
m>max{m,, k,}. Then

TR G B W R ITE R CUEY

where the sum is over all diagonal strict skew plane partitions T of shape
(m—m+1,.,m—m +r)\(m—k,+1,.,m—k +r) with largest part
<h

Note that the symmetric function on the LHS of (30) is just the sym-
metric function S, ,(x; %) defined (in the case that y= () by Macdonald
in [18, p.116, Eq.(4.5)], where A=%"(m—m +1,.,m—m,+r) and
p=2"(m—k,+1,.,m—k, +r). Therefore Theorem 5.8 gives a com-
binatorial interpretation of these symmetric functions. The symmetric
functions S;(x; a) possess many interesting properties including that of
being a basis of A]x] orthogonal to the basis of the Schur functions, with
respect to the inner product defined by

P 2> 8,2 [T (1 =), (31)
izl
where z, =[T1,., i™*'m,(4)!. We refer the reader to [18, Chap. 1, Sect. 4]
for details.
A particularly interesting case of the preceding two theorems occurs
when o= —1. In fact, it follows from [18, p. 134, Ex. 8] (see also [31,
Sect. 6]) that

(X1, o %03 1) = Qi (X1 s X, ),

where Q,(x,, .., x,)) denotes the Schur’s Q-function associated to the parti-
tion 4. These functions were originally defined by Schur [25] in connection
with the study of the projective representations of the symmetric group and
have since been widely studied (see, e.g., [11,21,31]).

607 9% 1-4
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6. g-BINOMIAL DETERMINANTS

In this section we consider various determinants of ¢-binomial
coefficients. These are defined by

n def k (l_qn—i+1)
I:k:lq - ’l:[l (l_ql)

(with the convention that [§], =1 for all ne N). We let

w0 #([2]). v
(q) k 9/ n keN

THEOREM 6.1. Ler {n,, ., n,}., {ki, ..k .}, =N. Then

R, . B . T
B - nitki+ 1, ke + 1)) ITI’

e ovee

where the sum is over all row strict shifted plane partitions T of shape
(k,+ 1, ...k, +1) and coshape (n,+1,..n,+1) (where for a partition
A=Ay, Ay, ), 1(4) =d°r2i>) (i—1)4;)

Proof. 1t is well known (see, e.g., [18, p. 18, Ex. 3]) that

n 2
[k:l =h, (1,99, ., q*). (32)
q

Hence from Theorem 5.5 we obtain that
B Prsoes MY “i- N(T) (= DAY = 6 (T
@(," " )=X(1l4q [Ta
k" e 1 T iz1 izl

=Zq Ziz1 U '|)1111T)q2y2|(i* DT - I.+1(T))’

T

where the sum is over all row strict shifted plane partitions 7 of shape
(k,+1, .., k,+1)and coshape (n, + 1, .., n,+ 1), and the thesis follows. [

In the case g =1 the preceding theorem was first proved (though stated
in a slightly different way) by Gessel and Viennot [8, Corollary 11].

THEOREM 6.2. Let {my,..m}., {k,..k,}. SN and m keP,
m>max{m,, k,}. Then

n my,..,m, S (it k— k) 17l
=q i=1 i q'",
{[k]q}neN<kl9"" kr) ZT:
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where the sum is over all column strict plane partitions T of shape
(m-m +1,com—m +r)\(m+k—k +1,...m+k~k, +r) and largest
part <k+1.

Proof- The result clearly holds if k, <k, so assume that &, > k. From
(32) we conclude that

n my, ., m, B M, .., M,
= L, q,.., .
{[k]q}neN<k,,...,k,> (1.4, 0 q )}"E“<k,—k, ...,k,—k)

and the thesis follows from Corollary 54. |

We illustrate the above theorem with an example. Suppose k=3,
{my,my,my} o =%"{1,2,3}, {ki, ky, k3} . =2"{56,7}, and m=8. Then
we are looking for column strict skew plane partitions of shape (1,1,1)
and largest part <4. Clearly, there are 4 such plane partitions, namely

4 4 4 3
37 3, 2, 2.
2 1 1 1

Therefore

>rq'" °+q' +4¢°+¢°
):,Z.(fnwk—vk,): 3 =q¢+q*+4¢°+¢°

), LG
516G e - L )]

37

q

and hence,

4
: ]
RN EI AR EYA
=¢+q¢*+¢ +4°

In [33] Iwahori asked for a combinatorial interpretation of the minors

of the matrix
der ([ n+k
o= ("))
k 4/ n, keN

(we use the letter F since the matrix (("}%)), xe~ IS sometimes called the
Fermar matrix, see, e.g., [5, p- 171]), and whether its principal minors form
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a periodic sequence. We can easily answer these questions using (32) and
Corollary 5.3.

