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Abstract - -  Decreased responsiveness of the aged to infection may be associated with a 
decline in monokine production. Prior studies in macrophages have used different elic- 
iting agents, and results have varied. We assessed the effect of age on interleukin-1 (IL- 
l), tumor necrosis factor (TNF), and interleukin-6 (IL-6) in unelicited, thioglycollate 
(TG)-elicited, and complete Freund's adjuvant (CFA)-elicited peritoneal macrophages. 
Resident macrophages or CFA-elicited macrophages from middle aged or aged mice 
produced significantly less monokine bioactivity than resident or CFA-elicited macro- 
phages from young mice. Monokine bioactivity from TG-elicited macrophages from 
aged and middle aged mice was significantly increased when compared with macro- 
phages of young mice. Eliciting agents may alter macrophage populations and interac- 
tions with other cells leading to changes in monokine bioactivity with aging. 
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INTRODUCTION 

THE DIMINISHED response of the aged host to infection has been well described. A decline 
in the febrile response, trace metal responses, and diminished clearance of organisms with 
increasing age has been noted. In particular, the aged have difficulty in containing intra- 
cellular pathogens (Gardner and Remington, 1977; Emmerling et al., 1979; Louria et al., 
1982). The monocyte-macrophage system plays a critical role in the acute phase response 
and containment of pathogens. Despite the inability of the aged host to respond to infec- 
tion, few clear-cut defects in in-vitro monocyte-macrophage function have been found 
(Perkins, 1971; Johnson et al., 1978; Gardner et al., 1981; Caperna and Garvey, 1982; 
Finger et al., 1982; Wustrow et al., 1982; Antonaci et al., 1984; Petrequin and Johnson, 
1984; Esposito et al., 1988; Lavie and Gershon, 1988; Chen et al., 1991). A diminished 
ability to produce the monokines/endogenous pyrogens, IL-1 and TNF, in the aged has 
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been described by some investigators using febrile response assays (Norman et aL, 1988), 
bioactivity assays (Bruley-Rosset and Vergnon, 1984; Hayari et al., 1984; Inamizu et al., 
1985; Bessler et aL, 1989; Bradley et aL, 1989; Rudd and Banerjee, 1989; Davila et aL, 
1990) and enzyme-linked immunosorbent assay (ELISA) methods (Mooradian et 
aL, 1991); however, others have not found these defects (Rosenberg et aL, 1983; Jones el 
aL, 1984; Kauffman, 1986; Amadori et aL, 1988; Bradley et al., 1990; Putnam and Peter- 
son, 1991). 

This variation in experiments assessing monokine production by the aged might relate 
to differences in technique, especially methods to obtain macrophages. Different agents 
used to elicit peritoneal macrophages for study have been shown to alter macrophage func- 
tion (Edelson et al., 1975; Johnston et aL, 1978; North, 1978; Ruco and Meltzer, 1978; 
Hopper and Geczy, 1980; Ogmundsdottir, 1980; Spitalny, 1981; Rasmussen et al., 1983; 
Leijh et aL, 1984; Blanckmeister and Sussdorf, 1985; Hopper, 1986; Tannenbaum et aL, 
1987; Melnicoff et al., 1989; Higuchi et al., 1990; Reed and Burnham, 1991; Tomioka and 
Saito, 1992) and possibly monokine production (Marcinkiewicz, 1991) through mecha- 
nisms that are not yet well defined. In this study, the effects of various eliciting agents, 
complete Freund's adjuvant (CFA), thioglycollate (TG), or no treatment, on IL-l, IL-6, 
and TNF bioactivity in peritoneal macrophage supernatants from young, middle aged, 
and aged mice was assessed. 

MATERIALS AND METHODS 

Mice 

Young (2-3 months), middle aged (12-13 months), and aged (23-25 months) C57BL/ 
6 male mice were obtained from the University of Michigan Core Facility for Aged 
Rodents or from the National Institute on Aging. Animals were housed at 26°C, and given 
chow and water ad libitum. Macrophages were not used in the study if the donor mice 
appeared ill or gross anatomic abnormalities were noted at the time of harvest of peritoneal 
exudate cells. 

