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1. Overview 

Our work on estimating optical flow [8] was important  not because it 
solved (in some limited way) the problem of estimating optical flow, but 
because it represented the start of the variational approach to machine 
vision. The variational approach to machine vision problems was applied 
to shape-from-shading soon afterwards (Ikeuchi and Horn [10] ), and has 
since found its way into many areas of machine vision. The variational 
approach lends itself particularly well to methods that are not feature-based. 
It provides a way of taking into account contributions from all parts of 
the image rather than just special isolated points, and it makes it possible 
to incorporate prior knowledge about what may be expected in particular 
imaging situations. It can also suggest methods for solving vision problems 
using nonlinear analog networks (Horn [6] ), and it may lead to new ways 
of integrating multiple cues in images (Thompson [ 15 ] ). 

2. Origins 

The idea behind the "optical flow" paper took form in the summer of 
1978 when I was invited to the Motion Vision Laboratory established by 
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Hans-Helmut Nagel at the University of Hamburg. I had no real exposure to 
motion vision problems before this. My interest was heightened by a paper 
presented by Clocksin that summer at a conference in Hamburg [3] that 
irritated me for some reason. 

I was struck right away by the local ambiguity in recovering "optical flow", 
which I formulated as a linear constraint between the two components of 
the optical flow, with the derivatives of brightness as coefficients. This 
"brightness change constraint" can be conveniently exhibited as a line in 
velocity space. The local ambiguity inherent in this constraint was later 
termed the "aperture problem" (Marr [11]). An aside: this illustrates (a) 
how important it is to give an evocative name to an idea, and (b) how the 
simplest ideas are the ones that stick in peoples minds--not  the ones that 
you think are important. 

In attempting to deal with the local ambiguity it occurred to me that, in 
many cases, flow at nearby places in the image will be similar. But this is 
not a hard constraint that could be easily exploited. And the "constraint- 
propagation" methods popular in the field in the early seventies did not 
appeal to me. I started instead to think of the problem in least-squares 
terms, where there would be penalties for violating the basic brightness 
change constraint equation, and also penalties for having a flow that varied 
"too quickly" from place to place--the latter needed simply because the first 
"constraint" was not enough to provide a unique solution. 

It took a bit of time, however, before I realized that this was really a 
problem in the calculus of variation (not too surprising, given that I knew 
nothing about the calculus of variation). While trying to read the work of 
Courant and Hilbert [4], I discretized the problem so that I could make some 
progress using traditional least-squares methods. After solving the discrete 
version, I would grovel over the local weighted sums that appeared, in order 
to try and guess what partial derivative operators were being approximated 
by these "computational molecules"! 

Even-order partial differential equations of similar form to those arising 
in this variational problem were not entirely foreign to me, since we had 
used Poisson's equation (thin membrane) and the biharmonic equation 
(thin plate) earlier for interpolation of digital terrain models (DTMs) 
from contours (topographic maps) in our work for DARPA on image 
understanding--hill shading in particular [5]. 

Upon my return from Hamburg to MIT, I had Anni Bruss summarize 
the calculus of variations for me, and handed the problem over to Brian 
Schunck, who later did his Ph.D. thesis on this topic. We checked the basic 
ideas mostly on synthetic data, using various shapes with sinusoidal kinds 
of "textures". The images were created using a ray-tracing approach--as 
usual, this "forward optics" part was much simpler than the "inverse optics" 
part. 
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3. Variational approach to machine vision problems 

The interesting part of  this work was, in my opinion, the realization that 
tasks in machine vision can be posed as variational problems. A number 
of other tasks were later tackled in this way, starting with the shape-from- 
shading problem, which Katsushi Ikeuchi and I worked on using a penalty 
function containing the error in image brightness and again a "lack-of- 
smoothness" term [ 10 ]. 