THEOREM 6.3. Let {n,,..n}., {k, .. k,}. €N. Then
Aoy o -
F r —g-Zim I
(q)<k” .--,k1> q ;q
where the sum is over all column strict shifted plane partitions T of shape

(n,+1,.,n,+1) and coshape (k,+ 1, .., k,+1).

In particular, we obtain the following result.

COROLLARY 6.4. Let neN. Then
0,1,..n
0,1,..,n

Other determinants of g-binomial coefficients have been considered in
[4,15].

> — rin+ 12n+1)/6

F(q)(

7. q-STIRLING DETERMINANTS OF THE FIRST KIND

In this section we consider determinants of ¢g-Stirling numbers of the first
kind. These were introduced by Gould in [10] and have been the subject
of considerable research in recent years (see, e.g., [16, 20, 22, 247). They
are defined inductively by letting

clmkl, Ecln—1,k—11,+[n—11,c[n—1,k],

for neP, and [0, k], =915, for keN (with the convention that
c[n, k],=0 if either n <0 or k<0). We let

def

C(‘I) = (C[H+ 1’ k+ l]q)n,kel\"

All the results in this section are new even in the case ¢ = L.

Let T=(T,;)i<i<ri+ms<jcs+i-1 D€ @ row strict shifted skew plane
partition. We define the row complement of T, denoted RC(T), to be the
array having as ith row the elements of [T, , I\N{T\ s, Tiivpirs o
T. .y} in decreasing order, for i=1, .., r. For example, if

1097 5 4 3 1
T= 9 75 41 | (33)
52
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then
8§ 6 2
RC(Th= 8 6 3 2.
4 3 1

TrHEOREM 7.1. Let {ny,...n.}., {ky, ...k }. SN. Then
R, .,"H .
c@ ()= Tt
ryeey A T ie RC(T)

where the sum is over all row strict shifted plane partitions T of shape
(ky+1,..,k,+1)and coshape (n,+ 1, .., n, +1).

Proof. 1t is well known (see, e.g., [22]) that

Cln+1L,k+1],=¢, ,([1],,[2],, ... [n],).

Hence, by Corollary 5.1,
B,y B
¢t9) (k,, k,>

= l:[ (H [j] >(€k([1]"’*l, ey [n];l))"'kEN <Z,, : le)

ry oaee

i

[} ::]
M
v
3

3

where the sum is over all row strict shifted plane partitions T of shape
(k;+1, .., k,+ 1) and coshape (1, + 1, .., n,+ 1), and the thesis follows. }

We illustrate the above theorem with an example. Suppose that
{ky, ky, ky} s =%1{2, 1,0}, and {n,, ny, ny}., =9"{5 4, 3}. Then there is
only one row strict shifted plane partition T of shape (3, 2, 1) and coshape
(6, 5, 4), namely

Its row complement is
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and therefore

M G1,=31,02], (11,

ie RC(T)
=q° + 6¢4* + 189" + 35¢° + 48¢° + 484"
+35¢° + 18¢* + 6 + 1. (34)

Hence

3 4 5 cl4,1], c[4.2], c[4,3],
C(q)(o | )=det] 5,11, el5.2], <[5.3],
c[6,11, c[6,2], cl6, 3],
=¢°+46¢° + 18q" + 35¢° + 48¢°
+484% +35¢° + 1847 + 6g + 1. (35)

Reasoning as in the proof of the preceding theorem, but using
Corollary 5.2, yields the following result.