Macrophage isolation and culture 

Mice in each age group were injected intraperitoneally with 3 ml of 3% TG (Difco, 
Detroit), 0.5 ml CFA (Difco) that had been emulsified 1:1 in pyrogen-free saline, or 
received no injection of an eliciting agent (resident macrophages). Peritoneal exudate cells 
were harvested 4 days following injection of TG and 14 days following injection of CFA 
by washing the abdominal cavity with 6 ml Hanks' balanced salt solution (HBSS) (JRH 
Biologicals, Lenexa, KS). 

The cells were washed, counted, and the percentage of cells which were macrophages 
was assessed morphologically and with nonspecific esterase stain (Sigma, St. Louis). A final 
concentration of 2 × 106 cells/ml was added to RPMI 1640 medium containing 2 mM L- 
glutamine, 5 u/ml penicillin, and 5/~g/ml streptomycin (JRH Biologicals). One ml of cell 
suspension was added to each well of a 24-well flat-bottomed plastic plate (Flow Labora- 
tories, McLean, VA), and plates were incubated at 37"C in 5% CO2. 

After 1 h, the nonadherent cells were removed by two vigorous washings with HBSS. 
For each mouse, adherent cells from one well were removed with a rubber policeman and 
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counted. The adherent cells in the remaining wells were incubated in the above medium 
with 10 #g/ml Escherichia coli 01 l l:B4 lipopolysaccharide (LPS) (Difco). Supernatants 
were collected from different wells at 1 or 2, 4, 8, 24, and 48 h following LPS stimulation, 
centrifuged to remove cellular debris, and stored at - 70"C prior to assay for monokines. 

Monokine bioassays 

TNF-a concentrations in the supernatants were determined by a modified cytotoxicity 
assay using the WEHI 164 subclone 13 murine fibrosarcoma cell line (gift of Dr. Steven 
Kunkel) (Espevik and Nissen-Meyer, 1986). Serial 1:2 dilutions ofsupernatants or human 
recombinant TNFa (rhTNF) Genzyme, Boston, MA) were made in complete medium 
containing RPMI- 1640, 2 mM L-glutamine, 5 u/ml penicillin, 5 ug/ml streptomycin, and 
10% heat-inactivated mycoplasma-free fetal calf serum (JRH Biologicals). A dilution of 
supernatant or standard was added in triplicate in 100-ul aliquots to each well of a 96-well 
fiat bottom culture plate (Flow Laboratories). WEHI cells were adjusted to a concentration 
of 5 × 105 cells/ml in complete media, and 100-ul aliquots were added to the wells which 
contained either supernatants or standards. The plates were incubated for 18 h at 37"C in 
5% CO2. 

IL- 1 concentrations in the supernatants were determined by a proliferation assay using 
the D10.G4. l T helper cell line (ATCC #TIB224, Rockville, MD) (Kaye et aL, 1983). 
Serial 1: 3 dilutions of supernatants or human concensus IL- l (hIL- 1) (Endogen, Boston) 
were made in complete medium containing Click's medium (Irvine Scientific, Santa Ana, 
CA), 2.5 ~g/ml concanavalin A (Pharmacia, Piscataway, NJ), 10% fetal calf serum, 2 mM 
2-mercaptoethanol, 2 mM L-glutamine, 5 u/ml penicillin, and 5 ~g/ml streptomycin. 
One-hundred-microliter aliquots of each supernatant or standard dilution were added in 
triplicate to each well of a 96-well flat-bottomed plate. D10.G4.1 cells were adjusted to a 
concentration of 2 × 10 5 ceUs/ml in complete media, and 100-/~l aliquots were added to 
the wells which contained either the supernatants or standards. The plates were incubated 
for 48 h at 37"C in 5% COy 