There are several things to say about the variational approach to machine 
vision. First of all, it typically is not feature-based. Marvin Minsky told me, 
when Patrick Winston, Gene Freuder and I completed the "copy demo" in 
December 1970, that the time had come to leave the blocks world behind. 
To me this meant forgetting about edges. Most of  my work has focused 
on image cues other than edges, since "edge detection" is only really a 
well-defined problem in a world of polyhedral shapes. (Note that I said 
"well-defined", not "well-posed". ) 

Another aspect of  the variational approach is that it permits one to 
introduce information about how imaging works, as well as prior information 
about what is likely to happen in the scene. One part of  the error being 
minimized is invariably some measure of how much the image actually 
observed differs from an image predicted from the computed solution. This 
seems like an eminently reasonable term to have in the penalty function! 

Another aspect of the variational approach is that it leads to methods 
that use information from all over the image, not just isolated points. This 
provides for more robust results, since there is the opportunity for many 
small errors to more or less cancel out--an error at one pixel is not usually 
catastrophic. True, information from some areas, where brightness changes 
rapidly, may be more important than that from others, but why draw a 
line and say that some of this information should be thrown out altogether. 
Instead, just weight it in such a way that contributions from "important" 
areas have a stronger influence. The least-squares approach allows one to 
formalize this notion, and actually get the optimal weighting automatically. 

4. False leads 

There were several attempts to analyze our method and to improve upon 
it. Not all were productive. One notion was to note that "edges" provide 
strong constraint in one direction ("grey-level corners" provide strong con- 
straint in two directions). So the propagation of velocities should perhaps 
be anisotropic,--favored in certain directions. But the original formulation 
already took care of that, what looks like an isotropic "smoothing" inter- 
polation is actually distinctly directional, and in just the right way--and 
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how could it be otherwise? After all, the method is solving the least-squares 
problem by finding the optical flow that gives the best fit. 

Some efforts to replicate our results, particularly on real data, failed 
because of lack of  attention to basic numerical analysis. For example, it 
is important that the brightness derivatives be estimated so as to refer 
to the same point in time and space, and that the estimator do some 
smoothing, yet not lose locality. The estimator we used was described in 
detail in the paper, but some people simply used forward differences. Also, 
there are serious aliasing effects that may occur when the images moves 
more than a fraction of  the wavelength of the dominant components of the 
scene "texture". Estimating derivatives from aliased data is not a productive 
activity. Not unexpectedly, there is a certain range of velocities over which 
these types of  method work well. For large disparities between successive 
images one has to resort to a feature matching method. 

5. Unfortunate side-effects 

A few years after the birth of the variational approach to machine vision, 
Tomaso Poggio noticed that some of the variational methods used could be 
viewed as regularization of  ill-posed problems. This has led to at least two 
mistaken ideas: 

(1) that the variational approach is regularization, and 
(2) that all vision problems are ill-posed. 

To some extent the second error was fueled by the approach that Ikeuchi 
and I took in the paper "Numerical shape from shading and occluding 
boundaries" [10] where we abandoned the integrability constraint--because 
we couldn't find a convergent iterative scheme based on i t--and instead 
used a departure-from-smoothness penalty term--quite analogous to that 
appearing in the optical flow method. This is basically the approach one 
would take if shape-from-shading was an ill-posed problem. But it is not, as 
has been forcefully pointed out by John Oliensis [12], Bror Saxberg [13], 
and Mike Brooks (and as should actually also be apparent from the original 
solution involving characteristic strips). 

6. What  was left out 

Perhaps the main omission in the approach taken to optical flow at 
that time was the neglect of  boundaries between different regions moving 
differently. The variational approach chosen was based on the idea that 
flow at neighboring places in the image is similar--without exception. Not 
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surprisingly, large errors can occur at occluding boundaries in the image 
of rigid body motion--as illustrated in the original paper. Independently 
moving objects will lead to errors where one obscures another. 

The reason the segmentation problem was not addressed in the original 
paper is that we had no reasonable ideas about how to solve it, other than 
simply omitting contributions to the departure-from-smoothness penalty 
term in places where there appeared to be rapid changes in the estimated 
optical flow. But this was neither a principled approach nor particularly 
effective in practice (although several papers have been written since then 
that basically pursue this heuristic). 