THEOREM 7.2. Let {m,,..m,}_, {k,,..k,}. SN and m,neP,
m>max{m,, k,}. Then

fe[n+ L k+11,} on <'Z’ ':’)=Z M [,

T ie RC(T)

where the sum is over all row strict skew plane partitions T of shape
(m—m,+2, ..m—m,+r+1)\(m—k, +1,..,m—k,+r) and coshape
((n+ 1))

Even though the preceding theorems are very elegant, they are not
“natural” in the sense that they do not involve permutations, as the usual
combinatorial interpretation of the ¢-Stirling numbers of the first kind does
(see, e.g., [16]). To obtain such a “natural” combinatorial interpretation a
little more work is required.

Given a permutation ceS, having k cycles C),..,C, we let
S(e)=%*"{min(C,), .., min(C,),n+1}, and {a'", ., o**"} =% S(a).
We say that ¢ is written in normal form if:

(i) each cycle of o is written with its smallest element first;
(ii) the cycles are written in increasing order of their first elements.

The normal representation of ¢ is the word obtained from the normal form
of o by erasing all the parentheses. The number of inversions of o, denoted



DETERMINANTS OF SUPER-SCHUR FUNCTIONS 53

by inv(c), is the number of inversions in the normal representation of o.
More precisely,

inv(e) = |{(i, ) e [n]x [n]:i>], a,<a,}],

where a,---a, is the normal representation of ¢. For example, if
o = (23)(1)(87)(9465) then S(6)={2,1,7,4,10}, 6V =1, 6 =2, ¢V =4,
¢'?'=7, ¢ =10, the normal form of ¢ is (1)(23)(4659)(78), its normal
representation is 123465978, and inv(a) = 3.

LemMa 73. Let neP and Scn+1], 1, n+1€S. Then

Z g™ = n [a—1],. (36)

{oe 8, :S(a)=5} ae(n].S

Proof. We prove (36) by constructing an appropriate bijection. Let
o€ S, be such that S(g)=S and let a, ---a, be the normal representation
of 0. We define a function f, : [#]\ S — N by letting, for ae [n]\ S,

fola) E |{ie [n]i>), a;<a}l, (37)

where je [n] is such that a;, = a. Note that, since ae [n]\ S, and @, ---a, is
the normal representation of o, f,(a) <a — 2. Conversely, let f: [r]\S—- N
be such that f(a)<a—2forallae[#]\S, and let {b,, .., b} . =" [n]\S.
We construct a permutation o, inductively as follows. We first place b, in
o' ..o ") 5o that there are exactly f(b,) elements to the right of b, that
are smaller than b,. Note that this is always possible because f(b,) < b, —2
and {1,2, ., b, —1} < {a", .., a"" %}. Suppose now that we have already
placed b,, ... b, ,inc'", ., 6"~ *. We then place &, in the leftmost position
such that

(1,2,0,6,= 1} S8SU b, by, b, |}

We then let o, be the unique permutation with S(o,) =S that has as nor-
mal representation the word w obtained at the end of the preceding process
(ie., after the insertion of b;). Note that o, always exists because, for each
aew, the rightmost element of S that i1s to the left of 4 1s <a. In fact, by
our definition, when b, is inserted the element to the left of it is <b; and
this, by induction on j, proves our claim.

It is easy to see that the maps o+ f, and f+ g, are inverses of each
other. Furthermore, it follows from (37) that

Y Sl =l jYe(nlx[n]:i>j a;<a; a;e[n]\S}|

ae[n): S

=inv(o),
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since &, ---a, is the normal representation of . Hence

Z m\(ni Z 1—[ q/'(flJ

{eeS,: S(a)=58} f ae[n]S
= I (+g+g*+ - +¢°?)
ae[n]: S

(where f runs over all functions f: [#]\.S — N such that f(a) <a—2 for all
ae [n]\S), as desired. |

We illustrate the preceding bijection with an example. Let n=9 and
S= {1, 2,5.7,10}. If o=(14)(23)(56)(798) then f.(3)=0, f,(4)=2,
f:(6)=0,1,(8)=0, and f,(9) = 1. Conversely, if /(3)=1, f(4)=2, f(6)=0,
f(8)=6, and f(9)=4 then successive insertions of 3, 4, 6, 8§, and 9 into
a6 = 1257 yields, respectively,

13257,
143257,
1432567,
18432567,
184392567,

and hence o = (18439)(2)(56)(7).