IL-6 concentrations in the supernatants were determined by a proliferation assay using 
the IL-6-dependent B9 hybridoma cell line (gift of Drs. L.A. Aarden and M.J. Kluger) 
(Helle et al., 1988). Serial 1:3 dilutions ofsupernatants or human recombinant IL-6 (rhIL- 
6) (Genzyme, Boston, MA) were made in 0.2 ml of Iscove's modified Dulbecco's medium 
(Gibco, Grand Island, NY) containing 10% fetal calf serum, 2 mM 2-mercaptoethanol, 5 
u/ml pencillin, and 5 ~tg/ml streptomycin. One-hundred-microliter aliquots of each super- 
natant or standard dilution were added in triplicate to each well of a 96-well flat-bottomed 
plate. The B9 cells were adjusted to 5 × l04 cells/ml in complete media, and 100-~l ali- 
quots were added in triplicate to each well containing either supernatants or rhIL-6. The 
cells were incubated for 72 h at 37°C in 5% CO2. 

3 H-thymidine incorporation 

Monokine proliferative and cytotoxic activities were measured by 3H-thymidine incor- 
poration. 3H-thymidine (ICN, Costa Mesa, CA) (1 ttCi) was added to all wells. IL-1 and 
TNF assay plates were incubated for 8 h and IL-6 assay plates were incubated for 4 h at 
37"C in 5% CO:. The cells were harvested and thymidine incorporation was measured in 
a beta counter. 
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Calculation of monokine concentrations 

Standard curves were drawn by comparing dpm (y axis) versus the log of known con- 
centrations of rhlL-1 or rhTNF (x axis) for each experiment. The linear equation that 
described the straight portion of the recombinant standard curve was obtained using a 
computer graphics program (Cricket Software, Malvern, PA). The dpm measured for each 
supernatant dilution (y) was used in the equation to calculate the concentration ofmurine 
monokine (x) present in the dilute supernatant. The limits of detection were 15 pg/ml for 
TNF and 0.1 pg/ml for IL- 1 in our assays. 

To assess IL-6 activity, a separate curve was drawn for each mouse (dpm [y] vs. super- 
natant dilution [x]). One half of the maximum proliferative response (defined as 1 unit of 
IL-6 activity) was calculated from each curve for each mouse. An equation (y = mx + b) 
was derived by linear regression analysis to define the straight portion of each curve. The 
dpm for each mouse half-maximal response (y) was used in each equation to calculate the 
dilution ofsupernatant (x) that contained I unit oflL-6 activity for each mouse. The recip- 
rocal of that dilution represented the number of units of IL-6 in the undiluted super- 
natant. 

A standard curve for rhlL-6 was also drawn (dpm vs. concentration [pg/ml]) for each 
experiment. The concentration of rhlL-6 resulting in one-half maximal proliferation was 
calculated. A unit of IL-6 activity for each mouse could then be compared against a unit 
of rhlL-6 activity of known concentration. By converting the murine IL-6 units to equiv- 
alent units of rhlL-6, a final concentration in pg/ml could be calculated for each murine 
supernatant. We found that 1 u/ml of murine IL-6 activity in our assay generally corre- 
sponded to 2 u/ml or 200 pg/ml ofrlL-6. The limit of detection ofrhlL-6 was 50 pg/ml in 
our assay. 

Assay controls 

Proliferation or cytotoxicity was assessed using complete medium alone or cell lines in 
complete medium as a control to assure that nonspecific activation had not occurred. In 
addition, in each experiment, triplicate wells were set up with supernatants from macro- 
phages which had not been stimulated with LPS. Antibodies for each murine monokine 
(Genzyme) were used in their respective assays to ascertain that the proliferative or cyto- 
toxic response was specific for that monokine. Polyclonal rabbit antimurine TNFa ( 1 : 10) 
was added to 5 different murine supernatants, polyclonal rabbit antimurine IL-1 (1:10) 
was added to supernatants from 2 different mice, and monoclonal rat antimurine IL-6 
(1:50) was added to supernatants from 3 different mice, each time using the appropriate 
specific cell line. 