Recently a number of approaches to the flow segmentation have arisen 
that look more promising. Starting with the idea of a line process and sim- 
ulated annealing--which is not computationally reasonable--Andrew Blake, 
Christof Koch, John Harris, Tomaso Poggio and others (see [1]) have 
developed approximations thereof that are computationally tractable. 

Another thing we did not do enough of in the paper is an analysis of 
what the sources of errors might be and what circumstances contributed 
to successful recovery of optical flow. We obviously knew something about 
this, since we chose experimental image sequences that worked! But we did 
not say enough about when the algorithm would not produce useful output. 
And in the tradition of machine vision programs based on single cues, there 
are plenty of situations that confuse this algorithm. 

7. Optical flow and the motion field 

One thing that I regret now in looking back at the paper is that we did 
not draw a clear distinction between what I would now call the "motion 
field" and the "optical flow". The optical flow is a velocity field in the 
image that transforms one image into the next image in a sequence. As 
such, it is not uniquely determined. One needs to add additional constraint 
to obtain a particular "optical flow". The motion field, on the other hand, is 
a purely geometric concept, without any ambiguity--it is the projection into 
the image of three-dimensional motion vectors. One endeavours to recover 
an optical flow that is close to the motion field--which is what one would 
really like in order to estimate shapes and motions. Much confusion has 
resulted from a lack of distinction between these two quite distinct concepts. 

8. Where did the work go from there 

There are really two "directions" to discuss. The first is in work on 
motion vision per  se. Here my own work with Anni Bruss [2], Shariar 
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Negahdaripour [7] and Ned Weldon [9] focused on introducing the rigid 
body constraint. This is such a powerful constraint, reducing the "number 
of unknowns" from two at every picture cell (components of flow) to 
roughly one at every picture cell (depth alone), that it would be silly not 
to exploit it when it applies. With rigid body motion, the problems are no 
longer variational, but instead "ordinary" (albeit complex and nonlinear) 
least-squares problems. And in several special cases (such as pure rotation, 
pure translation, motion with respect to a planar surface), closed form 
solutions exist. Again, the problem of segmentation was not addressed in 
our work, because it throws a real spanner in the works. Yet in many 
practical situations, depth discontinuities and independently moving objects 
require that the scene be segmented before the methods we developed can 
be applied to the regions therein. 

The second "direction" is broader, that of variational methods for ma- 
chine vision in general. Variational methods have now been brought to bear 
on a variety of problems, including optical flow, shape-from-shading, inter- 
polation from sparse data and yes, even edge detection and segmentation. 

9. What  can be built more easi ly as a result of  the paper? 

The optical flow method described in the paper allows the flow velocity 
to vary from place to place in the image--albeit slowly. An even simpler 
situation is one where the flow is the same everywhere--as might be a 
reasonable assumption if we consider a small enough patch of an image. This 
problem has a simple closed form solution involving two linear equations 
in two unknowns, which is variously attributed to Ned Weldon or Hans- 
Helmut Nagel, although it was also a long-standing homework problem in 
my course on machine vision here at MIT. 

John Tanner and Carver Mead at Caltech built an analog VLSI circuit that 
solves this simplified optical flow problem [ 14 ]. They did it using a feedback 
scheme quite analogous to gradient descent, rather than by working with 
the closed form solution directly. This is particularly nice, since a simple 
extension (replacing a global bus with a resistive network) would solve the 
variational problem, where flow is allowed to vary from place to place. A 
circuit for doing this has not been built, to my knowledge, but is well within 
the state of the art. 

More interesting perhaps than computation of optical flow itself is the 
recovery of rigid body motion and a depth map, if possible. Work on 
"direct" methods (that is, based on derivatives of brightness at all picture 
cells) for motion vision has led to some schemes that lend themselves to 
implementation in analog VLSI hardware. The pure rotation case is so 
simple (and has so little application in practice) that nobody has bothered 
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to built a chip for it. Pure translation is much harder, and Ignacio Sean 
McQuirk is now building an analog chip here at MIT to find the focus of 
expansion. 

Such efforts may lead to more complex chips that find both translation 
and rotation of a camera in a fixed environment. These should be useful in 
robotics and guidance of vehicles. 
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