Given an r-tuple of permutations (o,,..0,) and a partition
u=(uy, .., it,) we associate to them a shifted skew tabloid, denoted
ST (0,, .., a,), by letting ¢\’ be its (i,i+pu,+j—1) entry, for i=1,..,r,
j=1,.., k,+1 (where k;, is the number of cycles of o, for i=1,..r).
For example, if u=(2,1,1), a,=(23)(1)(564), 0,=(31)(2), and o;=
{12)(78)(635)(4), then

7 4 2 1
S§T,(0,,0,,05)=4 2 1
9 7 4 3 1

We usually omit the index y when there is no danger of confusion.

LemMma 74. Let T be a row strict shifted skew plane partition of coshape
(ni+1,..,n,+1). Then

IT [i1,= Z Hq'"“”‘

ie RC(T) (@ ar) d
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where the sum is over all r-tuples (6, ..,0,)€S, . x --- xS, . such that
S1(e,,..,0,)=T.

Proof. Let T=""(T, )i <i<, c+ici<da+: 1 be a row strict shifted skew
plane partition of coshape (n,+ 1, .., #n,+1). Then, by the definition of
RC(T), we have that

RC(T);+1=([n IN(T)) +1
=[n,+ 1]\{Ti.(',+i+]+ 1., Tigeint 1, 1}»

for i=1, .., r. Hence, by Lemma 7.3, we have that

I1 [i]q=ﬁ [T Uy,

ie RC(T) i=1 je RC(T)

11 11 -1,

i=1 je RC(T)+ 1

= H Z qinv(al,

i=1 o

where the sum is over all oeS,,, such that S(g)={n,+2,
Ticvivi+ o Tiyy,+ 1,1}, and the result follows. |

Since a shifted skew tabloid of the form S87(s,,.. 0,) with
(6,,..,0,)€S,, + X --x8, . is necessarily row strict and of coshape
(n,+2, .., 5 +2) from the preceding lemma and Theorems 7.1 and 7.2 we
deduce the following results.

THEOREM 7.5. Let {ny, ., n}., {ki, ...k}, =N. Then

Hpss By — m»(a,
C(q)<k ,kl)—( > Hq

Fo o o) i=1

where the sum is over all r-tuples (0., ..,6,)€S, ,\x --- xS, .| Such that
STo,,..,0,) is a shifted plane partition of shape (k +2,..,k,+2)
(equwalently such that o, has k,+ 1 cycles and 6\ =z 6!V, for | <1<r— 1
and 2< <k, +2).

THEOREM 7.6. Let {m,,..m,}_., {1k, ,..k,} =N and m, neP,
m>max{m,, k,}. Then

my, .., m, inv(a,
{c[n+l,k+l]q}keN(kl k ): z H q { '
19 o090 Doy {o

- ANES
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where the sum is over all r-tuples (o,,..0,)€(S,,,) such that
ST(o,,...0,) is a skew plane partition of shape (m—m,+3, ..,
m—m +r+2)0\(m—k,+1,...m—*k, +r) (equivalently, such that o, has
k,—m,+1 cycles and a'* "=a'%r /U for 1<i<r—1 and m;, ,—3<
j<k,—1).

We illustrate Theorem 7.5, when g=1, with an example. Suppose
that {k,, k,, ki}. =""{2,1,0}, and {n, n,, ny}.="{54,3}, as in
the example following Theorem 7.1. Then we are looking for triples
(0,,0,,0,)€S8¢x SsxS, such that S7(s,,0,,0,) is a shifted plane
partition of shape (4, 3, 2). Since (0, 6,,6;)€S¢x Ssx S,, ST(g,, 65, 05)
must be row strict and of the form

Hence the only possibility for S7(s,, 0,, 65) is

7 6 5 1
6 5 1
51

This means that we are looking for triples (o,, g5, 6;)€ S¢ x S5 x .S, such
that S(o,)={7,6,5,1}, S(g,)=1{6,51}, and S(o;)={5,1}. Hence
6,,0,, and g, must be of the form

o, =(lx;x,x3)(5)(6),

ay={(1y,y21:)(5),

ay=(1z,2,25),
where x,x,X;, y,y,y3;, and z,z,z, are any permutations of {2,3,4}.
Hence there are 6 possibilities for each one of ¢, ¢,, and ¢, and therefore

216 possible triples (a,, 0,, g4), which is in accordance with (34) and (35)
when g=1.