Monokine ELISA methods 

CFA-elicited macrophage supernatants, from young, middle aged, and aged mice, were 
tested by ELISA for the three monokines. Supernatants from macrophages that had been 
incubated with LPS for 24 h were selected for TNF measurement, 8-h supernatants were 
used for IL-1 measurement, and 4-h supernatants for IL-6 measurement. Undiluted 
supernatants and supernatants diluted severalfold in RPMI were assayed in dup- 
licate in an ELISA for murine TNFa (Genzyme, Boston), IL-la, and IL-6 (Endogen, 
Boston). Limits of detection were 50 pg/ml for TNFa and 15 pg/ml for IL-la  and 
IL-6. 
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Statistical analysis 

The effect of age on the bioactivity of each monokine and cell yields was determined by 
one-way analysis of variance. 

RESULTS 

Monokine bioactivity in CFA-elicited macrophages 

While TNF bioactivity was detectable at 2 h (data not shown), the highest levels were 
found at 4 h, with a rapid decline thereafter in supernatants from all age groups (Fig. IA). 
Supernatants from aged and middle aged mice consistently contained less TNF than 
supernatants from young mice at all time-points; these results were significant at 8, 24, 
and 48 h. 

For IL- 1 in all age groups, supernatant bioactivity was barely detectable at 1 h (data not 
known), and readily measured at 4 and 8 h, with the peak response at 24 h, followed by a 
decline at 48 h (Figure 1B). Supernatants from aged and middle aged mice showed signif- 
icantly less IL-1 activity at 8 and 24 h than supernatants from young mice. 

IL-6 activity was detectable at 1 h (data not shown), and showed only modest rises 
through 48 h. Supernatants from aged mice contained significantly less IL-6 activity than 
supernatants from middle aged and young mice at 4 h (Fig. 1C). After that, no significant 
age-related differences were apparent. 

Monokine bioactivity in TG-elicited macrophages 

Major differences were apparent when monokine bioactivity was assessed in superna- 
tants from TG-elicited macrophages. Increasing age did not decrease monokine bioactiv- 
ity, as seen with CFA-elicited macrophages. In fact, at many time-points supernatants 
from TG-elicited aging macrophages showed more monokine bioactivity than those from 
young mice. 

Although TNF bioactivity was detectable at 2 h (data not shown), peak TNF levels were 
not found at 4 h (as noted with CFA-elicited cells), but at 8 and 24 h (Fig. 2A). In contrast 
to CFA results, supernatants from TG-elicited macrophages from aged and middle aged 
mice contained more activity than supernatants from young mice at 4, 8, and 24 h. 

In TG-elicited macrophage supernatants, IL-1 activity was very low when compared to 
levels noted in supernatants from macrophages elicited with CFA (note change in scale of 
the graph), and peak levels were found at 48 h (Fig. 2B). Macrophages of aged mice pro- 
duced more IL-1 than macrophages of young and middle aged mice, with a significant 
effect of increasing age noted at all time-points. 

IL-6 bioactivity was significantly greater than TNF and IL- 1 in TG-elicited macrophage 
supernatants, and greater than that noted in CFA-elicited macrophages. IL-6 was detect- 
able at 2 h (data not shown), and peak IL-6 levels were observed at 24 and 48 h (Fig. 2C). 
At 8, 24, and 48 h, supernatants of macrophages from aged and middle aged mice con- 
tained more IL-6 than supernatants from young mice, but a statistically significant effect 
of age was found only at 8 h. 

Monokine bioactivity in resident macrophages 

In general, results with resident peritoneal macrophages mirrored those found with 
CFA-elicited macrophages. However, far less TNF was produced by the resident macro- 
phages than those elicited with CFA or TG (note difference in scale of the graph) (Fig. 3A). 
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FIG. 1. Monokine bioactivity in supernatants from CFA-elicited peritoneal macrophages from 
three age groups of mice stimulated with LPS in vitro. All data are expressed as mean _+ SE. 
Statistical differences were assessed by one-way analysis of variance. * = significant time-point. 
(A) TNF: Supernatants from aged and middle aged macrophages contained significantly less 
TNF activity than supernatants from young macrophages at 8 h (p = 0.0001), 24 h (p = 0.028), 
and 48 h (p = 0.013). (B) IL-I: Supernatants from aged macrophages contained significantly 
less IL-I activity than supernatants from middle aged and young macropfiages at 8 h (p = 
0.023) and 24 h (p = 0.008). (C) IL-6: Supernatants from aged and middle-aged macrophages 
contained significantly less IL-6 activity than supernatants from young macrophages at 4 h (p 
= 0.002). 
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FIG. 2. Monokine bioactivity in supernatants from TG-elicited peritoneal macrophages from 
three age groups of mice stimulated with LPS in vitro. All data are expressed as the mean _+ 
SE. Statistical differences were assessed by one-way analysis of variance. * = significant time- 
point. (A) TNF: Supernatants from aged and middle aged macrophages contained significantly 
more TNF activity than supernatants from young macrophages at 8 h (p = 0.033). (B) IL-l: 
Supernatants from aged macrophages contained significantly more IL-1 activity than super- 
natants from middle aged and young macrophages at 4 h (p = 0.05), 8 h (p = 0.005), 24 h (p 
= 0.011), and 48 h (p = 0.039). (C) IL-6: Supernatants from aged and middle aged macro- 
phages contained significantly more IL-6 activity than supernatants from young macrophages 
at 8 h (p = 0.02). 
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FIG. 3. Monokine bioactivity in suoernatants from resident peritoneal macrophages from three 
age groups of mice stimulated with LPS in vitro. All data are expressed as the mean _+ SE. 
Statistical differences were assessed by one-way analysis of variance. * = significant time-point. 
(A) TNF: Su0ernatants from aged and middle aged macrophages contained significantly less 
activity than supernatants from young macrophages at 8 h (p -- 0.043). (B) IL-I: Suoernatants 
from aged and middle aged macrophages contained significantly less activity than suoernatants 
from young macrophages at 8 h (p = 0.007), 24 h (p = 0.004), and 48 h (p = 0.031). (C) IL-6: 
Supernatants from aged and middle aged macrophages contained significantly less activity than 
suoernatants from young macrophages at 4 h (/7 = 0.008), 8 h (p = 0.0001 ), 24 h (p = 0.035), 
and 48 (p = 0.024). 
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As noted with CFA-elicited macrophages, peak TNF levels were detected at 4 h. Super- 
natants from resident macrophages of aged and middle aged mice contained less TNF than 
supernatants from macrophages of young mice, but significant differences were seen only 
a t8h .  

IL-1 bioactivity in supernatants from resident macrophages was almost as great as that 
seen in CFA-elicited macrophages, and much greater than that seen in thioglycollate-elic- 
ited macrophages (Fig. 3B). IL-1 levels peaked at the same time as IL-1 levels from TG- 
elicited macrophages (48 h) and later than IL- 1 levels from CFA-elicited macrophages (24 
h). Supernatants from resident macrophages of aged and middle aged mice contained less 
IL-1 than supernatants from macrophages of young mice, and a significant effect of age 
was found at 8, 24, and 48 h. 

Levels of IL-6 detected in resident macrophage supernatants were similar to levels 
detected in CFA-elicited and TG-elicited supernatants. Peak IL-6 bioactivity was detected 
at 24 h, as noted in TG-elicited macrophages (Fig. 3C). Supernatants from resident mac- 
rophages of aged and middle aged mice contained significantly less IL-6 bioactivity when 
compared with supernatants from macrophages of young mice at 4, 8, 24, and 48 h. 

Assay controls 

Supernatants from macrophages cultured in medium without LPS produced no mea- 
sureable monokines. When 3H-thymidine was added to complete medium alone, or 
WEHI, D10.G4.1 cells, and B9 cells in their respective complete media, only minimal 
cytoxicity (WEHI cells) or proliferation (DI0.G4.1 and B9 cells) was noted, showing no 
nonspecific activation by medium or cells alone (Fig. 4). Addition ofrhTNF to WEHI cells 
resulted in a marked decline in 3H-thymidine incorporation, showing increased cytotox- 
icity. In contrast, addition of hlL-1 to D10.G4.1 cells or rhlL-6 to B9 cells resulted in 
marked incorporation of 3H-thymidine, reflecting increased proliferation. The murine 
supernatants tested in these experiments showed activity similar to the standards in all 
three assays. 