8. ¢-STIRLING DETERMINANTS OF THE SECOND KIND

In this section we consider determinants of g¢-Stirling numbers of the
second kind. These were introduced by Gould in [10] and have been the
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subject of considerable interest recently (see, e.g., [16, 20, 23, 327). They
are defined inductively by letting

S[n k1, =S[n—1, k—11,+ k1, S[n—1,k],

for neP, and STO, k],,:de‘éo_k for keN (with the convention that
S{n, k3,="0 if either n <0 or k <0). We let

def

S(‘]) = (S[n+ ]vk+ l]q)n_keN‘

All the results in this section are new even in the case ¢=1.

Tueorem 8.1. Let {n,..n,}, {ky, ..k}, SN. Then

S(q)(f’ln...,”l):z 1—[ [i]IIJAT;,;H”T, d,lTl’
k,, ...k,

o T izl

where the sum is over all row strict shifted plane partitions T of shape
(ki+1, .., k,+ 1) and coshape (n, +1,..,n,+1).

Proof. It is well known (see, e.g., [22]) that
Sh+1,k+1],=h, ([1],,[2],,.. [k +1],).

Hence, by Theorem 5.5,
. n ) _, B
S(‘])(k k’):Z H [,]";(T) e Ty — di (T
S

T izl

(since (k,+1,., k., +1) =(d,(T), d>(T), ..)) where the sum is over all row
strict shifted plane partitions 7 of shape (k,; +1,..,k,+ 1) and coshape
(n,+1,..,n.+1), as desired. §

We illustrate the above theorem with an example. Suppose that
(ki ky, ky)y =%1{2,1,0}, and {n,,ny, n;}. =*"{6,5,4}. Then there is
only one row strict shifted plane partition T of shape (3, 2, 1) and coshape
(7, 6, 5), namely,

7 6 5
6 5.
5

Therefore
(T)y=(18,11,5,0,..),
A((T))=(7,6,5,0,..),
dTy=(3,2,1,0,..),
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hence

[T Glgm e 4= 8 1203 (315, (38)

and -
4 S[s. 1], S[5.21, S[5.3],
S(q)( 1 2)=det S[e6, 1], S[6,21, Sf6,31],
S[7,11, S[7,21, S[7.31,

=([11,02],031)"
=1+8g+ 329>+ 844> + 160g* + 232¢°
+262¢° + 23297 + 160g*
+84¢° + 329"+ 84" +¢'2 (39)

Reasoning as in the proof of the last theorem, but using Theorem 3.6,
gives the following result.

THEOREM 8.2, Let {my,..m,}_., 1k, ..k . SN and mkeP,
m>max{m,, k. }. Then
k+1

my,..,.m, . )y
{S[n+l’k+1]q}neN(kl k )ZZ l—I [l]y Yo tetn) ,
Py ey Ky

n i=1
where the sum is over all row strict shifted plane partitions ©n of shape
((k+2)) in which the ith row has largest part=m—m;+ 1 and smallest
part=m—k,, fori=1,.,r.

Note that it is possible to use Corollary 5.4 instead of Theorem 5.6 to
obtain an equivalent version of the preceding theorem. However, the
version that we have chosen is much better suited for the applications that
follow (see Lemmas 8.4 and 8.5).

We illustrate Theorem 82 with an example. Suppose that k=2,
{my,my,my} o =%{1,2,3}, (ki ks, ky} o ="{5,6,7}, and m =8. Then
we are looking for row strict shifted plane partitions of the form

§ - - 3

6 - - 1
Clearly, there is only one such row strict shifted plane partition, namely
8 7 6 3
T= 7 6 3 2
6 3 2 1
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Therefore
3
[T [y =3 =137 (212 (3], (40)
and hence
{3 S[5,3], S[6,31, S[7.3],
{S[n+1’3]q}neN(5 6 7>=det S[4,3]1, SI[5,3], S[6,3],

S[3.31, S[4.31, S[5.31,

=([11,022,031,)
=1+4g+8g%+10g* + 8q* + 4¢° + ¢°.