Addition of antimurine TNFa to murine supernatants abolished cytotoxic activity in 
the WEHI assay by 85%. Addition of antimurine IL-1 to murine supernatants abolished 
proliferative activity in the D10.G4.1 assay by 96%. Addition of antimurine IL-6 to 
murine supernatants abolished proliferative activity in the B9 assay by 97%. 

Measurement of monokines by ELISA 

While monokine bioactivity was significantly reduced with aging at various time-points, 
measurement of IL-I a, TNFa, and IL-6 in the same CFA-elicited macrophage superna- 
tants by ELISA revealed no significant differences (Table 1). However, we did find a trend 
toward decreasing levels of all three monokines with increasing age. Overall, monokine 
levels as measured by ELISA were markedly lower than TNFct, IL- l, and IL-6 levels mea- 
sured by bioactivity assays at 24, 8, and 4 h, respectively. 

Effect of aging and eliciting agents on adherent cell numbers 

Numbers of peritoneal exudate cells obtained following elicitation with either CFA or 
TG did not differ significantly among the three age groups (Table 2). In contrast, noneli- 
cited resident peritoneal exudate cell yields were significantly greater from aged mice when 
compared with cell yields from young and middle aged mice. The percentage of cells which 
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FIG. 4. Results of blocking and assay control experiments. Complete medium and WEHI 164 
subclone 13 cells, D 10.G4.1 cells, and B9 cells in complete medium were run as negative con- 
trols in all respective bioassays for TNF, IL-1, and IL-6. Standards used were recombinant 
human TNFa, concensus human IL-I, and recombinant human IL-6; activity was similar to 
that of the murine supernatants tested. Blocking experiments were done with antimurine TNFc~ 
mixed with supernatants from 5 different mice, antimurine IL- 1 mixed with supernatants from 
2 different mice, and antimurine IL-6 mixed with supernatants from 3 different mice. Data are 
expressed as the mean ± SE. 

were macrophages, identified by morphology and staining with nonspecific esterase, did 
not differ significantly with age in exudates elicited with CFA or TG. However, the per- 
centage of cells which were macrophages was significantly higher in young mice when 
nonelicited resident peritoneal macrophages were enumerated. The total number of cells 
which adhered to tissue culture plates were similar in all age groups, regardless of whether 
they were elicited with CFA or TG or were nonelicited resident cells. The percent of adher- 
ent cells that were esterase positive was greater than 95%, regardless of age or whether the 
cells were elicited with TG or CFA or were resident cells. 

TABLE I .  C O N C E N T R A T I O N S  OF MONOKINES IN SUPERNATANTS FROM C F A - E L I C I T E D  MACROPHAGES 

MEASURED BY E L I S A  

TNF~ IL- 1 c~ IL-6 

Age group (N) (pg/ml) (N) (pg/ml) (N) (pg/m[) 

Young (8) 3250 _+ 462 (8) 120 _+24 (9) 1272 _+ 325 
Middle (7) 2907 _+ 269 (7) 91 _+8 (5) 893 _+ 422 
Aged (8) 2629 _+ 627 (9) 69 _+ 19 (8) 570 _+ 148 

Supematants from CFA-elicited macrophages were incubated with LPS 10/~g/ml for 4 h (IL-6), 8 h (IL-1 a), and 
24 h (TNFa). All data are expressed as mean _+ SE. Differences among age groups for each monokine were 
assessed by one-way analysis of variance, and no significant differences were found. 
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TABLE 2. TOTAL YIELD OF ELICITED AND RESIDENT PERITONEAL CELLS~ PERCENT MACROPI-IAGES, AND 
ADHERENT CELL NUMBERS FROM THREE AGE OROUPS OF MICE 

Cells ~ Age TG (N) CFA (N) Resident (N) 

Young 45 +_ 4 (18) 54 + 6 (9) 2 ± 0.2 (12) 
Totalyield(106) Middle 54 ± 6 (15) 50 ± 6 (7) 5 +- 1.1 (11) 

Aged 52 _+ 8 (15) 67 + 12 (7) 12 ± 2.0 (11)* 
Young 93 ± 1 (8) 89 + 3 (4) 72 ± 3 (20)** 

Macrophages(%) Middle 89 _+ 2 (6) 91 + 1 (5) 49 ± 5 (9) 
Aged 96 +_ 3 (4) 88 ± 1 (6) 54 ± 7 (8) 
Young 0.8 ± 0.04 (8) 0.9 + 0.1 (9) 0.9 ± 0.1 (11) 

Adherent cells(106) Middle 0.7 +_ 0.05 (6) 1.0 +_ 0.1 (7) 1.3 4-- 0.1 (11) 
Aged 0.9 ± 0.05 (4) 0.9 ± 0.1 (7) 1.3 ± 0.1 ( l l )  

aEach data point represents the mean ± SE. 
*Aged mice yielded more resident cells than young or middle aged mice, p = 0.0001 by one-way analysis of 
variance. **Young mice yielded a greater proportion of macrophages than aged or young mice, p = 0.001 by 
one-way analysis of variance. 

DISCUSSION 

Various approaches to assess the effect of aging on the monocyte-macrophage system 
have been used. Early studies of monocyte-macrophage function focused on the pyro- 
genic properties of the monokines (Kauffman, 1986; Norman et al., 1988). Supernatants 
from shellfish glycogen-elicited rat peritoneal macrophages showed no decline in pyro- 
genic activity with increasing age (Kauffman, 1986). In contrast, a significant decline in 
the pyrogenic activity of supernatants was found with increasing age when murine adher- 
ent peritoneal cells were elicited with thioglycollate (Norman et al., 1988). 

Subsequent approaches to assess the effects of aging on monokines involved measuring 
their proliferative or cytotoxic effects on various cell lines. Inamizu et aL, using superna- 
tants from LPS-elicited, adherent mouse peritoneal cells, showed a significant reduction 
in IL-l mediated thymocyte proliferation with increasing age (1985). Bruley-Rosset and 
Vergnon found similar results using supernatants from resident nonelicited adherent 
murine peritoneal cells in a thymocyte proliferation assay (1984). 

However, no significant differences were found when supernatants from nonelicited res- 
ident adherent rat peritoneal macrophages were assessed for IL- 1 bioactivity in a thymo- 
cyte proliferation assay (Rosenberg et aL, 1983). In contrast, we found a decline in IL-l 
and TNF bioactivity, by thymocyte proliferation and L929 cytotoxicity assays, respec- 
tively, in supernatants from shellfish glycogen-elicited rat peritoneal macrophages (Brad- 
ley et al., 1989). These studies were corroborated by Davila et al., who found a decline in 
TNF bioactivity by the WEHI assay in supernatants from aged rat resident peritoneal mac- 
rophages (1990). 

In the above studies, investigators used various animal models and different methods of 
obtaining and stimulating macrophages. In our current study, we found that the eliciting 
agents used greatly influenced the occurrence of age-related differences in monokine bio- 
activity. Our results with nonelicited resident macrophages confirm similar studies with 
resident macrophages by Bruley-Rosset and Vergnon showing that IL-1 bioactivity is 
reduced in supernatants from aged mice (1984), and support findings by Davila et aL that 
TNF bioactivity is reduced in supernatants from aged rats (1990). 



156 Y. CHEN AND S.F. BRADLEY 

Monokine production in aged TG-elicited peritoneal macrophages contrasted greatly 
with the findings using nonelicited resident macrophages and CFA-elicited macrophages, 
and with prior studies of LPS-elicited (Inamizu et al., 1985) and shellfish glycogen-elicited 
macrophages (Bradley et al., 1989). When macrophages were elicited with TG, no appar- 
ent defect in monokine bioactivity was seen with aging; whereas aged macrophages elicited 
with LPS, glycogen, and CFA all showed a decline in monokine bioactivity (Inamizu et 
al., 1985; Bradley et al., 1989). 