The same remark made after Theorem 7.2 applies to the last two results.
In order to obtain * natural” versions of these results we need analogs of
Lemmas 7.3 and 7.4 for (set) partitions.

Let m,neP, m<n Given a partition n={B,,.., B} of [m, n]
into k& blocks we let S(z)="{max(8,),.., max(B;),m—1} and
{n't, ., n% ) =%TS(n). Let now =, be the (unique) block of =
containing n'”, for /=1, .., k. We define the Aeight of n to be the number

k
h(n)E Y (= 1)) —1).

i=1

For example, if n=48/569/7 then S(n)= 9,73}, V=9, n'?=8§,
=7 29=3,n,={569} n,={4, 8}, {7 and

Atn)=1-14+2.-0=1.

The verification of the next technical result is easy and is left to the reader.

LemMa 8.3, Let neP and S=%"{s,...,s.,,}.<[n]u {0}, 0,nesS.

Then
Z hllrr) [k]”‘_l Z qh:(n;.

Ine Ti[n]): S(n)j=S} {(mef{[st+1.n]): S(ay=5-{0}}

LEMMA 84. Let neP and Sd=d{sl,...,s,\,*,}>E[n]u{O}, 0, neS.
Then
k
th(n)= 1—[ [l'].;‘,'*swl']' (41)

{reI((n]): S(m)=S} i=1

Proof. We find it convenient to introduce the following notation.
For ae[n]\S we let i(a) be the unique element of [£] such that
Sitar+ 1 <A< Siq)-
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We prove (41) by constructing an appropriate bijection. Let n be a
partition of [n] such that S(n)=S§. For ae [n]\ S we let
@y £ i1 (42)
if  and s; are in the same block of n. Note that since S(n)=3S, f,(a) <
i(a)— 1, for all ae [n]\S. Conversely, given a function f: [n]\ S — N such
that f(a)<i(a)—1 for all e [n]\ S, we construct a partition n, of [n] by
putting ae [n]\ S in the same block as s,,,,, and putting s,, .., 5, all in
different blocks. Note that a <s,,, <5, so that S(n,)=S5. It is easy to
see that the maps n—f, and f+ 7, are inverses of each other. Further-
more, it follows from (42) that

mm= Y, fdla)

ae[n].S
Hence
Z th(n) — Z n q,/‘(u)
{nefl{[n]): S(n)=S} f ael[n].S
— l’]’ (1+q+q2+n_+qi(u)——l)
age(n]S

k
[T+g+g>+ - 4g )y sa!

i=1

Il

(where f runs over all functions f: [#]\.§ — N such that f(a)<i(a)—1 for
all ae [n]\S), and the thesis follows. |

We illustrate the above construction with an example. Let n=9
and S= {9,7,6,2}, so that s,=9, 5s,=7, s;,=6, s,=2 and hence
i(1y=4, i3)=i4)=i(5)=3, and i8)=1 1If n=938/75/64/21 then
[(3)=1.(8)=0, f.(5})=1, f,(4)=2, and f,{1)=3. Conversely, if f(1)=3,
f(3)=2,f(4)=f(5)=1, and f(8)=0 then n,=98/745/63/21.

Given an r-tuple of partitions (m,, .., 7,) we associate to it a shifted
tabloid ST(n,, .., n,) by letting the elements of S(=;) (in decreasing order)
be the ith row of it, for i=1, .., r, and then shifting the resuiting array. For
example, if n, =82/7591/6/354, n,=25/134, and n,=71/52/3/46 then

9 8 6 5
ST(m,y, my, 73) = 5 4
7 6 5 3

LEMMA 8.5. Let T be a row strict shifted plane partition of coshape
(ny+1,..,n,+1). Then

I‘[ [j]:l,lrifl,+ll7""lr(r)= Z I’—l qh’(m)’ (43)

jz1 (my,omr) i=1
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where the sum is over all r-tuples (m,,
H([n,+ 1)) such that ST(n,, ..., n,)=T.