It is likely that the use of either resident or elicited peritoneal cells can greatly influence 
the outcome of experiments in aging, macrophage function, and cytokine production. 
Peritoneal macrophages elicited with TG have been found to have increased pinocytotic 
and recruitment rates, differences in protein synthesis patterns, and increased tumoricidal 
activity, when compared with proteose peptone-elicited macrophages (Edelson et al., 
1975; Hopper, 1986; Tannenbaum et al., 1987; Higuchi et al., 1990). Thioglycollate has 
also been associated with a depressive effect on microbicidal capacity (Spitalny, 1981; 
Leijh et al., 1984). Direct comparisons of the effects of various eliciting agents (i.e., "stim- 
ulants or irritants" or activating agents) on monokine production in aging animals have 
not been carried out previously. 

Differences in monokine bioactivity seen with CFA and TG might be explained on the 
basis of differences in the functional state of the macrophages elicited or heterogeneity of 
the populations elicited (Melnicoff et al., 1989; Reed and Burnham, 1991). Interactions 
of these macrophages with other types of cells and cytokines in vivo also could alter 
monokine production in vitro. Differences in monokine production, seen with the use of 
different eliciting agents to obtain macrophages, might be explained by the induction of 
substances which alter macrophage function, such as prostaglandin E2 (Goodwin and 
Messner, 1979) or other cytokines, such as interferon--r (Collart et al., 1986) interleukin- 
4 (Essner et al., 1989), interleukin-l0 (De Waal et al., 1991), o r  granulocyte-macrophage 
colony stimulating factor (Heidenreich et al., 1989). Similar hypotheses have been raised 
by Marcinkiewicz, who found that supernatants from TG- or LPS-elicited murine mac- 
rophages yielded differences in IL-1, IL-6, and TNF bioactivity (Marcinkiewicz, 1991; 
Tachibana et al., 1992). 

The function of aged macrophages has been assessed using primarily peritoneal mac- 
rophages (Perkins, 1971; Johnson et al., 1978; Finger, et al., 1982; Wustrow et al., 1982; 
Petrequin and Johnson, 1984; Lavie and Gershon, 1988; Chen et al., 199 l) and only occa- 
sionally alveolar macrophages (Esposito et al., 1988) or Kupffer cells (Caperna and Gar- 
vey, 1982). These studies have been performed with peritoneal macrophages elicited by a 
wide variety of different agents. In only two studies was the function of elicited macro- 
phages compared with the function of nonelicited resident macrophages (Lavie and Ger- 
shon, 1988; Chen et al., 1991). Although an age-related difference was seen in phagocy- 
tosis, superoxide generation, and microbicidal capacities in elicited macrophages, no age- 
related decrease was noted when nonelicited resident macrophages were used (Lavie and 
Gershon, 1988; Chen et al., 1991). 

We have also demonstrated that while monokine bioactivity was reduced with increas- 
ing age in supernatants from CFA-elicited cells, similar results were not found when the 
supernatants were assayed by ELISA methods. One possibility to explain these results is 
that IL-1, TNF, and IL-6 could have been produced in normal quantities, but inhibitors 
ofIL-1 (Mazzei et al., 1990; Svenson et al., 1990), TNF (Seckinger et al., 1988; Peetre et 
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aL, 1988), and IL-6 (Novick et al., 1989) have been described. Future experiments will 
have to address whether any of these inhibitors of cytokine activity are increased with 
aging. 

Our studies suggest that the regulation of monokine secretion may be altered, but not 
necessarily defective in the aged. This concept echoes that of Russo et al., who propose 
that aging does not cause clear-cut deficits in specific immune system function, but rather 
immune dysregulation leading to inappropriate responses by the aged host (1990). Our 
model may be useful in further studies of how aging alters homeostatic mechanisms which 
control monokine production. 
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