o ) EeM([ny+1])x --- x

Proof. Let T=(T, ;) <icri<j<k+:; bE @ rOW strict shifted plane
partition satisfying the hypotheses of the lemma. Then, for 1 <j <k, + 1,

di(T)
D) =4, (T =d,(T)=Y (Toiy;, —Tiie;— 1),

i=1

hence, by Lemma 8.4,

ki +1 ki+1 d(T)
H [j]Z(T)*',+1(T)*d/(T)= n H [j]Tu.,fwT“ﬂ—l
q
j=1 j=1 i=1
r ki+1

=H l—[ [j]T:.M,rl*Tu,M/*l
i=1 j=1 !

r

- l"[ Z th(n),

i=1 {mel([ni+1]):8S(n)=T, 0 {0}}
and (43) follows. |

Since a shifted tabloid of the form ST(n,,.. =) with (n,..,7, )€
II([ny+1])x --- xII([n,+ 1]) is necessarily row strict and of coshape
(n,+1,..,n,+1) from Theorems 8.1 and 8.2 and the preceding lemma we
deduce the following results.

THEOREM 8.6. Let {n,,..n,}., {k{, ...k, }, SN. Then

R,y 1
sta) (0 l>= s
kyv ok, Z . ,I_]l 7
where the sum is over all r-tuples (my,.,m)ell([n,+1])x --- X
Ho{{n, + l]) such that ST(n,, .., m,) is a shifted plane partition of shape
(ki +1,..k, +1) (equivalently, such that n, has k,+1 blocks and
“'>n ” Jfor I <igsr—land 2<j<k, +1).

THEOREM 8.7. Let {m,..m.}., {k,,..k,}. =N and m keP,
m>max{m,, k,}. Then

(S[n+1,k+11,},cn (’:1 Z’): Z ﬂ g,
N

e ) i=1

where the sum is over all r-tuples (x|, ..., n,)e Il{[m—k,+1,m—m, +1])x
xI([m—k,+1, m—m, +1}) such that ST(n,, ..., n,) is a shifted plane
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partition of shape ((k + 2)") (equivalently, such that n, has k + 1 blocks, for
i=l . randn2al "V for 1<i<r—1and 2<j<k+2)

Proof. Let T be a row strict shifted plane partition of shape ((k +2)")
in which the Jth row has largest part=m—m,+1 and smallest
part=m—k,, for i=1, .., r. Then by Lemmas 8.3 and 8.5 we obtain that

RV (T)y d{T)
[T g vt 4

iz1

— ]L[ Z th(nb

i=1 {mell([m-m+1)):S(m)=T,0{0}}

zn [k_+_2jlzr—k,71 Z thln)

i=1 (meflifm—k,+1.m -m+1]):8(n)=T7,}

=[k+2]F- 0 kol Z ﬁ g,

(my, o my) i=1

where the sum is over all r-tuples (n,, .., n,)e lI([m—k +1,m—m,;+1])x
xI([m—k,+1, m—m,+1]) such that ST(n,,..,n,)=7T, and the
thesis follows from Theorem 8.2. ||

We illustrate Theorem 8.6, when ¢ =1, with an example. Suppose that
(ki ko ky}s =21{2,1,0}, and {n,,ny,ny}.="{6,54}, as in the
example following Theorem 8.1. Then we are looking for triples
(m,, My, My II([7]) x II([6]) x IT([5]) such that ST(m,,m,, 7)) is a
shifted plane partition of shape (3,2,1). Since (7,7, n;3)€e
[T x I([6])x I([5]), ST(=x,, m,, m;) must be row strict and of the
form

5

Hence the only possibility for ST(n,, n,, 75) is

7 6 5
6 5
5

This means that we are looking for triples (7, 7., n;)e II([7]) x [I([6]) x
TI([5]) such that S(n,)={7,6,5}, S(n,)= {6, 5}, and S(xn,;)={5}. Hence
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there are 3* possibilities for n,, 2% possibilities for 7, and one possibility
for m;. Therefore there are 1296 possible triples (n,, n,, #;), which is in
accordance with (38) and (39) when ¢ =1.

2.

12.
13.

14.
15.
16.

20.
21
22.
23.

24,
25.
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